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Abstract—Computing Power Networks (CPNs) represent an
innovative, collaborative architecture that integrates resources
via the communication network, optimizing resource allocation
to support service demands. Due to the increased need for
services powered by artificial intelligence across various domains,
CPNs are increasingly required to allocate users efficiently to
appropriate servers to meet the low-latency needs of service
computing. However, challenges such as users’ dynamic mobility,
weak communication paths, and high-dimensional solution spaces
persist in optimizing user allocation in CPNs. In this context, we
propose a diffusion-driven optimization approach for mobility-
aware user allocation. To tackle the challenge of users’ dynamic
mobility, we adopt a user location prediction approach incorpo-
rating the users’ movement patterns to forecast future movement,
called CAMPE. To tackle the challenge of weak communication
paths, we establish the new transmission path by reconfigurable
intelligent surface and enhance the quality of the communication
link by adjusting the phase configurations. Moreover, faced with
the challenge of high-dimensional solution spaces associated with
phase adjustment and user allocation decisions, we devise an
action-generation strategy based on diffusion models named
DiffUser. This approach motivates the generation of optimal
solutions even in complex and dynamic environments. Finally,
we conduct extensive simulations in user location prediction and
system latency optimization. Compared with other solutions, the
superiority of our approach has been demonstrated.

Index Terms—Computing Power Networks, mobility predic-
tion, user allocation, diffusion model.

I. INTRODUCTION

OMPUTING Power Networks (CPNs) [2] have become a
groundbreaking collaborative architecture that integrates
resources via the network, providing users with efficient
and adaptable services. By dynamically constructing self-
organizing networks using various communication technolo-
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Fig. 1. User allocation: architecture, traditional solutions and challenges.

gies, CPNs aim to dismantle the isolation of distributed com-
puting resources, thereby significantly boosting the efficiency
of network computational resource utilization.

The surge in demand for mobile services, propelled by
the pervasive integration of artificial intelligence (AI) across
diverse industries [3], has positioned CPNs at the forefront
of enabling applications characterized by high mobility and
sensitivity to latency. These applications, necessitating rapid
data processing and minimal latency, are serviced by servers
dispersed over multiple regions. Within such frameworks,
CPNs are indispensable for orchestrating an efficient user-to-
server allocation mechanism [4].

Central to the functioning of CPNs is the ability to link
users with the most appropriate servers, taking into account
the specific characteristics and requirements of their services,
known as the User Allocation (UA) problem [5]. This match-
ing of resources with user services is essential for maximizing
the network’s performance.

In practical scenarios, servers within CPNs exhibit varying
processing capabilities depending on the type of services [6].
However, an overreliance on matching services to servers
based on their specific strengths can lead to inefficient re-
source utilization and potential overloads, increasing process-
ing times. Moreover, user mobility can modify the distance
between users and the server, which may significantly degrade
connection quality, leading to heightened transmission latency.
The interrelation among these characteristics complicates the
solution of effective user allocation strategies.

Therefore, these dynamic characteristics in CPNs necessi-
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Fig. 2. The issue and solution of user allocation.

tate a joint optimization approach to overcome the challenges,
summarized as users’ dynamic mobility, weak communica-
tion paths, and high-dimensional solution spaces in Fig. 1.

o User dynamic movement requires adaptive prediction
solutions. A typical environment for user allocation is
highly dynamic, with user locations frequently changing
due to mobility. The users’ trajectories, influenced by
various factors such as time of day and movement modes,
present significant challenges in accurately predicting
user locations. This requires incorporating a more gran-
ular understanding of mobility patterns.

o Weak channels lead to connectivity challenges. Most
existing UA methods mainly focus on the computational
resource requirements of application users, such as the
Central Processing Unit (CPU), memory, and storage
resources, without fully considering the complexity of
communication resource allocation. In CPNs, users and
servers attempting to connect face challenges due to poor
communication channels.

« High-dimensional state and action spaces lower sys-
tem optimization efficiency. In multi-regional scenarios
with highly dynamic changes in user locations and de-
mands, allocation strategies must adapt to various channel
conditions and user behavior needs. The system faces
optimization difficulties in handling environments char-
acterized by high-dimensional states and action spaces,
resulting in lower efficiency.

In this work, we propose a diffusion-driven optimization
approach for mobility-aware user allocation by the following
three contributions, as shown in Fig. 2.

o User location prediction based on mobility pattern
awareness: We develop an approach for predicting user
locations by leveraging a Transformer-based architecture
integrated with Context-Aware Mobility Pattern Embed-
ding (CAMPE). By integrating user movement patterns

directly into the network, the model can acquire a more
profound comprehension of user behavior, thereby en-
hancing the precision of subsequent location predictions.

o Reconfigurable intelligent surface assisted commu-

nication: Our approach integrates the Reconfigurable
Intelligent Surfaces (RISs) to augment the efficiency of
communication resource utilization. The phase configura-
tions of the RISs are adaptively modified to accommodate
variations in the distribution of users. This modification
enhances communication efficiency and provides users
with additional connectivity options at specific locations.
« Diffusion-driven action generation strategy: We utilize
the diffusion model to generate strategies for RISs phase
adjustment and user allocation. Our proposed algorithm
generates high-quality samples using environmental in-
formation as adjustment factors for optimization. The
denoising mechanism enables the learning of complex
action distributions, leading to more stable and optimal
solutions under environmental uncertainty and variability.

Finally, we conduct extensive comparative simulations, and
results demonstrate the superior performance of this work, in-
creasing predicted accuracy by 1.54% without eliminating any
locations with infrequent user access. Moreover, our method
reduces average latency by 31.7%, 53.1%, 66.3% and 59.9%
compared with PPO-L [7], SAC-MSPI [8], DOA [9] and
COA [10] under 500 user allocation situations while acceler-
ating convergence by 33.4% over SAC-MSPI and 76.7% over
PPO-L. With prediction enabled, decision-making completes
ahead of execution, consistently lowering latency and retaining
benefits as the number of users increases.

The rest of this paper is organized as follows. Sec. II reviews
the related works and Sec. III introduces the overall frame-
work and presents the system model. Sec. IV introduces our
proposed solution, which first predicts user mobility based on
awareness of mobility patterns and then performs collaborative
optimization using diffusion-driven strategies for RIS phase
adjustment and user allocation. In Sec. V, we present the
evaluation results, and the conclusion is provided in Sec. VI.

II. RELATED WORKS

In this section, we briefly review related studies that support
mobility-aware user allocation in CPNs.

A. Computing Power Networks

CPNs represent a novel network architecture designed to
address the emerging convergence of networking and com-
puting. Tang et al. [11] introduce that CPNs are adept at
satisfying the multi-tiered deployment and adaptable schedul-
ing requirements that future 6G services will demand across
computing, storage, and networking domains. Li et al. [12]
describe a general CPNs framework and optimized the collabo-
ration between cloud computing, edge computing, and network
resources. However, these studies did not specifically focus on
the impact of access device mobility on services.

It is necessary to prioritize the mobility of dispersed termi-
nals in CPNs, facilitating integrated collaborative scheduling
through existing network infrastructures. Zeng et al. [13] have
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integrated wireless power transmission into mobile scenarios
within CPNs, which is a highly efficient method for enhanc-
ing the self-sufficiency of networks. Furthermore, employing
heterogeneous nodes within CPNs enables the provisioning
of ubiquitous intelligent services by leveraging computational
and networking resources for mobile computing tasks, as
explored by Sun et al. [14]. Overall, while existing studies
provide a foundation for understanding the architecture of
CPNs, they offer limited insight into how these resources
should be effectively bound to user requests. This highlights
the need to further investigate user allocation mechanisms,
particularly under multi-cell coverage and different computing
capabilities across Base Stations (BSs).

B. User Allocation Problem

A major challenge in CPNs is determining the user server
binding strategy that optimally facilitates the routing of service
requests. This problem is often referred to as the UA prob-
lem, which attempts to effectively allocate server resources
between users while overcoming the multifaceted limitations
of resource availability and latency [5]. To further reflect real
CPN scenarios, users may also lie within the overlapping
coverage of multiple BSs. Such multi-cell situations imply that
several BSs are simultaneously capable of serving the same
user, thereby enlarging the candidate set of feasible allocation
decisions and increasing the complexity of UA strategies.

In recent years, many methods have been proposed to
address the UA problem with diverse optimization goals, such
as minimizing system cost [30], reducing system energy con-
sumption [31], and improving user quality of experience [32].
Cao et al. [31] characterize the UA problem by integrating
server resources and geographic proximity, adopting heuristic
strategies to enhance allocation efficiency. Liu et al. [33] im-
prove UA performance by leveraging user role differentiation.
In work [23], Chen et al. have formulated the problem as a
mixed-integer linear programming problem with the objective
of minimizing system cost under latency constraints.

However, these explorations predominantly presuppose
static user environments, thereby overlooking the dimension

of user mobility. Although the authors [24] have primarily
examined the dynamic attributes of user access to the system
in their research, a comprehensive investigation into the effects
of user mobility on allocation issues remains notably absent.

C. User Location Prediction

Location prediction is a pivotal component for user alloca-
tion problems in CPNs. Early approaches to predicting future
user locations rely primarily on Markov chains [26], which
treat locations as states in a Markov model to infer transitions.
However, these models struggle to analyze real mobility traces
because they inherently assume that the current state depends
only on a limited history of past states.

Recently, Recurrent Neural Networks (RNNs) based meth-
ods, such as Long Short-Term Memory (LSTM) networks,
have significantly advanced the accuracy of location pre-
dictions over Markov-based models by capturing enhanced
features of locations. For instance, Sun et al. [28] propose
a two-stage self-attention architecture to represent long-term
mobility information. Similarly, Feng et al. [27] apply the
historical attention module with RNNs, and Wu et al. [29]
utilize the LSTM model to refine predictive accuracy.

Despite significant advancements, many models still over-
look the complete trajectory of user mobility. Advanced pre-
dictive models should account for both spatial and temporal
aspects of user movement, including visits to infrequent loca-
tions. A comprehensive approach is needed to integrate various
mobility patterns without oversimplifying the user trajectories.

D. Reconstructing the Communication Environment

In CPNs, communication links connect computing resources
with user demands, but severe path loss in Millimeter Wave
(mmWave) [34] limits resource utilization. To mitigate these
challenges, the deployment of RISs [15] has emerged as
a promising technique for improving energy and spectral
efficiency. By adjusting the amplitude and phase of incident
signals, RISs reconstruct the radio propagation environment
and offer additional access paths between servers and mobile
users [17]. Sun et al. [16] emphasize the necessity of RIS-
assisted resource integration. Yang et al. [18] have introduced
RISs as a communication resource in multi-user systems.
These works generally leverage RIS for signal enhancement
and latency reduction.

However, employing RIS mainly for signal enhancement un-
derutilizes its potential in user allocation. In response, Zhuang
et al. [19] introduce a multi-RIS collaborative framework
using multi-agent reinforcement learning to jointly handle RIS
configuration and user allocation across regions. Most of these
studies overlook RIS’s crucial role as a link within CPNs,
which affects network’s topology. In particular, it entails deter-
mining how to effectively leverage RIS to dynamically adjust
user allocation with optimal network connectivity options.

Based on the preceding discussion, the issue of joint alloca-
tion optimization in CPNs introduces new challenges in Table I
that must be addressed. Future research needs to develop
an integrated approach that not only accurately predicts user
location changes but also optimizes the use of communication



and intelligently schedules the user allocation. This method
should aim to achieve optimal matching of users and BSs
across multiple regions while ensuring low latency.

III. SYSTEM MODEL

In this section, we formalize the system model, including
the user allocation framework, the RIS-assisted signal model,
the latency model, and the joint optimization objective.

A. User Allocation Framework

To mitigate the challenges posed by users’ dynamic mo-
bility, weak communication paths, and high-dimensional so-
lution spaces, our proposed architecture integrates a four-
layer structure, as delineated in Fig. 3. At the application
service layer, diverse user devices (e.g., smartphones, laptops,
vehicles) generate service demands. The infrastructure layer
consists of edge nodes, servers, and BSs that collectively form
the CPN resource pool. For simplicity, we refer to all these
nodes as BSs. The signal reconfigurable layer utilizes RISs to
dynamically modify the communication environment, thereby
enhancing resource accessibility for users. Concurrently, the
CPN scheduling layer aggregates service demands and allo-
cates users to the infrastructure layer based on location and
service-specific attributes.

For formalization, in this four-layer structure, BSs and
users are denoted by sets M = {1,2,....,M} and N =
{1,2,...., N}, respectively, with Z representing the number of
antennas at each BS. Furthermore, the RISs are represented
by the set Y = {1,2,....,U}. Each user is assumed to be
active and randomly generates a service request, with the
service type indicated by the set S = {1,2,....,S5}. It is
posited that each user generates a single service, which is
then assigned to a specific server within a BS. The tuple
JIn,s = (Dn,s, Qn,s) denotes the service requirements for user
n, where D, ; represents the service data size and ), s is the
overall number of the CPU cycles to complete the service.

B. RIS-assisted Signal Model

In this paper, RIS with K reflection elements enhances
communication between multi-antenna BSs and single-antenna
users. Each BS covers a specific area with a coverage radius of
dps and within each covered area, there is a single RIS with a
coverage radius of d,.. Once the uplink between the associated
BS and the requesting user becomes too weak because of the
long inter distance, the BS schedules the reflection link via the
corresponding RIS to enhance the signal quality to meet the
performance requirements. Furthermore, we define the three-
dimensional (3D) spatial coordinates of the user n during each
time interval t € T = {1,2,...., T} remains unchanged and is
denoted as [x,,(t), yn(t), 2,]. The Euclidean distance between
the user n and the BS m (located at [Z,,,, Jim, Zm]) is given by

i (t) = V(@0 (8) = &m)? + (Y () = Gm)? + (20 = 2m)% (D)

At each time slot ¢, the narrow-band block-fading channel
vector hy, ,,(t) € CZ*1 between the user n and the BS m is
given by [35]

TABLE 11

KEY SYMBOLS TABLE
Symbol | Description
M The set of BSs
N The set of users
u The set of RISs
S The set of service types
Dhn,s Service data size
Qn,s Overall number of the CPU cycles to complete service
Z The number of BS antennas
K RIS reflection elements
d, RIS coverage radius
dps BS coverage radius
hyp,m Channel vector between user n and BS m
hyn Channel vector between user n and RIS u
hp o Channel vector between BS m and RIS u
Qpl, L The path-loss and the path-loss exponent

Diagonal phase shift matrix

NK Reflection amplitude

Phase shift adjustment at the associated RIS u
Transmit power of the user n for data offloading
gn The indicator of whether there is a reflection
link for user n through RIS

Ym,n Received signal-to-interference-plus-noise ratio (SINR)
for the user n
Tm,n Achievable data rate for transmissions
B Allocated bandwidths for the user n
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Fig. 3. The framework of our proposed architecture for user allocation.

hn,m(t) =V apld;fm(t)ﬁn,m(t)a )

where oy, denotes path-loss and ¢ denotes the path-loss
exponent. d, ,, denotes the distance between t£1e user n and
BS m which can be calculated by Eq. (1). h,, ,, are ran-
dom scattering components following Gaussian distribution.
It should be noted that the channel vector h,, ,,(f) is time
varying according to the user’s mobility at different time slots.
To improve communication performance, the BS coordinates
the uplink signal reflection via the RIS, enabling each RIS to
dynamically adjust its phase and reflection coefficient.
Specifically, for the RIS located in area m, the cor-
responding phase shift matrix is configured as a diago-
nal matrix, ® € CK*K  which is given by ©,(t) =
diag{nlej%,,l (t), . 777kej¢u,k (t),--- 7T]K€j¢”’K(t)}, where
Mk> Pu,k are reflection amplitude and phase shift adjustment
at the associated u-th RIS, and 7, € [0,1] and ¢, € [0, 27).



By accounting for realistic hardware limitations, we assume
that the phase shift at each RIS element can only take on a
limited number of distinct values. Assuming that the phase
shifts at each RIS element are uniformly quantized using b
bits [36] to indicate the number of phase shift levels F’, then
the available phase shifts for each RIS element is represented
by Pp = {0,A¢,2A0, ..., (F —1)A¢}, where Agp = 27/2°.
Furthermore, we assume an ideal electromagnetic wave signal
reflection through each RIS !, ie., gy =my = --- = g = 1.

For the RIS-assisted links, we denote the propagation chan-
nels from the user n to the RIS u and from the RIS u to the
BS m as h,, € CK*1 and h,. € C#*K | respectively.
Both channel vectors are assumed to follow Rician block-
fading [38], and are expressed as

_ / LoS / NLOS
hum( ) - apld11n ( 1+ h 1+ h >

(3)
and
h () Oépld'r_nu <[1+ hLoS /1+ NLoS )7
4)

where d,, , and d,, , denote the distance from the user n to
the RIS u and from the BS m to the RIS wu, respectively. &
denotes the Rician factor.

Assume the transmitted data symbol from the user n to the
BS m is s,,, which has zero mean and unit variance. Then the
received signal y,, ,, (by ignoring the time index ¢ for brevity)
at the BS m from the user n can be expressed as

Ymn =V Po (gnhm, 7 n)

Communication signal Noise

Nm
Z \/]31 (gz’h'rrL,u@uhu,i + hm,i) Siy )

i=1,i#n

Interference from other users

where P,, denotes the transmit power of the user n for data
offloading; v,, is the additive white Gaussian noise (AWGN)
vetor and v,, ~ CN(0,0%12); g, € {0,1} is the indicator of
whether the reflection link via RIS is scheduled, g,, = 1 means
that the uplink data offloading from the user n is assisted by
a scheduled RIS v € U, otherwise g, = 0. In particular,
the last term in Eq. (6) denotes the interference from other
users and [V, represents the number of users allocated to the
BS2. Furthermore, we assume that the channel vectors are well
known and the channel estimation approaches refer to [39],
[40], which is out of the scope of our work.

By implementing the receive beamforming vector w,, &€
CZ*1 at the BS m for the user n, the decoded signal .

! Although the reflection amplitude 7, Vk is related to phase shift imple-
mented [37], we consider an ideal reflection coefficient at each RIS element
in our paper for simplicity because it is out the scope of our work.

2Noted that interference from adjacent BSs is assumed to be disregarded
for brevity, which is often true in practice due to the large inter-cell distance.

can be expressed as’

H
:Wn ym,n

=/ P,w

Nm
+ Z \/ﬁtwf (gihm,uQuhu,i + hm,i) S
i=1,i%n

Um,n
(gnhmm@uhu,n + hm,n) Sn + van

(6)

Therefore, the received signal-to-interference-plus-noise ratio
(SINR) for the user n at the ¢-th time interval is given by

P, |W£I (gnhm,uguhu,n + hm,n)}2
Ym,n = Nom

Zi:i,i;&n P; !Wff (gih%,u®uhu,¢ + hm,i) ‘2 +o2
Then, the achievable data rate for transmissions between the
user n and the BS m at each time interval ¢ is obtained as
Tmn = B, 10g2 (1 + 'Ym,n) ) ®)
where B,, denotes the allocated bandwidth for the user n and
is treated as the system parameter, thus not included as an
optimization variable.

@)

C. Latency Model

We denote the service request from the users as Jj, s =
(Dn,s, Qn,s). Additionally, each service has a maximum la-
tency 7***. Each BS handles requests at different processing
speeds. Therefore, there are two categories of latency: trans-
mission latency T,ﬁ"’n and computation latency 777 .

1) Transmission latency: The transmission latency is af-
fected by factors such as the size of the data D, ,, the
transmission data rate r,, ,,, RIS phase shift matrix ©,,, and
the distance among the user, BS, and RIS. We model the
wireless transmission using Shannon’s capacity theorem, the
specifics of which have been elaborated in the preceding

section. Consequently, transmission latency is formulated as

Dns
TV, = ©)

m,n r )
where 1, , denotes the transmirsnéirlon data rate, which can
be calculated by Eq. (8). Due to the typically small size
of the returned results, the downlink transmission latency is
disregarded here.

2) Computation latency: The computation latency 7,77, is
affected by the size of the processed service D, , the total
number of CPU cycles required to complete the service (), s
and BS’s computing capacity, which varies for different types
of user services. When a user is assigned, the BSs with higher
computation capability fP for the specific service type are
designated as the dominant BSs for that service, while others
act as non-dominant BSs with computation capability fdov™.

For example, suppose BS; is more efficient at handling
video-processing services, while BS, is more efficient at
processing text-based services. If the user requests a video
service, BS; would be the dominant BS (f/?), and BS, would
be the non-dominant BS (f%°*"). Conversely, if the user
requests a text-based service, BSy becomes the dominant BS
(f*P), and BS; is the non-dominant BS (fdown) Thus, the

m
computation latency can be expressed as

co __ Dn,sQn,s
m,n

u own)’ (10)
(H{pn:l}fmp +H{Pn:0} ”d” )

3Given the known channel, the optimal receive beamforming vector can be
obtained by widely used singular value decomposition approach [41], [42].



where p, € {0,1} denotes the execution indicator, which
indicates that the user is allocated to the dominant BS with
processing capacity f P when p,, = 1, and O is otherwise.
Therefore, at the time interval ¢, the service request latency
can be calculated as T, (t) = T, . (t) + T5°,,(t). Note that
the uplink transmission of each allocated request is assumed
to be completed within interval ¢ under the current RIS
configuration, whereas the computation may continue across
later slots and is independent of subsequent RIS adjustments.

D. Problem Formulation

Besides the service request latency defined in Sec. III-C,
the decision is generated at the CPN scheduling layer shown
in Fig. 3 at the beginning of each slot, and the resulting
allocation and configuration are then executed by the system
to perform the data transmission and computation. We denote
the corresponding decision-making latency as 7%¢¢(t), which
is primarily determined by the computational complexity of
the adopted decision algorithm and the hardware platform used
for execution. From the perspective of a single service request,
the latency experienced by user n when it is served by BS
m can therefore be written as 7%¢(t) + T, ,(¢). It is worth
noting that 77%¢¢(t) is incurred once per slot for generating a
joint scheduling decision for all allocated users and RIS phase
adjustment, while T}, ,,(¢) is incurred per service request.

This paper aims to enhance system performance by mini-
mizing the total system latency, which consists of the CPN
decision-making latency and the service request latency of
all allocated users. The service request latency is optimized
through user allocation and RIS phase adjustment, while the
decision-making latency is effectively reduced by leveraging
user location prediction, which enables decision generation
ahead of actual data transmission and computation.

We define the user allocation decision ®,, ,, € {0, 1}, where
®,,» = 1 denotes the user n is allocated to BS m, and
®,, » = 0 otherwise. Thus, the user allocation decisions can
be defined as ® := {®,;, p}memnen and RIS phase shift
matrix is ®. The optimization problem of total system latency
minimization across 7' time intervals can be formulated as

T M N
(P) : min ST W) + DD P (t) T (t) |
’ t=1 m=1n=1
st. Cl:dpym(t),dmu(t) < dps(t),Yn € Nym e M,u €U,
C2:dyn(t) <d,,YneN,uel,
C3:0 < ¢y r(t) <2mVuelkek,
M
C4: ) Dpp(t) =1,¥m e M.
m=1

C1 and C2 ensure that all allocated users are within the
effective coverage areas of both BSs and RISs. C3 represents
the phase shift adjustment within the range of [0,27n]. C4
ensures that each user can only be served by one BS.

IV. AI-GENERATED LOCATION PREDICTION AND
COLLABORATIVE OPTIMIZATION STRATEGY

In this section, we present the solution for solving the opti-
mization problem formulated in Sec. III. To address mobility-
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Fig. 4. CAMPE-assisted user location prediction model.

aware user allocation more effectively, we first predict future
user locations so that allocation decisions can be conducted in
advance, which will further reduce decision-making latency.
Since RIS phase adjustment directly affects communication
link quality and thereby influences allocation decisions, we
combine RIS control and allocation into a unified optimiza-
tion step. Accordingly, our approach consists of two stages:
location prediction and collaborative optimization.

A. User Location Prediction Model

To refine the first stage of the solution, the pivotal initial
step involves acquiring precise predictions of location move-
ment. This section introduces a location prediction model
empowered by CAMPE. Our approach utilizes a transformer-
based architecture to predict users’ subsequent locations by
integrating contextual information from mobility patterns into
the model. The context-aware method integrates additional
contextual information, such as time of day, day of the week,
and mobility patterns, to enhance the model’s understanding of
user trajectories. By considering mobility patterns, we capture
the user movement behavior across different trajectories.

We define the user’s trajectory as a sequence of time-ordered
records. Each record is denoted as (n, LY, x;), indicating user
n visit location L} at timestamp «;. Note that the term times-
tamp in prediction refers only to real-world recording time,
which is different from the time slot used in the allocation
optimization process. L} represents spatial coordinates that
include latitude and longitude. Thus, given a query trajectory
V= [(n, LY, Kk1),...,(n, L k)], the objective is to predict
the n-th user’s next location, denoted as L' ;, based on
the observed trajectory up to timestamp k;. A trajectory is
conceptualized as a time-ordered sequence of points, each
encapsulated by a temporal stamp and spatial coordinates.
When considering the problem of predicting location, we focus
on the historical sequence of locations as shown in Fig. 4.

1) Position Embedding: The transformer predicts each
user’s future trajectory by encoding the current and historical
locations. Each user exhibits personal movement patterns [43].
Therefore, our model not only embeds historical and current
locations but also introduces CAMPE to exploit temporal and
mobility pattern embeddings into the predictive framework.

Specifically, CAMPE allows the embeddings M; to capture
distinct behavioral nuances associated with different speeds,
ranging from slow-paced walking to rapid vehicular move-
ment. Moreover, time features are encoded at two granularities:



hours x! and days k¢ to distinguish different levels of peri-
odicity in location visits. Subsequently, we map the trajectory
to a high-dimensional vector space E,,, formulated as

E; =7 (L}, My, ' k8 1, w) (11)
where 7(-) denotes the position embedding function that
transforms these categorical features into fixed-dimensional
real-valued vectors and adds all sequence features together,
given as El =w L}, Eh = whn , B = we M, E = wdﬁf,
B!l = wil;. L?, M;, sl and /{f denote the one-hot encoded
original features and w represents the weight parameters in the
embedding process.

These embeddings are integrated into the transformer ar-
chitecture, interacting with spatial and temporal features to
provide a comprehensive input sequence. The method captures
both the static elements of user location and stay duration and
the speed-related attributes of user mobility, thus better under-
standing user location-specific trends (from stay duration) and
user-specific preferences (from mobility patterns).

2) Location-Adaptive Transformer: An efficacious model
for predicting future locations must effectively discern patterns
and comprehend the intricate multilevel periodicity inherent in
complex spatio-temporal historical data sequences. Leveraging
a transformer-based framework, our approach extracts and
learns the nuances of location transition dynamics from histor-
ical data encompassing location points and temporal intervals,
encapsulated within a comprehensive embedding vector E;.

The core of transformer architecture is the multi-head self-
attention mechanism. This mechanism is structured to integrate
queries @, keys K and values V' in order to merge information
from various representation subspaces, formally expressed as

KT
C%/E ) V, (12)

where D is the dimension of the key vector. Subsequently,
multi-head attention is formed by concatenating the outputs
of k attention functions.

MultiHead (H?) = Concat (heady, . . .,

Attention(Q, K, V') = softmax (

head ) W°,

where head; = Attention (HZWJQ, HWE, HZWJ-V)
H?Z represents the current state characteristics, z denotes the
step within the recurrent computational sequence and W rep-
resents the output weight matrix. The self-attention mechanism
enables the model to extract information from each step of the
historical sequence and assess its significance.

Moreover, we introduce forward masking operations to pre-
vent the attention function from being affected by information
after the time series. This process guarantees the extraction
of long-term dependencies from past patterns. Due to the
multi-head design, the model retains multiple sets of parameter
matrices concentrated in the historical sequence, capturing the
movement’s periodic characteristics.

3) Loss Function: The location prediction model subse-
quently receives the aggregated vector g;, which encapsu-
lates both the predictive information of location and mobility
patterns. The probabilities of each location are calculated
using a linear projection followed by a softmax function, as
demonstrated in Eq. (14).

(13)

P(ﬁf+1) = softmax (Linear,(g;)),

Y (14)
P(M;+1) = softmax (Lineary(g;)) ,

where P(L; 7.1) and P(M;1) contain the probabilistic distri-
bution across all potential locations and mobility patterns. The
location with the highest value in this probability distribution
is the most likely target for the next access.

In the given training set, the prediction task can be for-
mulated as a multi-class classification problem. We employ
the multi-class cross-entropy loss function in Eq. (15) to
quantitatively assess the discrepancies between the predicted

probabilities and the actual categorical labels.
|

azw:—Zﬁ log (P,(L14)) -

D’I
IR (Pi(0Tig))

where X is the set that contains all known positions and Y
contains category of mobility pattens. 19L and 19M are the
one-hot vectors to represent true next locatlon and mobility
patterns. Therefore, this dual prediction framework is managed
by a combined loss function, which includes a separate cross-
entropy term for mobility pattern discrepancies as

Etotal = (p‘cloc + (1 - (p)Empa (16)
where ¢ € (0, 1) represents the hyperparameter that balances
the relative contributions of location and mobility patterns
prediction losses during the training phase.

(15)
E'mp =

B. DiffUser Algorithm

To tackle the second stage problem of collaborative opti-
mization of RISs phase adjustment and user allocation, we pro-
pose the DiffUser algorithm, which utilizes a diffusion model
to generate optimal decision-making. As an advanced gen-
erative model, the diffusion model adeptly captures complex
distributions by inverting the denoising process to synthesize
novel data. Such expressive capability is essential for repre-
senting the high-dimensional, tightly coupled decision space
formed by joint RIS phase adjustment and user allocation,
enabling DiffUser to produce more stable and higher-quality
actions [44] than conventional deep reinforcement learning-
based policy parameterizations.

Specifically, we define the environment state as s(t) =
{sn(t)|n = 1 2,..., N}, where the state space of the user n
denotes s, (t) = {L (), dnm(t), Sn(t)}. Ly (t) denotes the
location of user n, d,, ,(t) means the dlstance between the
user and the corresponding BS, and .S, (¢) represents the users’
current service types. Furthermore, the environment needs to
evaluate the joint optimization actions, including the allocation
strategy a,(t) = {u,(t)jn = 1,2,..., N} and the RIS phase
shift strategy a,(t) = {¢ux(t)}. u,(t) denotes BSs’ index
assigned by users and ¢, ,(t) is the RIS phase shift, where
Gu € Pp=1{0,A0,---,(F —1)A¢}. Therefore, the action
space is denoted as a(t) = {a,(t), a.(t)}.

DiffUser aims to optimize the user allocation and RIS
phase adjustment strategy of CPNs by reducing total ser-
vice latency. We first define the reward of the DiffUser
as the negative value of average service requset latency
+ Z%Zl ZnN:1 @, n(t) T (t) in problem P. Since time is
inherently a positive value, to improve clarity, we then apply
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Fig. 5. Diffusion-driven user allocation model.

the exponential function exp(x) to make the reward positive.
The optimization algorithm is driven by the diffusion model,
which optimizes reward by determining the optimal action.

1) Diffusion-driven Action Generation Strategy: The dif-
fusion process enhances the model’s ability to capture and
represent complex data patterns accurately and significantly
simplifies data processing during training. This enables our
algorithm to effectively represent complex data distributions,
providing a foundation for more precise modeling of user allo-
cations and strategies for adjusting the phases of RISs. Specif-
ically, the generation of diffusion-driven action strategies is a
process of denoising. Within the dynamic environment, the
optimal decision solution for user allocation and RIS phase
adjustment is the goal of the denoising network.

In the proposed action strategy context, the output is a
probability distribution o over decision choices conditional
upon the observed environmental state. Given a specified
target probability distribution, the forward process introduces
a sequence of Gaussian noise at each timestep, denoted as

q(xj | xj_l) :N<.Ij;\/lfﬂj17j_17ﬂj1) . (17)
For f3; in the interval (0,1), the sequence is strictly increasing,
ie., f1 < P2 < ... < Bs. The posterior probability from the
original input x to the final data x;.; is expressed in the form

as follows

=[Ta(lz-0).

j=1

Simultaneously, a reverse process characterized by Gaussian
transitions parameterized by 6 is delineated as

po (zj—1 | 25) =N (zj-15p0 (5,5), B0 (z5,7)) . (19)
Gaussian parameters mean and covariance are denoted as
po (zj,7) and Xg (z;,7), respectively, for the network to
estimate. Therefore, the formula for the process of reverse
diffusion can be written as

#) [

q(z1.7 | zo) (18)

<

Do (zO J -T] 1 ‘ xj (20)

Unlike traditional backpropagatlon algorithms in neural
networks that directly optimize model parameters, DiffUser
uses diffusion models to improve user allocation and the phase
adjustment of RISs by iterative denoising the initial distribu-
tion [45], resulting in a more effective reward function. This

module receives environmental information s(t) as input and
makes decisions on user allocation and RIS phase adjustment
based on the defined policy 7y, which is denoted as

mo(a(t) | 5(t)) = po (a(t)o.s | 5(1))
J
a(t),:0.1) [T po (a(t),, a(®),.5(0).

Here, the reverse process with parameter 6 is expressed as
po (a0, | a(t),,s(1))
=N (alt), 30 (at);,5(0),5) , Zo (alt),5(0),5) )

where Gaussian parameters mean and covariance are denoted
as fug (a(t)j,s(t),j and Xy (a(t)j,s(t),]‘) for the network
to estimate. According to [46], the mean of reversed step is

1 B _ )
\/a—j (a(t)] meg (a(t)]7 S(t)z.])> )

(23)
where €y denotes the function approximation based on neural
network, o; = 1 — 3; and &; = H;]: The covariance

J) = Bl
Initially, we sample a;(t) ~ N(0,I), followed by con-
structing the reverse diffusion chain

aj(t) B )
a; ———— co\a t s(t)7])+\/576.
v Val-a) (24)

To improve the sample quality, when j equals 1, € is defined
as zero [44]. Therefore, the decision for user allocation and
RIS phase adjustment ag(t) can be obtained.

2) Network Update Process: The DiffUser algorithm em-
ploys Soft Actor-Critic (SAC) to train the €y in Eq. (24) with
parameter 6. Our algorithm aims to learn a policy that max-
imizes cumulative reward while preserving exploration. The
optimal policy in maximum entropy reinforcement learning is
characterized as

2

(22)

po (a(t)j;s(t);,J) =

19-

matrix is denoted as Xy (a(t)j, s(t),

a;_1(t) | a;(t) =

* —argmax E Z'y r( (25)

t=0

)+ E&H (mo (- (1)) |

where ¢ represents the temperature parameter that balances
the trade-off between optimizing reward and entropy and v €
[0,1) is the discount factor. The entropy is given by

H(mo(-[s(t)) = — [log(me(a0(t) | (1))} (26)

E
ag (t)~mg(-[s(t))

As illustrated in Fig. 5, DiffUser utilizes the diffusion-
driven action generation model as the actor network to predict
the optimal action ag(t) by €y. During the training process
for each episode, the actor network selects an action ag(t)
according to the current policy €y. This action is executed in
the environment, leading to the next state s(¢+1) and receiving
a reward r(t). The tuple (s(t),ao(t),r(t),s(t + 1)) is stored
in the replay buffer k.

At each learning step, a batch of transitions
(s(9),a0(i),r(3),s(¢ + 1)) is sampled from the replay
buffer. The target value z(i) is calculated as the sum of
the reward and discounted minimum (-value of the next
state-action pair, minus the log probability of the action,
thereby promoting exploration. This is used to update the



Algorithm 1: DiffUser Algorithm

Initialized parameters for the critic network 7, 2,
actor network eg. An empty experience replay
memory R;

for the training episode e =1 to £ do

Initialize a random process N for allocation
exploration.;

fort=1,2,....,T do

Observe the environment and set the action
ay(t) as Gaussian noise;

for the denoising process do
Use deep neural networks to learn noise

distribution;
Generate the action ag(t) by denoising
ay(t) through ey;
end
Execute action, collect reward r(t), and
observe next state s(¢ + 1);
Store (s(t),ap(t),r(t),s(t + 1)) into replay

memory;
Sample the minibatch of Nx from R;
fori=1,2,...,Nr do

Calculate the target value in Eq.(28);

Update the critic networks in Eq.(27);

Update the actor network utilizing the
sampled policy gradient.;

Update target networks: 71, 7o using
71+ wr + (1 —w)7y, for L € {1,2};

end

end
end
return The optimal policy 7*;

critic networks by minimizing the loss function, which is
averaged over the batch

Nr
Lim) = NLR ; (O, (5(1),20(3)) — 2(0))%.  27)
The target value is calculated by
z(i) = r(i) + vy min Q4 (s(i + 1), do(i + 1))
1=1,2 (28)

—Elogmg (ap(i+ 1) |s(i+ 1)),

where ay(i + 1) can be obtained using ;. Following this, the
actor network can be updated by

NLR ; (5 log g (ao(3) | s(2)) — lrgnQ Q- (s(7), ao(i))> . (29)

Finally, the parameters of the critic networks 7; and 7o
are updated using soft updates with the target networks’
parameters 7 and 7o :

{ 7A’1 ew7'1+(17w)f'1, (30)

’f’Q — WTo + (]. 70.))7127

where w confined within the interval (0, 1], represents the rate
of the soft update for target networks.

Conclusively, the DiffUser optimizes policy and Q-function
parameters in reinforcement learning by integrating a diffusion
model approach in Algorithm 1. The algorithm generates
actions by denoising the noisy inputs through the actor net-
work, executes them in the environment, collects rewards,
and stores the experience in the replay memory. A minibatch
(s(4),a0(?),r(é),s(i+1)) is sampled from the memory to up-
date the policy of the networks. Specifically, the convergence
proof of DiffUser is provided in Appendix A.

C. Complexity Analysis

In this section, we discuss the time and space complexity
of our algorithm, which can be divided into two parts:

1) User location prediction: For the time complexity, the
transformer-based architecture is influenced by the input se-
quence length v, the dimension of the embedding vector
vq4. The self-attention operation requires O (z/g X I/d) and the
feed-forward neural networks within each transformer layer
contribute a time complexity of O (v, x v2). Therefore, the
time complexity of the user location prediction algorithm is
obtained by O (V2 X vg + v X V).

Regarding space complexity, the model consumes O (I/Z)
space for attention weight matrices and O (v, x vg) for query,
key, and value vectors. The feed-forward neural networks add
an additional O (v, x 1/3) space requirement. Therefore, the
space complexity of the user location prediction algorithm is
obtained by O (1/5 + U X Vg4 vp X z/fl).

2) DiffUser algorithm: For the time complexity, the algo-
rithm largely relies on training and denoising process, which
is expressed as |E] X T' x J X [&,] + |E] x T x 2|&.|, where
|€| and T are the number of training episode and step and
J is the number of denoising steps. |¢,| and |¢.| denote the
number of parameters in the actor and critic networks.

For the space complexity, the algorithm requires storage for
the parameters of both the actor and critic networks, as well as
for the experience replay buffer. Therefore, the overall space
complexity of the DiffUser algorithm is O (|&,| + |&.| + NR).

V. PERFORMANCE EVALUATION

This section focuses on the performance evaluation of our
proposed framework in three aspects: location prediction ac-
curacy assisted by CAMPE, collaborative optimization effec-
tiveness of DiffUser algorithm and prediction effectiveness in
user allocation. The simulation experiments are implemented
in Python 3.9 and performed on a laptop with an NVIDIA
GeForce RTX 3080 Ti GPU and Intel Core 19-12900K CPU.

A. Location Prediction Evaluation

1) Dataset Description: We utilized a GPS trajectory
dataset collected from the GeoLife project [47]. This dataset
was gathered by Microsoft Research Asia from April 2007
to August 2012, spanning three years. It comprises the travel
modes and movement trajectories of 182 users. The trajectories
are represented by a series of points with timestamps, each
containing latitude, longitude, and altitude information. The
dataset includes ten mobility modes, such as walking, biking,



TABLE III
PERFORMANCE EVALUATION RESULTS OF USER LOCATION PREDICTION.

Historical Algorithm Accy Acecs  Aces  Accio
Info.

Markov Chain [51] 25.65 40.9 4758 4943

1-DAY LSTM [49] 28.71 4239 479 53.72

Attention-LSTM [50] 28.08 43.56 48.61 54.9

Ours 30.25 4631 52.78  56.68

Markov Chain [51] 25.65 409  47.58 4943

3-DAY LSTM [49] 29.35 4438 48.64 55.06

Attention-LSTM [50] 29.97 4571 50.37  55.79

Ours 30.04 4827 538 56.96

Markov Chain [51] 25.65 40.9 47.58 49.43

5-DAY LSTM [49] 27.87 4228 47.75 53.16

Attention-LSTM [50] 29.24 4391 4841 54.28

Ours 29.72 4879 5392  58.95

Markov Chain [51] 25.65 409 4758 4943

10-DAY LSTM [49] 28.16 44.66 48.61 52.96

Attention-LSTM [50] 29.1 4572 49.05 54.03

Ours 29.71 46.69 52.00 55.82

bus and car. In our experiments, these labels are categorized
into three groups: fast, slow, and driving. For instance, both
bus and car are classified under the driving category.

In contrast to prior approaches that filter out locations with
low visit frequencies, we retain all locations, as infrequent
visits may still reflect meaningful variations in user mobility
caused by random events. For each user, all trajectory records
are sorted by their recorded time, with the first 60% used for
training, the subsequent 20% for validation, and the remaining
20% for testing.

2) Implementation Details: We utilize the top-k accuracy
as the evaluation metric for next-location prediction. The test
set consists of S prediction samples. For the s-th sample, the
model outputs a probability distribution P(ﬁ(s)) [48] over all
candidate locations, from which the top-k locations form the
prediction set C,ES). The top-k accuracy is defined as

s
1
M= ey O
where Lgf&e denotes the ground-truth next location of the s-th

prediction sample. I(-) is the indicator function that evaluates
whether the true next location of the user lies within the model-
generated top-k candidate set. It outputs 1 when the prediction
successfully includes the correct location, and 0 otherwise.
Thus Acc; represents the accuracy of predicting the single
most probable location as the true next location. Accs indicates
whether the user’s actual next location appears among the three
most likely locations provided as possible candidates. Accs
and Accyg follow the same definition.

To demonstrate the benefits of the prediction algorithm,
we compare it with the following two benchmarks: 1) LSTM
network [49]: 1t is a recursive neural network structure suitable
for processing and memorizing long-term dependencies. 2)
Attention-LSTM [50]: 1t introduces a self-attention mechanism
between the current and previous hidden states, which can
dynamically adjust the weight of hidden states based on the
importance of each time step in the input sequence.

Accuracy (%) Accuracy (%)
30.5 —e-Ours 49.0
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30.0 \/\/ Attention-LSTN 48.0 -.i/\/\\
N M 47.0
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Fig. 6. Location prediction accuracy with different benchmarks.

3) Numerical Results: Analyze the performance between
different strategies. There are significant differences in the
performance of various algorithms when considering the accu-
racy of user location prediction. The Markov chain, grounded
on the premise that the next state is determined only by current
state, lacks the ability to leverage comprehensive historical
data. This characteristic results in Markov chains exhibiting
poor performance in all comparisons, especially in scenarios
that require the use of historical data for prediction.

In contrast, LSTM networks mark a substantial advance-
ment in predictive accuracy, demonstrating a 4.29% improve-
ment in Accyg over Markov chains. Moreover, integrating a
self-attention mechanism in the Attention-LSTM algorithm
further refines prediction accuracy in Fig. 6 by dynamically
adjusting the relevance of past states. The performance of
our proposed CAMPE assisted prediction model is the most
robust, particularly in terms of the prediction loss rate shown
in Fig. 7. A lower loss rate is directly associated with higher
predictive accuracy, reflecting our model’s stronger learning
capacity and efficiency in processing user mobility patterns,
especially with more historical information. An accuracy of
30.25% was attained on the Accy, surpassing the highest
accuracy of 28.71% on LSTM by approximately 1.54%.

The implementation of the multi-head self-attention can
simultaneously handle many representative subspaces, effec-
tively capturing the overall patterns in user position sequences.
Furthermore, by integrating contextual information from mo-
bility patterns, the model has enhanced its capability to com-
prehend intricate relationships and extended dependency struc-
tures within sequences. Our method shows a stable growth
trend in the prediction accuracy metric of Accs, Accs, and
Accyg, which can be shown in Fig. 8.

Analyze the performance between different historical in-
formation. Fig. 6 shows that the prediction accuracy does
not improve monotonically with longer historical data. Using
only 1-day of history yields insufficient behavioral context,
preventing the model from capturing stable mobility patterns
and thereby reducing accuracy. When extending the historical
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Fig. 8. Location prediction accuracy with different prediction probability.

window to 10 days, the prediction accuracy declines again.
This indicates that overly long histories introduce outdated
or noisy movement information, which increases the data
complexity of the learning process and hampers the model’s
ability to extract relevant mobility features effectively.

Overall, although Table III shows some performance fluc-
tuations as the number of historical days varies, these fluctua-
tions remain relatively small. This indicates that the proposed
prediction model is robust to variations in the duration of
historical data.

B. Collaborative Optimization Evaluation

1) Implementation Details: In this study, we utilize the
publicly available EUA dataset [52], sourced from real-world
data repositories, specifically focusing on the geographical
locations of end-users within the Australian region.

Edge Servers (BSs): Our experiment simulates an area of
1200m x 1200m to represent the characteristics of a RIS-
assisted communication environment accurately. The region
is furnished with a total of 8 BSs and 8 RISs. The RISs
are situated randomly, with only one BS within the assistive
range. RISs with a constant height of 5 meters provide
communication forwarding capabilities for all user requests
within the specified region. Furthermore, it is assumed that
every BS has pre-cached a particular service.

Edge Users: The user allocation is derived from geospatial
information in the EUA dataset. We define 4 categories of
service demand, and each user is randomly assigned a corre-
sponding computing requirement. Their service demands vary
over time according to predefined transition probabilities.

To verify the effectiveness of our proposed algorithm, we
classify the comparison methods into learning-based and non-
learning-based baselines. The learning-based methods are
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Fig. 9. The average service request latency comparison with different
benchmarks.
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1) Proximal Policy Optimization (PPO-L) [7]: The system
employs the PPO framework for policy learning.

2) Soft Actor-Critic Algorithm (SAC-MSPI) [8]: The sys-
tem operates within the framework of maximum entropy
reinforcement learning and employs entropy as a reward
mechanism to incentivize agents to explore states.

The non-learning-based baselines are

1) Distance-Optimal Allocation (DOA) [9]: This strategy
assigns each user to the nearest available BS, aiming to
improve transmission efficiency.

Computation-Optimal Allocation (COA) [10]: Tt allo-
cates each user to the BS with the highest processing
capability for its service type. In our work, this corre-
sponds to selecting the dominant BS, i.e., the BS with
higher computation capability for that service type.

2) Numerical Results: Learning performances. We evalu-
ate the effects of different strategies on different user numbers.
In Fig. 9, under all testing conditions, our proposed algorithm
exhibits the highest average return and optimal performance
stability. Specifically, for a relatively small number of user
assignments (50 and 100), our algorithm is more stable and
has better convergence performance. Compared with the PPO-
L, SAC-MSPI, DOA and COA algorithms, our algorithm has
a lower latency under an allocation situation for 500 users,
demonstrating the ability to find better solutions with improve-
ments of 31.7%, 53.1%, 66.3% and 59.9%. Our algorithm
demonstrates a 33.4% faster convergence rate compared to
SAC-MSPI and a 76.7% improvement over PPO-L. Addi-
tionally, the wider shaded areas for SAC-MSPI and PPO-
L reflect greater performance fluctuations and inconsistency,
indicating that they are more sensitive to the effects of dynamic
environments and high-dimensional allocation scenarios.

As the number of users increases, from 50 to 500, we
observe that the performance of all algorithms decreases. How-
ever, our proposed algorithm is the least affected. For example,
when the number of users increases to 200, our algorithm
outperforms PPO-L, SAC-MSPI, DOA and COA algorithms

2)
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Fig. 10. Average service request latency under different demand shifts.
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Fig. 11. Evaluation of prediction effectiveness in user allocation.

by 23.24%, 46.76%, 60.57% and 59.40%, respectively. This
indicates our algorithm is more effective in expanding to a
larger user group, and its performance degradation is sig-
nificantly smaller than the other algorithms. When dealing
with multi-user allocation problems, our algorithm provides
significantly better robustness.

Algorithm efficiency. As shown in Fig. 10 (a), when the
number of users increases from 50 to 500, the reward of
DiffUser decreases by only 12.7%. Considering that the size
of the action space grows dramatically with more users, such
a minor reduction demonstrates the strong scalability of the
proposed method. More importantly, the convergence speed re-
mains nearly identical across all settings, stabilizing at around
30 epochs. This stable convergence indicates that DiffUser
can effectively handle the enlarged state—action space by
generating actions through a progressive denoising procedure,
which smooths policy updates and prevents instability in high-
dimensional environments.

We further test DiffUser under dynamic service demands
by varying the probability of user service types. As shown
in Fig. 10 (b), although the average latency increases with
the number of users, medium and high demand shifts reduce
latency by 7.4% and 19.1%, respectively. This improvement
occurs because demand variations introduce opportunities
for more efficient reallocation. When user services change,
the system can utilize computational and communication
resources more flexibly. DiffUser, which learns to generate
high-quality allocation samples under such variability, adapts
quickly to these changes and maintains low latency even under
highly dynamic conditions.

C. Prediction Effectiveness in User Allocation

To evaluate whether location prediction brings benefits to
user allocation, we deploy the prediction results obtained in
Sec. V-A into the RIS-assisted communication environment
described in Sec. V-B. Each predicted coordinate is selected as
the top-1 output of the prediction model, and then mapped into
a 1200m x 1200m region containing 8§ BSs and 8 RISs. Two
allocation schemes are evaluated under the same environment:
1) With prediction: The algorithm generates decisions ahead
using predicted locations. 2) Without prediction: The allo-
cation decision is computed during execution, meaning each
request must wait for decision generation before transmission,
and computation can begin.

Fig. 11 illustrates the performance difference between
these two allocation schemes. As shown in Fig. 11 (a),
the proposed prediction-enhanced user allocation consistently
achieves lower average allocation latency compared with the
non-prediction baseline. This reduction comes from the fact
that our model provides future location information ahead of
execution, allowing the algorithm to complete decision-making
before the slot begins. The shaded area visualizes the decision-
making latency that is removed from the execution process.
This verifies that the accuracy achieved in our prediction
module is effective in improving real allocation performance.
Fig. 11 (b) further presents the evolution of decision-making
latency as the number of users increases. Without prediction,
more users introduce a larger search space for allocation and
RIS configuration, which slows down decision generation.

VI. CONCLUSION

CPNs have offered a promising architecture for addressing
the computation and communication challenges of mobile
services. This work has tackled the UA problem by consid-
ering the users’ dynamic mobility, weak communication link
quality, and high-dimensional decision spaces, and proposed
a CAMPE-assisted mobility-aware location prediction model
and the DiffUser algorithm for diffusion-based allocation and
RIS phase control. Extensive experiments have demonstrated
improvements in terms of prediction accuracy and system
latency. Nonetheless, the current framework has assumed that
service requests are independent of each other. In practical
scenarios, many applications have involved task chains with
input—output dependencies, where intermediate results must be
transferred to subsequent tasks. Such dependencies, as well as
potential task migration costs, have not been modeled in this
work and may result in suboptimal performance in workflow-
oriented or multi-stage services. Future work will incorporate
task-level dependencies and migration-aware optimization to
further enhance allocation efficiency.
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