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Abstract— Nowadays, as the need for capacity continues
to grow, entirely novel services are emerging. A solid cloud-
network integrated infrastructure is necessary to supply these
services in a real-time responsive, and scalable way. Due to their
diverse characteristics and limited capacity, communication and
computing resources must be collaboratively managed to unleash
their full potential. Although several innovative methods have
been proposed to orchestrate the resources, most ignored network
resources or relaxed the network as a simple graph, focusing
only on cloud resources. This paper fills the gap by studying
the joint problem of communication and computing resource
allocation, dubbed CCRA, including function placement and
assignment, traffic prioritization, and path selection considering
capacity constraints and quality requirements, to minimize total
cost. We formulate the problem as a non-linear programming
model and propose two approaches, dubbed B&B-CCRA and
WF-CCRA, based on the Branch & Bound and Water-Filling
algorithms to solve it when the system is fully known. Then, for
partially known systems, a Double Deep Q-Learning (DDQL)
architecture is designed. Numerical simulations show that B&B-
CCRA optimally solves the problem, whereas WF-CCRA delivers
near-optimal solutions in a substantially shorter time. Further-
more, it is demonstrated that DDQL-CCRA obtains near-optimal
solutions in the absence of request-specific information.

Index Terms—Beyond 5G, 6G, Computing First Networking,
Cloud-Network Integration, Cloud Network Fabric, Resource
Allocation, Path Selection, Traffic Prioritization, VNF Placement,
Optimization Theory, Reinforcement Learning, and Q-learning.

I. INTRODUCTION

Nowadays, an increase in data flow has resulted in a 1000-
fold increase in network capacity, which is the primary driver
of network evolution. While this demand for capacity will
continue to grow, the Internet of Everything is forging a
paradigm shift to new-born perceptions, bringing a range
of novel services with rigorous deterministic criteria, such
as connected robotics, smart healthcare, autonomous trans-
portation, and extended reality [1]. These services will be
provisioned by establishing functional components, Virtual
Network Functions (VNFs), which will generate and consume
vast amounts of data that must be processed in real-time to
ensure service responsiveness and scalability.

In these circumstances, a distributed cloud architecture is
essential [2], which could be implemented via a solid cloud-
network integrated infrastructure built of distinct domains in

Beyond 5G (B5G) [3]. These domains can be distinguished by
the technology employed, including radio access, transport,
and core networks, as well as edge, access, aggregation,
regional, and central clouds. Moreover, these resources can be
virtualized using technologies such as Network Function Vir-
tualization (NFV), which enables the construction of separate
virtual entities on top of this physical infrastructure [4], [5].
Since distributed cloud and network domains would be diverse
in terms of characteristics but limited in terms of capability,
communication and computing resources should be jointly
allocated, prioritized, and scheduled to ensure maximum Qual-
ity of Service (QoS) satisfaction while maximizing resource
sharing and maintaining a deterministic system state, resulting
in energy savings as one of the most significant examples of
cost minimization objectives [6].

The joint problem of resource allocation in cloud-network
integrated infrastructures has been extensively studied in the
literature. Emu et al. [7] analyzed the VNF placement problem
as an Integer Linear Programming (ILP) model that guarantees
low End-to-End (E2E) latency while preserving QoS require-
ments by not exceeding an acceptable latency violation limit.
They proposed an approach based on neural networks and
demonstrated that it can result in near-optimal solutions in
a timely way. Vasilakos et al. [8] examined the same problem
and proposed a hierarchical Reinforcement Learning (RL)
method with local prediction modules as well as a global
learning component. They demonstrated that their method
significantly outperforms conventional approaches. Sami et
al. [9] investigated a similar topic to minimize the cost
of allocations, and a Markov decision process design was
provided. They claimed that the proposed method provides
efficient placements. Performing cost-effective services was
also investigated by Liu et al. [10] and He et al. [11]. In
the former, the authors considered the cost of computing and
networking resources as well as the cost of using VNFs and
proposed a heuristic algorithm, whereas, in the latter, they con-
sidered latency as a cost and proposed a Deep Reinforcement
Learning (DRL) solution to the problem. Iwamoto et al. [12]
investigated the problem of scheduling VNF migrations in
order to optimize the QoS degradation of all traffic flows and
proposed a stochastic method on the basis of the load degree
of VNF instances.
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TABLE I
LITERATURE REVIEW.

Paper Objective
Constraints Solution Approach

Traffic
Priority Routing Network

Capacity
Network Latency Compute

Capacity
Compute
Latency Optimal Heuristic LearningDevice Link

[13] max profit X X X X X
[10] min cost X X X X
[11] max profit - cost X X X X
[14] min energy X X X X X
[15] min cost X X X X
[12] max fairness X X X X
[16] max profit - cost X X X X
[7] min latency X X X X
[8] min latency X X X
[9] min cost X X X
[17] max rate X X X X
[18] min cost X X X X X
[19] max rate X X X X X
[20] min latency + cost X X X X
[21] min latency X X X X X

this work min cost X X X X X X X X X X

Although innovative techniques for addressing comput-
ing resource restrictions have been proposed by the above-
mentioned authors, the network is solely considered as a
pipeline in their studies, with no cognitive ability to the
cloud domains. Nevertheless, there are additional studies in
the literature that have been concentrating on communication
and computing resources jointly. Kuo et al. [17] studied the
joint problem of VNF placement and path selection in order to
better utilize the network resources, and a heuristic approach
was proposed to tackle it. Mada et al. [18] and Zhang et
al. [19] addressed the problem of VNF placement with the
objective of maximizing the sum rate of accepted requests.
Mada et al. solved the problem by using an optimization
solver, and Zhang et al. adopted a heuristic strategy. Yuan,
Tang and You [20] formulated the latency-optimal placement
of functions as an ILP problem and proposed a genetic meta-
heuristic algorithm to solve it. Gao et al. [21] focused on
the VNF placement and scheduling to reduce the cost of
computing resources by proposing a latency-aware heuristic
algorithm. Minimizing the cost of allocations was also in-
vestigated by Miyamura et al. [15] and Yang et al. [16].
They took into account traffic routing constraints and proposed
heuristic approaches to address the problem. By considering
energy consumption as the most significant cost associated
with networking and computing resources, Xuan et al. [14]
addressed the same problem by proposing an algorithm based
on a multi-agent DRL and a self-adaptation division strategy.
Nguyen et al. [13] investigated the problem of VNF placement,
where requests are weighted according to their priority and the
goal is to maximize the total weight of services accepted for
deployment on the infrastructure.

The methods presented in the cited studies are effective
for resolving the resource allocation problem. However, such
approaches cannot be utilized in B5G systems. Due to the
stringent QoS requirements in the delay-reliability-rate space
[22], the large number of concurrent services and requests,
and the ever-changing dynamics of both infrastructure and
end-user service usage behavior in terms of time and space,
every detail of communication and computing resources must

be determined and controlled in order to realize a deter-
ministic B5G system [3]. In some studies, latency-related
limitations and requirements were simply ignored [17], [15],
[16], [13]. Despite the fact that delay is addressed in the
other studies mentioned, they simplified it to be a connection
feature, and queuing delay in network devices is completely
eliminated. Furthermore, path selection is disregarded in some
studies [18], [19], [20], and cost optimization is overlooked in
others [19], [20].

This paper fills in the gap in the current literature by inves-
tigating the joint problem of allocating communication and
computing resources, including VNF placement and assign-
ment, traffic prioritization, and path selection. The problem is
faced while taking into account capacity constraints and link
and queuing delays, to minimize overall cost. As an extension
of the work presented in [23], the following are the primary
contributions of this research:

• Formulating the joint resource allocation problem of
the cloud-network integrated infrastructure as a Mixed
Integer Non-Linear Programming (MINLP) problem.

• Proposing a method based on the Branch & Bound (B&B)
algorithm to discover the optimal solution of the problem,
and devising a heuristic approach based on the Water-
Filling (WF) algorithm in order to identify near-optimal
solutions to the problem. When the system is fully known,
both techniques can be applied to solve the problem.

• Developing an architecture based on the Double Deep
Q-learning (DDQL) technique comprising agent design,
training procedure, and decision-making strategy for allo-
cating resources when the system is only partially known,
i.e., there is no prior knowledge about the requests’
requirements.

The reminder of this paper is organized as follows. Section
II introduces the system model. The resource allocation prob-
lem is formulated in Section III. Next, the B&B and heuristic
approaches are presented in Section IV. Section V presents a
DDQL-based resource allocation architecture. Finally, numeri-
cal results are illustrated and analyzed in Section VI, followed
by concluding remarks in Section VII.
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Fig. 1. The envisioned system model.

II. SYSTEM MODEL

In the following, we describe the main components of the
system envisioned in this paper. As depicted in Fig. 1, the
system consists of an infrastructure (integrated networking
and computing resources), services running on computing
resources, and end-user requests that must be connected to
the services via networking resources. The parameters defined
in this section are summarized in Table II.

A. Infrastructure Model

The considered infrastructure is composed of the edge (non-
radio side) and core network domains consisting of V nodes,
L links, and P paths denoted by G = 〈V ,L,P〉. V = {v|v ∈
{1, 2, ...,V}} is the set of nodes. L ⊂ {l : (v, v′)|v, v′ ∈ V}
indicates the set of links, where the bandwidth of link l is
constrained by B̂l, and it costs Ξl per capacity unit. Although
a variety of factors (distance, technology, redundancy, acces-
sibility, etc.) contribute to this cost as a capital expenditure,
the energy used by network devices to process the traffic
carried by this link is one of the significant operating expenses
affecting this cost and must be precisely addressed in order
to realize future networks [24]. P = {p : (`p,ap)|p ⊂ L}
denotes the set of all paths in the network, where `p and ap are
the head and tail nodes of path p, and δp,l is a binary constant
equal to 1 if path p contains link l. It should be noted that all
paths are directed vectors of nodes with no loops.

Each node in the network is an IEEE 802.1 Time-Sensitive
Networking (TSN) device comprising an IEEE 802.1 Qcr
Asynchronous Traffic Shaper (ATS) at each egress port. As
depicted in Fig. 2, An ATS uses a two-level queuing model
[25]: 1) an array of shaped queues, each associated with
a priority level and an ingress port, and 2) one queue per
priority level. Each priority queue combines the output of
all shaped queues with the same priority level. All queues
implement the First-In-First-Out (FIFO) strategy. The next
packet for transmission is identified by comparison of 1) the
associated priority levels, and 2) the eligibility times of the
Head-of-Queue (HoQ) packets. This could be accomplished,
for instance, using comparator networks or linear iteration over
all queues/HoQ packets while the transmission of a previous
packet is in progress.

Priority QueuesShaping Queues

Egress Port

Ingress Ports

Fig. 2. ATS switch model.

We consider K = {k|k ∈ {1, 2, ...,K}} as the set of
priority levels and assume that kr is the assigned priority of
the traffic associated with request r, and the size of the queues
for priority level k is the same and equal to T̂k. Note that
lower levels have higher priorities. Moreover, each node v is
equipped with computing resources as one of the prospective
hosts to deploy service VNFs and limited to a predefined
capacity threshold ζ̂v , which costs Ψv per capacity unit. Ψv

is an increasing function of the energy consumed by various
components of computing nodes (such as the processor, mem-
ory, and storage) to process requests and required by cooling
systems to maintain appropriate temperatures. This cost is one
of the most significant obstacles that must be overcome to
make future applications feasible [26].

It is worth mentioning that the network is divided into
several tiers, with nodes distributed across them so that the
edge nodes (the entry nodes of requests) are located in tier
0. The higher the tier index, the greater the capacity of the
associated nodes, and the lower their cost. In other words,
the nodes closest to end-users (or to the nodes that serve as
entry points - e.g., far edge node or in-network computing
nodes [27]) are provisioned with high-cost, limited-capacity
computing facilities, while low-cost, high-capacity depots are
deployed in the core.

B. Service Model

The set of services is dubbed S = {s|s ∈ {1, 2, ...,S}},
where S indicates the number of services. If an end-user
requests a service, its VNF has to be replicated in the network-
embedded computing resources. Each VNF is empowered to
serve more than one request, and Ĉs indicates the maximum
capacity of each VNF of service s.

C. Request Model

The set of requests asking for services is represented by
R = {r|r ∈ {1, 2, ...,R}}, where R is the number of
requests. Each request r arrives in the network through node vr
(one of the nodes equipped with a radio access base station)
and intends service sr, specifying its minimum necessitated
service capacity, network bandwidth, and maximum tolerable
delay, indicated by C̃r, B̃r, and D̃r, respectively. In addition,
T̃r and H̃r, denoting the burstiness of traffic and the largest
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TABLE II
PARAMETER/VARIABLE? DESCRIPTION.

# P/V? Description

Se
ct

io
n

II

V set of nodes; |V| = V
L set of links; |L| = L
B̂l bandwidth of link l
Ξl cost of link l per capacity unit
P set of paths; |P| = P
`p head node of path p
ap tail node of path p
δp,l 1 if path p contains link l, otherwise 0 (binary input)
K set of priority levels; |K| = K
kr priority of request r
T̂k queue size of priority k
ζ̂v computing capacity of node v
Ψv cost of node v per capacity unit
S set of services; |S| = S
Ĉs capacity of each VNF of service s
R set of requests; |R| = R
vr point of arrival of request r
sr target service of request r
C̃r minimum required service capacity of request r
B̃r minimum required network bandwidth of request r
D̃r maximum tolerable delay of request r
T̃r traffic burstiness of request r
H̃r largest packet size of request r

Se
ct

io
n

II
I

gr,v assigned node of request r (binary var.)
zs,v assigned node of service s (binary var.)
%r,k assigned priority of request r (binary var.)
−−−→
fr,p,k inquiry path and priority of request r (binary var.)
←−−−
fr,p,k response path and priority of request r (binary var.)
Dr,k,l delay of request r on priority k and link l
Dr,sr computing delay of request r
Dr E2E delay of request r
R1 requests with a priority higher than or equal to request r
R2 requests with a priority lower than request r
R3 requests with a priority higher than request r

packet size for request r, are also assumed to be known
a priori. Utilizing historical data, along with predictive data
analytics methods, is one of the viable options for obtaining
such accurate and realistic statistical estimates of traffic.

III. PROBLEM DEFINITION

This section describes the joint problem of VNF placement
and assignment, traffic prioritization, and path selection. In
what follows, the constraints and objective function are for-
mulated as a MINLP problem and the problem is stated at the
end of the section. The variables and parameters defined in
this section are summarized in Table II.

A. VNF Placement and Assignment Constraints

To arrange VNFs, each request must be first assigned
a single node to serve as its service location (C1). This
assignment is acceptable if the assigned node hosts a VNF for
the requested service (C2). When the requests of a specific
service are assigned to a particular node, they will be handled
by a shared VNF. C3 ensures that the total service capacity
required by these requests does not surpass the VNF’s capacity.
Additionally, C4 guarantees that the computing capacity of a
node is not exceeded by the VNFs placed on it. Without these
two constraints, both VNFs and nodes are at risk of becoming
overloaded, leading to the potential termination of VNFs and

congestion of requests. Such a scenario would significantly
decrease the system’s reliability and availability. The problem
formulation becomes as follows:∑

V
gr,v = 1,∀r ∈R, (C1)

gr,v ≤ zsr,v ,∀r, v ∈R,V, (C2)∑
{r|r∈R∧sr=s}

C̃rgr,v ≤ Ĉs, ∀v, s ∈ V,S, (C3)∑
S
Ĉszs,v ≤ ζ̂v , ∀v ∈ V, (C4)

where gr,v and zs,v are binary variables. gr,v is 1 if node v
is selected as the service node of request r, and zs,v is 1 if
service s is replicated on node v.

B. Traffic Prioritization and Path Selection Constraints

To direct traffic, we must first ensure that each request
is assigned to exactly one priority level (C5). Then, each
request’s (request and reply) paths are determined (C6 and
C7). For each request, a single inquiry path is chosen that
starts at the request’s entry node and ends at the request’s
VNF node. The response path follows the same logic but in
reverse order. The following two constraints guarantee that
the two paths are chosen on the priority level assigned to each
request (C8 and C9). Finally, the constraints maintaining the
maximum capacity of links and queues are enforced (C10 and
C11). With C10, the sum of the required bandwidth for all
requests whose inquiry or response path, or both, contains link
l is guaranteed to be less than or equal to the link’s capacity.
In C11, the capacity of queues is guaranteed in the same way
for each link and each priority level. The set includes:∑

K
%r,k = 1, ∀r ∈R, (C5)∑

{p|p∈P∧`p=vr∧ap=v},K

−−−→
fr,p,k = gr,v , ∀r, v ∈R,V, (C6)∑

{p|p∈P∧`p=v∧ap=vr},K

←−−−
fr,p,k = gr,v , ∀r, v ∈R,V, (C7)∑

P

−−−→
fr,p,k = %r,k,∀r, k ∈R,K, (C8)∑

P

←−−−
fr,p,k = %r,k, ∀r, k ∈R,K, (C9)∑

R
B̃r
∑

P,K
δp,l · (

−−−→
fr,p,k +

←−−−
fr,p,k) ≤ B̂l, ∀l ∈ L, (C10)∑

R
T̃r
∑

P
δp,l · (

−−−→
fr,p,k +

←−−−
fr,p,k) ≤ T̂k, ∀k, l ∈ K,L, (C11)

where %r,k is a binary variable that equals 1 only when the
priority level assigned to request r is k, and

−−−→
fr,p,k and

←−−−
fr,p,k

are binary variables that reflect the inquiry and response paths
for request r on priority level k, respectively.

C. Delay Constraints

To guarantee the minimum delay requirement of requests,
the following settings should be adhered:

Dr,sr C̃r = H̃r, ∀r ∈R, (C12)

Dr,k,l =

∑
R1
T̃r′ +

∧
R2
H̃r′

B̂l −
∑

R3 B̃r′
+
H̃r
B̂l

, ∀r, k, l ∈R,K,L, (C13)

Dr =
∑

P,L,K
Dr,k,lδp,l · (

−−−→
fr,p,k +

←−−−
fr,p,k) +Dr,sr , ∀r ∈R (C14)

Dr ≤ D̃r, ∀r ∈R, (C15)

where Dr,k,l, Dr,sr and Dr are continuous variables denoting
the delay experienced by a given flow of request r associated
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with priority level k passing through ATS-based link l [25], its
computing delay, and the corresponding E2E delay calculated
as the sum of the delays on the links that comprise both paths
of the request and its computing delay. Besides,

∧
is a function

which returns the max value over the given set, R1 equals
{r′|r′ ∈ R ∧ kr′ ≤ k ∧ δp,l(

−−−−→
fr′,p,kr′ +

←−−−−
fr′,p,kr′ ) > 0}, R2

represents {r′|r′ ∈R ∧ kr′ > k ∧ δp,l(
−−−−→
fr′,p,kr′ +

←−−−−
fr′,p,kr′ ) >

0}, and R3 denotes {r′|r′ ∈ R ∧ kr′ < k ∧ δp,l(
−−−−→
fr′,p,kr′ +

←−−−−
fr′,p,kr′ ) > 0}. These sets represent requests that share the
same link as request r, whereas R1 includes requests with a
higher or equal priority, R2 contains requests with a lower
priority, and R3 shares requests with a higher priority.

D. Objective Function

The objective function is to minimize the total cost of
allocated computing nodes and network links, that is:∑

R,V
Ψvgr,v +

∑
R,L

Ξl
∑

P,K
δp,l(
−−−→
fr,p,k +

←−−−
fr,p,k), (OF)

As mentioned in Section II, this cost is directly related to the
energy consumption of networking and computing elements,
and its reduction is a crucial open challenge that must be
carefully addressed to enable B5G systems [28], [29], [30],
[31].

E. Problem

Considering the constraints and objective function, the prob-
lem of Communication and Computing Resource Allocation
(CCRA) is:

CCRA: min OF s.t. C1 - C15. (1)

IV. FULLY-INFORMED METHODS

In this section, the system is assumed to be fully known,
i.e., the list of services and their characteristics are available,
and the current state of the network and cloud resources as
well as requests and their requirements are being monitored
and collected on a regular basis. This could be the case of
an industrial environment whereby tasks and communications
among robots and devices are pre-planned [32], [33], [34].
Under such scenarios, the following section proposes two
methods, B&B-CCRA and WF-CCRA, to solve the problem
specified by (1). Clearly, an efficient strategy for implementing
these methods is to centralize their development as system
orchestrator components. Then, when end-users request access
to the services, the methods can be executed, and the resulting
decisions can be applied to the network and cloud resources
using Software-Defined Networking (SDN) and NFV tech-
nologies.

A. B&B-CCRA

Suppose that C1 and C5 - C15 are eliminated from (1)
and only C2 - C4 affect the problem. Given this, the problem
can be reformulated as minimizing the cost of assigned nodes
within the capacity constraints of nodes and VNFs, that is
min

∑
R,V Ψvgr,v s.t. C2 - C4. If a new parameter denoted

Ψ′v = M − Ψv , where M is a big positive number, is

defined and substituted for Ψv , the relaxed problem can be
rewritten equivalently as max

∑
R,V Ψ′vgr,v s.t. C2 - C4,

which is the Multi-Dimensional Knapsack (MDK) problem
with at least S items and V knapsacks. Since the MDK
problem is NP-hard [35] and a relaxed version of our problem
is as hard as this problem, it is proved that our problem is
also NP-hard, and finding its optimal solution in polynomial
time is mathematically intractable. One potential strategy for
addressing such a problem is to restrict its solution space using
the B&B algorithm, which relaxes and solves the problem
to obtain lower bounds, and then improves the bounds using
mathematical cuts to reach acceptable solutions. The method
is described in Algorithm 1. In this algorithm, the solution
space is discovered by maintaining an unexplored candidate
list N = {Nt|t ≥ 1}, where each node Nt contains a
problem, denoted by Φt, and t is the iteration number. This
list only contains N1, the root candidate, at the beginning with
the primary problem to be solved. To reduce its enormous
computational complexity, instead of directly applying the
B&B algorithm to CCRA, we consider its integer linear
transformation as the problem of N1.

CCRA comprises non-linear constraints C13 and C14. To
linearize C13, the summations and max function with variable
boundaries should be converted to a linear form. A simple,
effective technique is to replace each term with an approxi-
mated upper bound. Since the aggregated traffic burstiness is
bounded by T̂k for each priority level k in C11,

∑
R1
T̃r′

can be replaced by the sum of this bound for all priority
levels greater than or equal to k, that is

∑
{k′|k′≤k} T̂k′ . In

a similar way, we define a new constraint (C13′) for the
aggregated bandwidth allowed on priority level k over link
l, dubbed f̂l,k, and replace the sum of allocated bandwidths
with

∑
{k′|k′<k} f̂l,k′ . Besides, the maximum packet size for a

particular subset of requests can be replaced by the maximum
permitted packet size in the network, denoted by Ĥ. Therefore,
the followings define the linear transformation of C13:∑

R
B̃r
∑

P
δp,l(
−−−→
fr,p,k +

←−−−
fr,p,k) ≤f̂l,k, ∀k ∈ K, ∀l ∈ L, (C13′)

D̂k,l =

∑
K1
T̂k′ + Ĥ

B̂l −
∑

K2
f̂l,k′

+
Ĥ
B̂l
,∀k ∈ K, ∀l ∈ L, (C13′′)

where D̂k,l is the delay upper bound on link l with priority
level k, K1 is {k′|k′ ≤ k}, and K2 is {k′|k′ < k}. Since Dr,sr

is linear, C14 can be linearized by substituting the actual delay
for the upper bound derived in C13′′, and the new constraint
for E2E delay is:

Dr =
∑

P,L,K
D̂k,lδp,l(

−−−→
fr,p,k +

←−−−
fr,p,k) +Dr,sr ,∀r ∈R. (C14′)

Given this, the linear transformation of CCRA, dubbed LiC-
CRA, is as follows:

LiCCRA: min OF s.t. C1 - C12, C13′, C13′′, C14′, C15. (2)

Now, with LiCCRA as Φ1, each iteration of the B&B
algorithm begins with the selection and removal of a candidate
from the unexplored list. Then, the problem of this candidate
is naturally relaxed and solved, i.e., all the integer variables in
the set {0, 1} are replaced with their continuous equivalents
restricted by the box constraint [0, 1], and the relaxed problem
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Algorithm 1 B&B-CCRA.
1: N ← {N1}, η? ← +∞, t← 0
2: while N is not empty do
3: | t← t+ 1
4: | Nt ← selects a node form N
5: | N ←N \{Nt}
6: | (µ?t ,λ

?
t ), φ

?
t ← solve the relaxed problem of Φt

7: | if µ?t is integer for all elements then
8: | | η? ← min(η?, φ?t )
9: | else if φ?t < η? is preserved then

10: | | N1
t , N

2
t ← two children of Nt

11: | | N ←N ∪ {N1
t , N

2
t }

is solved using a Linear Programming (LP) solver to obtain
the solution of the relaxed problem (µ?t ,λ

?
t ) and the optimal

objective value φ?t , where µ is the relaxed integer variables
set, and λ is the set of continuous variables. Next, if all
relaxed variables have integer values, the obtained objective
in this iteration is considered to update the best explored
integer solution. Otherwise, a variable index j is selected such
that µ?t [j] is fractional, and the feasible constraints set πt is
divided into two parts as π1

t = πt ∩ {µt[j] ≤
⌊
µ?t [j]

⌋
} and

π2
t = πt∩{µt[j] ≥

⌈
µ?t [j]

⌉
}. Then, two problems are formed

as Φ1
t = min OF s.t. π1

t and Φ2
t = min OF s.t. π2

t . Now,
two child nodes N1

t and N2
t , whose problems are Φ1

t and
Φ2
t respectively, are put into the unexplored list. The B&B

algorithm is iterated until N is empty.
Alternatively, we can run this algorithm until a desired

solving time is reached or an acceptable objective value
is acquired. The key advantage of this algorithm is that it
produces at least a lower bound even when the solving time
is limited. As a result, it may be used to establish baselines
allowing for the evaluation of alternative approaches.

B. WF-CCRA

Since the B&B method searches the problem’s solution
space for the optimal solution, its complexity can grow up
to the size of the solution space in the worst case [36]. Given
that the size of the solution space in CCRA (or LiCCRA) for
each request is V2P2K considering its integer variables, the
problem’s overall size is R!V2P2K, considering the number
of permutations of R requests. Therefore, finding its optimal
solution for large-scale instances using B&B is impractical in
a timely manner, and the goal of this section is to devise an
efficient approach based on the WF concept in order to identify
near-optimal solutions for this problem.

The WF-CCRA method is elaborated in Algorithm 2. The
first step is to initialize the vectors of parameters and variables
used in (1) (or in (2)). Following that, two empty sets, R′

and Ω, are established. The former maintains the set of
accepted requests, and the latter stores the feasible resource
combinations for each request during its iteration. Now, the
algorithm iterates through each request in R, starting with
the one with the most stringent delay requirement, and keeps
track of the feasible allocations of VNF, priority, as well as
inquiry and response paths based on the constraints of (1)

Algorithm 2 WF-CCRA.
1: initialize variable and parameter vectors
2: R′ ← {}, Ω← {}
3: sort R in ascending order according to D̃r
4: while R is not empty do
5: | for v ∈ V do
6: | | if zsr,v == 1 and C̃r ≤ Ĉsr on v then
7: | | | gr,v = 1

8: | | if zsr,v 6= 1 and Ĉsr ≤ ζ̂v then
9: | | | zsr,v = 1, gr,v = 1

10: | | else go to the next iteration
11: | | for k ∈ K do
12: | | | %r,k = 1
13: | | | for p ∈ P∧ `p= vr∧ ap= v do
14: | | | | if B̃r ≤ B̂l & T̃r ≤ T̂k on l ∀l ∈ L ∧ δp,l = 1 then
15: | | | | | −−−−→fr,p,k = 1

16: | | | | | for p′ ∈ P∧ `p′= v∧ ap′= vr do
17: | | | | | | if B̃r ≤ B̂l & T̃r ≤ T̂k on l ∀l ∈ L ∧ δp,l = 1 then
18: | | | | | | | ←−−−−−f

r,p′,k = 1

19: | | | | | | | calculate Dr based on (C14) (or C14′)
20: | | | | | | | if Dr ≤ D̃r then
21: | | | | | | | | Ω← Ω ∪ {(zsr,v, gr,v, %r,k,

−−−→
fr,p,k,

←−−−
fr,p′,k)}

22: | fix assignments of argminΩ OF for r
23: | update capacities, Ω← {}, R←R/{r}, R′ ←R′∪{r}

(or (2)). The final steps of each iteration are to choose the
allocation with the lowest cost and fix it for the request, as
well as to update remaining resources and the set of pending
and accepted requests. When there is no pending request, the
algorithm terminates.

The complexity of the WF-CCRA algorithm is O(RVKP2).
Although this approach is significantly more efficient than the
B&B algorithm in terms of complexity (it can be executed
within milliseconds), its complexity can be further reduced
by restricting the number of valid paths between each pair
of nodes to a fixed-size set of paths with the lowest costs
or smallest number of links. In addition, despite the fact
that this algorithm implements only one of the R! possible
permutations (serving requests in descending order of their
urgency) and it converges to a solution where the cost of
allocating resources to each request is locally minimized, it is
expected to provide efficient solutions in terms of accuracy as
well. The reason is that since requests for the same service
are of the same quality and requests for all services have
stringent QoS requirements, the unique permutations do not
vary significantly.

V. PARTIALLY-INFORMED METHOD

In the previous section, we assumed that the system is fully
known. In this section, we consider a scenario wherein the
system is only partially known, i.e., the state of the available
network and cloud resources is tracked in real-time, and the list
of services and their associated characteristics have been in-
troduced in advance. However, end-users and the orchestrator
do not exchange information pertaining to requests and their
requirements. In this particular scenario, to solve the problem
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stated in (1), we employ the DDQL technique, proposed by
Google in the DeepMind project [37]. In what follows, The
DDQL concept and its agent, which serves as the core building
block of the learning logic, are briefly introduced. The design
of the learning algorithm and the architecture of the DDQL-
based resource allocation approach are then discussed, along
with an analysis of various implementation strategies.

A. Double Deep Q-Learning Agent

RL is a technique wherein an agent is trained to tackle
sequential decision problems through trial-and-error interac-
tions with the environment. Q-learning is a widely used
RL algorithm wherein the agent learns the value of each
action, defined as the sum of future rewards associated with
performing that action, and then follows the optimal policy,
which is choosing the action with the highest value in each
state.

According to Watkins and Dayan [38], one method for
obtaining the optimal action-value function is to define a
Bellman equation as a straightforward value iteration update
using the weighted average of the old value and the new
information, that is

Q(θτ , aτ ) += σ[Y Qτ −Q(θτ , aτ )], (3)

where θτ and aτ are the agent’s state and action at time slot
τ respectively, σ is a scalar step size, and Y Qτ is the target,
defined by

Y Qτ = βτ+1 + γ maxa∈AQ(θτ+1, a), (4)

where βτ+1 is the reward at time slot τ + 1, γ ∈ [0, 1] is
a discount factor that balances the importance of immediate
and later rewards, and A is the set of actions. Since most
interesting problems are too large to discover all possible
combinations of states and actions and learn all action-values,
one potential alternative is to use a Deep Neural Network
(DNN) to approximate the action-value function. In a Deep
Q-Network (DQN), the state is given as the input and the
Q function of all possible actions, denoted by Q(θ, .;W),
is generated as the output, where W is the set of DNN
parameters. The target of the DQN is as follows:

Y DQNτ = βτ+1 + γ maxa∈AQ(θτ+1, a,Wτ ), (5)

and the update function of W is

Wτ+1 = Wτ + σ[Y DQNτ −Q(θτ , aτ ;Wτ )]∇WτQ(θτ , aτ ;Wτ ). (6)

To further enhance the efficiency of DQN, it is necessary
to consider two additional improvements. The first is the
use of an experience memory [39], wherein the observed
transitions are stored in a memory bank, and the neural
network is updated by randomly sampling from this pool. The
authors demonstrated that the concept of experience memory
significantly improves the DQN algorithm’s performance. The
second is to employ the concept of Double Deep Q-Learning
(DDQL), introduced in [37]. In both standard Q-learning and
DQNs, the max operator selects and evaluates actions using the
same values (or the same Q). Consequently, overestimated val-
ues are more likely to be selected, resulting in overoptimistic
value estimations. DDQL implements decoupled selection and
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Fig. 3. DDQL Agent.

evaluation processes. The following is the definition of the
target in DDQL:

Y DDQLτ = βτ+1 + γ Q̂(θτ+1, a
′,W−

τ ), (7)

where a′ = argmaxa∈AQ(θτ+1, a,Wτ ), and the update
function is

Wτ+1 = Wτ + σ[Y DDQLτ −Q(θτ , aτ ;Wτ )]∇WτQ(θτ , aτ ;Wτ ). (8)

In this model, W is the set of weights for the main (or
evaluation) Q and is updated in each step, whereas W− is
for the target Q̂ and is replaced with the weights of the
main network every t steps. In other words, Q̂ remains a
periodic copy of Q. The authors demonstrated that the DDQL
algorithm not only mitigates observed overestimations but also
significantly improves accuracy. The training procedure of the
DDQL agent is depicted in Fig. 3, which includes receiving
the environment response and storing it in the memory bank,
passing transitions to the evaluation network and updating its
weights with the update function, and adjusting the weights of
the target network. In this figure, θ′ is the resulted state after
applying action a.

B. DDQL-CCRA

Since the CCRA problem comprises different sets of vari-
ables and their corresponding constraints, to solve it based on
the DDQL agent depicted in Fig. 3, the first step is to design
a chain of agents, each of which is responsible for addressing
one group of the variables. Our proposed chain consists of four
DDQL agents. The first agent, denoted by ΛSP , is intended to
determine the location of service VNFs in response to requests
(g and z), and thus its action set is the set of network nodes. In
other words, aSP ∈ ASP = V . ΛPA is the second agent with
action set K, and it is responsible for assigning the priority
level of traffic. The remaining two agents route traffic by
determining the inquiry path from the entering node to its
VNF location and the response path in the opposite direction,
denoted by ΛQPS and ΛPPS , respectively. The action set of
these agents comprises all possible network paths. To interact
with the system, each agent provides an action that contains
the index of the request for which it is attempting to satisfy
its resource requirements and a value from its action space.
For example, aSP = {r : 1, ξ : 3} means that the VNF for
request 1 should be located in node 3, or g1,3 = 1. Moreover,
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a = {aSP , aPA, aQPS , aPPS} represents the set of all agents’
actions.

Next, the system state has to be formulated. As the infras-
tructure is the only side of the system that is known, the state
is a collection of network and cloud resources, that is:

θ =
[
ζ̂v∀v ∈ V

]
⊕ [Ψv∀v ∈ V]⊕

[
B̂l∀l ∈ L

]
⊕ [Ξl∀l ∈ L]⊕[

D̂k,l∀k ∈ K, ∀l ∈ L
]
,

(9)

where ⊕ returns the concatenation of two arrays. When the
system receives actions, the state of the available network
and cloud resources is updated by deactivating the resources
assigned to the associated request, and resulted state θ′ is
generated.

The final step is to design the reward, which is a reaction to
the effectiveness of action after receiving it and shifting from
state θ to resulted state θ′. In other words, agents are wired to
the system via the reward. To address the problem defined in
(1), we propose the reward as follows for request r:

β = 100

(
1−

OFr,a −min OFr
max OFr −min OFr

)
χr,a (10)

where max OFr and min OFr are the maximum and min-
imum costs that can be achieved by allocating the available
network and cloud resources to request r without considering
any constraints or requirements, OFr,a is the cost of the
allocations provided by the agents, and χr,a represents the
response of request r to actions a. χr,a ensures that all
constraints of (1) are met. Consider a containing an action
that violates one of the constraints (for example, a node or a
VNF or a path is overloaded, or a priority level is assigned in
such a way that the E2E delay requirement is violated). In this
circumstance, the affected request will respond with χr,a = 0,
and the reward for a will be 0. Therefore, the probability
of selecting that action decreases, and after a certain number
of iterations, actions with infeasible allocations are implicitly
removed from the set of possible actions. Besides, OFr,a
controls the efficiency of a. Similarly, after a number of
iterations, allocations with lower costs will have a greater
chance of being selected. Therefore, after training, agents will
choose feasible actions (within the constraints of (1)) with
lower costs (minimizing OF).

Now, Algorithm 3 details DDQL-CCRA, the learning algo-
rithm proposed to solve the CCRA problem based on DDQL.
The algorithm is divided into two phases:

1) Training Phase: In this phase (lines 1 to 24), T repre-
sents the number of training steps, whereas ε′ and ε̃ are small
positive integers to control the ε-greedy algorithm. Through
each step, the set of actions is determined and transmitted to
the system, after which the reward and the updated state are
received and used to train the agents employing the ADAM
optimizer [40] and update their DNN weights via the memory
bank. This process is repeated over the set of requests until
the specified maximum number of steps is reached. It is worth
mentioning that the action in each agent is selected by an ε-
greedy policy that follows the evaluation function of the cor-
responding agent with probability (1−ε) and selects a random
action with probability ε. The probability is decreased linearly
from ε to ε̃ during the training process. Using the ε-greedy
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Fig. 4. Data flow between the agents and the system.

method and the ADAM optimizer ensures the convergence of
DDQL-CCRA to feasible, low-cost solutions (based on the
defined reward) [41].

2) Decision Making Phase: In each step of this phase (lines
25 to 36), one request is selected, and its required resources
are allotted by the agents. The decision is then transmitted
to the system to collect the infrastructure’s response and the
request. Following this, the reward and the mean reward,
denoted by β, are determined. Fig. 4 depicts the actions
generated by the agents, their transmission to the environment,
and their subsequent return to the agents in preparation for
the next decision-making. Due to the fact that we have no
knowledge of the requests’ requirements, every change in the
criteria is managed by examining the average reward; if it falls
below a specified threshold, denoted by β̃, it indicates that
end-users have adopted a new policy and the training phase
must be repeated. This procedure continues until the required
resources for each request have been determined.

C. DDQL-CCRA Resource Allocation Architecture

The architecture of the DDQL-CCRA resource allocation
method is depicted in Fig. 5. Due to the fact that the character-
istics of different services may be entirely different, an isolated
DDQL-CCRA algorithm is designed to be executed for each
service. The broker receives requests, classifies them, and
forwards each service’s requests to its respective controller.
In addition, the broker collects the most recent state of the
network and cloud resources from the resource orchestrator
and transmits it to the controllers. The controller is responsible
for executing the DDQL-CCRA algorithm by implementing
the memory bank, maintaining the state of requests, calculating
the reward, and returning action sets to the broker. Action sets
are collected by the broker from all controllers and relayed
to the resource orchestrator to apply to the infrastructure.
Since actions are chosen at random during the training phase,
digital twins could be used to evaluate them to prevent the
infrastructure from entering unpredictable states that result in
disruptions to its operation [42].

In order to enhance the scalability of this architecture, rather
than considering the set of all nodes as the action set of
ΛSP and the set of all paths of the network as the action
set of ΛQPS and ΛPPS , these spaces can be pruned to create
fixed-size sets consisting of the most likely options for VNF
placement and path selection.
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Algorithm 3 DDQL-CCRA.
1: initialize T , ε′ and ε̃
2: τ ← 0, ε← 1, memory ← {}, β ← 0
3: θτ ← get the environment’s current state
4: while there is active request do
5: | while τ ≤ T do
6: | | a← {}
7: | | r ← select one of the active requests
8: | | for i in {SP, PA,QPS, PPS} do
9: | | | n← generate one random number between 0 and 1

10: | | | if n > ε then
11: | | | | ξ ← argmaxa∈AiQ(θτ , a,Wτ ) by Λi

12: | | | else
13: | | | | ξ ← select a random a from Ai

14: | | | ai ← {r, ξ}
15: | | a← {aSP , aPA, aQPS , aPPS}
16: | | apply a
17: | | collect the infrastructure and the request responses
18: | | calculate β
19: | | memory ← memory ∪ {(θ,a, β, θ′)}
20: | | choose a sample form memory, and train agents
21: | | if ε > ε̃ then
22: | | | ε← ε− ε′
23: | | τ ← τ + 1
24: | | θτ ← θ′

25: | a← {}
26: | r ← select one of the active requests
27: | for i in {SP, PA,QPS, PPS} do
28: | | ξ ← argmaxa∈AiQ(θτ , a,Wτ ) by Λi

29: | | ai ← {r, ξ}
30: | a← {aSP , aPA, aQPS , aPPS}
31: | apply a
32: | collect the infrastructure and the request responses
33: | calculate β
34: | β ← γβ + (1− γ)β, θτ ← θ′

35: | if β < β̃ then
36: | | go to 1

• For ΛSP , the lower and upper boundaries of the QoS
requirements for each service can be extracted (or con-
sidered inputs to the problem), and then a set with size
V ′, named V ′, including feasible nodes to maintain the
QoS boundaries at the lowest cost (Ψv) is generated.

• For ΛQPS and ΛPPS , a set of size P ′ is created for each
service containing feasible paths in order to maintain the
QoS boundaries at the lowest cost (Ξl). Note that these
paths should begin at the edge devices (the entry nodes
of requests) and terminate at one of the nodes of V ′

for ΛQPS . In ΛPPS , the same logic is followed, but in
reverse order.

The complexity and accuracy of the DDQL-CCRA algorithm
can be modified by adjusting the size of these sets. V ′ and P ′
can be set to large numbers if high precision is required or
if the complexity of running the DDQL-CCRA algorithm can
be handled by high-powered software/hardware. Alternatively,
small sets can be utilized to return the result in a relatively
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TABLE III
SIMULATION PARAMETERS.

Parameter Value

number of links (L) ∼ U{3V, 5V}, where the
resulted graph is connected.

number of priority levels (K) 4
number of services (S) 3

number of tiers 3

capacity per link (B̂l) ∼ U{250, 300} mbps
cost per link (Ξl) ∼ U{10, 20}

computing capacity per node (ζ̂v) ∼ 100 U(x, x+ 1) mbps
cost per node (Ψv) 10 x+1

bandwidth bound per link-priority (f̂l,k) B̂l/K
queue size per priority (T̂k) 200/K

VNF capacity per service (Ĉs) 20 mbps
capacity requirement per request (C̃r) ∼ U{4, 8} mbps

bandwidth requirement per request (B̃r) ∼ U{2, 10} mbps
traffic burstiness per request (T̃r) ∼ U{1, 4}

packet size per request (H̃r) 1
x is the number of tiers minus the tier number of the node

TABLE IV
TRAINING CONFIGURATION.

Parameter Value
number of training steps 104

learning rate 10−4

memory size 5× 104

batch size 32
discount factor (γ) 0.99

epsilon decrement (ε′) 5× 10−6

epsilon bound (ε̃) 5× 10−2

shorter amount of time.

VI. NUMERICAL RESULTS

In this section, the efficiency of the proposed methods is
numerically investigated. The system model parameters are
listed in Table III, and the configuration of the agents’ training
procedure is shown in Table IV. Note that the results are
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Fig. 6. Solution accuracy of A) B&B-CCRA vs. solving time, B) WF-CCRA vs. network size, and C) WF-CCRA vs. request burstiness. In subfigures A
and B, the number of requests is set to 200, and the number of network nodes in subfigure C is 20. In subfigure B and C, for each number of nodes or
requests, 50 random systems are generated, and the problem is solved using WF-CCRA, with B&B-CCRA providing the optimal solution. The results of
random samples are represented by blue dots, and the aggregated results are represented through boxplots, where red points indicate medians.

obtained on a computer with 8 processing cores, 16 GB of
memory, and a 64-bit operating system.

The accuracy of the B&B-CCRA and WF-CCRA methods
is illustrated in Fig. 6. The methods are evaluated based on
the accuracy of the solutions they provide. Note that the
accuracy of a solution for a scenario named η is defined as
1−((η−η?)/η?), where η? is the scenario’s optimal solution,
which is obtained by solving it with CPLEX 12.10. In Fig. 6.A,
the accuracy of B&B-CCRA is plotted vs. the solving time (in
logarithmic scale) for five scenarios with different network
sizes. As illustrated, the accuracy of B&B-CCRA starts at
80% after the first iteration, which is obtained by solving the
LP transformation of LiCCRA with CPLEX 12.10 in just a
few milliseconds, and increases as the solving time passes,
reaching 92% for all samples after 100 seconds. It proves that
this method can be easily applied to provide baseline solutions
for small and medium size use cases. However, the accuracy
growth is slowed by increasing the network size, which is
expected given the problem’s NP-hardness and complexity.
In the two remaining subfigures, the accuracy of WF-CCRA
is depicted against the number of requests attending to use
system resources, known as request burstiness, and network
size. It is evident that regardless of network size, WF-CCRA
has an average accuracy greater than 99%, implying that it can
be used to allocate resources in a near-optimal manner even for
large networks. For different numbers of requests, the average
accuracy remains significantly high and greater than 96%. It
does, however, slightly decrease as the number of requests
increases, which is the cost of decomplexifying the problem
by allocating the resources through isolating requests. Since
the decrease is negligible, it is expected that the algorithm is
capable of allocating resources efficiently for large numbers
of requests.

The DDQL-CCRA resource allocation architecture, de-
picted in Fig. 5, is examined in Fig. 7. In this figure, the
mean cost and E2E delay per each supported request, as well
as the percentage of supported requests, are plotted against
the DDQL-CCRA iteration counter for three scenarios with
varying E2E delay requirements. In order to supplement the
analysis, this figure additionally includes the outcomes of WF-
CCRA in parallel to R-, CM-, and DM-CCRA. In R-CCRA,
all allocations are determined at random, but in CM- and

DM-CCRA, allocations are made to minimize cost and delay,
respectively, without considering other constraints. Note that
in order to implement DDQL-CCRA, we deployed the DDQL-
CCRA resource allocation architecture on all edge devices (the
entry nodes).

When D̃r is less than 1 ms, the only feasible solution
is to assign all requests to the most costly nodes of the
first tier. Consequently, the mean cost for all techniques is
high, with the exception of CM-CCRA, which attempts to fit
all requests into one of the third-tier nodes with the lowest
cost, resulting in the inability to support any request and
the mean cost of 0. Since the mean delay for all nodes in
the first tier is too low, the average delay per each supported
request for all methods excluding CM-CCRA is less than 1 ms
and similar. However, the supported request rate is entirely
different for each method. R-CCRA, which assigns nodes
evenly to requests, places a third of requests on the first tier,
therefore its rate is approximately 33%. DM-CCRA selects
the node with the shortest E2E delay; hence, its support rate
is the number of requests that can be serviced by a single
node in the first tier, which is approximately 45%. Given
that DDQL-CCRA employs the ε-greedy technique, it also
generates random results during the initial learning iterations.
However, as the learning progresses, it receives the reward
based on end-user responses and begins to place more and
more requests on the first tier until it reaches the near-optimal
solutions supplied by WF-CCRA.

When the E2E delay requirement threshold is changed to
3 ms, both the first and second tier nodes can be occupied to
support requests. Since DM- and CM-CCRA always select a
node in the first and third tiers, respectively, their outcomes
are identical to those of the preceding scenario. R-CCRA
doubles the percentage of supported requests because it ran-
domly assigns 66% of requests to the first and second tiers.
In addition, its mean delay is slightly smaller than that of
WF- and DDQL-CCRA since it utilizes the first tier nodes
more than these two cost-effective approaches. Note that the
difference is negligible, as the delay of nodes in the first tier
is vanishingly small and cannot significantly affect the mean
delay. In contrast, when DDQL-CCRA identifies a changing
need (lines 35 and 36 of Algorithm 3), it restarts the learning
process and enables the ε-greedy technique. Therefore, it
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begins anew with random results and optimizes allocation
by fitting as many requests as feasible into the second-tier
nodes in ascending cost order. Also in this scenario, it can
be observed that the learning technique yields near-optimal
efficiency outcomes.

The final scenario is eliminating the delay requirement and
releasing the entire infrastructure to serve requests. In this
case, although the results for DM-CCRA are identical, the
support rate for CM-CCRA is approximately 50%, indicating
that the node with the lowest cost can service approximately
50% of requests. Similar to the prior scenario, the outcomes
of R-CCRA are enhanced. Now it can support all requests, but
its mean cost and delay are not optimal because it consumes
the resources of all tiers equally. Similarly, the trend for
DDQL-CCRA is the same. As soon as it senses a change
in requirements, it begins to randomly assign resources, rec-
ognizing that requests should be sent as much as possible to
the core clouds. It initially determines that the node with the
lowest cost yields the best outcome. Therefore, it places all
requests on a single node, thereby reducing the number of
supported requests and enhancing the mean delay and cost.
Subsequently, the reward of this allocation begins to decline
as certain requests cannot be supported, the value of dispersing
requests throughout the third tier increases progressively, and
the optimal policy leads to an increase in the support rate,
coupled with a reduction in the mean cost and delay. In Fig.
7, it is evident that the DDQL-CCRA approach in partially
known systems can lead to near-optimal solutions obtained
when those systems are fully known.

In Fig. 8, DDQL-CCRA is investigated with regard to
request burstiness. The mean cost and E2E delay of each

supported request are depicted in Fig. 8.A and Fig. 8.C
respectively, whereas Fig. 8.B illustrates the number of sup-
ported requests. In this figure, the results of DDQL-CCRA
are compared with those of WF-CCRA, FSA [13], BSA [13],
CEP [10], A-DDPG [11], and MDRL-SaDS [14]. FSA is a
heuristic algorithm that randomly assigns resources to requests
in descending order of their required computing capacity. BSA
is a similar method that assigns resources in descending order
of their remaining capacity to the sorted requests. In CEP,
resources are allocated with the aim of minimizing the total
cost of links. A-DDPG is an RL method that adjusts the
reward for each request to maximize its overall utility. In this
solution, utility is defined as the profit of serving the request
as a function of its required bandwidth minus the E2E path
delay experienced. MDRL-SaDS is another RL technique in
which the reward is the computing and networking cost of
serving each request divided by the total cost of allocated
resources across the infrastructure. This strategy seeks to
minimize the cost of allocated resources in relation to their
energy consumption.

Evidently, the number of requests supported by FSA is
relatively high, as are its mean cost and E2E delay. FSA
distributes requests across all tiers, resulting in significant
utilization of all resources, a high mean cost, and a high mean
E2E delay. Since all links have a similar cost, CEP exhibits
comparable performance; however, because it considers the
feasibility of links, it achieves slightly better results. A-DDPG,
where requests are assigned to nodes with a lower E2E delay,
is another costly method. Increasing the number of requests
causes second- and first-tier nodes to become occupied and
requests to be assigned to the resources of other tires, thereby
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B C

A

Fig. 8. A) Mean cost of each supported request, B) number of supported requests, and C) mean E2E delay of each supported request for DDQL-CCRA,
WF-CCRA, FSA & BSA [13], CEP [10], A-DDPG [11], and MDRL-SaDS [14] vs. request burstiness. The delay requirement of requests is 10 ms, and the
number of network nodes is 9. The results are calculated as a moving average with a window size of 100, where each sample is the average of 50 arbitrary
systems.

B

C

A

Fig. 9. A) Mean cost of each supported request, B) number of supported requests, and C) mean E2E delay of each supported request for DDQL-CCRA,
WF-CCRA, FSA [13], BSA [13], CEP [10], A-DDPG [11], and MDRL-SaDS [14] vs. network size. In this scenario, the first four nodes are added to the
first tier, followed by the second four nodes to the second tier, and then the last four nodes to the third tier. The delay requirement is 10 ms, and there are a
total of 300 requests. The results are calculated as a moving average with a window size of 20, where each sample is the average of 50 arbitrary systems.

increasing the E2E delay. In BSA, because the performance
metric is the remaining capacity of computing nodes and
the nodes are ordered from low capacity to high capacity
across the tiers, it occupies the nodes from the cloud to the
edge, resulting in outcomes with very low cost and moderate
delay. A-DDPG and BSA cannot support a substantial number
of requests because the feasibility of links is not explicitly
evaluated. MDRL-SaDS is the most inefficient method by
which requests are routed to the node with the lowest cost.
Therefore, the number of supported requests is proportional
to the node’s capacity and delay. The behavior of the two
remaining methods, DDQL- and WF-CCRA, is comparable.
They support requests by initially assigning third-tier nodes.
Then, once this tier is occupied, they proceed to occupy the
second tier, resulting in an exponential cost increase. The
mean cost converges to a fixed value when all resources are
occupied and the first tier is in use. This approach results
in a very low E2E delay because it assigns request priorities
based on their delay requirements (unlike other approaches,
which are unaware of ATS queues). DDQL-CCRA can provide
near-optimal solutions regardless of the number of requests
received, as demonstrated.

The final figure compares the proposed approaches to the
approaches depicted in the preceding figure for various net-
work sizes. In this scenario, if V ≤ 15, the first-tier network
has a very high capacity, whereas if V > 15, there are

sufficient resources to fulfill all requests. Therefore, CEP and
A-DDPG, which focus on minimizing the cost of allocated
links and E2E delay respectively, as well as FSA, which
allocates resources randomly, can support a large number
of requests despite the high cost of allocations. Since the
capacity of the low-cost tier for BSA and MDRL-SaDS is
not excessive (and the capacity ratio of this tier to the others
is less than the previous figure), the request support rate is
unpromising despite the low cost. When the infrastructure is
full (V ≤ 15), the results of WF- and DDQL-CCRA are
comparable to those of other algorithms. However, when there
are more resources (V > 15), these two approaches move
requests to low-cost resources, thereby reducing the total cost
of allocations. When it comes to E2E delay, even though the
results are similar for all methods, by adding a node to the
initial network, the resources of the first tier are extended and
more requests can be supported with smaller delays, resulting
in a sudden decrease for V = 10. By adding more nodes,
however, more resources are added to the other tires, and FSA
(which allocates resources randomly), BSA (which assigns
resources in descending order of their remaining capacity), and
A-DDPG (which tries to maximize the overall utility) migrate
requests to the lower-cost tiers, resulting in a slight increase
in E2E delay. Despite the increase in WF- and DDQL-CCRA
techniques, their outcome is the lowest E2E delay because they
manage priority queues according to the delay requirements of
requests.
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VII. CONCLUSION

In this paper, the joint problem of communication and
computing resource allocation comprising VNF placement and
assignment, traffic prioritization, and path selection consider-
ing capacity and delay constraints was studied. The primary
objective was to minimize the total cost of allocations. We
initially formulated the problem as a MINLP model, and
used a method, named B&B-CCRA, to solve it optimally.
Then, due to the complexity of B&B-CCRA, a WF-based
approach was developed to find near-optimal solutions in a
timely manner. These two methods can be utilized to solve
the problem when the system is fully known. However, for
scenarios wherein there is no request-specific information,
a DDQL-based architecture was presented that yields near-
optimal solutions. The efficiency of the proposed methods was
demonstrated by numerical results.

As potential future work, we intend to address the problem
by accounting for more dynamic environments in which end-
users are mobile and all of their needs are subject to change.
In addition, the proposed methods could be supplemented
by taking into account dynamic infrastructure resources, in
which the cost of resources (such as their energy consump-
tion) or their availability can fluctuate over time. In such
highly dynamic scenarios, we intend to enhance the proposed
DDQL-based method with Continual Learning in order to
reduce the adaptation time required to adjust agents after each
change. Another possible research direction is to extend the
problem to include radio domain resources (such as power
control, channel assignments, rate control, and relay selection
in multi-hop scenarios), thereby providing end-user-to-end-
user resource allocations. Furthermore, we intend to improve
the proposed method for allocating resources to VNF chains
rather than individual VNFs.
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