
1

Joint Caching and Computing Service Placement
for Edge-Enabled IoT based on Deep

Reinforcement Learning
Yan Chen, Yanjing Sun, Member, IEEE, Bin Yang, and Tarik Taleb, Senior Member, IEEE,

Abstract—By placing edge service functions in proximity to
IoT facilities, edge computing can satisfy various IoT applica-
tions’ resource and latency requirements. Sensing-data-driven
IoT applications are prevalent in IoT systems, and their task
processing relies on sensing data from sensors. Therefore, to
ensure the quality of service (QoS) of such applications in an
edge-enabled IoT system, dedicated caching functions (CFs) are
required to cache necessary sensing data. This paper considers
an edge-enabled IoT system and investigates the joint caching
and computing service placement (JCCSP) problem for sensing-
data-driven IoT applications. Then, deep reinforcement learn-
ing (DRL) is exploited since it can adapt to a heterogeneous
system with limited prior knowledge. In the proposed DRL-
based approaches, a policy network based on the encoder-decoder
model is constructed to address the issue of varying sizes of
JCCSP states and actions caused by different numbers of CFs
related to applications. Then, an on-policy REINFORCE-based
method is adopted to train the policy network. After that, an
off-policy training method based on the twin-delayed (TD) deep
deterministic policy gradient (DDPG) is proposed to enhance
the training efficiency and experience utilization. In the pro-
posed DDPG-based method, a weight-averaged twin-Q-delayed
(WATQD) algorithm is introduced to reduce the bias of Q-value
estimation. Simulation results show that our proposed DRL-
based JCCSP approaches can achieve converged performance
that is significantly superior to benchmarks. Moreover, compared
with the original TD method, the proposed WATQD method can
significantly improve the training stability.

Index Terms—Edge computing, IoT, joint service placement,
sensing-data-driven applications, deep reinforcement learning.

I. INTRODUCTION

EDGE computing enables IoT devices to quickly obtain
cached content and computing services from nearby edge

servers (ESs), which can greatly enhance reliability and reduce

This work was supported in part by the National Natural Science Foundation
of China under Grant 62071472; in part by the Fundamental Research Funds
for the Central Universities under Grant 2020ZDPY0304; in part by the
Chinese Government Scholarship under Grant 202006420096; in part by the
Academy of Finland 6Genesis Project under Grant 318927; and in part by
the IDEA-MILL under Grant 335936. An earlier version of part work in this
paper was accepted by the IEEE International Conference on Communications
(ICC), Seoul, South Korea, 16-20 May 2022. (Corresponding author: Yanjing
Sun, Bin Yang)

Yan Chen and Yanjing Sun are with the School of Information and Control
Engineering, China University of Mining and Technology, Xuzhou, 221116
China. (e-mail: chyan@cumt.edu.cn, yjsun@cumt.edu.cn).

Bin Yang is with the School of Computer and Information Engineering,
Chuzhou University, Anhui, 239000 China. (e-mail: yangbinchi@gmail.com)

Tarik Taleb is with the Center of Wireless Communications, University of
Oulu, 90570 Oulu, Finland, and also with the Department of Computer and
Information Security, Sejong University, Seoul 05006, South Korea. (e-mail:
Tarik.Taleb@oulu.fi).

service latency. Thus, edge-enabled IoT has been identified as
one fundamental architecture of the future IoT systems [1].
In recent years, edge computing has shown great potential for
supporting applications with high resource requirements (e.g.,
CPU cycles, memory) and performance requirements (e.g., la-
tency, reliability), such as autonomous vehicles and intelligent
factories [2]. In the edge-enabled IoT systems, the caching and
computing service placements are of fundamental importance
to ensure the Quality of Service (QoS) by optimally placing
them on nearby resource-limited ESs.

Existing works mainly studied the caching and computing
service placements separately. For the caching service place-
ment that places popular content on ESs, these works aim at
optimizing the content hit ratio [3], [4] and the content caching
cost [5], [6] by designing various schemes based on convex
optimization, game theory and heuristic algorithms. On the
other hand, the studies on computing service placement aim
to optimally assign task processing of applications to ESs and
place corresponding dependent computing functions (SF) to
optimize system performances in terms of service latency [7],
[8], computing overhead [9], [10], and other designed rewards
or costs [11], [12]. Some research efforts seek to address a
joint optimization of caching and computing service place-
ments in IoT systems [13]–[15]. However, the above works
mainly studied systems where each application only requires
either one SF or one caching service function (CF). Sensing-
data-driven IoT applications are prevalent in IoT systems,
which require sensing data captured by deployed sensors
to grasp the status of collaborative facilities/subsystems and
make decisions based on it. Thus, to ensure the QoS of each
sensing-data-driven application in an edge-enabled IoT system,
necessary sensing data needs to be cached on ESs and man-
aged by dedicated CFs. Meanwhile, every CF can pre-process
the cached sensing data and quickly provide the requested
sensing data when receiving a request from the corresponding
SF during task processing. Therefore, considering resource-
constrained ESs, it is essential to investigate the joint caching
and computing service placement (JCCSP) for sensing-data-
driven IoT applications when they are performed in an edge-
enabled IoT system since the QoS of each of them jointly
depends on the orchestration of SF and multiple related CFs.

Service placement problems are generally formulated as
combinatorial optimization problems, which are challenging
to address, especially considering the system heterogeneity in
terms of resources and QoS requirements. Moreover, tradi-
tional approaches generally require prior knowledge of the



2

whole system, including underlay communication networks
like routing configurations and bandwidth consumption, which
requires colossal overhead. Furthermore, it may not be feasible
since the providers of the underlay communication networks
and the edge service ones may be opaque in some ac-
tual IoT systems. Fortunately, deep reinforcement learning
(DRL) can learn to manage an unknown system without prior
knowledge [16]–[18]. Therefore, recent works have employed
DRL to solve similar challenging optimization problems like
resource allocation and service placement [19]–[27]. However,
the JCCSP for multiple sensing-data-driven applications in an
edge-enabled IoT system is challenging yet not studied in
existing works. There are three main challenges in JCCSP
for multiple sensing-date-driven IoT applications. First, the
number of CFs related to each application is different, which
results in the variable size of the system state used to represent
each application. Meanwhile, the size of output JCCSP actions
also varies and relies on the size of the input state representing
an application. Thus, the simple fully-connected neural net-
works with fixed input and output sizes are unsuitable for our
problem. Besides, various features of each services function
and application (e.g., QoS requirement, resource consumption,
number of related CFs) dramatically increase the system
heterogeneity and the dimension of states used to represent all
applications. Moreover, the JCCSP action of each application
is the combination of actions selected for all related SF and
CFs, which may result in a vast discrete action space with
millions of candidate actions for just one application.

Therefore, this paper investigates the JCCSP for multiple
sensing-data-driven IoT applications in an edge-enabled IoT
system, aims to maximize the system reward relevant to the
number of accepted applications and corresponding service
latency. Then, considering the system heterogeneity and the
limited prior knowledge of underlay communication networks,
DRL-based approaches are proposed to train a policy that can
optimize the expected accumulated reward of JCCSP actions
from any observed initial state. The main contributions of this
paper are summarized as follows.

• We investigate the JCCSP problem for multiple sensing-
data-driven IoT applications and formulate it as a finite-
steps Markov Decision Process (MDP) with the object of
maximizing the accumulated reward achieved from pro-
viding low-latency services for all accepted applications.

• Considering the system heterogeneity and limited prior
knowledge of communication networks, We exploit DRL
to train a policy to generate the JCCSP action for any
observed system state. A policy network based on the
encoder-decoder model is constructed to tackle the is-
sue of variable sizes of input states and output JCCSP
actions caused by different numbers of CFs required by
each application. Then, a REINFORCE-based on-policy
approach is employed to train the policy.

• After that, to enhance the training efficiency and ex-
perience utilization in actual implementation, we pro-
pose an off-policy approach based on the twin-delayed
(TD) deep deterministic policy gradient (DDPG). In the
DDPG-based training method, we propose a weight-

averaged twin-Q-delayed (WATQD) method to reduce the
Q-estimation bias and improve the training stability.

• Simulation results show that the DRL-based approaches
can converge after training and achieve optimal per-
formances compared with benchmarks. Moreover, the
proposed WATQD method can improve training stability
compared with the original TD method.

The rest of this paper is organized as follows. Section
II introduces related works. The system model and problem
formulation are presented in Section III. Section IV details
the proposed DRL-based JCCSP approaches. Simulations are
conducted and discussed in Section V. Section VI discusses
two extended research directions of this work. This paper is
concluded in Section VII.

II. RELATED WORKS

The available works on caching and computing service
placements can be classified into two types: service placements
based on traditional approaches (e.g., convex optimization,
heuristic algorithm) and recent approaches based on DRL.

A. Service Placements with Traditional Approaches

Under the traditional approaches, these studies mainly fo-
cus on either caching service placement, computing service
placement, or a joint placement of them in edge computing
systems. Regarding the caching service placement, it explores
how to cache these frequently requested contents on ESs
instead of the cloud server for improving various system
performances. By relaxing the original problem to a convex
optimization problem, the work in [3] designs a caching
placement mechanism in cellular networks for maximizing the
cache hit ratio (i.e., percentile of requested content obtained
from ESs), and meanwhile for minimizing the data requested
load from the cloud server. In [4], the authors propose a belief
propagation based caching placement algorithm for minimiz-
ing the service cost averaging over the content downloading
latency and transmission cost. The work in [5] utilizes the
Lyapunov optimization approach with perturbation to optimize
the placement of caching contents aiming to minimize the
average content downloading latency. Similarly, based on the
Lyapunov optimization approach, a collaborative edge data
caching algorithm is further proposed to minimize the total
system cost equal to the sum of data caching/migration cost
and QoS penalty [6].

Through computing service placement, the tasks of an
application can be assigned to be processed on a nearby ES for
improving system performances. To this end, the work in [7]
attempts to optimize the computing service placement for
minimizing the average service latency of each application by
designing three heuristic algorithms, i.e., latency aware heuris-
tic placement algorithm, clustering enhanced heuristic place-
ment algorithm, and substitution enhanced heuristic placement
algorithm. In [8], an application-aware service placement
mechanism is proposed to minimize the service latency by
optimally assigning applications to ESs with different amount
of computing resources. In [11], the diversity of ESs and
applications is considered, and the maximization of system



3

utility is formulated as an NP-hard optimization problem with
the constraint of computing service placement, which is solved
by a deterministic approximation algorithm. The work in [9]
jointly optimizes the service placement and task routing in
multi-cell edge computing networks by an algorithm based
on the randomized rounding technique for maximizing the
number of accepted applications. A decentralized algorithm
is proposed to optimize the computing service placement in
dense small cell edge computing network, where base stations
and ESs can collaborate to execute tasks [10].

Some initial works have dedicated to the study of joint
caching and computing service placements in a simple sce-
nario where each application only request either one caching
service or one computing service [13], [14]. The work in [13]
investigates the joint placements for minimizing the total
service latency using a convex optimization algorithm, where
the service latency represents the sum of communication
and computing latency. The work in [14] maximizes the
system utility defined as the combination of the bandwidth
usage and network latency by jointly optimizing caching and
computing service placements. The work in [15] studies the
duplicated computing tasks and results share among multiple
users condition, and a computing result caching enhancement
scheme is proposed to minimize the system execution delay.

B. Service Placements with DRL Approaches
In [21], the authors propose a mean-field game guided deep

Q-learning approach for achieving service latency minimiza-
tion by optimizing computing service placement in cooperative
multi-access edge computing system. A deep Q-learning-based
computing service placement approach is proposed in [20] to
maximize the system utility defined as the difference between
the utility obtained from applications and the penalty of
network congestion. The services in their work can be mapped
to the physical network with prior knowledge. In [22], a novel
two-timescale DRL-based approach is designed to minimize
the cost of system task execution time and resource usage
via jointly optimizing task offloading, resource allocation, and
service placement. Meanwhile, federated learning is employed
in their work for the purpose of data privacy. Notice that
the deep Q-learning-based approach belongs to a class of
value-based DRL approaches. However, in such approaches,
each action is selected from all candidate actions for a given
state, making them hard to apply in a system with a large or
continuous state and action spaces. [18].

It is notable that the policy-based DRL approaches can
handle the problem with continuous or large-scale discrete
action and state spaces [23], [24]. Accordingly, the work
in [25] employs a DDPG-based approach to optimally place
the virtual network function (VNF) forwarding graph for max-
imizing the service chain acceptance ratio. The goal of [26] is
to optimize the VNF placement and routing for achieving the
maximization of system utility related to resource cost and
service latency using a DDPG-based approach. In [27], the
authors utilize a policy gradient method to select paths for
service function chains from a predetermined candidate path
set, which could maximize the system utility related to service
benefits, cost and quality.

Different from the above works on the studies of the service
placement for applications requiring only one service function
or virtual network function chain, this paper investigates the
JCCSP for sensing-data-driven IoT applications. Each applica-
tion requires one SF and multiple CFs simultaneously, and its
QoS depends on the joint placement of all related SF and
CFs. Then, to cope with the issue that sensing-data-driven
applications require different numbers of CFs, we construct
an actor policy network based on the encoder-decoder model
to realize the sequence-to-sequence mapping function from
various applications to JCCSP actions. Different from the work
in [28] considering the service placement for only one easily
represented VNF chain, we investigate the JCCSP for multiple
sensing-data-driven applications, in which the system state
consists of the stationary and dynamic parts. The stationary
part is an application to be placed. The dynamic part is the
real-time resource consumption of ESs, updated after selecting
an action for a service function at each decoding step and after
implementing the JCCSP action of an application. Moreover,
to cope with the challenge of enormous state and action spaces,
we employ a REINFORCE-based on-policy training method
and an off-policy DDPG-based method to train the policy.
In the DDPG-based method, we propose a new WATQD Q-
estimation method to improve training stability.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, we consider an edge-enabled IoT
system consisting of sets of radio access networks (RANs),
various sensors, and ESs H directly associated with some of
these RANs. In the system, RANs provide communication
services for IoT facilities, and various sensors are responsible
for monitoring the status of IoT facilities and environment.
Meanwhile, multiple sensing-data-driven IoT applications A
are executed by IoT facilities to realize intelligent manufac-
turing, and every task processing relies on the sensing data
captured by sensors deployed in the system. Moreover, ESs
can satisfy the resource requirements (e.g., computing and
storage resources) of executing IoT applications.

Each sensing-data-driven IoT application needs one SF and
multiple CFs. The SF is responsible for task processing, and
each CF manages the necessary sensing data cached from a
related sensor. Thus, a certain application can be represented as
Ai={SFi,CF1

i ,CFKi−1
i }, where Ki−1 indicates the number

of sensors whose data is required by Ai. The JCCSP refers
placing the service functions (i.e., SF and CFs) on ESs so
that the QoS of the application can be satisfied when being
executed in the edge system. We use a binary indicator φhi,k =

1 to represent the kth service function of Ai is placed on ES
h, and φhi,k = 0 otherwise. Meanwhile, each service function
can only be placed on at most one ES, i.e.,

C1:
∑
h∈H

φhi,k ≤ 1, 1 ≤ ∀i ≤ |A|, 1 ≤ ∀k ≤ |Ai|, (1)

and

C2: φhi,k = {0, 1}, 1 ≤ ∀i ≤ |A|, 1 ≤ ∀k ≤ |Ai|. (2)



4

h3

Sensor

h2h1

Computing task

Data request and acquisition

Computing result

CF instance

SF instance

CF instance

SF instance

h4

Sensor

Sensor

Sensor

Sensor

Sensor

Fig. 1. An example of edge-enabled IoT system running sensing-data-driven
IoT applications ,where hj ∈ H (1 ≤ j ≤ 4).

After placing a SF/CF on an ES, the resources are consumed
by performing the service function. This paper considers
two kinds of resources, i.e., the computing resource and the
storage resource. We use cki and ski to represent the computing
resource and the storage resource consumed by performing the
kth service function of Ai, respectively. Then, on any ES h,
the resources consumed by all SFs and CFs placed on it can
not exceed its maximum resource capacities, i.e.,

C3:
|A|∑
i=1

|Ai|∑
k=1

φhi,kc
k
i ≤ Ch,∀h ∈ H, (3)

and

C4:
|A|∑
i=1

|Ai|∑
k=1

φhi,ks
k
i ≤ Sh,∀h ∈ H, (4)

where Ch represents the maximum computing resource capac-
ity of ES h and Sh is the maximum storage resource capacity.

After successfully placing the SF and all CFs of an appli-
cation on ESs, every related sensor sends the sensing data to
the corresponding CF. The CF manages the caching of sensing
data according to a pre-configured caching policy and provides
required data when receiving a request. It is worth noting that
the design of caching policies depends on exact applications
and system conditions, which is also a challenging work due
to dynamic and heterogeneous systems [29] and is beyond
the scope of this paper. Thus we only consider the general
resource consumption and placement of CFs. As shown in Fig.
1, after placing the SF and all CFs of a sensing-data-driven IoT
application, the procedures of executing a task are as follows.
A task is initiated by an IoT facility (initiator). First, the task
is forwarded following the routing configured by the underlay
communication networks to the ES where the corresponding
SF is placed (i.e., the line labeled with circled 1). Then, the
task is received by the corresponding SF. After that, the SF
will request necessary sensing data from all related CFs placed
on nearby ESs. The required sensing data is transmitted from

every related CF to the SF via configured routing (i.e., the
line labeled with circled 2). Once the SF fetches all the needed
sensing data from the relevant CFs, it processes the task. After
completing the task processing, the SF obtains a computing
result, which would be forwarded to the executor of the task
for execution (i.e., the line labeled with circled 3).

When sensing-date-driven IoT applications are performed,
all related data flows are transmitted via communication links
L established among RANs and follows the routing rules
configured by the underlay communication networks. We use
binary indicators yli =1 and zli =1 to separately indicate the
computing tasks and the computing results of application Ai
are transmitted via communication link l, otherwise yli=0 and
zli=0. We use xli,k=1 to indicate the data caching from the
related sensor to the (k−1)th CF of Ai is transmitted on link
l, and use ρli,k=1 to indicate the data request and acquisition
between the SF and the (k− 1)th CF of Ai is transmitted
via link l. Otherwise, xli,k =0 and ρli,k =0 separately. Then,
the bandwidth consumed on a link l is the sum of bandwidth
consumed by all data flows allocated on it, which includes
the sensing data caching flows (sensor→CF), the sensing
data request and acquisition flows (SF↔CF), the transmission
of computing tasks (initiator→SF), and the transmission of
computing results (SF→executor). Moreover, the bandwidth
consumed by the flows allocated on a link cannot exceed the
maximum bandwidth capacity of the link (Bl), i.e.,

C5:
|A|∑
i=1

(ylib
T
i +z

l
ib
R
i +

|Ai|∑
k=2

(xli,kb
C
i,k+ρ

l
i,kb

M
i,k)) ≤ Bl,∀l ∈ L,

(5)
where bTi and bRi are the bandwidths required by transmitting
computing tasks and computing results of Ai, separately. bCi,k
represents the bandwidth consumed by the data caching flow
from the sensor to the (k−1)th CF ofAi, and bMi,k represents the
bandwidth required by the sensing data request and acquisition
flow between the (k−1)th CF and the SF of Ai.

Meanwhile, according to the above work procedures, the
edge computing service latency of a sensing-data-driven IoT
application Ai can be calculated as

Di =
∑
l∈L

(ylid
T
i + zlid

R
i )+max

k∈K
{
∑
l∈L

ρli,kd
M
i,k}+ dPi ,

K = {2, 3, · · · , |Ai|}
(6)

where dTi and dRi are the latency of transmitting the computing
tasks and results on each one-hop communication link sepa-
rately under required bandwidths. dPi is the time consumed by
processing the computing tasks when satisfying the required
computing resources. dMi,k represents the one-hop transmission
delay of fetching sensing data from the (k−1)th CF to the
SF. It is worth noting that the data caching from a sensor
to the corresponding CF is actively performed by the sensor
and independent from the edge computing service process.
Meanwhile, we assume that all required data has already been
cached on ESs and SFs do not request data from sensors
directly. Thus, the data caching process contributes nothing to
the service latency. Moreover, we assume that every SF sends
short control frames to request sensing data, and every CF can



5

replay the required sensing data quickly. Thus, we ignore the
negligible delay of sensing-data requests and data preparation.
To ensure QoS, the service latency of an application Ai should
not be greater than its predefined latency constraint τi, i.e.,

C6: Di ≤ τi,∀i ∈ {1, 2, · · · , |A|} (7)

B. JCCSP Problem Formulation

Due to the limited resources in computing, storage, and
bandwidth, an edge system can only support limited appli-
cations, which makes some applications’ requirements unable
to be satisfied and have to be supported by other systems.
Therefore, we define an application as accepted by the edge
system if all of its service functions are placed on ESs without
breaking any resource constraint and its QoS (i.e., service
latency constraint) can be satisfied. Otherwise, we set the
application is rejected by the system, and any of its service
functions cannot be placed on ESs maintained by the system.
We use a binary indicator ζi=1 to indicate the application Ai
is accepted and ζi = 0, otherwise. Then, we have

C7: ζi =

{
1, if

∑|Ai|
k=1

∑
h∈H φhi,k = |Ai|,

0, otherwise.
(8)

For a certain application Ai, φhi,k indicates the final JCCSP
result, which is jointly determined by the JCCSP policy
generated by the edge service controller and the executing
result of the policy. After the controller generate a JCCSP
policy for Ai (i.e., φhi,k, 1 ≤ k ≤ |Ai|, h ∈ H), there are two
results of executing the policy in the IoT system: (1) the policy
is executed successfully, and the application is accepted. (2)
implementing the policy breaks the resource constraint or the
QoS constraint, and the system rejects the application. If the
application is rejected, the JCCSP policy for the application
is cleared, i.e., φhi,k = 0, 1 ≤ ∀k ≤ |Ai|,∀h ∈ H.

From the view of an edge service provider, the primary
objective is to fully utilize maintained resources (i.e., ESs)
to enable higher-performance service for more applications.
Therefore, we define a system reward that combines the
number of accepted applications and the performance reward
obtained for providing low-latency service for accepted IoT
applications. Thus, we define the objective of our investigated
JCCSP problem as maximizing the system reward, i.e.,

P1:max
φ

|A|∑
i=1

(ζiWi
τi
Di

+ ζi),

s.t. C1 ∼ C7,

(9)

where τi/Di is the reward obtained from performing applica-
tion Ai, which can reflect that a lower latency brings a higher
reward. Moreover, Wi is an additional weight value used to
indicate the importance of the application, which applies a gain
to the base reward obtained from performing the application,
i.e., providing low-latency service for an application with
higher importance factor can achieve more reward. We defined
Wiτi/Di as the latency performance reward achieved from
accepting and performing Ai. Besides,

∑|A|
i=1 ζi can indicate

the number of accepted applications.

The problem P1 is a typical combinatorial optimization
problem, which is challenging to address. Meanwhile, the
difficulty is dramatically increased when considering the het-
erogeneity of the edge system and applications in terms of
resource consumption, QoS, number of related service func-
tions. Moreover, traditional methods based on global system
knowledge cannot be applied to our considered systems, where
the edge service controller can only access limited prior
knowledge. Therefore, in the next section, we address the
problem by exploiting the advantage of DRL, which can learn
to solve a complex problem without the requirement of prior
knowledge and can work efficiently after being trained.

IV. DRL-BASED JCCSP APPROACHES

In this section, we first formulate the considered JCCSP
problem as a finite-steps MDP. Then, we give the designs
of state, action, and reward. After that, DRL-based JCCSP
approaches are proposed based on these designs to address the
JCCSP problem for multiple sensing-data-driven applications.

A. Problem Analysis and Approach Design

For our considered JCCSP problem of multiple sensing-
data-driven IoT applications in a heterogeneous edge-enabled
IoT system, it is hard to orchestrate the service placement
of all applications at once time. The reason is that the high-
dimension state that can represent all applications is hard
constructed due to applications’ heterogeneity in terms of
sequence length, service type (i.e., SF and CF), QoS, and
resource consumption. Besides, it is difficult to determine
which applications should be rejected when they cannot be all
satisfied due to the limited resources of the edge system since
their JCCSP policies are coupled and interfere with each other
when being considered simultaneously. Therefore, we set the
controller to arrange the JCCSP for multiple applications one-
by-one. For simplification and maintaining potential fairness,
the processing order of applications is according to their
generation order. Then, the process of JCCSP for multiple
applications can be modeled as an MDP with finite steps,
in which the system state depends on one application and
system resource consumption. Meanwhile, the state transition
is only based on the JCCSP action taken for the application
and current system state. Then, we can address the problem by
exploiting the advantage of the potential that DRL can learn
to adapt to an unknown system without prior knowledge.

In a DRL-based JCCSP approach, an actor policy π with
parameters θ is executed by the edge service controller, which
is responsible for interacting with the IoT system to generate
a JCCSP action at for any observed system state st, i.e.,
πθ :st→at,∀t. After performing the action in IoT system, the
controller receives a reward rt, and the system transits to a new
state st+1. In the MDP of our considered problem, the JCCSP
trajectory can be represented as a sequence on state, action
and reward, i.e., (s1, a1, r1), · · · , (st, at, rt), · · · , (sd, ad, rd).
Note that (sd, ad, rd) denotes that the system reaches a done
state, with which the controller stops making any JCCSP deci-
sion. We set the system reaches a done state only if satisfying
any one of the following two conditions: (1) all applications



6

are accepted by the system successfully; (2) the implemen-
tation of an JCCSP action breaks any resource/performance
constraint introduced in Section III.

Based on the investigated problem, we define the state,
the action, and the reward function used in our DRL-based
approaches as follows.

State: Due to limited prior knowledge of the underlay
communication networks, the system state st observed by the
edge service controller only consists of two parts: a sensing-
data-driven IoT application to be placed and the real-time
resource consumption of managed ESs, i.e.,

st = {sHt , sat }, (10)

where sHt is the resource consumption of all managed ESs
(i.e., sHt = [Ch, Sh, C

h
o,t, S

h
o,t]4×|H|), and sat represents the

sequence of SF and CFs of an applications At to be placed.
Cho,t and Sho,t separately represent the real-time resource con-
sumption of ES h at time t. Moreover, each sat consists of
one SF and multiple CFs (i.e., sat = [SFt,CF1

t ,CF2
t ,· · ·]), and

every SF/CF is packaged with detail of relevant resources and
QoS requirements. The state of each SFt includes the bTt , b

R
t ,

dTt , d
R
t , d

P
t ,Wt, τt, s

1
t , c

1
t as well as the indexes of RANs

directly associated with the initiator and executor of the ap-
plication. The state of CFk−1

t consists of bMt,k, b
C
t,k, d

C
t,k, c

k
t , s

k
t

and the index of each related sensor.
Action: At each time t, the edge service controller generates

a JCCSP action at according to the observed state st. The
action is represented by a sequence, and each element of the
sequence represents an ES on which the corresponding service
function of At will be placed. Thus,

at = [ajt ]1×|At|. (11)

Reward: A reward rt is obtained depending on if the
application At is accepted and its service latency after the
system execute at to place the SF and all CFs of At on ESs.
Based on P1, we define the reward function as

rt =

{
β1wt(

τt
dt
) + β2

t
|A| , if At is accepted,

0, otherwise,
(12)

where wt = Wt∑|A|
j=1Wj

is the normalized weight value of the

application At. Meanwhile, β1 and β2 are the weight factors
used to balance the two parts of the reward function.

Since different applications may require different numbers
of CFs, making the service function sequences representing
applications have different lengths. Meanwhile, the size of
an output JCCSP action depends on the length of the cor-
responding input application sequence (i.e., the number of
services required by the application). Therefore, neural net-
works with fixed input and output sizes are inappropriate for
such a sequence-to-sequence transform problem. The encoder-
decoder model is an efficient architecture widely employed in
the natural language processing community and can handle
such sequence-to-sequence issues that output depends on the
input sequence [30], [31]. Meanwhile, it has shown its po-
tential in solving the placement and combination optimization
problems [28], [32]. Therefore, we construct the actor policy
network in our DRL-based JCCSP approaches based on the

Decoder

Encoder

LSTM LSTM LSTM

LSTM LSTM LSTM

Attention

SF/CF Embedding

Actor

...

...

...

...

Softmax

Constraint 
Filter

Softmax

Constraint 
Filter

Softmax

Constraint 
Filter

Softmax

Constraint 
Filter

Softmax

Constraint 
Filter

...

IoT system

Policy 
update

Resource Consumption 

Services of Application

R
ep

la
y
 

B
u

ff
er

Critic

Services of Application
SF/CF 

Embedding

......
...

.........
...

...

...

...

...
...

.........
...

...

...

...

Estimated Value

Encoder

LSTM LSTM LSTM
...

Resource Consumption 

...... ......
...

... ......
...

Critic

Services of Application
SF/CF 

Embedding

...
...

.........
...

...

...

...

Estimated Value

Encoder

LSTM LSTM LSTM
...

Resource Consumption 

... ......
...

Actions

Fig. 2. The training architecture of DRL-based JCCSP approaches based on
the Actor-Critic framework.

encoder-decoder model. As shown in Fig. 2, the structure of
the constructed actor policy network consists of four main
parts. The SF/CF Embedding component is responsible for
embedding the information of corresponding service functions
(i.e., SF and CF) in the input system state. The encoder and
decoder are two main components used to realize the function
of sequence-to-sequence mapping from state to JCCSP action.
The action generation component with constraint filter can
generate the final JCCSP action based on the output of the
decoder. The encoder and decoder are constructed by long
short-term memory (LSTM) networks.

The work procedure of the actor policy network that
generate the JCCSP action for one application is detailed
in Algorithm 1. After receiving the observed system state,
the service functions (i.e., SF and CF) are embedded by
corresponding SF/CF embedding layer. Then, as shown in line
5 the embedded results are concatenated to a sequence (sEt ).
At the last encoding step, a final hidden state (Y0) is obtained
and hidden states (Ht) at each encoding step are also obtained
at the same time (line 7). After that, the decoding process
is triggered. At each decoding step, a hidden state (Yj) is
generated with the inputs of the decoder network (i.e., LSTM)
including the hidden state obtained from the previous decoding
step (Yj−1) and an input tuple (sht,j−1,Cj−1), i.e.,

Yj = LSTM(Yj−1, (s
h
t,j−1,Cj−1)), (13)

where sht,j−1 represents the real-time estimated resource con-
sumption of ESs (represented by (Ch

o ,S
h
o ) in lines 6, 11, 13

and 17) if implementing the action obtained from previous
decoding step. Moreover, the real-time estimated resource
consumption is processed by a one-layer fully connected



7

Algorithm 1: Single JCCSP action generation
Input: IoT system, actor network θ, service sequence

of an application At to be placed
Output: at ← service placement action for At,

Pt ← probability of all candidate actions
1 sHt ← Resource consumption state of all ESs
2 sat ← Service function sequence of At
3 st = {sHt , sat }
4 Input st to the actor network
5 sEt ← Embedded SF and CFs sequence
6 (Ch

o ,S
h
o )←sHt

7 (Ht,Y0) = Encoder(sEt )
8 C0 ← The trainable start input context
9 for j = 1, · · · , |At| do

10 (cjt , s
j
t )← Resources required by the jth service

11 (Yj ,Pj) = fD(Yj−1,Ht, (Ch
o ,S

h
o ))

12 Pj ← [p1, p2, · · · , p|H|]

13 g = [(Ch
o + cjt ) > Ch] + [(Sh

o + sjt ) > Sh]
14 Pj = Pj(1− g) + (Pj −∞)g
15 Pj = softmax(Pj)
16 ajt= action sample(Pj)
17 Update (Ch

o ,S
h
o )

18 Return:at = [a1t , · · · , a
|At|
t ],Pt = [P1, · · · ,P|At|]

neural network before being concatenated with the context
vector Cj−1 generated in previous decoding step (i.e., the
rectangles with dashed edges in the decoder). In each decoding
step, the context vector is obtained by performing an attention
mechanism [33] on the output hidden state of LSTM, i.e.,

Cj = Attention(Yj ,Ht). (14)

Then, the context vector is passed through a linear layer (i.e.,
represented by the green rectangle above the decoder) whose
output size equals the number of ESs in the system. We use
a map function to represent the above procedures (line 11).
The initial context vector (C0) used at the first decoding step
is a set of trainable variables. Then, the output of the linear
layer Pj is processed by a softmax function to obtain the
probability (Pj) of selecting each ES to place the service (line
15). Moreover, a constraint filter is added before executing
the softmax function to avoid selecting an ES that will break
its resource constraint after placing the service. If placing
the service on one ES will break its resource constraint, the
constraint filter sets the corresponding score value to be −∞
(line 13 and line 14). Then, the probability of selecting the ES
after the softmax calculation is 0. Finally, the final action (ajt )
of selecting an ES to place the jth service function required
by At is determined based on these probabilities (line 16).
Besides, the estimated resource consumption of ESs is updated
based on the resource requirements of the service and selected
action (line 17). After finishing all the decoding steps, the
action for placing all service functions of the application (i.e.,
at = [ajt ]1×|At|) is obtained (i.e., the blue rectangle filled with
blue cycles on the right of the decoder). The IoT system will
implement the concatenated JCCSP action of the application.

After placing the SF and all CFs of an application, the underlay
communication networks will report the link congestion, and
the edge service controller can observe latency. Then, if
any resource/performance constraint is unsatisfied, the system
rejects the application by removing its SF and CFs from
ESs. Otherwise, the SF and CFs of the application will be
performed on ESs, and the resource consumption state will be
updated. Meanwhile, according to the defined reward function
(12), the controller will obtain an immediate reward based on
the result of implementing the JCCSP action and the latency
performance of the application. Then, a new system state st+1

consists of the updated resource consumption state of ESs,
and the subsequent application to be placed is constructed and
processed by the actor policy network by repeating the above
procedures until the system enters the done state.

The objective of DRL-based approaches is to train an
optimized actor policy, which can generate optimized JCCSP
actions for given observed system states and maximize the
expected accumulated reward of any JCCSP trajectory, i.e.,

θ∗ = argmax
θ

E{s;πθ}R(s), (15)

where R(s) =
∑d
t=1 rt is the accumulated reward.

The JCCSP action of any sensing-data-driven IoT applica-
tion is the combination of service placement actions of all
related SF and CFs, resulting in a vast discrete action space
with even millions of candidate actions. Besides, any observed
system state consists of an uncertain application and the un-
certain resource consumption of ESs, which increases the ran-
domness of enormous state space. Therefore, it is necessary to
use the policy-based DRL method in our investigated JCCSP
problems with massive action and state spaces. The reason
is that value-based reinforcement learning methods (e.g., Q-
learning, Deep Q-learning) can only address problems with
limited discrete action space. Therefore, this paper employs
policy-based approaches to train the actor policy network, i.e.,
an on-policy approach based on REINFORCE method and an
off-policy approach based on the DDPG method.

To train the parameters of the actor policy networks, as
shown in Fig. 2, the critic network is also constructed to
estimate state values or state-action values [19]. The estimated
values are separately used to assist the training process in the
REINFORCE-based approach and the DDPG-based approach.

B. REINFORCE-based Model Training

Based on the well-known REINFORCE policy gradient
algorithm, the gradient of (15) can be approximated as [34]

∇θJ(θ) = E{s;πθ} [(R(a|s)− ṽ(s))∇θ log pθ(a|s)] , (16)

where each s and a are experienced state and corresponding
action generated following policy πθ in an JCCSP trajectory.
Each action for placing a service is sampled based on the
probability distribution of selecting each ES (i.e., Pj in line
15 of Algorithm 1). The ṽ(s) is a baseline, which generally
employed as the estimated state value generated by an inde-
pendent auxiliary critic policy network, as shown in Fig. 2. It
should be noted that actions marked in the critic presented in
Fig. 2 is not used in the REINFORCE-based approach, i.e.,



8

only the input states are processed by the critic network in
this approach. The pθ(a|s) is the probability of taking action a
given the input system state is s according to the policy πθ. In
an actual implementation, the R(a|s) is usually employed with
a discounted format of all immediate reward in the following
steps of a placement trajectory, i.e.,

Gt =

∞∑
n=t

γn−trn, (17)

where γ is the discount factor and γ ∈ [0, 1).
According to the work procedures of the actor policy

network, a final JCCSP action and probabilities of selecting
each ES to place every service function can be obtained by the
controller (line 18 in Algorithm 1). Then, by using the chain
rule [30], [31], the probability of selecting the JCCSP action
at for the corresponding system state st can be calculated as

pθ(at|st) =
|At|∏
j=1

pθ(a
j
t |a

(i<j)
t , st; θ), (18)

where pθ(a
j
t |a

(i<j)
t , st; θ) represents the conditional proba-

bility of selecting action ajt at jth decoding step given all
actions ait have been selected in all previous ith decoding
steps satisfying i < j.

Algorithm 2: Training process based on REINFORCE
Input: IoT system, an actor network (θ), and a critic

network (ψ)
Output: The trained JCCSP Policy network.

1 for n = 1, 2, · · · do
2 System initialization
3 A← A set of applications to be placed.
4 for t = 1, 2, · · · , |A| do
5 st = {sHt , sat }
6 ṽt=Critic(st)← Estimated state value.
7 Obtain at and Pt by performing Algorithm 1
8 rt ← Reward obtained after executing at
9 Calculate pθ(at|st) =

∏|At|
j=1 Pt(j, a

j
t )

10 Record (st, at, rt, pθ(at|st), ṽt)
11 if rt == 0 then
12 break
13 else
14 Update system to st+1

15 Calculate Gt for the experienced trajectory.
16 J(θ) = −E[(Gt − ṽt) log pθ(at|st)]
17 L(ψ) = E[(Gt − ṽt)2]
18 θ = RMSprop(∇θ(J(θ)))
19 ψ = RMSprop(∇ψ(L(ψ))

The procedure of training the JCCSP policy based on
the REINFORCE algorithm is illustrated in Algorithm 2. At
the beginning of each training episode, the IoT system is
initialized to a state without performing any applications. And
a set of applications A is waiting for placing their related
SFs and CFs on ESs. At each step, the controller constructs a
system state based on the observed resource consumption of

ESs and an application to be placed (line 5). Then, the state is
processed by the actor policy network to obtain JCCSP action
and probability of selecting every action for placing services
related to the application (line 7). Meanwhile, a state value
is estimated by the critic network with the input of the same
state (line 6). After that, the IoT system executes the JCCSP
action at, and a reward is obtained after the execution (line 8).
The probability of taking the JCCSP action at is calculated in
line 9. Before executing the JCCSP action in the IoT system,
the edge service controller cannot check the performance and
bandwidth constraints since it has no authority to access the
configuration and states of the underlay communication net-
works. Besides, breaking a resource constraint of the underlay
communication networks may cause unpredictable influences
on other parts of the system. Therefore, we set the system
to transit into the done state and reject the subsequent actions
once the system rejects a JCCSP action and obtains a 0 reward.
Otherwise, the system will transit into a new state st and re-
perform the above process until all applications are accepted.
Every experienced state, action, reward, action probability, and
estimated state value in one trajectory are recorded (line 10).
After reaching a done state, the DRL agent updates its policy
networks based on recorded experiences of states, actions,
rewards, action probabilities, and state values (lines 15-19) in
the trajectory. The RMSprop optimizer is employed to update
the parameters, and an adaptive gradient clipping method is
used to enhance the training stability [35].

C. Deep Deterministic Policy Gradient-based Model Training

REINFORCE is an on-policy training method that updates
parameters only after finishing a whole JCCSP trajectory
and can only use the data recorded in the just experienced
trajectory, which may result in low data utilization and ineffi-
cient parameter updating. Meanwhile, the actor policy network
needs to be updated after finishing each trajectory, resulting
in too frequent but may inefficient updates of policy installed
on the edge service controller in actual implementations. In
contrast, off-policy like DDPG can re-utilize not only the data
of experience that has just been experienced but even that
of the earlier experience. Meanwhile, the parameters can be
updated at any time without waiting for the finish of a whole
trajectory, which significantly improves the training efficiency
and data utilization. Besides, a resource-sufficient cloud server
can conduct the off-policy training process. Moreover, in
TD DDPG [36], delayed update on actor policy network is
employed to improve the training stability, which can reduce
the frequency of updating the actor policy model installed on
the edge service controller. Therefore, we further propose an
off-policy training algorithm for the JCCSP problem based on
a modified TD DDPG method.

As discussed above, the objective of DRL is training a
policy that can maximize the expected accumulated reward
from any given initial state. The expected accumulated reward
of any given state under a given policy is also named the state-
action values (i.e., Q-value). It depends on the actions taken
following the policy πθ and the state transition only depends



9

on employed actions. According to the Bellman equation,

Qπ(st, at) = r(st, at) + γE{s,πθ}[V (st+1|π)]
= r(st, at) + γEat+1∼πθ

[Qπ(st+1, at+1)],
(19)

where V (st+1|π) represents the state value of state st+1 when
the system is controlled according to policy π, which is the
expectation of state-action value. Then under the deterministic
policy method, the training objective is to maximize the state-
action value, i.e.,

L(θ) = E(s,a,r,d)∼D[Q(s, πθ(s))], (20)

where (s, a, r, d)∼D represents the experiences sampled from
the replay buffer which records the interaction experiences
with the IoT system over the training process.

The Q-value (i.e., state-action value) is estimated by a critic
network as shown in Fig. 2. The parameters of the critic
network can be updated via the policy gradient method by
minimizing the Bellman residential loss, i.e.,

L(ψ) = ED[(Q(st, at)− yt)2], (21)

where
yt = r(st, at) + γQ(st+1, πθ(st+1)), (22)

represents the estimation of Q-value composed of the real
immediate reward r(st, at) and the discounted Q-value of the
next state. ψ represents the parameters of the critic network. To
improve training stability, twin critic/Q networks are employed
in TD DDPG method to reduce the overestimation of Q-values
by selecting the minimum value of two Q-values separately
estimated by two critic networks. Meanwhile, in order to
improve training stability, the Q-value of the next state (i.e.,
st+1) is estimated by target critic networks (Q̃ψ̃i

), i.e.,

yt=r(st, at)+γmin({Q̃ψ̃i
(st+1, ãt+1)}|i=1,2), (23)

where ãt+1 is the action for state st+1 generated by the target
actor network with policy π̃θ̃. However, such a Q estimation
method still suffers from estimation variation and bias at the
later training stage in some scenarios. Inspired by the motiva-
tion of average DQN [37], [38], we propose a weight-averaged
twin-Q-delayed (WATQD) method, introducing averaged Q-
values to reduce estimation bias, and the delayed estimation
of Q-values to mitigate the bias caused by estimating mutation.
The calculation of yt in the WATQD method is rewritten as

yt = rt + γ[αmin(Q̃ψ̃i
) +

(1− α)
2∆

∆−1∑
δ=0

Q̃δ
ψ̃i
]i=1,2, (24)

where Q̃δ
ψ̃i

represents the target critic networks with the earlier
parameters of δ steps before the current update step, which
is cached by the edge service controller. When δ = 0, Q̃δ

ψ̃i

represents the current updated target critic networks (i.e.,
Q̃0
ψ̃i
≡ Q̃ψ̃i

). ∆ − 1 is the number of cached previous twin
critic networks. Besides α is the balance weight factor used
to control under estimate and overestimate of Q-values.

The whole training process based on the WATQD DDPG
approach is illustrated in Algorithm 3. For clear expression and
to maintain a fair comparison with the above RENFORCCE-
based approach, in this paper, we set the update of parameters

Algorithm 3: Training based on WATQD DDPG
Input: IoT system, an actor network (πθ), twin critic

networks (Qψ1
, Qψ2), a target actor network

(π̃θ), target twin critic networks (Q̃ψ̃1
, Q̃ψ̃2

), a
replay buffer, and the ϵ-greedy exploration
parameters (ϵmin, ϵmax, ϵd)

Output: The trained JCCSP Policy network.
1 Initialized a buffer to cache target critic networks
2 for n = 1, 2, · · · do
3 System initialization
4 ϵ = ϵmin + (ϵmax − ϵmin)e

− n
ϵd

5 A← A set of applications to be placed.
6 for t = 1, 2, · · · , |A| do
7 st = {sHt , sat }; dt = 0; ϵs = Random(0, 1)
8 if ϵs > ϵ then
9 Obtain at by Algorithm 1 w/o exploration

10 else
11 Obtain at by Algorithm 1 with exploration
12 ât = argmax

h
at

13 rt ← Reward obtained after executing ât
14 if rt == 0 then
15 dt = 1; break
16 else
17 Update system to st+1

18 Store (st, at, rt, st+1, dt) to replay buffer

19 if n > Nc then
20 Update critic networks:
21 D={st, at, rt, st+1, dt} // Sampled experiences
22 ãt+1 = π̃θ̃(st+1)

23 yt=rt+γ(1−dt)[αmin(Q̃ψ̃i
)+ (1−α)

2∆

∆−1∑
δ=0

Q̃δ
ψ̃i
]]

24 L(ψ) =
∑
i[ED[(Qψi

(st, at)− yt)2]] // i = 1, 2

25 ψi = RMSprop(∇ψi(L(ψ)))
26 if n%λ == 0 then // Delayed update
27 Update actor network:
28 D={st, at, rt, st+1, dt} // Sampled experiences
29 L(θ) = ED[−Qψ1

(st, πθ(st))]
30 θ = RMSprop(∇θ(L(θ)))
31 Soft update target networks:
32 Q̃δ

ψ̃i
=Q̃δ−1

ψ̃i
// Update cached target critic networks

33 θ̃=µθ̃ + (1− µ)θ
34 ψ̃i = µψ̃i + (1− µ)ψi|i=1,2

(lines 19-34) executed after each time of finishing a whole
JCCSP trajectory of multiple arrived applications (lines 5-18).
However, in actual implementation, the parameter update can
be triggered at any time to accelerate the training process.
Besides, the subscribe symbol t in the parameter update steps
(lines 19-30) is used to index the state, action, and reward of
each sampled experience, which is not the same as that used in
the JCCSP process performed by the actor (lines 6-18). Since
the original DDPG algorithm is designed for problems with
continuous action and the update of actor parameters requires
the derivable of actions, we use the probabilities generated



10

by the softmax function as the action for policy training (i.e.,
Pj) and index with the maximum probability as the action
executed in a real IoT system (line 16 in Algorithm 1), i.e.,

âjt = argmax
h

Pj . (25)

It should be noted that, to simplify expression, at in Algo-
rithm 3 is equivalent to the Pt obtained from performing
Algorithm 1. Besides, clipped Gaussian noise is introduced
in the action selection of TD DDPG to enhance exploration.
However, for our problem with discrete action space, clipped
Gaussian noise may cause the probabilities of selecting multi-
ple ES to be 1, which would confuse the final action selection
operation. Meanwhile, we also want the sampled actions to
follow the probability distribution of original actions when the
actor policy has been trained to be sufficiently deterministic.
Therefore, we employ the ϵ-greedy exploration method by
adding Gumbel noise [39] on the output action Pj (line 4
and lines 8-11). When executing exploration (line 11), a new
Pj after line 15 in Algorithm 1 is calculated as

Pj = softmax(log(Pj) +N ), (26)

where N is a set of Gumbel noise generated based on an
uniform distribution Ui ∼ U(0, 1), i.e.,

Ni = − log(− log(Ui)), Ui ∼ U(0, 1), i ∈ [1, |H|]. (27)

Otherwise, Pj is calculated following Algorithm 1 without
(w/o) exploration. Before updating parameters, the system first
runs for Nc episodes for data collection. After that, the citric
networks are updated every episode. A mini-batch data of
experienced states, actions, rewards, and state transitions are
sampled from the replay buffer (line 21). Then, all sampled
next states (st+1) are processed by the target actor policy
network (π̃θ̃) with the latest parameters to generate new actions
for each next state (line 22). Then, yt is calculated in line 23
with these new generated actions, and loss values of critic
networks are calculated in line 24. After that, parameters of
the critic networks are updated by gradient descent algorithm
with the RMSprop optimizer. The actor and target networks
are delayed updated, i.e., update one time after every λ training
episodes. The parameters of the actor policy network are
updated by maximizing the expected Q-value of all sampled
states and corresponding actions regenerated by the actor
with the latest parameters. The target networks employ a soft
update method (i.e., lines 33-34), where µ is the soft update
coefficient and µ < 1 and usually employ a value very close to
1. Before the soft update of target networks, the cached target
critic networks are updated by removing the earliest cached
one and adding the latest one (line 32).

V. PERFORMANCE EVALUATION

A. Simulation Setup

We conduct simulations to evaluate our proposed DRL-
based JCCSP approaches depend on the Pytorch 1.81 envi-
ronment. The topology data of the concerned edge-enabled
IoT system is from an online one1. In the IoT system, we set

1http://www.topology-zoo.org/files/Bics.gml

Fig. 3. Network topology for simulation.

33 nodes as RANs. Meanwhile, seven randomly created ESs
with different resource capacities are deployed to 7 arbitrary
selected RANs marked by orange in Fig. 3. Besides, 50
sensors are also randomly placed in the system. The detailed
information of these ESs and sensors is listed in Appendix A.
We use the Dijkstra algorithm to configure the routing rules
among RANs. The capacity of each link is set to be 1000
Mbps. In Encoder, we employ three-layer LSTM cells and
the bidirectional setting. The embedding size is 128, and the
hidden size of LSTM and neural networks is set to be 64. The
learning rates for REINFORCE-based and WATQD DDPG-
based algorithms are set to be 0.001 and 1e−4, respectively.
Meanwhile, the learning rates are reduced to 0.1 times of
initial settings after 2000 episodes to improve training stability
at the later training stages. The delayed update frequency
(λ) in WATQD DDPG is 20, and µ = 0.999. We randomly
generate 40 applications at each training episode as the IoT
system is resource-limited. Meanwhile, each application are
randomly generated following the parameters detailed in Table
I. The values of resources (i.e., computing and storage) used
in this paper are all normalized values, which can represent
the number of resource blocks in actual systems.

TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value
|K| [3, 10] Wi [1, 5]
τi [300, 400] ms dPi [50, 80] ms
dTi [15, 20] ms dRi [2, 10] ms
dCi,k [10, 15] ms bCi,k [10, 20] Mbps
bTi [20, 30] Mbps bRi [2, 8] Mbps
bMi,k [5, 10] Mbps β1 10
c1i [5,15]×10 s1i [2, 8]

cki , (k > 1) [2, 8] ski , (k > 1) [2, 8]×3

We compare our proposed DRL-based approaches with two
benchmarks which can also perform JCCSP without the prior
knowledge of the underlay communication networks.

Random: The controller randomly selects an ES to place a
service of an application. Besides, only ESs whose available
resources can satisfy the service requirements are selected as
candidates to postpone breaking the resource constraint.



11

Load least: The controller selects the ES with minimum
resource consumption (h∗) to place the current jth service of
At based on the minimum resource consumption ratio after
placing the service, i.e.,

h∗ = argmin
h∈H

max {C
h
o + cjt
Ch

,
Sho + sjt
Sh

}.

B. Simulation Results

(a)

(b)

Fig. 4. Performance over the training process (γ= 0.9, α = 0.8). (a) The
average latency performance reward of accepted applications. (b) The average
number of accepted applications.

Fig. 4 shows the training convergence and performances
over the training process under different reward function
balance factors. We set γ=0.8 and the WATQD DDPG weight
factor α=0.9. We used the simple average method to process
the results of every 300 training episodes. Fig. 4 reveals that
the load least algorithm does not perform better than the
random method considering the resource constraint of ESs.
They have the lowest performance since they only consider
the resource consumption of services and resource capacity
constraints of ESs. However, the DRL-based algorithms can
learn to adapt the system by comprehensively considering
the resource consumption of ES and applications’ features
in resource consumption and QoS. We can find that, after
training, DRL-based approaches can all achieve converged
performances that are significantly higher than those achieved
before training. Besides, the training stability of TD DDPG
(i.e., α=1) and the achieved performances are lower than that
of WATQD DDPG in conditions with β2 = 0 and β2 = 0.5.
Moreover, compared with WAQTD DDPG, the REINFORCE-
based approach is more sensitive to the balance factor β2 of the
reward function. In the REINFORCE-based approach, we can
find that a little incentive reward from the number of accepted

applications can help obtain higher performance, while too
high may result in lower convergence performance.

(a)

(b)

Fig. 5. Impact of the discount factor on the convergence (β2 = 1, α = 0.5).
(a) The average latency performance reward of accepted applications. (b) The
average number of accepted applications.

Fig. 5 exhibits the impact of the discount factor on the
convergence performance in terms of the average latency
performance reward and the average number of accept ap-
plications in the condition of β2 = 1 and WATQD α = 0.5.
The simulation results are moving averaged every 100 training
episodes. In each sub-figure, the left side shows the perfor-
mance achieved by the REINFORCE-based approach, and
the right side shows that obtained by the WATQD DDPG
approach. Fig. 5 shows that DRL-based algorithms can al-
ways converge under different discount factors after training.
However, the achieved coverage performance is affected by
the value of the discount factor. Compared with the training
processes of the REINFORCE-based approach, the WATQD
DDPG method performs a little more stable as it can achieve
similar performances under different discount factors. More-
over, we can observe that WATQD can reach the optimal
convergence performance faster than the REINFORCE-based
process.

Fig. 6. Impact of the WATQD weight factor α (γ = 0.95, β2 = 1).



12

Fig. 6 shows the convergence performance under different
WATQD weight factors with the setting of γ = 0.95 and
β2 = 1. We can observe that the training process is unstable
and performance reduced after reaching a sub-optimal per-
formance when α = 1, i.e., the TD DDPG. However, when
using the WATQD method, the training stability is significantly
improved, and the achieved performances can converge to
higher values. After 2000 training episodes, the performance
under the condition with α = 0.9 starts to reduce. This
phenomenon reveals that a WATQD can increase the stability
of the training process, but an excessively high balance factor
may cause the WATQD approach to behave similarly to the
TD algorithm. Moreover, the performance achieved in the
condition with α = 0.3 exposes a little higher instability than
that in other conditions satisfying α < 0.9. The potential
reason is that the TD method employs the minimum value
as the estimated Q-value, which can significantly reduce the
overestimation of the Q-value. When employing a smaller
weight factor α in WATQD, the average value contributes more
to the estimated Q-value, which increases the probability of Q-
value overestimation. Thus, the training instability increased,
although the delayed update on Q-values has mitigated es-
timation bias. When setting α to be 0.5, 0.7, and 0.8, the
system achieves approximate converge results, and the training
stability is significantly improved.

Fig. 7. Impact of the maximum number of sensors required by applications.

Fig. 7 shows the performance variation versus the maximum
number of sensors required by applications, which affects the
lengths of input application state sequence and corresponding
JCCSP action size. The WATQD weight factor employed in
each scenario is labeled on the left sub-figure. Moreover,
the discount factors used in REINFORCE-based and WATQD
DDPG approaches are separately set to be 0.5 and 0.9. The
parameters adopted by the twin-delayed (TD) algorithm in
each scenario are the same as those set by the WATQD
algorithm. We averaged the results of the subsequent 500
training episodes starting from the 3000th training episode.
Fig. 7 shows that performances obtained by all algorithms are
reduced as the maximum number of required sensors increases
since more resources are consumed by the transmission and
caching of more sensing data as well as the running of CFs.
Besides, all DRL-based algorithms can achieve significantly
higher performance than the random method and the load least
algorithm. Besides, compared with the twin-delayed DDPG
approach, the REINFORCE-based approach and the WATQD
DDPG approach can achieve higher performance rewards and

accept more applications in most scenarios. The REINFORCE-
based and the WATQD DDPG approaches can achieve ap-
proximate performances and are significantly higher than that
obtained by other methods, demonstrating the advantage of
proposed DRL-based JCCSP approaches for multiple sensing-
data-driven IoT applications in edge-enabled IoT systems.

VI. EXTENSION AND FUTURE WORKS

A. Dynamic Refreshment of Service Placement

This paper considers a long-term stable environment in
which multiple sensing-data-driven IoT applications will be
performed in the long term after their related SF and CFs have
been placed on ESs. In some IoT systems, some applications
may only be performed for a period of time. Besides, new
applications may be triggered during system running. In such
a dynamic IoT system, related sensors can be notified by the
controller to stop caching data to CFs of a finished application,
and the occupied resources can be freed and spared to support
future applications. The system state defined in our work only
consists of real-time resource consumption of ESs and an
application to be placed, which is easily available to the edge
service controller. Therefore, when there are new triggered
applications, and some have been finished, the edge service
controller can still perform the well-trained DRL model to
conduct JCCSP operation for new applications without inter-
fering with the executing applications. However, the JCCSP
for some applications is implemented under the condition
that some completed applications were still performing, which
makes these JCCSP actions possibly not optimal in new
system conditions, and may cause performance degradation
after a period of time. Therefore, the refreshment of service
placement policy dynamically is necessary to maintain per-
formance in a dynamic IoT system. However, it requires a
well-designed framework for implementing the refreshment
of service placement and considers the cost introduced by the
refreshment. This dynamic refreshment of service placement in
dynamic IoT systems will be investigated in our future work.

B. Duplicated Sensing Data Requirement

This paper sets to cache the sensing data from a sensor
required by each application on its dedicated CF. However,
in some conditions, some of the necessary sensing data may
be simultaneously required by different applications, which
makes them duplicated cached on ESs. Then, if we reduce the
number of CFs caching the same sensing data while satisfying
the requirement, the resources consumed by caching these
duplicate data can be reduced and spared for accepting more
applications. The sensing-data request relationship among dif-
ferent applications should be investigated in such a scenario.
Besides, whether the required sensing data has been configured
to be cached by a previously placed CF should be considered
when conducting the JCCSP process of an application. This
duplicated sensing data requirement condition will be studied
in our future work.



13

VII. CONCLUSION

This paper investigated the JCCSP problem for multi-
sensing-data-driven IoT applications in an edge-enabled IoT
system. The problem is first formulated as an MDP with finite
steps to maximize the accumulated reward of JCCSP actions.
Then, to deal with difficulty caused by system heterogeneity
and limited prior knowledge, DRL is explored to address
the considered JCCSP problem. The actor policy network is
constructed based on the encoder-decoder model to satisfy
the requirement of input system state and JCCSP action
with variable sizes. An on-policy REINFORCE-based training
policy is employed to train the policy network. After that, to
improve the experience utilization and training efficiency, we
also proposed an off-policy training method based on twin-
delayed DDPG. A WATQD method is proposed in the DDPG-
based training method to improve training stability. Finally,
extensive simulation results show that the proposed DRL-
based approaches outperform the benchmarks by comparing
system performance in terms of the number of accepted
applications and latency performance reward. Meanwhile, the
proposed WATQD method can improve the training stability
compared with the original TD method.

APPENDIX A
DETAILS ABOUT THE SIMULATION ENVIRONMENT

Table II provides the information of randomly created ESs,
where the first row gives the indexes of 7 ESs, the second
row lists the IDs of each RAN associated with the ES above,
the third and fourth rows give the maximum computing and
storage capacities of the ES, respectively.

TABLE II
PROPERTIES OF ESS

ES 0 1 2 3 4 5 6
RAN 22 10 4 19 32 2 20
Computing 970 764 766 843 761 602 791
Storage 521 600 949 573 617 729 559

Table III lists the IDs of 50 sensors indexed from 0 to 49,
each of which is associated with one randomly selected RAN
from the 33 RANs indexed from 0 to 32 in the system.

TABLE III
ASSOCIATION RELATIONSHIP BETWEEN SENSORS AND RANS

Sensor 0 1 2 3 4 5 6 7 8 9
RAN 14 5 3 2 30 5 9 1 20 24

Sensor 10 11 12 13 14 15 16 17 18 19
RAN 22 24 24 24 15 5 22 20 13 28

Sensor 20 21 22 23 24 25 26 27 28 29
RAN 25 6 9 14 4 5 28 24 12 29

Sensor 30 31 32 33 34 35 36 37 38 39
RAN 30 17 2 13 1 19 31 2 3 15

Sensor 40 41 42 43 44 45 46 47 48 49
RAN 30 13 14 30 11 5 13 22 25 9

REFERENCES

[1] S. Guo, Y. Dai, S. Xu, X. Qiu, and F. Qi, “Trusted cloud-edge network
resource management: Drl-driven service function chain orchestration
for iot,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6010–6022,
July 2020.

[2] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb,
“Survey on multi-access edge computing for internet of things real-
ization,” IEEE Communications Surveys Tutorials, vol. 20, no. 4, pp.
2961–2991, 2018.

[3] S. Krishnendu, B. N. Bharath, and V. Bhatia, “Cache enabled cellular
network: Algorithm for cache placement and guarantees,” IEEE Wireless
Communications Letters, vol. 8, no. 6, pp. 1550–1554, 2019.

[4] S. Yang, S. Fan, G. Deng, and H. Tian, “Local content cloud based
cooperative caching placement for edge caching,” in 2019 IEEE 30th
Annual International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC), 2019, pp. 1–6.

[5] L. Chen, L. Song, J. Chakareski, and J. Xu, “Collaborative content place-
ment among wireless edge caching stations with time-to-live cache,”
IEEE Transactions on Multimedia, vol. 22, no. 2, pp. 432–444, 2020.

[6] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin, “Online
collaborative data caching in edge computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 2, pp. 281–294, 2021.

[7] L. Zhao and J. Liu, “Optimal placement of virtual machines for support-
ing multiple applications in mobile edge networks,” IEEE Transactions
on Vehicular Technology, vol. 67, no. 7, pp. 6533–6545, 2018.

[8] Q. Fan and N. Ansari, “Application aware workload allocation for edge
computing-based iot,” IEEE Internet of Things Journal, vol. 5, no. 3,
pp. 2146–2153, 2018.

[9] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile edge
computing networks,” in IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications, 2019, pp. 10–18.

[10] L. Chen, C. Shen, P. Zhou, and J. Xu, “Collaborative service placement
for edge computing in dense small cell networks,” IEEE Transactions
on Mobile Computing, vol. 20, no. 2, pp. 377–390, 2021.

[11] S. Pasteris, S. Wang, M. Herbster, and T. He, “Service placement with
provable guarantees in heterogeneous edge computing systems,” in IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications,
2019, pp. 514–522.

[12] H. Badri, T. Bahreini, D. Grosu, and K. Yang, “Energy-aware application
placement in mobile edge computing: A stochastic optimization ap-
proach,” IEEE Transactions on Parallel and Distributed Systems, vol. 31,
no. 4, pp. 909–922, 2020.

[13] W. Fan, Y. Liu, B. Tang, F. Wu, and H. Zhang, “Terminalbooster: Collab-
orative computation offloading and data caching via smart basestations,”
IEEE Wireless Communications Letters, vol. 5, no. 6, pp. 612–615, 2016.

[14] A. Ndikumana, N. H. Tran, T. M. Ho, Z. Han, W. Saad, D. Niyato, and
C. S. Hong, “Joint communication, computation, caching, and control
in big data multi-access edge computing,” IEEE Transactions on Mobile
Computing, vol. 19, no. 6, pp. 1359–1374, 2020.

[15] S. Yu, R. Langar, X. Fu, L. Wang, and Z. Han, “Computation offloading
with data caching enhancement for mobile edge computing,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 11, pp. 11 098–
11 112, 2018.

[16] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Cambridge, MA, USA: MIT press, 2018.

[17] J. Pei, P. Hong, M. Pan, J. Liu, and J. Zhou, “Optimal vnf placement via
deep reinforcement learning in sdn/nfv-enabled networks,” IEEE Journal
on Selected Areas in Communications, vol. 38, no. 2, pp. 263–278, 2020.

[18] I. Grondman, L. Busoniu, G. A. D. Lopes, and R. Babuska, “A
survey of actor-critic reinforcement learning: Standard and natural policy
gradients,” IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), vol. 42, no. 6, pp. 1291–1307, 2012.

[19] L. Lei, Y. Tan, K. Zheng, S. Liu, K. Zhang, and X. Shen, “Deep
reinforcement learning for autonomous internet of things: Model, ap-
plications and challenges,” IEEE Communications Surveys Tutorials,
vol. 22, no. 3, pp. 1722–1760, 2020.

[20] Y. Wang, Y. Li, T. Lan, and N. Choi, “A reinforcement learning approach
for online service tree placement in edge computing,” in 2019 IEEE
27th International Conference on Network Protocols (ICNP), Chicago,
IL, USA, USA, Oct 2019, pp. 1–6.

[21] D. Shi, H. Gao, L. Wang, M. Pan, Z. Han, and H. V. Poor, “Mean
field game guided deep reinforcement learning for task placement
in cooperative multiaccess edge computing,” IEEE Internet of Things
Journal, vol. 7, no. 10, pp. 9330–9340, 2020.

[22] S. Yu, X. Chen, Z. Zhou, X. Gong, and D. Wu, “When deep rein-
forcement learning meets federated learning: Intelligent multitimescale
resource management for multiaccess edge computing in 5g ultradense
network,” IEEE Internet of Things Journal, vol. 8, no. 4, pp. 2238–2251,
2021.



14

[23] A. Laghrissi and T. Taleb, “A survey on the placement of virtual
resources and virtual network functions,” IEEE Communications Surveys
Tutorials, vol. 21, no. 2, pp. 1409–1434, 2019.

[24] P. T. Anh Quang, Y. Hadjadj-Aoul, and A. Outtagarts, “Evolutionary
actor-multi-critic model for vnf-fg embedding,” in 2020 IEEE 17th
Annual Consumer Communications Networking Conference (CCNC),
2020, pp. 1–6.

[25] P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts, “A Deep Rein-
forcement Learning Approach for VNF Forwarding Graph Embedding,”
IEEE Transactions on Network and Service Management, vol. 16, no. 4,
pp. 1318–1331, 2019.

[26] S. Wang and T. Lv, “Deep reinforcement learning for demand-aware
joint vnf placement-and-routing,” in 2019 IEEE Globecom Workshops
(GC Wkshps), 2019, pp. 1–6.

[27] G. Li, H. Zhou, B. Feng, Y. Zhang, and S. Yu, “Efficient provision
of service function chains in overlay networks using reinforcement
learning,” IEEE Transactions on Cloud Computing, vol. 10, no. 1, pp.
383–395, 2022.

[28] R. Solozabal, J. Ceberio, A. Sanchoyerto, L. Zabala, B. Blanco, and
F. Liberal, “Virtual network function placement optimization with deep
reinforcement learning,” IEEE Journal on Selected Areas in Communi-
cations, vol. 38, no. 2, pp. 292–303, 2020.

[29] H. Zhu, Y. Cao, W. Wang, T. Jiang, and S. Jin, “Deep reinforcement
learning for mobile edge caching: Review, new features, and open
issues,” IEEE Network, vol. 32, no. 6, pp. 50–57, 2018.

[30] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Advances
in Neural Information Processing Systems, vol. 28. Curran Associates,
Inc., 2015, pp. 2692–2700.

[31] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio,
“Neural combinatorial optimization with reinforcement learning,”
arXiv preprint arXiv:1611.09940, 2016. [Online]. Available:
https://arxiv.org/abs/1611.09940

[32] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou,
N. Kumar, M. Norouzi, S. Bengio, and J. Dean, “Device placement
optimization with reinforcement learning,” in Proceedings of the 34th
International Conference on Machine Learning. International Conven-
tion Centre, Sydney, Australia: PMLR, 06–11 Aug 2017, pp. 2430–2439.

[33] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, United States,
May 2015. [Online]. Available: https://arxiv.org/abs/1409.0473

[34] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8, no. 3,
p. 229–256, 1992.

[35] S. Prem, W. Gordon, P. Bryan, and L. R. Jonathan, “Autoclip: Adaptive
gradient clipping for source separation networks,” in 2020 IEEE 30th
International Workshop on Machine Learning for Signal Processing
(MLSP), Espoo, Finland, 2020, pp. 1–6.

[36] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in International Conference on
Machine Learning. PMLR, 2018, pp. 1587–1596.

[37] O. Anschel, N. Baram, and N. Shimkin, “Averaged-dqn: Variance reduc-
tion and stabilization for deep reinforcement learning,” in International
conference on machine learning. PMLR, 2017, pp. 176–185.

[38] Q. He and X. Hou, “Reducing estimation bias via weighted delayed
deep deterministic policy gradient,” arXiv preprint arXiv:2006.12622,
2020. [Online]. Available: https://arxiv.org/abs/2006.12622

[39] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” Neu-
ral Information Processing Systems (NIPS), p. 6382–6393, 2017.

Yan Chen received his B.S. degree in Information
Engineering from China University of Mining and
Technology in 2016. He is currently pursuing his
Ph.D. degree in Information and Communication
Engineering at the School of Information and Con-
trol Engineering, China University of Mining and
Technology. He is also a visiting Ph.D. student at the
Department of Communications and Networking,
School of Electrical Engineering, Aalto University
(Dec. 2020∼Dec. 2021) under the support of the
Chinese government scholarship awarded by the

China Scholarship Council (CSC). His research interests include Edge Com-
puting, Internet of Things, and wireless networks.

Yanjing Sun is a Professor in School of Information
and Control Engineering, China University of Min-
ing and Technology since July 2012. He received
the Ph.D. degree in Information and Communication
Engineering from China University of Mining and
Technology in 2008. He is also a council member
of the Jiangsu Institute of Electronics, a member
of the Information Technology Working Committee
of the China Safety Production Association. His
current research interests include wirless communi-
cation, Embedded real-time system, Wireless sensor

networks, Cyberphysical system and so on.

Bin Yang received his Ph.D. degree in Systems In-
formation Science from Future University Hakodate,
Japan in 2015. He is a Professor with the School
of Computer and Information Engineering, Chuzhou
University, China, and is also a Senior Researcher
with MOSAIC LAB, Finland. His research interests
include unmanned aerial vehicle networks, cyber
security and Internet of Things.

Tarik Taleb received the B.E. degree (with distinc-
tion) in information engineering and the M.Sc. and
Ph.D. degrees in information sciences from Tohoku
University, Sendai, Japan, in 2001, 2003, and 2005,
respectively. He is the founder and the Director
of the MOSA!C Lab, Espoo, Finland. Since Oct.
2018, he has been a Full Professor with the Center
of Wireless Communications, University of Oulu,
Oulu, Finland. Between Oct. 2014 and Dec. 2021,
he was a Professor with the School of Electrical
Engineering, Aalto University, Espoo, Finland. Prior

to that, he was a Senior Researcher and a 3GPP Standards Expert with NEC
Europe Ltd., Heidelberg, Germany. He was then leading the NEC Europe Labs
Team, involved with research and development projects on carrier cloud plat-
forms, an important vision of 5G systems. Between 2006 and 2009, he was an
Assistant Professor with the Graduate School of Information Sciences, Tohoku
University, in a laboratory fully funded by KDDI. From 2005 to 2006, he was
a Research Fellow with the Intelligent Cosmos Research Institute, Sendai. He
has also been directly engaged in the development and standardization of the
Evolved Packet System as a member of the 3GPP System Architecture Work-
ing Group. His current research interests include architectural enhancements
to mobile core networks (particularly 3GPP’s), network softwarization and
slicing, mobile cloud networking, network function virtualization, software
defined networking, mobile multimedia streaming, and unmanned vehicular
communications. Prof. Taleb was a recipient of the 2017 IEEE ComSoc
Communications Software Technical Achievement Award in 2017 for his
outstanding contributions to network softwarization and the Best Paper Awards
at prestigious IEEE-flagged conferences for some of his research work.
He was a corecipient of the 2017 IEEE Communications Society Fred W.
Ellersick Prize in 2017, the 2009 IEEE ComSoc Asia–Pacific Best Young
Researcher Award in 2009, the 2008 TELECOM System Technology Award
from the Telecommunications Advancement Foundation in 2008, the 2007
Funai Foundation Science Promotion Award in 2007, the 2006 IEEE Computer
Society Japan Chapter Young Author Award in 2006, the Niwa Yasujirou
Memorial Award in 2005, and the Young Researcher’s Encouragement Award
from the Japan Chapter of the IEEE Vehicular Technology Society in 2003. He
is a member of the IEEE Communications Society Standardization Program
Development Board.


