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Abstract—Underwater acoustic sensor networks (UASNs) have
been widely deployed in many areas, such as marine ranching,
naval applications, and marine disaster warning systems. The
security of UASNs, particularly insider threats, is of growing
concern. Internal attacks carried out via compromised normal
nodes are more damaging and stealthy than external attacks, such
as signal stealing, data decryption, and identity forgery. As a secu-
rity mechanism for internal threat detection based on interaction
data, trust models have proven to enhance the security of UASNs.
However, traditional trust models lack sufficient scalability when
faced with movable underwater devices, heterogeneous network
environments, and variable attack patterns. Therefore, in this
paper, a novel trust model based on federated deep reinforcement
learning is proposed for UASNs. First, the evidence acquisition
mechanism, including communication, energy, and data evidence,
is improved based on existing ones to better accommodate the
topological dynamics of UASNs. Second, acquired trust evidence
is fed into the corresponding deep reinforcement learning-based
local trust model to accomplish trust prediction and model
training. Finally, a federated learning-based update method
periodically aggregates and updates the parameters of the local
models. The experimental results prove that the proposed scheme
exhibits satisfactory performance in terms of improving trust
prediction accuracy and energy efficiency.

Index Terms—Underwater acoustic sensor networks, trust
model, deep reinforcement learning, and federated learning.

I. INTRODUCTION

UNDERWATER acoustic sensor networks (UASNs) are
innovative paradigms widely applied in underwater en-

vironment monitoring, disaster warning systems, military de-
fense, and other underwater-based scenarios [1]–[3]. The open
nature of the underwater environment makes it easy for adver-
saries to infiltrate devices in UASNs, compromising and trans-
forming them into malicious nodes lurking in the network [4].
Depending on the attack program implanted, these malicious
nodes can execute attacks on different frequencies, modes, and
targets. The legitimacy of such compromised nodes makes
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it difficult for traditional authentication and data encryption
methods to counter their attacks. The trust model, a mechanism
for predicting the potential for future interactions based on
historical interactions, has been proven to be effective against
such internal threats. Typically, trust models in UASNs utilize
historical communication behavior between underwater nodes
or differences in each other’s attributes to predict the trustwor-
thiness of the target node [5]. Furthermore, trustworthiness is
used to ensure the reliability of critical devices during the
operation of UASNs, such as selecting data forwarding nodes,
electing cluster head nodes, and filtering data fusion targets.

Although several studies have contributed to the develop-
ment of trust models in UASNs, there are several issues that
have not yet been effectively addressed. For example, with
the rapid development of the underwater robotics industry,
new devices, such as autonomous underwater vehicles (AUVs),
underwater gliders, and wave gliders (shown in Fig. 1), are
gradually increasing in underwater networks. Homogeneous
UASNs comprising sensor nodes are gradually evolving into
heterogeneous networks entailing different types of devices
with distinctive capabilities in communication, computing, and
mobility. The impact of the heterogeneity of UASNs on trust
management reflects primarily two aspects [6]–[10]:

1) Device heterogeneity within the local area. Conven-
tional trust models typically possess fixed parameters and
thresholds. In the local network context, when there is a
significant difference between the inherent attributes of
trust evaluation objects, traditional trust models lack the
necessary adaptability, resulting in a loss of evaluation
precision. As one of the indicators of trust evaluation,
the communication success rate is typically compared to
a predetermined threshold to determine the target’s com-
munication credibility. There is a substantial difference
between the communication capabilities of underwater
sensor nodes and AUVs; consequently, the credibility
thresholds for evaluating the communication capabilities
of the two should also be distinct. In heterogeneous
UASN scenarios, it is difficult to set appropriate thresh-
olds and model parameters for different evaluation objects
using conventional trust models, which lack adaptive
capabilities. Deep reinforcement learning (DRL) is poised
to revolutionize the field of artificial intelligence and
represents a step toward the development of autonomous
systems with a higher-level understanding of their sur-
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roundings [11]. Consequently, this study proposes a DRL-
based trust modeling method that employs the robust
parameter learning capability of DRL to enhance the
adaptability of the trust model to heterogeneous UASNs.

2) Network heterogeneity across regions. The UASNs are
gradually evolving toward complex functions and multi-
regional integration, resulting in heterogeneity in tasks,
environments, and equipment across sub-networks. The
traditional trust model has two issues when confronted
with the trust evaluation requirements of cross-regional
devices: insufficient accuracy of local model evaluation
and high cross-regional cost of interaction experience.
Federated learning (FL) enables cross-regional model
training while preserving the localization of training
data [12]. This study therefore incorporates FL into the
trust model update process and proposes an FL-based
cross-region trust update method. This method achieves
effective control of the interregional transmission cost of
the interactive experience while utilizing the interactive
experience across multiple subnetworks.

Therefore, in this study, we propose a trust model based
on joint DRL and FL for heterogeneous UASNs. On the
premise of enhancing traditional evidence generation methods
to adapt to heterogeneous scenarios, this work employs DRL
for trust modeling to improve the adaptability to complex
underwater environments. Additionally, the distributed training
and centralized update of the model are realized via FL, which
further improves the evaluation accuracy of the trust model in
the context of spatiotemporal changes. The main contributions
of this study are summarized as follows.

1) A more general adversary model is proposed, which
incorporates the comprehensive influence of active attack,
underwater acoustic communication, network topology,
and other factors on trust management in the underwater
environment.

2) The traditional method for quantifying trust evidence is
enhanced, the impact of malicious attacks on the evidence
quantification process is mitigated, and the evaluation
precision of the trust model is indirectly enhanced.

3) A DRL-based trust modeling method is proposed in
order to increase the adaptability of the trust model to
heterogeneous UASNs. This method mitigates the cold
start problem of the trust model via the model pre-training
mechanism and achieves the effective training of the trust
model via the ingenious design of parameters such as the
state, action, and reward function in DRL.

4) A FL-based cross-region trust update architecture is pro-
posed, which enhances the trust model’s adaptability and
scalability by comprehensively utilizing local experience
and controlling the transmission cost of interactive expe-
rience.

The remainder of this paper is organized as follows. In
Sec. II, an overview of previous related literature on trust mod-
els is provided. In Sec. III, the system model and assumptions
are introduced. Then, detailed descriptions of the proposed
scheme and simulation results are provided in Secs. IV and
V, respectively. Finally, the conclusions of this study are drawn

in Sec. VI.

II. RELATED WORK

UASNs are gradually gaining increasing attention from
researchers with the recent developments in hydroacoustic
communication and underwater networking technologies. Sev-
eral studies have focused on trust security in UASNs and have
made key contributions to the development of underwater trust
models. The following section provides a review of relevant
research related to trust security in UASNs, and proposes our
solutions to address the current issues.

Trust models have been widely used in different scenar-
ios, such as terrestrial wireless sensor networks [13]–[15],
social networks [16], [17], vehicle networking [18], [19], and
cloud computing [20], [21]. Despite the rapid development
of trust models, there are still several issues that need to be
addressed when using trust models in UASNs. Han et al. [22]
first studied trust management in UASNs and proposed an
attack-resistant trust model based on multidimensional trust
metrics (ARTMM). The ARTMM proposes three types of trust
assessment methods, namely, link trust, data trust, and node
trust, with the corresponding trust update mechanisms. The
calculation process considers packet loss rate, link utilization,
packet variability, node energy, and other metrics. However,
the details of the scheme are subjective in terms of variables
and weights, which makes it less scalable.

Bolster et al. [23] proposed a multi-metric trust management
framework based on grey theory for UASNs to cope with
the limitations of single-metric trust prediction. The scheme
considers a variety of metrics, such as transmitted and received
throughput, delay, received signal strength, transmitted power,
and packet loss rate. Additionally, the grey relational analysis
was utilized to normalize and combine the disparate metrics
into a grey relational coefficient, which is ultimately used
as the basis for trust judgments. Despite the advantages of
this scheme over probabilistic methods, the weighting means
adopted in the metric synthesis are still subjective. As a result,
it is difficult to adapt the scheme to complex underwater
applications.

Bolster et al. [24] proposed a machine learning-based ap-
proach to generate metric weight vectors. The study employed
two types of metrics: communication metrics, which include
delay, transmitted power, throughput, offered load, and packet
loss rate; and physical metrics, which consider the variation
in the distance between nodes, the deviation in the direction
between nodes, and the speed of nodes. To achieve a more
flexible and adaptable metric weight vector than subjective
configuration approaches, a random forest regression model
was trained, improving the accuracy of detecting misbehaviors.

Jiang et al. proposed cloud theory-based trust models for
UASNs in [25] and [26] to bolster the adaptability to underwa-
ter characteristics, such as unreliable acoustic channels. Cloud
theory is a method that effectively characterizes the ambiguity
and randomness of trust, and it was used in both studies to
calculate the trust values of nodes. First, three features – mean,
entropy, and hyper entropy – of the cloud model are calculated
for each type of trust evidence. Subsequently, the same feature
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for varying trust evidence is weighted and summed. Finally,
direct and recommendation features are combined to obtain a
feature vector, which is the final representation of the trust
prediction. The core of the solutions lies in the mapping
of model features based on the backward cloud generator;
however, the interaction data in UASNs tend to be sparse,
leading to large deviations in the obtained model features,
thereby limiting the accuracy of trust prediction.

Du et al. [27] proposed a trust cloud migration scheme to
address the uneven energy consumption caused by frequent
updates on the trust cloud model. The proposed trust cloud
migration scheme is suitable for multi-hop and homogeneous
UASNs. The core of data migration lies in determining the mi-
gration destination node. To address the problem, the scheme
designed a destination node determination algorithm based on
simulated annealing. To be more specific, the algorithm selects
the destination cluster based on the average residual energy of
the node clusters and then utilizes the node density accessibil-
ity to determine the migration destination node. Accordingly,
their scheme effectively mitigates the energy imbalance caused
by high-density trust updates; however, it assumes that the sink
node knows the remaining energy of all clusters, which is not
easily satisfied.

Furthermore, Du et al. proposed two customized trust mod-
els for UASNs called ITrust [28] and LTrust [29]. ITrust
focuses on solving the trust instability caused by the noise
in underwater environments. The solution quantifies the effect
of environmental noise as a metric called environment trust
and then combines it with communication trust, data trust,
and energy trust as attributes of the sample, ultimately using
the isolated forest algorithm in ML to classify good and
bad behavior. LTrust is concerned with the perturbation of
trust relationships caused by network topological variability.
Accordingly, the scheme quantifies the topological relation-
ships between neighboring nodes as node importance, which
is embedded into node trust. Consequently, the trust dataset
is composed of four attributes: node trust, communication
trust, environment trust, and recommendation trust. The final
trust assessment of node behavior is realized using the ML
algorithm – LSTM. Both ITrust and LTrust adopt supervised
learning for the final trust classification. However, the under-
water environment is complex, resulting in trust prediction
models based on specific training sets that tend to have poor
generalization capabilities. The problem was also discussed in
our previous work [30].

In our previous work TUMRL [31], we introduced rein-
forcement learning to dynamically update evidence weights by
considering the learning ability of reinforcement learning for
interactive environments. In TUMRL, the weight assignments
of each type of evidence are defined as states, and the
value domains to which the evidence belongs are defined as
actions. When performing trust evaluation, the trustor first
maps the trustee’s actions to the evidence, that is, acquiring
the action. The trustor then executes a state transfer based on
the acquired action to modify the weight assignment for trust
evidence. The Q-learning algorithm continuously optimizes
the process to ensure that the evidence weights selected by
the trustor continually adapt to a variety of attack modes and
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Fig. 1: Structure of a typical heterogeneous underwater acous-
tic sensor network.

environments.
The TUMRL scheme leverages reinforcement learning tech-

nology to enhance performance in the face of variable attack
patterns and dynamic underwater environments. Nonetheless,
it overlooks the impact of heterogeneity within the networks,
resulting in poor scalability when dealing with large-scale,
heterogeneous UASNs. Building upon this research, this paper
further considers the combined influence of equipment hetero-
geneity within sub-networks and environmental heterogeneity
between sub-networks, and introduces the cutting-edge tech-
nology of DRL to enhance the adaptive ability of the trust
model.

This paper also introduces FL for global trust updating to in-
crease the capabilities of cross-domain trust management [32].
Numerous studies have investigated the security challenges
provided by the aggregation of local model parameters in FL,
with some adopting a trust mechanism to check the reliability
of model parameters from local clients [33]–[36]. The scheme
described in [33] utilized blockchain-based trust management
to maintain the credibility of participating devices in order
to guarantee the integrity of model contributions. Bugshan
et al. [34] introduced differential privacy and encoding-based
sharing techniques to ensure the reliability of local model
generation and sharing. To combat the cold start problem in
recommendation systems, Wahab et al. [35] proposed a trust-
based FL approach. The trust management in the FL parameter
aggregation technique differs from the study presented in
this article. This article focuses on security during the data
collection phase, as opposed to the subsequent training phase.

III. SYSTEM MODEL AND ASSUMPTION

A. Network Model

As illustrated in Fig. 1, this analysis considers a decentral-
ized trust management architecture for heterogeneous under-
water acoustic sensor networks. The entire network is logically
divided into a control layer and a data layer with three types
of entities: main controller, local controller, and collector.

The control layer comprises a wave glider on the surface
and multiple AUVs. As the sole main controller, the wave
glider is responsible for updating and scheduling the trust
model while receiving commands from the terrestrial data
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center via a satellite relay to adjust the tasks of the network.
Each AUV, as the local controller, receives commands from
the main controller, and these commands are used to manage
trust modeling for data layer devices in the corresponding area.
It is assumed that both the main and local controllers comprise
sufficient computing, communication, and storage capabilities
to support the trust management system.

The data layer comprises various heterogeneous underwa-
ter devices, including underwater gliders, underwater anchor
nodes, and ocean bottom flight nodes (OBFNs), collectively,
they are referred to as collectors, primarily because they collect
interaction information about each other while collaboratively
performing network tasks. The data layer chooses these three
types of components because they represent underwater equip-
ment with different mobilities. Underwater gliders represent
highly mobile collectors that can move between areas cov-
ered by different local controllers. The OBFNs stand for the
collectors with limited mobility that can only move locally
rather than across regions. Underwater anchor nodes represent
stationary collectors. First, the interaction information of the
data layer is processed into trust evidence and passed to
the local controller. Second, the local controller models the
trust model based on the trust evidence. Ultimately, the main
controller receives the model parameters of different local
controllers for trust updates and feeds back the latest model
parameters.

B. Adversary Model

Owing to the openness of the network, some devices may be
compromised to become malicious nodes and launch internal
attacks, such as packet dropping, denial of service (DoS), and
data tampering. Here, it is assumed that only data layer devices
will be compromised as malicious nodes, primarily due to
the fact that control layer devices are vastly superior to data
layer devices and are located close to the water surface for
regular inspection. In addition, it is assumed that the parameter
transfer between the main controller and the local controllers is
entirely credible, meaning that attacks on the FL process, such
as data poisoning attacks, model poisoning attacks, and free-
riding attacks [37], are not taken into account. Considering that
anomalies in network functionality caused by active attacks
can be captured by security techniques, such as trust models,
we assume that a malicious node launches an attack at each
time slot based on a certain probability to acquire long-term
benefits. Additionally, given the instability of hydroacoustic
communication, and the transient anomalies of the sensors
themselves, we assume that there is some probability for the
normal nodes to perform malicious actions. In summary, all
devices in the network have a probability of performing normal
behavior, called absolute trustworthiness, except that the
absolute trustworthiness of a malicious node is much less than
that of a normal node. Therefore, the goal of this study is
to make the predicted trustworthiness output from the trust
model as close to absolute trustworthiness as possible.

IV. TRUST MODEL BASED ON FEDERATED DEEP
REINFORCEMENT LEARNING

In this section, the proposed scheme FedTM is described
in detail. Figure 2 depicts the workflow of FedTM, which
includes three modules: 1) evidence generation, 2) trust mod-
eling, and 3) model update. Each collector of the data layer
is equipped with an evidence generation module to quantify
the performance of collectors into specific evidence in terms
of communication, energy consumption, and data discrepancy.
Following that, the evidence is input into the local controller
equipped with the trust modeling module for training in DRL.
Ultimately, the model parameters of the policy networks from
different local controllers are input into the update module
equipped on the main controller, and the main controller feeds
back the updated parameters to each local controller following
the FL-based parameter updating. The above steps are repeated
iteratively; that is, the trust model can accurately maintain the
evaluation of the network performance.

A. Trust Evidence Generation

Based on our previous work [30], although UASNs face
diverse attacks, the consequences of these attacks are primarily
reflected in three aspects: communication failure, increased
energy consumption, and data packet tampering. Additionally,
these abnormalities may be affected by the instability of
underwater acoustic communication, which often has charac-
teristics of the multipath effect, time-varying effect, narrow
usable bandwidth, serious signal attenuation, etc. Therefore,
three types of trust evidence, namely communication evidence,
energy evidence, and data evidence, are defined to demonstrate
the impact of malicious attacks and unstable underwater
acoustic channels.

1) Communication Evidence (C): Communication evidence
is typically expressed as C = s

s+f , where s and f represent the
number of successful and failed communications, respectively.
However, this definition fails to address the problem caused
by sparse evidence. For example, when s = 1 and f = 0, C is
equal to 1. Even if the authentic C equals 0.01, the above sit-
uation may occur because the only monitored communication
is successful. This leads to an obvious difference between the
predicted C (= 1) and the authentic C (= 0.01). To address
the above problems, we adopt beta distribution Beta (x;α, β)
as a prior assumption for C. The probability density function
(PDF) of the beta distribution can be expressed as:

f (x;α, β) =
Γ (α+ β)

Γ (α) Γ (β)
xα−1(1− x)

β−1
, (1)

where Γ represents the gamma function and Γ (n) = (n− 1)!
for any positive integer n.

Figure 3 displays the PDF of the beta distribution for
different values of α and β, and the abscissa x corresponds
to the unknown C. Here, α = β = k (k > 1), and the PDF
value of x = 0.5 increases with k, that is, the probability of
C = 0.5 is rising. Hence, the initial prior assumption is set as
Beta (x;α = k, β = k) (k > 1). Subsequently, the parameters
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are updated as αt = αt−1 + s, βt = βt−1 + f . Finally, the
communication evidence at time t is calculated as

Ct = E (Beta (x;αt, βt)) =
αt

αt + βt
. (2)
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Fig. 3: Probability density function of the beta distribution
with different parameters.

2) Energy Evidence (E): Energy evidence E characterizes
the credibility of the trustee in terms of energy, which is
positively correlated with its remaining energy and nega-
tively correlated with its abnormal degree of energy con-
sumption. It should be noted that due to the heterogene-
ity of energy consumption rate levels between underwater
equipment, the abnormal degree should reflect the difference
in the changing trend of energy consumption rate rather
than the levels. Cosine similarity meets this requirement
and is therefore chosen to measure the differences in the
changing trends of energy consumption rates between two
nodes. Assume that E0 and Et represent the initial energy
and current remaining energy of the trustee, respectively;

then, E ∝ Et

E0
. Furthermore, the sequences of energy con-

sumption rates of the trustor and the trustee are assumed
to be xt = [υt−(m−1), υt−(m−1), · · · , υt−1, υt] and yt =
[φt−(m−1), φt−(m−1), · · · , φt−1, φt], respectively, where both
υt and φt represent the energy consumption rate of time t
and m indicates the length of the time window used for
recording. Following that, the standardized vectors, x∗

t and
y∗
t , are obtained by independently performing the Z-score

standardization on each element of the vector xt and vector
yt:

z∗ =
z − µ

σ
, (3)

where z and z∗ indicate the original element and correspond-
ing normalized element in vectors xt and yt, and µ and σ
symbolize the mean and standard deviation of the elements in
the corresponding vector. Subsequently, the cosine similarity
is used to measure the difference between vectors x∗

t and y∗
t :

cos
(
x∗
t , y

∗
t

)
=

m−1∑
i=0

υt−iφt−i√
m−1∑
i=0

υ2
t−i

√
m−1∑
i=0

φ2
t−i

, (4)

where cos
(
x∗
t , y

∗
t

)
∈ [0, 1].

The greater the value of cos
(
x∗
t , y

∗
t

)
, the closer the energy

consumption rate of the trustor and trustee, that is, the lower
the abnormal degree of the trustee’s energy consumption rate.
Thus, E ∝ cos

(
x∗
t , y

∗
t

)
. In summary, energy evidence is

defined as
Et =

Et

E0
cos

(
x∗
t , y

∗
t

)
. (5)

3) Data Evidence (D): Since the nodes tend to employ
multi-hop forwarding to deliver messages, the data between
nodes in adjacent underwater areas have spatiotemporal corre-
lations. Therefore, the similarity between the data of the trustee
and its neighbors is used to characterize data evidence D,
which is improved from our previous work [30]. Our previous
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work ignored the influence of outliers in the neighbor data.
Therefore, the Boxplot method is used to remove the outliers
in the neighbor data before obtaining the data evidence.

Figure 4 illustrates how the Boxplot method filters the data.
The data, such as marine temperature, pressure, salinity, etc.,
are obtained from the neighbors of the trustee, and sorted
in the dark area in the middle of the figure. In the Boxplot
method, data smaller than the lower limit (Q1− 1.5 ∗ IQR)
and larger than the upper limit (Q3 + 1.5 ∗ IQR), are regarded
as outliers, where Q1 and Q3 represent the first quartile and
the third quartile, respectively, while IQR = |Q1−Q3|. Let
{v1, v2, · · · , vm} denote the filtered data, and x represent the
same type of data from the trustee at time t. Accordingly, data
evidence of the trustee at time t is defined as Eq. 6.

Dt =

{
2
(
1−

∫ x

−∞ f (v) dv
)

x ≥ µ

2
∫ x

−∞ f (v) dv x < µ
, (6)

where f (v) = 1
σ
√
2π

exp
(
− (v−µ)2

2σ2

)
and µ and σ symbolize

the mean and standard deviation of the filtered data, respec-
tively.
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Fig. 4: Different parts of a boxplot.

B. Trust Modeling Based on Deep Reinforcement Learning

Upon obtaining evidence, traditional schemes usually gen-
erate trust models via weighted summation of evidence or ML
classification. However, traditional schemes find it difficult to
adapt to the dynamically changing underwater environments
and network topologies owing to the lack of prior knowl-
edge and the sparseness of trust evidence. The DRL method
adopted in this scheme can continuously update the model
parameters by using the interaction between the agent and
the environment to obtain a strategy that adapts to the dy-
namic environment. This section introduces the trust modeling
process based on DRL. Following network initialization, the
main controller implements model pre-training based on a
virtual interactive environment owing to the lack of interaction
experience between network entities. Subsequently, the pre-
trained model parameters are delivered to the local controllers
as the initialization parameters of their local models, which
speeds up the convergence. Each local controller further trains
the model based on actual interactions between collectors in
their respective regions.

The reinforcement learning parameters used in the proposed
scheme are presented below:

1) Agent & Interactive Environment: In the proposed
scheme, the agent is not a specific entity, instead it is
the trustor in each trust evaluation process. The entities
around the trustor, including the trustee and neighbors,
represent the interactive environment. Based on the cur-
rent state s, the agent uses the policy π to evoke an
action a before transferring to a new state s′, while the
interactive environment gives a corresponding reward r.

2) State s: The trust model aims to predict the credibility
of the object by utilizing the interaction between entities,
so the trust evidence introduced in Sec. IV-A is the state.
Each state is a triple, denoted as s = (C, E ,D), where
C, E ,D ∈ [0, 1].

3) Action a: The action is defined as the predicted trust of
the trustor on the behavior of the trustee, a ∈ [0, 1].

4) Reward r: The reward represents a value that is fed back
to the agent via the interactive environment once the agent
performs an action. In the proposed scheme, the reward is
negatively correlated with the deviation of the predicted
trust from the actual trust, and is defined as:

r = −
∑2

i=0
wi(a− s[i])

2
, (7)

where s[i] represents the ith attribute of the state s (i.e.,
the ith evidence); wi = 1 − s[i]∑2

0 s[i]
, which represents

the weight of the ith evidence, that is, the smaller the
evidences (i.e., evidence C is smaller than the evidence E
and D), the more likely there is this type of attack (i.e.,
the communication attack), so a greater weight is given.

5) Policy π: The policy guides the agent to take correspond-
ing actions based on its own state. According to previous
definitions of the state and action, the policy is precisely
the trust model in the proposed scheme.

Based on the above definitions, the deep deterministic policy
gradient (DDPG) algorithm is adopted for model training
because of the continuous state and action spaces. As shown
in Fig. 5, the specific training process based on DDPG can be
outlined as follows.

1) The online policy network outputs an action based on
the current state (st) and adds the action into a stochastic
process (Nt) to increase the exploration.

at = Nt (µ (st;θ) , v) , (8)

where v is updated by shrinking the value during each
learning process.

2) The interactive environment executes the action at, re-
turns a reward rt and the new state st+1.

3) The transition (st, at, rt, st+1) is stored in the replay
buffer as the dataset for training the online policy net-
work.

4) N transitions (si, ai, ri, si+1) are randomly sampled from
the replay buffer as a mini-batch training data for the
online policy network and online value network.

5) The gradient of the online value network is computed as

yi = ri + γQ (si+1,µ (si+1;θ
′) ;w′) , (9)

where γ symbolizes the discount factor.
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Fig. 5: Training framework of the DDPG algorithm.

6) The online value network is updated based on Adam
optimizer [38].

7) The policy gradient of the online policy network is
estimated using the Monte Carlo method:

∇θJ ≈
1

N

∑
i

∇aQ (s, a;w) |s=si,a=ai
· ∇θµ (s; θ) |s=si

(10)
8) The online policy network is updated based on Adam

optimizer.
9) Soft update for the target network parameters θ′ and w′:{

θ′ ← τθ + (1− τ)θ′

w′ ← τw + (1− τ)w′ (11)

Owing to a lack of sufficient interactions between un-
derwater entities, directly using the initial trust model for
training in real environments will lead to long-term instability
in the prediction accuracy. Therefore, based on the above-
mentioned DDPG framework, the main controller initially
implements model pre-training and then distributes the pre-
trained parameters to local controllers for further training.

Pre-training: Following network initialization, the main
controller implements model pre-training based on a virtual
interactive environment. As illustrated in Fig. 6, the work-
flow of the virtual interactive environment comprises five
modules. As mentioned before, the input at of the interac-
tive environment represents the trust score of the trustor for
the trustee, and as a result, module 1 decides whether the
trustor interacts with the trustee with at as the interaction
probability. Furthermore, module 2 randomly generates the
trustworthiness of the trustee, which determines whether the
behavior of the trustee is normal or malicious. Subsequently,
module 3 simulates the interaction between the trustor and the
trustee to update attributes, such as the number of successful
communications, remaining energy, and data accuracy. There-
after, the updated attributes are input to module 4 to obtain
the trust evidence and reward. Finally, module 5 outputs the
transition (st, rt, st+1). Combined with the DDPG framework
and the virtual interactive environment, the main controller

obtains a set of parameters (θ,θ′,ω,ω′) that converges the
model. Finally, the mean of the parameters

(
θ̄, θ̄′, ω̄, ω̄′)

obtained following multiple convergences is delivered to the
local controllers as pre-training parameters.

ta

 1, ,t t ts r s 

virtual interactive 

environment

behavior 

decision
interaction

evidence 

obtainment

environment 

initialization

transition 

output

behavior 

of trustor

behavior 

of trustee

updated 

attributes

r

12 3

4 5

Fig. 6: Workflow of the virtual interactive environment.

Local training: Each local controller initializes its own
training model with the received pre-trained parameters(
θ̄, θ̄′, ω̄, ω̄′). Subsequently, the trust prediction model
µ
(
s; θ̄

)
is distributed to the collectors within its respective

area. Following that, the collectors interact with each other
according to the trust prediction model, and periodically
deliver the transitions {(si, ai, ri, si+1)} to the local controller.
The local controller then stores the transitions from different
collectors to the local replay buffer and adopts the same mini-
batch method to train the local model.

C. Trust Model Update Based on Federated Learning

The local training utilizes the actual interaction experience
between regional entities to update the model, thereby im-
proving the prediction accuracy of the model in the actual
environment. However, fluctuations in the underwater envi-
ronment and changes in network topology can affect historical
experience-based models, rendering them unable to accurately
adjudicate current conditions. For example, the trust model
trained based on local interaction experience may be unable to
accurately adjudicate the trustworthiness of entities from other
regions when movable entities cruise between regions subject
to different local controllers, where the acoustic conditions
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tend to differ. FL makes agents collaboratively learn a shared
predictive model, while all training data remain on the indi-
vidual underwater device (e.g., local controllers), decoupling
model update from the data stored [39]. Therefore, we adopt
a FL framework to globally update the trust model.

LC 1
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LC 2 LC mLC m-1

1
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mθ T

mθ2

Tθ1

Tθ

 
1

1
1

mT T
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 


  θ θ

1T  1T  1T  1T 

Fig. 7: Trust model update based on federated learning.

As indicated in Fig. 7, we consider that the current net-
work contains a unique main controller MC and m local
controllers {LC1, LC2, · · ·, LCm−1, LCm}. Each time T
(T > t), local controllers send their latest model parameters{
θT
1 ,θ

T
2 , · · · ,θT

m,θT
m−1

}
to the MC, it then updates the

global model parameters as follows:

θT+1 = ηθT + (1− η)
∑m

i=1

1

m
θT
i , (12)

where the variable η indicates a soft update coefficient as τ
in Eq. 11, which tends to be a value close to 1.

Finally, the MC sends the updated variable θT+1 to all
local controllers to replace their local parameters. The local
controllers continue updating the local parameters according
to the interaction experience from the underwater environment
and repeat the above updating process with period T .

V. SIMULATION RESULTS AND ANALYSIS

A. Simulation Settings

In this study, the proposed FedTM, and other established
trust models, were simulated using TensorFlow 2.8.0 to eval-
uate and compare their performances. First, we tested the
impact of some key hyperparameters on the performance
of the proposed FedTM, including the learning rate, step
size, and size of the minibatch. Thereafter, the performance
of the FedTM was compared with other related work: the
WEIGHT, ARTMM [22], and TUMRL [31]. The WEIGHT
algorithm is not a published method, but takes the same way
of evidence calculation as the scheme proposed in this study
while utilizing weighted sum of evidences instead of neural
network predictions. The ARTMM algorithm is a classic trust
model for UASNs. Its underlying method for quantifying
trust evidence has been an inspiration for several research
work including ours. The main idea behind TUMRL, our
previous work, is to use reinforcement learning techniques to
dynamically change the weighting of trust evidence to adapt
to a dynamic environment. The performance of the schemes

was compared in terms of average prediction error and energy
efficiency. The experiment uses the trust model’s output, the
trust score, as the interaction probability to lower the frequency
of interactions between nodes with low trust scores, enhancing
the security of data routing. The simulation-related parameter
settings are listed in Table I.

TABLE I: Simulation Parameters

Parameter Value

Network size 500× 500× 500m3

Network sub-region size 250× 250× 500m3

Number of local controllers 4
Number of collectors 100
Communication radius of collectors 150 m
Default initial energy of collectors 1000 J
Update cycle of the local model 1
Update cycle of the global model 5
Mean of normal absolute trustworthiness 0.95
Mean of malicious absolute trustworthiness 0.1

B. Performance of FedTM

The policy network and value network in the DDPG algo-
rithm use gradient ascent and gradient descent for parameter
updates, respectively. Meanwhile, the learning rate is related
to the convergence speed of gradient updates, which in turn
affects the performance of the scheme. Therefore, we first
evaluated the relationship between the convergence of the
FedTM and the learning rate of different orders of magnitude.
The convergence of DRL algorithms is generally measured by
the average reward, which is also used in this study to evaluate
convergence. The average reward refers to the ratio of the
cumulative reward obtained in each episode to the number of
exploration steps. As illustrated in Fig. 8(a), the agent solely
explores and does not learn within the initial 50 episodes to
add noisy experience to the replay buffer. The agent starts
learning from the 51th episode and gradually reduces the
noise added in the action to achieve convergence. Figure 8(a)
illustrates that the convergence is better than other orders of
magnitude when the learning rate is of the order of 10−3.
When the learning rate is too large (10−1), it is difficult for
the algorithm to converge to the optimal solution, and when
the learning rate is too small (10−5), the algorithm requires
more time to converge. Therefore, in subsequent experiments,
the learning rate was set to 10−3.

Figures 8(b) and 8(c) depict the effect of another key
hyperparameter, the size of minibatch, on the convergence
of the algorithm. The former suggests that the convergence
stability of the algorithm enhances as the size of the minibatch
increases, while the latter shows that the convergence speed
is insensitive to the changes in batch size. When the batch
size is small, the number of samples taken from the replay
buffer for training the neural network is smaller each time,
which results in the gradient descent being more susceptible to
individual samples, ultimately making convergence unstable.
Therefore, the size of the minibatch should be as large as
possible. Figure 8(c) further illustrates the running time of
the algorithm at different sizes of the minibatch. Overall, the
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Fig. 8: The influence of key hyperparameters (learning rate, mini-batch size) on the convergence performance of the proposed
FedTM.

average running time increases as the size of the minibatch
rises, suggesting that larger minibatch sizes are not better.
Therefore, the size of the minibatch is set to 32 by default
in subsequent experiments.

C. Comparison with Related Work

1) Comparison of Average Prediction Error: The FedTM
algorithm was compared with the WEIGHT, ARTMM, and
TUMRL algorithms in terms of average prediction error. The
average prediction error (ape) is defined as the mean value
of the difference between the true trustworthiness and the
predicted trust value of all nodes, and it is calculated as
follows.

ape =
1

NMi

N∑
i=1

Mi∑
j=1

|tji − Ti|, (13)

where N refers to the number of nodes in the network involved
in trust evaluation, Mi denotes the number of neighbors of
node i, tji represents the trust prediction of neighbor j for
i, and Ti indicates the true trust value of node i. It is
important to note that we define the average prediction error
as a performance evaluation criterion on the premise that
the objective of this article is to accurately predict the true
trustworthiness of a node, which is the result of the combined
effect of node maliciousness, selfishness, and communication
instability.

Figure 9 illustrates how the average prediction error varies
with the interaction timeslot for the case, where 10% of
the nodes in the network are malicious. In the simulation
experiments, a malicious node randomly executes one of
the three types of attacks: selective forwarding, DoS, and
data tampering, at each timeslot. Moreover, the malicious
node correctly calculates the trust evidence but modifies the
recommended values sent to its neighbors by inverting the true
evidence (evi rec = 1−evi tru), where evi rec and evi tru
refer to the recommended evidence sent to neighbors and the
true evidence, respectively. Based on the results presented in
Figure 9, the average prediction error for all scenarios except
TUMRL exhibits a decreasing trend and stabilizes over time.
Overall, the average prediction error of the proposed FedTM
scheme is lower than that of the other comparative schemes.

Additionally, between timeslot 0 and timeslot 15, the predic-
tion performance of FedTM is inferior to that of the TUMRL
scheme because the initial trust prediction model is trained
by interacting with a virtual environment and therefore has
insufficient prediction accuracy. However, the rapid decrease in
the average prediction error at this stage further demonstrates
the ability of the FedTM scheme to quickly converge and
achieve better prediction accuracy than the other schemes,
validating the reliability of the proposed scheme.
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Fig. 9: Average prediction error versus timeslots of the exam-
ined trust models (FedTM, WEIGHT, ARTMM, and TUMRL).

Figure 10 illustrates the average prediction error versus the
proportion of malicious nodes in the network. The average
prediction error is the result of running the network up to
the 100th timeslot, as the average prediction error for each
scenario has largely reached a steady state at this point. Over-
all, the proposed FedTM scheme significantly outperforms
other comparative algorithms in terms of the average predic-
tion error. Moreover, Fig. 10 depicts an unexpected result,
where the average prediction error of both the FedTM and
WEIGHT algorithms decreases as the proportion of malicious
nodes increases. It can be attributed to the fact that both
of them use the same trust evidence quantification method,
in which only data trust evidence requires recommendation
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Fig. 10: Average prediction error as a function of changing
proportion of malicious nodes.

information from neighbors. However, the proposed data trust
calculation method designs an anomaly recommendation fil-
tering mechanism, which effectively limits the influence of
malicious recommendations. Furthermore, as the proportion
of malicious nodes increases, malicious behavior makes the
true trustworthiness of the malicious nodes more predictable
compared to normal nodes, thereby decreasing the average
prediction error.

2) Comparison of the Average Residual Energy: The ac-
curate functioning of the scheme is supported by the data
interaction between nodes, which is the primary source of en-
ergy consumption. Therefore, we further compare the system
performance by observing the average residual energy (are).
The average residual energy represents the average ratio of the
residual energy to the initial energy of all nodes and is defined
as

are =
1

N

N∑
i=1

Ei

E0
, (14)

where N denotes the number of nodes involved in the inter-
action in the network, Ei represents the energy remaining at
node i at the end of some timeslot, and E0 denotes the initial
energy of the node.

Figure 11 illustrates the variation of the average residual
energy over time in the presence of 10% of malicious nodes in
the network. Overall, the average residual energy significantly
decreases with increasing timeslots for all schemes; however,
the reductions are lighter for FedTM and WEIGHT algorithms.
The reason lies in that they adopt the same evidence generation
method proposed in Sec. IV-A. The method only requires
the support of neighborhood data during the quantification of
data evidence, and otherwise relies on the direct interaction
between the trustor and trustee, thus effectively reducing the
energy consumption of the interaction process compared to
traditional evidence generation strategies. Furthermore, the
proposed FedTM scheme outperforms WEIGHT in terms of
energy consumption because FedTM can predict the true
trustworthiness of attackers more accurately. Therefore, the
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Fig. 11: Average residual energy versus timeslots.
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Fig. 12: Average residual energy with changing proportion of
malicious nodes.

interaction probability of the attackers can be reduced, thereby
reducing the additional energy consumption of the attacked
node. This contribution is ultimately reflected in the fact that
FedTM outperforms WEIGHT in terms of energy consump-
tion.

In Fig. 11, it can be observed that the length of the error
bars gradually increases with time. This is because there are
many random factors in the simulation environment, such as
the probability of interaction between nodes, trust prediction
results, and data generated by nodes, which accumulate their
influence over time, eventually showing up as an increase
in the error of the results. However, this phenomenon is not
evident in Fig. 9, the reason lies in the fact that the average
prediction error is verified with fixed interaction probabilities
in preference to random ones.

In Fig. 12, the performance of the average residual energy
is further tested with different proportions of malicious nodes,
where the values in the vertical coordinate represent all the
results collected at the 100th timeslot. The results presented
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in Fig. 12 reveal that the average residual energy of all the
schemes gradually decreases as the proportion of malicious
nodes rises; however, FedTM outperforms the other schemes
from start to finish. This is due to the fact that FedTM
can effectively detect malicious nodes in the network, which
in turn reduces the probability of interacting with malicious
nodes, thus saving energy in the nodes.

VI. CONCLUSIONS

This study explored the problem of effective trust modeling
in the presence of movable underwater devices, heterogeneous
hydroacoustic environments, and variable attack patterns. A
novel trust model based on federated DRL was proposed.
The entire UASN was divided into sub-networks attached to
different local controllers to enhance cross-domain experience
interaction, and the scheme was centrally regulated by using a
global controller. Based on an improved evidence generation
method, each local controller quantifies the interaction data
between nodes in its jurisdiction into corresponding trust
evidence. The obtained evidence was then fed into the cor-
responding local trust model, which is based on DRL for
trust prediction and model training. The global controller
periodically aggregates and updates the parameters of each
local model using FL. Moreover, the experimental analysis in-
dicates that the proposed FedTM algorithm provides increased
performance compared to previously reported methods, par-
ticularly in terms of defective node detection and energy
utilization. The superiority of the proposed scheme is more
evident when measuring the long-term performance of FedTM,
where the networks are composed of heterogeneous devices
with relatively high dynamics and varying attack conditions.
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