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Abstract—Mobile crowdsensing (MCS) has emerged as a
popular and promising paradigm for solving challenging prob-
lems by utilizing collective wisdom and resources. However,
the system architecture and operational rules for MCS have
not been well-defined, and obtaining accurate and reliable
results from conflicting data collected by workers is difficult
due to discrepancies in sensor quality and privacy protection
requirements. In this paper, we combine the methodologies of
Dynamic Truth Discovery (DTD), Combinatorial Multi-Armed
Bandit (CMAB), and Multi-Attribute Reverse Auction to develop
a novel MCS ecosystem, with the objective of maximizing the
sensing accuracy-aware utility under the budget constraint. We
first establish the data collection model by jointly considering
the task completion duration as well as the deviation caused by
both endogenous errors and privacy protection-oriented injected
noise. Then, we theoretically evaluate the accuracy of truth
discovery and quantify the contribution of each worker to
MCS to form the worker selection criterion. As the qualities of
workers are initially unknown, the platform faces the exploration-
exploitation dilemma. Therefore, we apply CMAB to transform
the worker recruitment problem into a combinatorial arm-pulling
problem and elaborately design an Upper Confidence Bound
(UCB) algorithm to achieve a desirable exploration-exploitation
tradeoff. Moreover, we design an auction-based payment method
for the platform, stimulating workers to provide their quoted
price honestly while enabling individual rationality. Extensive
simulations and comparison results demonstrate the feasibility
and effectiveness of our proposed MCS ecosystem.
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I. INTRODUCTION

IN recent years, there has been a notable surge in the
prevalence of mobile devices equipped with precision pro-

cessors, advanced communication capabilities, and an array
of sensors. This technological advancement has paved the
way for the emergence of “Mobile Crowdsensing (MCS)”,
a novel approach that harnesses the collective knowledge of
a large group of individuals armed with mobile devices to
perform sensing tasks [1]–[3]. MCS offers a highly efficient
and cost-effective solution for gathering and analyzing sensory
data across a diverse range of scenarios, such as intelligent
transportation [4], real-time environmental monitoring [5], and
noise mapping [6], to name a few. Currently, various MCS
applications, including OpenSignal [7], Boss [8], and Gigwalk
[9], have been developed to address intricate sensing problems
that would be challenging for traditional sensor networks.

The effectiveness of MCS largely relies on the accuracy
of data gathered by workers. However, the acquisition of
reliable sensory data is a daunting challenge in the face of real-
world limitations, including a dearth of detection capabilities,
untrustworthy sources, and unpredictable subjective factors.
For instance, the quality of sensors used by workers varies,
resulting in different levels of errors in their sensory data.
In some cases, workers may engage in the falsification of
information rather than executing prescribed tasks, in order to
economize on time, energy, or battery life [10]. Consequently,
data obtained from individual workers are likely to be unreli-
able, underscoring the necessity of collecting and aggregating
data from a crowd of workers to yield more accurate results on
the platform. To enhance the precision of aggregated data, a
weighted aggregation mechanism called Truth Discovery that
assigns higher weights to workers with superior data quality is
more desirable than naive methods, such as averaging, which
treats all workers equally [11], [12].

However, the full potential of truth discovery in MCS sys-
tems has not been fully realized. First, the open nature of MCS
systems leads to high worker mobility, resulting in a significant
disparity in worker quality. Therefore, selecting high-quality
participants to perform tasks is critical for the platform to
ensure the quality of the gathered data. The existing literature
on worker recruitment problems in MCS systems generally
assumes that workers’ quality information is readily available,
but this assumption is untenable in reality as it is implausible
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for workers to have accurate self-assessments [13], [14]. In
fact, accurately inferring workers’ sensing qualities from their
sensory data is a challenging task for the platform. To address
this problem, we propose a combinatorial multi-armed bandit-
based scheme in this paper. Second, the sensing task value
usually exhibits temporal variability, such as traffic flow mon-
itoring and air quality measurement, whereas truth discovery
is typically applied to static data aggregation [15]. As workers
require a certain amount of time to complete sensing tasks, the
sensing data collected by the platform may become outdated,
causing the aggregated data to deviate from the current true
value of the task. Therefore, the platform should consider task
execution efficiency when selecting workers.

On the other hand, the utilization of mobile devices and
the potential privacy leakage during the data collection pro-
cess can impose costs on workers participating in an MCS
system. To attract rational workers, the platform must provide
sufficient monetary rewards to compensate for the workers’
costs. However, since cost information is often private and
sensitive, workers may have the motivation to strategically
manipulate their reported costs to receive higher rewards [16].
Designing effective incentive mechanisms to encourage honest
reporting of costs during the workers’ recruitment is therefore
another crucial challenge in MCS systems. Previous research
has focused on incentive mechanism design when worker
quality information is known, but this is often not the case
in practice [17], [18].

A. Contributions of Our Work

Motivated by the preceding discussions, in this paper, we
aim to establish an MCS ecosystem consisting of a plat-
form and a team of workers with unknown qualities, to
perform time-sensitive sensing tasks under a certain budget.
The worker’s cost could be reported strategically and the
platform recruits workers in multiple time slots to capture the
temporal dynamics of tasks’ values. The platform assesses the
quality of workers by measuring their task completion time
and deviation from the ground truth, and strives to recruit
high-quality workers based on these criteria. In particular, the
deviation from the ground truth originates from two aspects.
On the one hand, endogenous errors in the workers’ sensors
lead to inaccurate data perception. On the other hand, the
data collected by the sensors often contains workers’ sensitive
privacy information, and thus workers deliberately inject a
certain degree of noise to perturb the sensory data for privacy
protection.

Due to the initial lack of understanding about workers’
quality, the platform tentatively recruits workers to perform
tasks and acquires such knowledge accordingly. The plat-
form then uses the gained knowledge to select the optimal
group of workers for subsequent task execution. These two
processes are called exploration and exploitation, respectively
[19], [20]. During the continuous worker recruitment process,
the platform’s excessive exploration may consume significant
costs associated with learning about workers’ quality, thereby
impeding the utilization of high-quality workers. Conversely,
over-exploitation can hinder the platform from gaining ade-
quate knowledge about workers’ quality and limit the potential

benefits from better workers’ participation. Therefore, our
goal is to design an incentive mechanism that addresses this
dilemma between exploration and exploitation, enabling the
platform to achieve higher accuracy of aggregated data within
a budget constraint, while ensuring that workers truthfully
disclose their costs for participating in MCS. To sum up, we
are faced with the following challenges:

• Identifying an appropriate worker selection criterion that
fully considers task completion time and deviation from
the ground truth to ensure the accuracy of truth discovery.

• Determining a suitable tradeoff between exploration and
exploitation within a limited budget.

• Designing reasonable payment schemes that incentivize
workers to participate in MCS and report their costs
truthfully.

To overcome the aforementioned challenges, we develop
in this work a novel yet efficient MCS ecosystem, which
combines the methodologies of Truth Discovery, Combinato-
rial Multi-Armed Bandit (CMAB), and Multi-Attribute Reverse
Auction. We first mathematically model the task completion
time and deviation from the ground truth for workers, and
analyze the accuracy of the truth discovery algorithm. Then,
we apply CMAB to transform the worker recruitment problem
into a combinatorial arm-pulling problem, where workers
and their sensing quality are treated as arms and associated
rewards, respectively, allowing us to balance the exploration-
exploitation tradeoff and optimize the worker group for sub-
sequent tasks. To solve this problem, we employ a well-
defined Upper Confidence Bound (UCB) index for greedy
arm selection to obtain the maximal rewards. Additionally,
we design a payment mechanism in the multi-attribute reverse
auction so that workers can truthfully report the level of
injected noise and the corresponding costs.

The contributions of this paper are four-fold:

• Novel Mobile Crowdsensing Ecosystem Design: To the
best of our knowledge, this is the first work that estab-
lishes an MCS ecosystem with the privacy-preserving dy-
namic truth discovery, where CMAB and multi-attribute
reverse auction are combined to dynamically select work-
ers without prior knowledge of their quality, while guar-
anteeing high truth discovery accuracy as much as pos-
sible.

• Truth Discovery Accuracy Analysis: Jointly considering
the task completion duration as well as the deviation
caused by both endogenous errors and privacy protection-
oriented injected noise, we theoretically evaluate the ac-
curacy performance of truth discovery in terms of α-error
probability. We reveal the inherent relationship between
the upper bound of α-error probability and workers’
individual attributes, thus paving the way for the worker
selection criterion design in the MCS ecosystem.

• Worker Recruitment and Payment Scheme: By integrating
multi-attribute reverse auction into the UCB algorithm,
we design a CMAB-based greedy algorithm to recruit
workers and compute payments for their participation,
which effectively addresses the issue of exploration-
exploitation tradeoff. Besides, we theoretically prove that



3

workers can achieve truthfulness and individual ratio-
nality in each round of MCS, while the platform could
realize approximate utility maximization under a budget
constraint.

• Extensive Numerical Simulations and Comparisons: The
numerical comparison simulations with a variety of pa-
rameter settings demonstrate the feasibility and effective-
ness of our proposed MCS ecosystem.

B. Paper Organization

The remainder of this paper is organized as follows. We
introduce related work in Section II and an overview of the
proposed MCS ecosystem in Section III. Section IV presents
the details of the data collection model and truth discovery
algorithm in the MCS ecosystem, as well as analyzes the
crowdsensing accuracy and formulates the utility maximiza-
tion problem. We elaborate on the design of worker selection
and payment mechanism in Section V and prove some good
properties of the proposed MCS ecosystem in Section VI.
Section VII presents the simulation results, followed by the
conclusion in Section VIII.

II. RELATED WORK

Fueled by the proliferation of smart mobile devices, re-
cent years have witnessed a rapid growth of flexible and
economic MCS applications [21]–[25]. Due to incomplete
views, background noises, and malicious or privacy protection
purposes, the sensory data submitted by different workers
for the same task may be inconsistent. Ascertaining truthful
values from conflicting sensory data is thus a critical challenge
in MCS systems. Truth discovery [26]–[28], as an effective
technique to jointly identify accurate information from noisy
or contradictory sensory data, has been attracting considerable
research attention. For example, Zhi et al. [29] presented a dy-
namic truth discovery model using hidden Markov and Kalman
filtering to capture truth dynamics, infer source dependency,
and handle missing data. Fu et al. [30] proposed a decen-
tralized truth discovery design for resource-limited networks
using joint maximum likelihood estimation and provided two
randomized algorithms for accelerated truth finding. Xiao et al.
[31] proposed an algorithm to solve the truth discovery task
by formulating it as a joint maximum likelihood estimation
problem and provided theoretical analysis on convergence and
consistency. Although the aforementioned efforts have greatly
facilitated the development of truth discovery technology, they
are still inapplicable to scenarios where the ground truth varies
over time. To this end, in this work, we divide the continuous
time into multiple time slots and dynamically estimate the truth
value in each time slot, thereby capturing the evolutionary
trend of the task ground truth over time.

In MCS systems, privacy is one of the critical concerns
for participating workers. Existing protocols often fall short
in terms of providing sufficient privacy protection while also
incurring heavy computation and communication overheads.
To tackle these problems, Zhang et al. [32] developed two
secure and efficient truth discovery schemes for stable and
frequently moving users, respectively, which utilize homo-
morphic Paillier encryption to ensure strong privacy. Tang et
al. [33] devised two privacy-preserving and lightweight truth

discovery protocols, which delink workers from their data
and reduce each worker’s overheads by leveraging perturba-
tion technology. In [34], a privacy-preserving truth discovery
scheme was proposed, which employs a randomizable matrix
and encryption mechanisms to safeguard the privacy of tasks
and data. While these works have made significant progress
in terms of privacy protection, they have not yet considered
integrating incentive mechanisms into truth discovery, which
is necessary for stimulating sufficient worker participation.

Therefore, another line of related work is a series of
incentive mechanisms recently developed by the research
community in order to incentivize worker participation in MCS
systems [35]–[37]. Specifically, Peng et al. [35] introduced a
quality-aware incentive mechanism that compensates workers
based on their contribution to MCS tasks. Dai et al. [36]
developed a distributed many-to-many matching model for
MCS tasks and workers, with a stable matching algorithm
that ensures individual rationality, stability, and convergence
while achieving at least half of optimal system efficiency. Liu
et al. [37] proposed a behavioral economics-based incentive
mechanism to improve user engagement in mobile crowdsens-
ing by accelerating capital deposit accumulation, promoting
cooperative behavior, and mitigating the effect of diminishing
marginal utility. Note that these works assumed that workers’
quality information is known in advance, which is somewhat
idealistic in reality. To overcome this limitation, researchers
have conducted thorough investigations by utilizing numer-
ous learning-based approaches, including deep reinforcement
learning [38], federated learning [39], and multi-armed bandits
(MAB) [20], [40], [41].

Regarding research works on MAB, Gao et al. [20] assigned
importance weights to each crowdsensing task and modeled
the worker recruitment with different qualities as an MAB
problem. Then, an UCB-based algorithm was proposed to
maximize the total weighted quality of tasks under a limited
budget. In [40], the worker selection in the context of crowd-
sourcing was modeled as an MAB problem. A new metric
for worker selection was designed based on the concept of
entropy in information theory, and a minimum entropy upper
confidence bound algorithm was developed to balance the
exploration and exploitation in worker selection. Taking into
account workers’ context information (i.e., extrinsic ability
and intrinsic ability), Wu et al. [41] modeled the worker
selection in crowdsensing as a context-aware MAB problem
and designed a modified Thompson sampling algorithm to
maximize the sum of workers’ service qualities. However,
these works have not comprehensively considered the chal-
lenges in practical MCS scenarios. On the one hand, they
primarily focused on selecting high-quality workers but tended
to neglect the heterogeneity among workers’ data in reality
(conflicting data may exist) and the timeliness of task ground
truth (the ground truth is time-varying). To this end, this
paper integrates dynamic truth discovery (DTD) into MCS,
capturing the temporal variability of task truth by selecting
workers to submit data in multiple rounds, such that a novel
worker selection criterion is deduced with the objective of
maximizing the ground truth discovery accuracy. On the other
hand, the previous works failed to account for the dishonest
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behavior (untruthful cost reporting) of strategic workers, which
is inconsistent with reality. In this paper, we integrate the
multi-attribute reverse auction into the system and introduce
a well-designed payment mechanism that ensures worker
participation and honest cost reporting.

Regarding the underlying physical techniques of mobile
crowdsensing, reading relevant literature on the signal process-
ing aspect can be very helpful. For example, Nordio et al. [42]
analyzed the performance of several reconstruction/estimation
techniques based on linear filtering, and obtained the MSE as
well as the asymptotic expression in the case where the number
of field-harmonics and the number of sensors grow to infinity.
Reise et al. [43] developed a novel distributed architecture
for sampling and reconstructing time-varying non-bandlimited
physical fields in wireless sensor networks. Taking into ac-
count both signal properties and sampling properties, Zabini
et al. [44] analyzed multi-dimensional random sampling with
uncertainties, deriving the optimal interpolator function and
obtaining asymptotic results.

In summary, this work is distinguishable from the existing
ones in the sense that we propose a novel CMAB-based
dynamic truth discovery mechanism for developing an MCS
ecosystem, with well-defined worker selection criteria that
maximize the accuracy of truth discovery to the fullest extent,
and an auction-based payment rule that ensures truthfulness
and individual rationality. In the MCS ecosystem, we address
for the first time the dynamic truth discovery problem with
unknown prior knowledge of worker quality, while learning
workers’ characteristics via a multi-armed bandits approach.
Furthermore, a more challenging problem that the platform
needs to simultaneously learn two variables related to worker
quality, i.e., endogenous errors and task duration, is also
overcome in this work.

The main notations used in this paper are summarized
in Table I. Throughout this paper, except for the numerical
superscripts on symbols related to power, such as ξti,n

2 and
σi,n

2 in the following, all other superscripts on mathematical
symbols denote an index rather than an exponent.

III. SYSTEM OVERVIEW

Consider a typical mobile crowdsensing (MCS) ecosystem
consisting of a platform and I workers. The platform has
N sensing tasks to be accomplished, with a total budget
B supplied for this purpose. The set of workers and the
set of sensing tasks are dentoed by I = {1, 2, · · · , I} and
N = {1, 2, · · · , N}, respectively. Each task n is associated
with a ground truth (i.e., accurate real-time state information),
which is denoted as xtruth

n , and we consider that the evolution
of the ground truth with respect to time s follows an unknown
function x

truth(s)
n . The platform recruits workers to sense the

evolutionary ground truth x
truth(s)
n at multiple time points,

denoted as {s1, s2, · · · }, where the time interval between st
and st+1 is referred to as round t. We assume that workers
sense the ground truth at the beginning of each round. In other
words, worker i observes x

truth(st)
n and acquires the sensory

data xt
i,n in round t.

The heterogeneity in workers’ quality can lead to differences
in the accuracy of sensory data, which is typically attributed

TABLE I
MAIN NOTATIONS.

Notation Description

I Set of workers
N Set of sensing tasks
B Platform’s budget

xtruth
n Ground truth of task n

x
truth(st)
n Ground truth of task n in round t
Kt Set of selected workers in round t
xt
i,n Raw sensory data of worker i for task n in round t

x̃t
i,n Perturbed data of worker i for task n in round t

yti,n Endogenous error of worker i for task n in round t

zti,n Injected random noise of worker i for task n in round t

σi Privacy protection level adopted by worker i
D Number of times that worker data is sampled
τ ti Task completion duration of worker i in round t
x̂t
n Platform’s estimated ground truth for task n in round t

ut(Kt) Platform’s utility in round t
R Fixed income received by the platform
β Unit economic loss parameter
bi Quoted price of worker i
ci True cost of worker i

pti(bi) Corresponding payment for the selected worker i in round t
vti(bi) Utility of the selected work i with the quoted price bi

Reg(B) Platform’s regret with the total budget B
qti Quality of worker i in round t
q̄ti Combinatorial empirical mean of worker ios quality
q̈ti UCB term of q̄ti
Qt

i Combinatorial confidence radius of qti
RCRt

i Revenue-Cost-Ratio of worker i in round t

to two main factors. On the one hand, the quality of workers’
devices is uneven, leading to different data quality. On the
other hand, as the sensory data collected by workers may
reveal private information that they do not want to disclose,
injecting noise into the raw data becomes necessary. Workers
with different sensitivity to privacy information will inject
different levels of noise. In this paper, we consider that workers
have no knowledge of the quality of their equipment and are
only able to control the level of injected noise.

In our developed MCS ecosystem, prior to initiating mul-
tiple rounds of sensing tasks, workers submit their desired
economic compensation and the level of injected noise, in
the form of bids, to the platform. Then, during the execution
process of the MCS ecosystem, the platform purchases the
sensory data from workers according to the submitted bids.
In the first round, as the platform lacks prior knowledge of
the quality of workers’ sensory data, it selects all workers
to perform sensing tasks. In each subsequent round, to avoid
wasting the limited budget on low-quality workers, the plat-
form applies a certain selection mechanism, which is based
on workers’ historical performance, to determine a group of
workers (referred to as the winning worker set) to perform
sensing tasks. Formally, we use Kt to denote the set of selected
workers in round t, where |K1| = I and |Kt| = K for
∀t > 1. In each round t and for each task n, after collecting
the corresponding sensory data from all selected workers, the
platform aggregates the data by using the truth discovery
algorithm [45], to produce an estimated result, denoted as x̂t

n.
The considered MCS ecosystem and its operational process

are illustrated in Fig. 1. In the following sections, we will
elaborate on the details of the MCS ecosystem as well as the
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Fig. 1. MCS ecosystem and its operational process.

worker selection scheme and corresponding payment strategy.

IV. DESIGN DETAILS AND PROBLEM FORMULATION

In this section, we introduce in detail the data collection
scheme and the truth discovery algorithm utilized within our
MCS ecosystem. Additionally, we analyze the crowdsensing
accuracy theoretically and formulate the utility maximization
problem for the MCS platform.

A. Data Collection

1) Data Sensing Model: Due to inherent characteristics
of workers, such as pixel density, sensor accuracy, and data
collection habits, endogenous errors exist between the raw
sensory data and the ground truth. Formally, in round t, the
raw sensory data of worker i for task n can be represented as

xt
i,n = xtruth(st)

n + yti,n, (1)

where x
truth(st)
n is the ground truth for task n at time st and yti,n

denotes the endogenous error. We assume that yti,n follows a
Gaussian distribution N(0, ξti,n

2
), where ξti,n is sampled from

an unknown distribution with an unknown expectation ξi that
could represent worker i’s error level. We define the utmost
amplitude of workers’ error level as Aξ ≜ sup∀i,n,t ξ

t
i,n −

inf∀i,n,t ξ
t
i,n.

For privacy protection purposes, workers will obfuscate their
raw sensory data by injecting a certain level of noise. Let x̃t

i,n

denote the perturbed data of worker i for task n in round t,
we have

x̃t
i,n = xt

i,n + zti,n, (2)

where zti,n is the injected random noise that is sampled
from a Gaussian distribution1 N(0, σi,n

2). σi,n reflects the

1In most cases, random noise satisfies the Central Limit Theorem and thus
follows the Gaussian distribution. Gaussian noise conforms to the principle
of linear superposition, i.e., it is additive in nature and often called additive
Gaussian noise. Additive Gaussian noise is a very typical noise that is widely
used in many areas such as signal processing and statistics [46], [47].

privacy protection level adopted by worker i for task n
and σi = {σi,1, σi,2, · · · , σi,N} is the privacy protection
vector of worker i for all tasks. According to Eq. (1) and
Eq. (2), worker i’s perturbed data x̃t

i,n follows the Gaussian
distribution N(xtruth(st)

n , ξti,n
2
+ σi,n

2).

To process the randomness of workers’ perturbed data, the
platform requires each worker to submit its sensory data D
times for each task in each round. That is to say, in each round
t, the platform obtains D samples from N(xtruth(st)

n , ξti,n
2
+

σ2
i,n), denoted as {x̃t (d)

i,n }Dd=1, for ∀i ∈ Kt and ∀n ∈ N .
Then, the platform takes the mean of {x̃t (d)

i,n }Dd=1 as the input
of the truth discovery algorithm, i.e.,

x̃t
i,n =

∑D
d=1 x̃

t (d)
i,n

D
. (3)

2) Task Duration Model: In our MCS system, to economize
on the scarce communication resources, we assume that each
winning worker submits D · N data items to the platform
disposable in each round. Let τ ti denote the task completion
duration, i.e., the time interval between the start time of round
t and the data submission time of worker i, which is endoge-
nously heterogeneous for many reasons, e.g., device, network
signal, personal preference, etc. Therefore, we consider τ ti
is sampled from an unknown distribution with an unknown
expectation τi. Let Aτ ≜ sup∀i,t τ

t
i − inf∀i,t τ

t
i denote the

utmost amplitude of τ ti . After waiting τ t ≜ max{τ ti |i ∈ Kt}
seconds, the platform can receive the data from by all winning
workers and then aggregates them to produce the result x̂t

n.
Note that at this moment, the ground truth has evolved into
x

truth(st+τt)
n , so the platform can only use x̂t

n to approximate
x

truth(st+τt)
n , as shown in Fig. 2. We assume that the platform

can get the maximum slope of x
truth(s)
n through historical

statistics, denoted as L = max{∂xtruth(s)
n

∂s |∀s}.
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B. Truth Discovery

For a specific crowdsensing task, truth discovery can correct
conflicting data {x̃t

i,n|i ∈ Kt} provided by a set of workers
and generate a corresponding estimated result x̂t

n. Although
different truth discovery algorithms achieve this goal in dif-
ferent ways, their basic principles are the same. The general
procedure of truth discovery is summarized in Algorithm 1.

Algorithm 1 Truth Discovery Algorithm
Input: Mean of sensory data from K workers for N tasks,

i.e., x̃t
i,n for ∀i ∈ Kt and ∀n ∈ N .

Output: Estimated ground truth for N tasks in round t,
{x̂t

n}Nn=1.
1: Initialize workers’ weights {wi}Ki=1;
2: while Convergence criterion is not satisfied do
3: // Truth Inference
4: for all n ∈ N do
5: Update the estimated ground truth x̂t

n based on
workers’ current weights using Eq. (4);

6: end for
7: // Weight Estimation
8: for all i ∈ Kt do
9: Update the weight wi based on current estimated

ground truth using Eq. (5);
10: end for
11: end while

In our MCS ecosystem, the platform will first calculate the
average value x̃t

i,n of the submitted data according to Eq. (3)
and takes it as the input of Algorithm 1. The truth discovery al-
gorithm initializes the weights of workers, and then iteratively
conducts truth inference and weight estimation until satisfying
a pre-defined convergence criterion [48], shown as follows.

Truth Inference: In this step, the algorithm produces an
inferred value x̂t

n for each task n based on the currently
estimated worker weights. Formally, there is

x̂t
n =

∑K
i=1 wi · x̃t

i,n∑K
i=1 wi

, (4)

where wi denotes the weight of worker i.

Weight Estimation: This step updates the worker weights
{wi|i ∈ Kt} based on the inferred ground truth x̂t

n. Formally,
there is

wi = g

(
N∑

n=1

floss

(
x̃t
i,n, x̂

t
n

))
, (5)

where g(·) is some monotonically decreasing function, and
floss(·) represents a function that measures the distance be-
tween x̃t

i,n and x̂t
n. Specifically, we apply the commonly-used

absolute loss function in this paper. Although different truth
discovery algorithms may adopt different functions g(·) and
floss(·), they share the same underlying principle that higher
weights are assigned to workers whose data are closer to the
inferred ground truth.

C. Accuracy Analysis
Definition 1 (Mean Absolute Error): When the winning

worker set in round t is Kt, MAE(Kt) denotes the mean
absolute error (MAE) between the estimated truth x̂t

n and the
real-time ground truth x

truth(st+τt)
n , which can be expressed as

MAE(Kt) ≜ 1

N

N∑
n=1

|x̂t
n − xtruth(st+τt)

n |. (6)

Definition 2 (α-Error Probability): Given 0 < α < 1,
we define α-error probability as the probability that MAE
is no less than a threshold α. Let per(α) denote the α-error
probability, which can be expressed as

per(α) ≜ Pr
{

MAE(Kt) ≥ α
}
. (7)

MAE is a commonly-used metric to measure the crowdsens-
ing accuracy, and we have the following theorem regarding the
upper bound of α-error probability per(α).

Theorem 1: α-error probability of the truth discovery algo-
rithm in round t is upper bounded by

per(α) ≤

∑K
i=1{Lτ ti +

√
2

πD

∑N
n=1 ξti,n
N + σ̄i + LAτ}

α
, (8)

where σ̄i =
1
N

∑N
n=1 σi,n.

Proof: According to Algorithm 1, the MAE between the
estimated truth x̂t

n and the real-time ground truth satisfies

1

N

N∑
n=1

|x̂t
n − xtruth(st+τt)

n |

=
1

N

N∑
n=1

∣∣∣∣∣
∑K

i=1 wi · x̃t
i,n∑K

i=1 wi

− xtruth(st+τt)
n

∣∣∣∣∣
=

1

N

N∑
n=1

∣∣∣∣∣∣
∑K

i=1 wi(x̃t
i,n − x

truth(st+τt)
n )∑K

i=1 wi

∣∣∣∣∣∣
≤ 1

N

∑N
n=1

∑K
i=1 wi|x̃t

i,n − x
truth(st+τt)
n |∑K

i=1 wi

=
1

N

∑K
i=1 wi(

∑N
n=1 |x̃t

i,n − x
truth(st+τt)
n |)∑K

i=1 wi

≤
K∑
i=1

1

N

N∑
n=1

|x̃t
i,n − xtruth(st+τt)

n |. (9)
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By applying the inequality |a− b| ≤ |a− c|+ |c− b| for any
real numbers a, b and c, we have

|x̃t
i,n − xtruth(st+τt)

n | ≤
[
|x̃t

i,n − x
truth(st+τt

i )
n |

+ |xtruth(st+τt
i )

n − xtruth(st+τt)
n |

]
.

(10)

Substituting (10) into (9) yields

1

N

N∑
n=1

|x̂t
n − xtruth(st+τt)

n |

≤
K∑
i=1

1

N

N∑
n=1

[
|x̃t

i,n − x
truth(st+τt

i )
n |

+|xtruth(st+τt
i )

n − xtruth(st+τt)
n |

]
≤

K∑
i=1

1

N

N∑
n=1

[
|x̃t

i,n − x
truth(st+τt

i )
n |+ LAτ

]
(11)

From Eq. (3), we have that x̃t
i,n follows the Gaussian

distribution N(xtruth(st)
n ,

ξti,n
2
+σ2

i,n

D ). Thus, x̃t
i,n − x

truth(st+τt
i )

n

follows the Gaussian distribution N(µ(st, τ ti ), vi,n2), where

µ(st, τ
t
i ) ≜ x

truth(st)
n − x

truth(st+τt
i )

n , and vi,n
2 ≜ ξti,n

2
+σ2

i,n

D .
Then, we can obtain the expectation of |x̃t

i,n − x
truth(st+τt

i )
n |

in (12), shown at the bottom of this page, where Φ(·) is the
Cumulative Density Function (CDF) of the standard Gaussian
distribution. Note that L is the maximum slope of x

truth(s)
n ,

there is µ(st, τ
t) ≤ Lτ t. Therefore, given any 0 < α < 1, we

have

per(α) ≜ Pr

{
1

N

N∑
n=1

|x̂t
n − xtruth(st+τt)

n | ≥ α

}

≤ Pr

{
K∑
i=1

1

N

N∑
n=1

[
|x̃t

i,n − x
truth(st+τt

i )
n |+ LAτ

]
≥ α

}

≤
E
{∑K

i=1
1
N

∑N
n=1[|x̃t

i,n − x
truth(st+τt

i )
n |+ LAτ ]

}
α

(Markov’s Inequality)

=

∑K
i=1

1
N

∑N
n=1

{
E[|x̃t

i,n − x
truth(st+τt

i )
n |] + LAτ

}
α

≤

∑K
i=1

1
N

∑N
n=1

{
µ(st, τ

t
i ) +

√
2(ξti,n

2+σ2
i,n)

πD + LAτ

}
α

≤

∑K
i=1

1
N

∑N
n=1

{
Lτ ti +

√
2

πD (ξti,n + σi,n) + LAτ
}

α

=

∑K
i=1{Lτ ti +

√
2

πD

∑N
n=1 ξti,n
N + σ̄i + LAτ}

α
.

(13)

According to Theorem 1, the upper bound of α-error
probability is proportional to Lτ ti +

√
2

πD

∑N
n=1 ξti,n
N +σ̄i, which

indicates that a worker with lower Lτ ti +
√

2
πD

∑N
n=1 ξti,n
N + σ̄i

has less effect on the increase in MAE. That is, this worker
contributes more to the MCS accuracy. Let qti ≜ Lτ ti +√

2
πD

∑N
n=1 ξti,n
N represent the quality of worker i in round t,

we can obtain that the platform should choose workers with
smaller qti + σ̄i. However, qti + σ̄i is not available in advance
when selecting workers because it contains random variables
τ ti and ξti,n. Therefore, we will refer to its expectation, i.e.,

E{qti + σ̄i} = Lτi +
√

2
πD ξi + σ̄i ≜ qi + σ̄i, to form a worker

recruitment criterion, which will be elaborated in Section V-A.

D. Problem Formulation

In order to incentivize the platform to consistently update
the latest truth, our MCS ecosystem regulates that the platform
can receive fixed income R (for example, in the form of
subscription fees earned from users browsing the platform
updated information) after each round of updates. On the
other hand, we consider that the error between the updated
estimation and the actual ground truth has a negative effect
on the platform’s utility, with a larger error resulting in a
decreased utility. Hence, the platform’s utility ut(Kt) in round
t can be expressed as

ut(Kt) = R− β · MAE(Kt), (14)

where β represents the unit economic loss parameter due to
the decrease in crowdsensing accuracy.

Let bi denote the quoted price from worker i for performing
a round of crowdsensing tasks. Please note that this quoted
price is submitted to the platform by every worker in the
form of a bid, prior to the whole MCS process being initiated.
Let pti(bi) denote the corresponding payment for the selected
worker i in round t and Pt = {pti(bi)|i ∈ Kt} denote the
payment vector. When a worker is not selected, the payment is
0. Let ci denote the true cost of worker i caused by performing
a round of crowdsensing tasks, with the assumption that
this cost falls within a specific range for all workers, i.e.,
cmin ≤ ci ≤ cmax, for ∀i ∈ I . Then, the utility vti(bi) of
the selected work i with the quoted price bi is given by

vti(bi) = pti(bi)− ci. (15)

The goal of the platform is to maximize its utility under
budget constraint B. Let ω(B) represent the number of
rounds of crowdsensing that the platform can perform under
budget constraint B. Accordingly, when determining the set
of workers to execute crowdsensing tasks in each round, i.e.,
{K1,K2, · · · }, the platform should consider reducing the MAE
as much as possible, while also saving on payments to increase
the number of rounds of crowdsensing ω(B). In the following,

E[|x̄t
i,n − x

truth(st+τt
i )

n |] = µ(st, τ
t
i ) ·
{
2Φ

[
µ(st, τ

t
i )

vi,n

]
− 1

}
+

2vi,n√
2π

exp

{
−µ(st, τ

t
i )

2

2vi,n2

}
. (12)



8

if there is no ambiguity, we use ω and ω(B) interchangeably.
Then, the platform utility maximization (PUM) problem can
be formulated as

PUM: max
{K1,K2,··· }

∑ω(B)

t=1
ut(Kt), (16a)

s.t.
∑ω(B)

t=1

∑
i∈Kt

pti(bi) ≤ B, (16b)

|K1| = I, (16c)
|Kt| = K, ∀t > 1. (16d)

In the following section, we will address the PUM problem
by devising appropriate strategies for worker selection and
payment. We expect the MCS ecosystem to possess some
desirable properties, and for this purpose, we introduce the
following definitions.

Definition 3 (Truthfulness): For each work i with a true
cost ci and a quoted price bi, let vti(ci) = pti(ci) − ci and
vti(bi) = pti(bi) − ci denote worker i’s utility for the truthful
and untruthful bids, respectively. The truthfulness property
requires that the following inequality holds for ∀bi ≥ 0:

vti(ci) ≥ vti(bi). (17)

The truthfulness of the MCS ecosystem can guarantee that
each strategic worker will report its true cost as the quoted bid
price, since an untruthful bid price will not lead to a better
payoff.

Definition 4 (Individual Rationality): Consider that each
worker in our MCS ecosystem is rational, its utility in each
round should be no less than 0, i.e., vti(bi) ≥ 0; otherwise,
workers are unwilling to participate in the MCS ecosystem.

Remark 1: It is worth emphasizing that truthfulness and in-
dividual rationality (IR) are necessary conditions for the MCS
ecosystem to sustainably operate effectively. If truthfulness is
not satisfied, workers may resort to strategies of reporting
costs untruthfully, inducing the platform to pay higher cost
compensations to earn greater utility. This not only reduces
the platform’s profits but also encourages emulation by other
workers, severely deteriorating the operational efficiency and
environment of the MCS ecosystem. If IR is not satisfied,
workers will decline participation in the MCS ecosystem,
rendering it unable to operate at all. In the subsequent sections,
we will validate the truthfulness and IR of the proposed MCS
ecosystem through both theoretical analysis and experimental
simulations.

Definition 5 (Regret): Regret refers to the difference be-
tween the total achieved utility of the optimal policy that
has knowledge of the expected error ξi and task completion
duration τi of workers in advance, and the utility achieved
by the proposed solution in the case where these values are
unknown. Let Reg(B) denote the regret with the total budget
B, which is expressed as

Reg(B) =
B · u∗

C∗ −
∑ω(B)

t=1
ut, (18)

where u∗ = u(K∗) and C∗ =
∑

i∈K∗ bi represent the utility
and payment of the optimal policy in a round, respectively,
and K∗ denotes the corresponding optimal set of workers.

V. CMAB-DTD FRAMEWORK FOR MCS

In this section, we first present how to determine the
winning worker set for each round of crowdsensing tasks,
and then explain how to calculate payment for each selected
worker, followed by a summary of the entire CMAB-based
dynamic truth discovery (CMAB-DTD) framework for MCS.

A. Winning Worker Set Determination

In order to select high-quality workers, we have incorpo-
rated the multi-attribute reverse auction mechanism in our
ecosystem to intensify competition among workers and re-
duce the platform’s cost. The multi-attribute reverse auction
involves the platform issuing a call for sensing tasks to attract
eligible workers. During the auction process, workers are
required to submit multi-dimensional information (price and
privacy protection preferences) in their bids, competing to
become the winner and receive the payment (details regarding
worker selection and payment calculation will be introduced
later). Specifically, before initiating multiple rounds of crowd-
sensing tasks, each worker i submits a bid message to the
platform, denoted as

Bidi = {σi, bi}, (19)

where σi and bi are worker i’s quoted privacy protection
vector and price for performing the crowdsensing tasks, re-
spectively. Note that ci is the true cost of worker i, and a
strategic worker may not bid truthfully, i.e., bi ̸= ci. Based
on the bid messages, in each round of crowdsensing, the
platform determines the winning worker set Kt and calculates
the payment Pt to all selected workers, so as to maximize its
utility under the budget constraint, as formulated in the PUM
problem (16).

We propose a budget-constraint K-arm CMAB model to
solve the PUM problem. In this model, each worker represents
an arm, and the worker’s sensing quality is the associated
reward. Recruitment is treated as pulling arms. K workers
are recruited in each round, and the sensing quality of each
worker can be learned accordingly. The main challenge lies in
this model is the platform’s lack of knowledge about workers’
sensing qualities, forcing it to recruit workers provisionally
to conduct sensing tasks (exploration) and then adjust the
winning worker group based on the learned knowledge (ex-
ploitation).

As mentioned previously, exploration and exploitation are
two important but opposite considerations when selecting
winning workers, and the platform needs to balance these two
processes so as to maximize its utility. To this end, we adopt
the concept of Upper Confidence Bound (UCB), whose core
idea is always to have optimism in the face of uncertainty
[49]. Specifically, for an arbitrary round t, we estimate each
worker’s error ξi and task completion duration τi based on
the knowledge learned from previous rounds. Let κt

i be the
number of times that worker i is selected until round t. Note
that within a single round, the platform can learn the error up
to N times but the task completion duration only once. Let
ηti denote the number of times that error ξi has been learned
until round t, then ηti = N ·κt

i. Let ξ̄ti and τ̄ ti be the empirical
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mean of error and task duration of worker i until round t,
respectively, and the combinatorial empirical mean of worker
i’s quality can be denoted as q̄ti ≜ Lτ̄ ti +

√
2

πD ξ̄ti . If worker
i is selected in round t, then τ̄ ti , ξ̄ti , κt

i, ηti are updated as
follows: 

τ̄ ti =
τ̄t−1
i κt−1

i +τt
i

κt−1
i +1

,

ξ̄ti =
ξ̄t−1
i ηt−1

i +
∑

n∈N ξti,n

ηt−1
i +N

,

κt
i = κt−1

i + 1,

ηti = ηt−1
i +N.

(20)

Otherwise, these parameters remain unchanged from the pre-
vious round.

According to the UCB policy of combinatorial multi-armed
bandits [20], [50], the UCB terms of task duration and error

are Aτ
√

(K+1) ln(t)
κt
i

and Aξ

√
(K+1) ln(

∑
j∈I ηt

j)

ηt
i

, respectively.

Therefore, the UCB term of q̄ti , denoted as q̈ti , can be expressed
as

q̈ti = q̄ti −Qt
i, (21)

where Qt
i =

{
(K + 1)[L2 (Aτ )2 ln(t)

κt
i

+
2(Aξ)2 ln(

∑
j∈I ηt

j)

ηt
iπD

]

} 1
2

is the combinatorial confidence radius of worker i’s quality qti
in round t [51]. The minus sign in Eq. (21) is due to the fact
that a smaller qti indicates better quality of worker i.

In each round of worker selection, the platform calculates
the Revenue-Cost-Ratio (RCR) of each worker as

RCRt
i =

R
K − (q̈t−1

i + σ̄i)

bi
, (22)

where R
K −(q̈t−1

i + σ̄i) represents the average revenue brought
to the platform by worker i, and bi is the quoted price of
worker i. Then, the platform selects the top K workers as the
winner set.

Note that the platform can only obtain the perturbed data
from workers, but cannot directly observe the error term ξti,n.
Hence, we make an unbiased estimation for ξti,n as follows:

(ξti,n)
2 + σ2

i,n ≈ 1
D−1

∑D
d=1

(
x̃
t (d)
i,n − x̃t

i,n

)2
, (23)

⇒ ξti,n ≈
√

1
D−1

∑D
d=1

(
x̃
t (d)
i,n − x̃t

i,n

)2
− σ2

i,n. (24)

B. Worker Payment Calculation

Next, we move on to devising payment rules that incentivize
the selected workers to truthfully report their costs, while also
ensuring their individual rationality.

We regard round 1 as the initialization phase, where the
platform selects all workers (i.e., K1 = I) to initialize the
parameters η1i , ξ̄1i , κ1

i , τ̄1i , q̄ti and q̈1i . In addition, the platform
adopts cmax as the payment to every worker. Consequently,
each worker’s payment in round 1 is no less than its true
cost, indicating that the worker’s utility is non-negative and
the property of individual rationality is satisfied. Then, the
platform updates the remaining budget as B − I · cmax.

After the initialization phase, the platform selects K work-
ers in each round until the budget exhausts. Specifically,

at the beginning of each round t, the platform can acquire
the value of q̈t−1

i for ∀i ∈ I . The platform ranks workers
in decreasing order according to the value of RCRt

i and
selects the top K workers to compose the winning worker
set Kt. To guarantee truthfulness, the platform calculates the
corresponding payment Pt using the idea of critical payment
[50]. Formally, there is

pti(bi) = min

{
R
K − (q̈t−1

i + σ̄i)
R
K − (q̈t−1

K+1 + σ̄K+1)
· bK+1, cmax

}
. (25)

The critical payment of a winning worker i should be cal-
culated based on the bid of the (K + 1)-th worker, i.e.,

R
K −(q̈t−1

i +σ̄i)
R
K −(q̈t−1

K+1+σ̄K+1)
·bK+1. The min{·} ensures that the payment

will not exceed the maximum cost.
We will demonstrate later that the payment method in (25)

can ensure the selected workers’ truthfulness and individual
rationality simultaneously. The process of worker selection and
payment in round t is summarized in Algorithm 2.

C. CMAB-DTD Framework

Integrating the truth discovery (Algorithm 1) and the worker
selection and payment (Algorithm 2), we develop the CMAB-
DTD framework for MCS, outlined in Algorithm 3. In the
initialization phase, i.e., Steps 1-3, the platform selects all
workers in round 1 (i.e., K1 = I), obtains the estimated
ground truth in this round, and assigns a payment of p1i = cmax
to each worker. This ensures that each worker’s utility is
greater than 0, thus satisfying individual rationality. Next, the
platform can calculate parameters ξ1i,n, τ1i , η1i , κ1

i , ξ̄1i , τ̄1i ,
q̄1i , q̈1i , and B1 = B − I · cmax, in which Bt means the
remaining budget after round t. After the initialization phase,
in Step 6, the platform performs Algorithm 2 to recruit workers
and calculate payments, and then obtains Kt, Pt. Next, as
shown in Steps 7-9, if the total payment in this round exceeds
the remaining budget, the process will terminate. Else, the
platform will update budget Bt in Step 10. In Step 11, the
platform obtains the perturbed sensory data {x̃t (d)

i,n }K,D,N
i,d,n=1

from K wining workers, while observing their task duration
τ ti and calculating the error ξti,n. In step 12, the platform
calculates the mean of each worker’s submitted data x̃t

i,n. Then
the platform performs Algorithm 1 to obtain the estimated
ground truth {x̂t

n}Nn=1 in round t.

Algorithm 2 Worker Selection and Payment

Input: ξt−1
i,n , τ t−1

i , ηt−1
i , κt−1

i , ξ̄t−1
i , and τ̄ t−1

i

Output: Kt, Pt

1: Calculate q̄t−1
i = Lτ̄ t−1

i +
√

2
πD ξ̄t−1

i ;
2: Calculate q̈t−1

i = q̄t−1
i −Qt−1

i according to (21);
3: Calculate RCRt

i according to (22);
4: Sort the workers I by RCR values:

RCRt
i1 ≥ · · · ≥ RCRt

ij ≥ · · · ≥ RCRt
iI ;

5: Select the top K workers into the winning worker set Kt;
6: Compute the payments pti(bi) for each selected worker in

Kt according to (25);
7: Update the parameters ηti , κ

t
i, ξ̄

t
i , τ̄

t
i according to (20);



10

Algorithm 3 CMAB-DTD Framework for MCS
Input: I, N , Bid, K, B
Output: {x̂t

n}Nn=1, Kt, Pt

1: Initialize t = 1, Kt = ∅, pti(bi) = 0, ∀i ∈ I;
2: The platform selects all workers in the first round, i.e.,

K1 = I, and determine the payment for selected workers,
i.e., p1i = cmax, to obtain {x̂1

n}Nn=1;
3: Calculate parameters ξ1i,n, τ1i , η1i , κ1

i , ξ̄1i , τ̄1i , q̄1i , q̈1i , and
B1 = B − I · cmax

4: while true do
5: t = t+ 1;
6: Perform Algorithm 2 to obtain Kt, Pt;
7: if

∑
i∈Kt pti(bi) ≥ Bt−1 then

8: break;
9: end if

10: Update Bt = Bt−1 −
∑

i∈Kt pti(bi);
11: The platform obtains sensory data from K workers

{x̃t (d)
i,n }K,D,N

i,d,n=1. In the meantime, the platform observes
their task duration τ ti and calculates the error ξti,n;

12: The platform calculates the mean of each worker’s
submitted data x̃t

i,n;
13: Perform Algorithm 1 to obtain {x̂t

n}Nn=1;
14: end while

VI. PERFORMANCE ANALYSIS

In this section, we analyze the regret upper bound, truthful-
ness, and individual rationality of the proposed MCS ecosys-
tem.

A. Upper Bound on Regret

We use the superscript ∗ to indicate the corresponding
identifications of the optimal policy. Let āti =

R
K −(q̄t−1

i + σ̄i)
and ai = R

K − (qi + σ̄i). Then, we define the smallest and
largest possible differences of RCR value and the largest
possible difference of revenue among all non-optimal winner
sets Kt ̸= K∗ as follows:

∆max =
∑

i∈K∗
ai

bi
−minKt ̸=K∗

∑
i∈Kt

ai

bi
,

∆min =
∑

i∈K∗
ai

bi
−maxKt ̸=K∗

∑
i∈Kt

ai

bi
,

▽max = u∗ −minKt ̸=K∗ ut.

(26)

Moreover, we use a notation ϕt
i to denote the counter for the

worker i after the initialization phase (i.e., t > 1), in which
the counter ϕt

i is updated as follows: when Kt ̸= K∗, there is

i = arg min
j∈Kt

ϕt
j , ϕt

i = ϕt
i + 1. (27)

Here, if multiple workers satisfy the condition, we select any
one worker randomly. When the winning worker set in a round
is not the optimal set, the worker with the smallest counter ϕt

i

will be incremented by 1, which indicates that the sum of the
counter

∑I
i ϕ

t
i is equal to the total times that the non-optimal

worker set to be recruited. Next, we will focus on the upper
bound of the counter ϕω

i .

Lemma 1: For any worker i ∈ I , the expectation of the
counter ϕω

i is upper bounded by

E{ϕω
i } ≤ 4K2(K + 1)L2Aτ 2

(cmin∆min)
2 lnω

+
8K2(K + 1)Aξ2

(cmin∆min)
2
πDN

ln(ωKN) + 1 +
Kπ2

3

= φ1 lnω + φ2 ln(ωKN) + φ3,

(28)

where 

φ1 =
4K2(K + 1)L2Aτ 2

(cmin∆min)
2 ,

φ2 =
8K2(K + 1)Aξ2

(cmin∆min)
2
πDN

,

φ3 = 1 + Kπ2

3 .

(29)

Proof: In each round t, one of the following cases must
happen: 1) the optimal set of workers, i.e., K∗, is selected; 2)
a non-optimal set of workers is selected, i.e., Kt ̸= K∗. In the
first case, the counter ϕt

i will not change, while in the second
case, the counter ϕt

i will be updated according to Eq. (27).
Let Φt

i ∈ {0, 1} denote the indicator that ϕt
i is incremented

at round t, where Φt
i = 1 means that ϕt

i is incremented, and
Φt

i = 0 otherwise. Then, we have

ϕω
i =

ω∑
t=2

I{Φt
i = 1} = ϑ+

ω∑
t=2

I{Φt
i = 1, ϕt

i ≥ ϑ}

≤ ϑ+

ω∑
t=1

I{
∑

i∈Kt+1

RCRt
i ≥

∑
i∈K∗

RCRt
i, ϕ

t
i ≥ ϑ}

≤ ϑ+

ω∑
t=1

I{ max
ϑ≤κi(1),··· ,κi(K)≤t

K∑
j=1

RCRt
i(j)

≥ min
1≤κi∗(1),··· ,κi∗(K)≤t

K∑
j=1

RCRt
i∗
(j)
}

≤ ϑ+

ω∑
t=1

t∑
κi(1)=ϑ

· · ·
t∑

κi(K)=ϑ

· · ·
t∑

κi∗(1)=1

· · ·
t∑

κi∗(K)=1

I{
K∑
j=1

RCRt
i(j)

≥
K∑
j=1

RCRt
i∗
(j)
},

(30)
where i(j) and i∗(j) denote the j-th nonzero element in Kt+1

and K∗, respectively. According to the definitions of ϕt
i and

κt
i, we have κt

i ≥ ϕt
i for ∀i ∈ I and ∀t ≥ 1.

Next, we focus on the bound of
∑K

j=1 RCRt
i(j)

≥∑K
j=1 RCRt

i∗
(j)

. Then, for the following event

K∑
j=1

āti(j) +Qt
i(j)

bi(j)
≥

K∑
j=1

āti∗
(j)

+Qt
i∗
(j)

bi∗
(j)

, (31)

we can get that at least one of the following cases must be
true (which is based on the proof by contradiction):

K∑
j=1

āti∗
(j)

bi∗
(j)

≤
K∑
j=1

ai∗
(j)

−Qt
i∗
(j)

bi∗
(j)

, (32)
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K∑
j=1

āti(j)
bi(j)

≥
K∑
j=1

ai(j) +Qt
i(j)

bi(j)
, (33)

K∑
j=1

ai∗
(j)

bi∗
(j)

<

K∑
j=1

ai(j) + 2Qt
i(j)

bi(j)
. (34)

Next, we need to obtain the upper bound of the probabilities
of Eq. (32) and Eq. (33). By applying the Chernoff-Hoeffding
bound, we have

Pr


K∑
j=1

āti∗
(j)

bi∗
(j)

≤
K∑
j=1

ai∗
(j)

−Qt
i∗
(j)

bi∗
(j)


≤

K∑
j=1

Pr{q̄ti∗
(j)

≥ qti∗
(j)

+Qt
i∗
(j)
}

≤ Ke
−2κt

i∗
(j)

Qt
i∗
(j)

2

= Kt−2(K+1).

(35)

We can also similarly prove that

Pr


K∑
j=1

āti(j)
bi(j)

≥
K∑
j=1

ai(j) +Qt
i(j)

bi(j)

 ≤ Kt−2(K+1). (36)

Next, we will choose a certain ϑ to make the event defined
in (34) impossible. Note that at the end of round t,

∑
j∈I ηtj =

tKN . Based on the fact that ηt
i

N = κt
i ≥ ϕt

i ≥ ϑ, we have

K∑
j=1

ai∗
(j)

bi∗
(j)

−
K∑
j=1

ai(j)
bi(j)

− 2

K∑
j=1

Qt
i(j)

bi(j)

≥ ∆min − 2

K∑
j=1

√
(K + 1)(L2 (Aτ )2 ln t

κt
i

+
2(Aξ)2 ln(

∑
j∈I ηt

j)

ηt
iπD

)

bi(j)

≥ ∆min − 2

K∑
j=1

√
(K + 1)(L2 (Aτ )2 ln t

ϑ + 2(Aξ)2 ln(tKN)
ϑπDN )

cmin
≥ 0.

(37)
We can conclude that Eq. (37) will always hold if ϑ satisfies
the following condition:

ϑ ≥ φ1 lnω + φ2 ln(ωKN). (38)

Substituting (38) into (30), we can obtain that

E{ϕω
i } ≤ ⌈φ1 lnω + φ2 ln(ωKN)⌉

+
∑∞

t=1
(t− ϑ+ 1)

K
tK2Kt−2(K+1)

≤ φ1 lnω + φ2 ln(ωKN) + 1 + 2K
∑∞

t=1
t−2

≤ φ1 lnω + φ2 ln(ωKN) + φ3.

According to Lemma 1, the upper bound of counter ϕω
i is

highly related to the number of total rounds ω. Here, we define
another payment computation method in the case where the
expected quality are known in advance. That is, according to
the selection criterion RCRi =

ai

bi
, let pi(bi) =

ai·bK+1

aK+1
≥ bi

be the payment for each winning worker i. Thus, the total
payment in each round, denoted as C⋆, is determined as

C⋆ =
∑

i∈K∗
ai·bK+1

aK+1
≥
∑

i∈K∗ bi = C∗. (39)

Then, for the maximum number of rounds ω, we have the
following lemma.

Lemma 2: The maximum number of crowdsensing task
execution rounds under the budget B, i.e., ω, is bounded by

B

C⋆
− φ5

(
(φ1 + φ2) ln(

3B

C∗ + φ4) + φ2 ln(KN) + φ3

)
≤ ω ≤ 3B

C∗ + φ4,

(40)
where 

φ4 =
3Icmax

Kcmin
(φ1 ln(

3Icmaxφ1

Kcmin
)

+ φ2 ln(
3INcmaxφ2

cmin
)− φ1 − φ2),

φ5 =
Icmax

C⋆
.

(41)

Proof: We first let ω∗(B) denote the stopping round of
the optimal solution under the budget B. Since the optimal
solution knows the expected quality of all workers in advance
and the bids submitted by each strategic worker are fixed, the
optimal set of workers selected in each round is determined,
i.e., K∗. Then, the payment for each winning worker can
be determined and the total payment in one round can be
calculated as C∗ =

∑
i∈K∗ bi. Thus, the number of total

rounds is fixed, i.e., ω∗(B) = ⌊ B
C∗ ⌋, and further we have

the following results:

B

C∗ − 1 ≥ ω∗ ≤ B

C∗ . (42)

Then, we first analyze the relationship between ω∗(B) and
ω(B). According to the payment computation, we get that the
payment for each winning worker is greater than its true cost.
Thus, the total payment in each round is greater than the value
K · cmin and we have ω(B) ≤ B

Kcmin
. Then, there is

ω ≤ ω∗ + ω(
∑

i/∈K∗
κi(ω) · cmax)

≤ ω∗ + cmax · ω(
∑I

i=1
ϕω
i )

≤ ω∗ +
I · cmax

K · cmin
E{ϕω

i }

≤ B

C∗ +
I · cmax

K · cmin

(
φ1 lnω + φ2 ln(ωKN) + φ3

)
.

(43)

According to the inequality lnx ≤ x− 1 for ∀x > 0, we have
the following results:

ln(
Kcmin

3Icmaxφ1
ω) ≤ Kcmin

3Icmaxφ1
ω − 1

⇒ lnω ≤ Kcmin

3Icmaxφ1
ω − 1 + ln(

3Icmaxφ1

Kcmin
).

(44)

ln(
cmin

3INcmaxφ2
ωKN) ≤ cmin

3INcmaxφ2
ωKN − 1

⇒ ln(ωKN) ≤ Kcmin

3Icmaxφ2
ω − 1 + ln(

3INcmaxφ2

cmin
).

(45)
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By substituting Eq.(44) and Eq.(45) into Eq.(43), we have

ω ≤ B

C∗ +
I · cmax

K · cmin

(
φ1 lnω + φ2 ln(ωKN) + φ3

)
≤ B

C∗ +
2ω

3
+

Icmax

Kcmin

(
φ1 ln(

3Icmaxφ1

Kcmin
)

+ φ2 ln(
3INcmaxφ2

cmin
)− φ1 − φ2

)
⇒ ω ≤ 3B

C∗ +
3Icmax

Kcmin

(
φ1 ln(

3Icmaxφ1

Kcmin
)

+ φ2 ln(
3INcmaxφ2

cmin
)− φ1 − φ2

)
=

3B

C∗ + φ4.

(46)

Next, we focus on the lower bound of ω(B). Here, we divide
B into two parts: B∗ and B†, in which B∗ means the budget
is used to select the optimal set of workers and B† indicates
the remaining budget spent on pulling the non-optimal sets of
workers. Then, we use ω⋆(B) to denote the total rounds in
which the budget B is given and the payment is calculated
by pi(bi) = ai·bK+1

aK+1
. Hence, we get ω⋆(B) ≤ ω∗(B) and

B
C⋆ − 1 ≤ ω⋆(B) ≤ B

C⋆ . Since ω⋆(B) and ω(B) are based on
the same payment computation method, we have

ω(B) = ω(B∗ +B†) ≥ ω⋆(B∗)

≥ ω⋆(B −
∑

i/∈K∗
κi(ω) · cmax)

≥ ω⋆(B − cmax ·
∑I

i=1
ϕω
i )

≥ ω⋆(B − Icmax(φ1 lnω + φ2 ln(ωKN) + φ3))

≥ B − cmaxI(φ1 lnω + φ2 ln(ωKN) + φ3)

C⋆
− 1.

(47)

According to (46) and (47), we have

ω ≥ B

C⋆
− Icmax

C⋆

(
φ1 ln(

3B

C∗ + φ4)

+ φ2(ln(KN(
3B

C∗ + φ4))) + φ3

)
≥ B

C⋆
− φ5

(
(φ1 + φ2) ln(

3B

C∗ + φ4) + φ2 ln(KN) + φ3

)
.

This completes the proof.

Theorem 2: The regret of our MCS ecosystem with
the CMAB-DTD framework is bounded by O

(
IK3 ln(B +

IK2 ln(IK2))
)
.

Proof: According to the definition of regret, Lemma 1

and Lemma 2, we have the following results:

Reg(B) =
Bu∗

C∗ −
∑ω

t=1
ut

=
Bu∗

C∗ − ωu∗ + ωu∗ −
∑ω

t=1
ut

≤ Bu∗

C∗ − ωu∗ +
∑I

i=1
ϕω
i ▽max

≤ Bu∗

C∗ − ωu∗ + I ▽max
(
φ1 ln(

3B

C∗ + φ4)

+ φ2(ln(KN(
3B

C∗ + φ4))) + φ3

)
≤ Bu∗

C∗ − (
B

C⋆
− φ5

(
(φ1 + φ2) ln(

3B

C∗ + φ4)

+ φ2 ln(KN) + φ3

)
)u∗ + I ▽max

(
φ1 ln(

3B

C∗ + φ4)

+ φ2(ln(KN(
3B

C∗ + φ4))) + φ3

)
≤ (u∗φ5 + I▽max)(φ1 + φ2) ln(

3B

C∗ + φ4)

+ (u∗φ2 + I▽max) ln(KN) + (u∗ + I▽max)φ3.
(48)

This completes the proof.

B. Truthfulness

Theorem 3: The proposed MCS ecosystem satisfies the
property of truthfulness.

Proof: Based on the Myerson’s theorem [52], an auction
mechanism is truthful if and only if it satisfies two conditions:
1) the winning worker selection process is monotonic; 2)
each winning worker is paid the critical value. First, we can
easily prove that our winning worker selection is monotonic
in each round. For each bid price bi, if worker i can win the
auction with bi in round t, it must also win when submitting a
smaller value. This conclusion is based on the greedy selection
criterion

R
K −(q̈t−1

i +σ̄i)

bi
.

Next, we prove that the CMAB-DTD scheme also satisfies
the second condition. There are two cases of the relationship
between the payment pti and the bid price bi. In the first
case, when worker i bids less than or equal to the obtained
payment, i.e., bi ≤ pti, worker i still wins and receives the same
payment. In the second case, when worker i bids greater than
the obtained price, i.e., bi > pti, RCRi can be written as

RCRi =
R
K − (q̈t−1

i + σ̄i)

bi
<

R
K − (q̈t−1

i + σ̄i)

pti
. (49)

According to Eq. (25), the payment obtained by worker i is
pti =

R
K −(q̈t−1

i +σ̄i)
R
K −(q̈t−1

K+1+σ̄K+1)
bK+1, and substituting it into (49), we

have

RCRi =
R
K − (q̈t−1

i + σ̄i)

bi
<

R
K − (q̈t−1

K+1 + σ̄K+1)

pti
= RCRK+1.

(50)

Now we find that worker i fails and worker K + 1 wins.
That is, pti precisely represents the critical value for worker
i, and if the bid price exceeds this critical value, worker i
will fail. Therefore, the proposed MCS ecosystem guarantees
truthfulness.
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C. Individual Rationality

Theorem 4: The proposed MCS ecosystem satisfies the
property of individual rationality.

Proof: For worker i, if the bid price bi does not win the
auction in round t, the corresponding payoff is 0; otherwise,
the payoff will be pti(bi) − ci. Here, we have pti(bi) =

min

{
R
K −(q̈t−1

i +σ̄i)
R
K −(q̈t−1

K+1+σ̄K+1)
bK+1, cmax

}
. Since the bid price bi

is prior to bK+1 in round t, we get RCRt
i ≥ RCRt

K+1,

i.e.,
R
K −(q̈t−1

i +σ̄i)

bi
≥

R
K −(q̈t−1

K+1+σ̄K+1)

bK+1
. Then, there is bi ≤

R
K −(q̈t−1

i +σ̄i)
R
K −(q̈t−1

K+1+σ̄K+1)
bK+1 = pti(bi). Furthermore, due to the

truthfulness of the worker selection and payment mechanism,
we have bi = ci for ∀i ∈ I . Therefore, we get ci ≤

R
K −(q̈t−1

i +σ̄i)
R
K −(q̈t−1

K+1+σ̄K+1)
bK+1 = pti(bi), i.e., pti(bi) − ci ≥ 0 holds

true in every round.
This completes the proof.

VII. EXPERIMENTAL SIMULATIONS

A. Experimental Methodology

Comparison Algorithms: Note that our CMAB-DTD frame-
work takes into account multiple unknown variables, dis-
tinguishing it from most existing MCS systems that only
consider a single variable and therefore cannot be directly
used for comparison. Consequently, we have developed three
comparison algorithms, called “Optimal”, “ϵ-first”, and “Ran-
dom”. “Optimal” means that the algorithm knows the expected
qualities of all workers in advance, and always selects the
same top-K workers with the highest qualities in each round.
The Random algorithm does not know the expected qualities
and will randomly select K workers in every round. “ϵ-first”
will randomly select K workers using ϵ · B budget (pure
exploration phase), and greedily select the top-K workers
with the highest qualities by using the remaining (1 − ϵ) · B
budget (pure exploitation phase). In the ϵ-first algorithm, we
set ϵ ∈ {0.1, 0.5}.

Simulation Settings: In our simulations, we assume that
there are 2 real-time sensing tasks (e.g., temperature and
humidity) that the platform requires to observe the ground
truth, and accordingly, 60 workers are willing to participate in
these tasks (i.e., I = 60, N = 2). Without loss of generality,
we assume that the ground truth functions of the two real-time
sensing tasks changing with time s are x

truth(s)
1 = sin(0.1·s)+

2 and x
truth(s)
2 = 0.1 · s, respectively. We set the value of ξti,n

following a Gaussian distribution, with the mean generated
from the uniform distribution U(0.1, 2) and a constant of
0.05 for the standard deviation. The random noise injected by
worker i, i.e., σi = {σi,1, σi,2, · · · , σi,N}, is sampled from
the uniform distribution U(0.1, 2). The workers’ submission
time τ ti is also set according to a Gaussian distribution, with
the mean generated from the uniform distribution U(0.1, 2)
and a constant of 0.05 for the standard deviation. Since each
worker has different privacy sensitivity and sensing costs, we
randomly generate the cost of each worker from the uniform
distribution U(1, 2). Furthermore, we set K = 20, R = 200,
β = 1, D = 5, L = 0.1 in default. When computing the weight
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Fig. 3. Estimated truth versus ground truth.
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crowdsensing.

1 2 3 4 5 6 7 8 9 10
0.2

0.25

0.3

0.35

0.4

0.45

S
ta

ti
s
ti
c
a

l 
a

v
e

ra
g

e
 M

A
E

0

10

20

30

40

50

60

N
u

m
b

e
r 

o
f 

s
u

b
m

it
te

d
 d

a
ta

 i
te

m
s

Fig. 5. Impact of number of samples on the system performance.

in the truth discovery algorithm, g(·) is set to its optimal form,
that is,

g(·) = − log

 ∑N
n=1 floss

(
x̃t
i,n, x̂

t
n

)
∑K

i=1

∑N
n=1 floss

(
x̃t
i,n, x̂

t
n

)
 .

The underlying principle behind this form can be found in
[25], [53], [54], which is not the focus of this paper. floss(·)
can be set to any form capable of measuring distance, with
little impact on truth discovery accuracy. We will adopt the
most commonly used forms, i.e., the absolute value function
and squared difference function, to illustrate their impact on
truth discovery accuracy.

B. Experimental Results

1) Performance Evaluation:
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Fig. 6. The impact of different floss functions on the accuracy of mobile crowdsensing.
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Fig. 7. Truthfulness and individual rationality.

We first summarize in Fig. 3 the comparison between
the estimated truths {x̂t

n}2n=1 obtained by the CMAB-DTD
framework in the developed MCS ecosystem and the real
ground truths {xtruth(s)

n }2n=1 in every round, where we set
the budget B = 2000. From Fig. 3, it can be observed
that for both the two sensing tasks, the estimated values
in each round are close to the corresponding ground truths
and exhibit small fluctuations around them. Additionally, the
estimated value curve fits well with the changing trend of the
ground truth. This indicates that the MCS ecosystem we have
developed based on the CMAB-DTD framework, is capable of
effectively estimating time-varying ground truth values even if
their characteristics are unknown.

We plot Fig. 4 to show how the number of selected workers
K influences the accuracy performance of the MCS ecosystem
in terms of the mean absolute error (MAE), where we set
the budget B = 2000 and the number of data samples
D ∈ {1, 5, 10, 15}. We can observe from Fig. 4 that as the
number of workers increases, the MAE generally shows a
decreasing trend. This is because when more workers are
selected in each round, there is a greater chance of selecting
high-quality workers (who have lower injected noise, smaller

endogenous errors, and faster data submission), thereby im-
proving the sensing accuracy in each round and reducing the
overall MAE. Furthermore, the increase in the number of data
samples D can result in an improvement in the MAE. This
is because the sensing data of worker i follows the Gaussian
distribution N(xtruth(st)

n , ξti,n
2
+σ2

i,n), and as more data samples
are submitted, the probability that the mean value is close
to the ground truth increases, leading to a more accurate
estimated truth by the platform. However, it should be noted
that when D is relatively large, the improvement in MAE
diminishes gradually. Therefore, considering communication
costs and privacy protection requirements, the data sampling
size should not be set excessively large.

Fig. 5 illustrates the impact of the number of samples D on
the performance of the MCS ecosystem. It can be observed
that as D increases, the statistical average MAE gradually
decreases, indicating an improvement in MCS accuracy. This
is consistent with the intuition that an increase in D tends
to reduce the randomness of perturbed data submitted by
workers, leading the average to converge toward the expec-
tation. However, it is worth noting that as D increases, the
decrease in MAE slows down, showing an obvious behavior of
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(c) I = 70.
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Fig. 8. Variation of platform’s total revenue as budget increases.

diminishing marginal returns. On the other hand, the number
of data items submitted from workers to the platform in-
creases linearly with D, resulting in a linear growth of system
communication resource (such as bandwidth and energy) con-
sumption, posing greater challenges for resource-constrained
applications. Therefore, D should be set reasonably according
to application requirements to achieve an appropriate tradeoff
between MCS accuracy and system communication efficiency.

In Fig 6, we examine the impact of different forms of
distance function floss(·) on the MAE of the CMAB-DTD
algorithm, where we set B = 4000, K = 10, and the form of
floss(·) as the absolute value function and squared difference
function. From Fig. 6(a), we can observe that the MAE values
fluctuate randomly in each round, and their ranges and trends
are very similar under different floss(·) functions. In Fig. 6(b),
we present the relationship between the MAE and D under
different floss(·) functions. To mitigate the impact of random-
ness, we conduct 100 experiments at each D ∈ {1, 2, · · · , 10},
and take the statistical average value as the Y -axis. Similar to
the behavior in Fig. 5, the MAE decreases as D increases
and exhibits diminishing marginal returns. Fig. 6(b) shows
that the variation of MAE and the convergence point remain
largely consistent across different floss(·) functions, indicating
that the form of floss(·) has little impact on the accuracy of
the CMAB-DTD algorithm. Therefore, an important insight
we obtain from Fig 6 is that we can apply a simple form of
the floss(·) function to measure the distance between the mean
value of submitted data and the inferred value.

Next, we evaluate the economic properties of the pro-
posed MCS ecosystem. We present the results in Fig. 7(a)
to demonstrate the truthfulness of selected workers in each
round of sensing tasks. In an arbitrary round, we randomly
choose a worker and change its bid value while ensuring that
all other settings of the ecosystem remain unchanged. From
Fig. 7(a), it can be observed that the true cost of the worker
is approximately 1.0, and the critical payment is around 1.4.
When the claimed bid is lower than the critical payment, the
worker can win with a corresponding payoff of approximately
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Fig. 9. Variation of regret as budget increases.

0.4, which remains constant regardless of bid fluctuations.
However, once the bid exceeds the critical payment, the
worker’s payoff becomes 0, indicating its failure in the worker
selection mechanism. We validate the individual rationality of
the MCS ecosystem in Fig. 7(b). Specifically, we record the
payment received by each worker participating in the sensing
tasks in each round. After the budget is exhausted, we calculate
the average payment for each worker and summarize the
results in Fig. 7(b). It can be observed that the average payment
for each participating worker in the MCS ecosystem is higher
than its true cost. It demonstrates that the proposed MCS
ecosystem satisfies individual rationality, which is consistent
with the theoretical analysis.

2) Performance Comparison:
We compare the performance behaviors of the MCS ecosys-

tem in terms of the platform’s total revenue and regret in
Fig. 8 and Fig. 9, respectively, under different algorithms as
the budget increases. In line with intuition, Fig 8 illustrates
that the platform’s total revenue under all algorithms will be
consistently improved with the increase in budget B. The
performance of the proposed CMAB-DTD algorithm is signif-
icantly superior to that of the 0.1-first, 0.5-first, and random
algorithms. Remarkably, the total revenue achieved by the
CMAB-DTD algorithm is comparable to that of the Optimal
algorithm, which possesses prior knowledge of the workers’
quality. It indicates that the CMAB-DTD algorithm indeed
achieves a good exploration-exploitation tradeoff, enabling
efficient selection of high-quality workers for each round of
sensing tasks.

From Fig. 9, we can observe that the regret of all algorithms
exhibits a general increasing trend as the budget increases.
This is because a larger budget allows the platform to perform
more rounds of sensing tasks. In each round, as long as
the winning worker set determined by the algorithm differs
from that of the Optimal algorithm, regret will be incurred.
Consequently, the total regret accumulates gradually as the
number of rounds increases. However, the rate of cumulative
regret under the CMAB-DTD algorithm is significantly lower
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(b) B = 4000.
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(c) B = 6000.
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(d) B = 8000.

Fig. 10. Variation of platform’s total revenue as the number of selected
workers increases.

compared to the other three algorithms. This is attributed to
the CMAB-DTD algorithm’s ability to learn worker quality
effectively based on historical results. In subsequent rounds,
the winning worker set selected by the CMAB-DTD algorithm
can closely approximate that of the Optimal algorithm. In
addition, comparing the results under different total numbers
of workers I , it can be observed that the regret of the other
three algorithms has an obvious increment when I becomes
larger. This is because the winning worker set selected from a
larger pool of workers differs more from the winning worker
set of the Optimal algorithm. In contrast, the CMAB-DTD
algorithm maintains a relatively stable regret value, indicating
its ability to efficiently learn the quality of workers and select
high-quality workers for performing sensing tasks.

Next, we compare the performance behaviors of the MCS
ecosystem in terms of the platform’s total revenue and total
executable sensing rounds in Fig. 10 and Fig. 11, respectively,
under different algorithms as the number of selected workers
increases. We fix the total number of workers I and gradually
increase the proportion of selected winning workers, i.e., K/I .
Fig. 10 shows that as the number of selected workers in
each sensing round K increases, the total revenue that can
be achieved by the platform under all algorithms exhibits a
decreasing trend. This is because as the number of workers ex-
ecuting sensing tasks increases, the platform needs to increase
the payment in each round, resulting in a decrease in the total
number of rounds that can be performed within a fixed budget,
as demonstrated by the behaviors in Fig. 11. Additionally, we
can also observe that increasing the budget B leads to gains
in the platform’s total revenue, which is consistent with the
results in Fig. 8. Fig. 11 shows that, under the fixed budget
B, the CMAB-DTD algorithm always achieves a higher total
number of rounds ω for performing sensing tasks, compared to
the 0.1-first, 0.5-first, and random algorithms. This indicates
that the CMAB-DTD algorithm not only has an advantage
in selecting high-quality workers but also possesses a cost-
effective payment rule.
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Fig. 11. Variation of total executable sensing rounds as the number of selected
workers increases.

VIII. CONCLUSION

In this paper, we have developed a mobile crowdsensing
(MCS) ecosystem and presented detailed designs of the sys-
tem architecture, operational process, worker selection, and
payment determination. The proposed MCS ecosystem aims
to maximize the platform’s sensing accuracy-aware utility
within a limited budget while also attracting workers’ truthful
participation. Taking into account the endogenous sensing
errors, privacy-preserving noise injection, and the duration
of completing sensing tasks, we have established a compre-
hensive model for the data collection process. Based on this
model, the truth discovery accuracy was analyzed theoretically
and the criterion for assessing the quality of workers was
quantified mathematically. We exploited the CMAB approach
to transform the worker recruitment problem into a combinato-
rial arm-pulling problem, and accordingly, an UCB algorithm
has been meticulously designed to strike a balance between
exploration and exploitation. Moreover, we have applied the
multi-attribute reverse auction method to incentivize workers
to provide truthful price quotes while ensuring their indi-
vidual rationality. The developed MCS ecosystem has been
thoroughly evaluated through simulations and comparison
analyses, demonstrating its feasibility and effectiveness. This
paper offers valuable insights and practical strategies for the
advancement of MCS ecosystems, facilitating the utilization of
collective wisdom and resources to effectively tackle complex
problems.

In the MCS ecosystem proposed in this paper, the number of
selected workers per round is fixed. Although the fixed number
of selected arms is a consistent setting in all MAB-related lit-
erature to our knowledge, considering its variability would be
an intriguing issue. On one hand, we consider that the unfixed
number of workers will greatly expand the applicability of
MAB, enabling it to cope with various scenarios involving
changes in the available arm set, performance requirements,
and cost constraints. On the other hand, the unfixed number
of workers will pose greater challenges in establishing worker
selection criteria, computing the cumulative value of worker
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quality, and ensuring fairness. We believe this is a highly
challenging yet promising research direction, and we will
delve deeper into it in our future work.
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