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Abstract—The popularity of microservices in industry has
sparked much attention in the research community. Despite
significant progress in microservice deployment for resource-
intensive services and applications at the network edge, the
intricate dependencies among microservices are often overlooked,
and some studies underestimate the importance of system context
extraction in deployment strategies. This paper addresses these
issues by formulating the microservice deployment problem as a
max-min problem, considering system cost and quality of service
(QoS) jointly. We first study the attention-based microservice
representation (AMR) method to achieve effective system context
extraction. In this way, the contributions of different computing
power providers (users, edge servers, or cloud servers) in the
network can be effectively paid attention to. Subsequently, we
propose the attention-modified soft actor-critic (ASAC) algorithm
to tackle the microservice deployment problem. ASAC leverages
attention mechanisms to enhance decision-making and adapt to
changing system dynamics. Our simulation results demonstrate
ASAC’s effectiveness, prioritizing average system cost and reward
compared to other state-of-the-art algorithms.

Index Terms—Dependency-aware, microservice deployment,
edge computing, attention mechanism, deep reinforcement learn-
ing, network representation
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Fig. 1. Architecture overview, traditional solutions and challenges.

I. INTRODUCTION

The unprecedented expansion of intelligent devices, coupled
with the imperative to facilitate the emergence of 5G and
subsequent communication technologies, heralds a prolifer-
ation of services and applications of considerable demand,
such as face recognition, human-robot interactions, and 3D
gaming [2]–[4], et al. These applications, characterized by
their extensive computational demands or sensitivity to latency,
voracious demand for resources, and the necessity for swift
responses, present formidable challenges. Certain studies [5]–
[7] advocate for the service’s deployment on cloud servers,
leveraging advantages such as rapid elasticity, on-demand
resource pooling, and autonomous configuration. Nonetheless,
transmitting data from devices to distant cloud centers often
incurs unpredictable latency and excessive consumption of
network resources. To address these challenges, it is crucial to
design revolutionary network architecture and service deploy-
ment technologies for the next generation of mobile networks.

Edge Computing (EC) potentially leverages computation
resources in proximity to data sources, e.g., the Base Station
(BS) and User Equipment (UE), reducing backhaul usage and
elevating data access efficiency [8]. Some studies [9]–[11] in-
vestigate the optimization strategies of service deployment un-
der cloud-edge architecture by achieving the minimum service
completion time. However, conditions like dynamic system
environments, heterogeneity of computation capabilities and
complexity of dependencies are not always fully investigated,
resulting in consequences related to over-consumption of
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network resource and low efficiency of decision-making on
deployment strategy, as shown in Fig. 1.

(i) Over-consumption of network resources arises from the
redundant system information in decision-making. Typically,
the hierarchy of the EC networks is sophisticated, including
the UE layer, edge layer and cloud layer, and the multiple
microservices of an application with a dependent sequence of
the execution can be deployed in the same layer or across
the layers. To model the inter-dependency between differ-
ent microservices, traditional methods leverage the directed
acyclic graph (DAG) to encode the dependency information.
However, when solving the optimal microservice deployment
problem in terms of the task completion time, features such
as the topology, size, and type of microservices [12], [13]
are usually overlooked. For instance, task completion time
changes with different sizes of microservices, even for the
same microservice deployed in several locations, the task
execution time will vary. On the other hand, the infrastructure
conditions (e.g., the waiting queue state of the edge server) are
always changing under the dynamic environment, leading to
the heterogeneity of the computation capabilities of the system.
Some studies employ the deep reinforcement learning (DRL)
method [14], [15] to obtain the microservice deployment
strategy by learning the dynamics of the network resources.
However, most existing methods require the transfer of a huge
amount of data, e.g., dependency information between mi-
croservices, changing edge server state, for training, resulting
in the over-consumption of network resources.

(ii) Low efficiency of the decision-making is a consequence
of complex and high-dimensional states and action spaces.
On one hand, the structure of the microservice DAG and the
microservice profiles and dynamic scenarios in hierarchical EC
networks play an paramount role in the overall deployment
of microservices, and the decision-making of the deployment
strategy needs to adapt to various conditions [16]–[18] (e.g.,
the size/type of a microservice, edge server state). On the other
hand, the system context abstracting, e.g., and the microservice
deployment are coupled and will affect each other, making it
challenging to find the optimal solution for both decisions. For
the studies using DRL methods, current decisions of system
information capturing will make the microservice deployment
to be solved in a higher time complexity. In this way, the sys-
tem faces difficulties in handling environments characterized
by complex and high-dimensional states and action spaces,
resulting in lower efficiency.

In this paper, we consider a three-layer UE-Edge-Cloud
network architecture and propose the Attention-based Mi-
croservice Representation (AMR) mechanism and Attention-
modified Soft Actor-Critic (ASAC) algorithms to address issues
of over-consumption and low efficiency by the following two
solutions, respectively, as shown in Fig. 2.

• System information representation: We first study the
delay-sensitive and energy-efficient microservice deploy-
ment (MSD) problem, which is then formulated as a
joint optimization of the overall system cost and the
quality of service (QoS) of UEs. To address the problem
issued above, the DAG is first used to model the internal
execution sequence and the dependency of the microser-

How to obtain the optimal deployment strategy in complex 
and high dynamic environments?

Solution 2: DRL-based microservice allocation strategy

Environment

Policy Networks

Attention-modified Soft Actor-Critic Algorithm

Problem 2:
Complex and high-

dimensional states and 
action spaces

Low efficiency

How to efficiently capture the system information and avoid 
the redundant information on the decision-making?

Solution 1: System information representation

Attention-based microservice representation Algorithm

Problem 1:
Chaos and redundant 
system information 

Over-consumption

BS

BS

UE UE UE

1

2

3 4

5

6
Cloud

1

6

5

43

2
Microservice

Features

Infrastructure 
Features

E
m

beddings

T
ransform

er 
decoder

FC
 residual 
block

L
inear

Representation 
Map

Soft Value 
Function

Fig. 2. The issues and solutions of AMR and ASAC algorithms.

vices, and the embedded information of the infrastructure-
service pair (structure) is further injected into the service-
chain attention for better learning of the importance
of service. Furthermore, an attention mechanism-based
microservice representation is carried out, it focuses
on the important system semantic information selection
within the entire network and avoids the interference of
redundant information on the system decision-making.

• DRL-based microservice deployment strategy: Distin-
guished from the state-of-the-art methods, we first model
the MSD as a Markov Decision Process (MDP) with
continuous state space, and the attention-modified soft
actor-critic [19] algorithm is utilized to derive optimal
decision-making. After the AMR algorithm filters system
information, the state and action space can be effectively
reduced. At the same time, Soft Actor-Critic (SAC)
encourages exploration and enhances the stability and
robustness of learning. Additionally, it outputs a probabil-
ity distribution of actions, suitable for high-dimensional
state and action spaces, thereby mitigating the risk of
converging to local optima during the training process.

Finally, we evaluate the proposed solution compared to
the original SAC (w/o attention), Double DQN, Random
Allocation, and the ablation algorithms. Our results demon-
strate significant performance improvements with the proposed
ASAC, increasing the average system reward by 20% to 140%
with the episode rising, and around 30% under different MS,
UE and ES numbers.

The remainder of this article is organized as follows: Section
II surveys the related studies of microservice deployment.
In Section III we introduce the system model, including
service-DAG and execution models in each layer. Then the
optimization problem is formulated in Section IV, and the
experimental simulation is conducted in Section VII. Finally,
we conclude the article in Section VIII.

II. RELATED WORK

Microservice deployment has been drawing great attention
from academics in terms of the benefits of flexibility, loose
coupling, and scalability. Especially for computation-intensive
and latency-sensitive applications, each microservice can work
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independently on distributed computing architecture with re-
quired computation resources and communication bandwidth.

Traditionally, the microservices were successfully deployed
and executed in the cloud server by using virtual machines
(VMs) with virtualization technology. To increase the relia-
bility and parallelism of the system, many efforts have been
devoted to designing container-aware auto-scaling deployment
schemes in cloud servers [20]–[23]. For example, Shihong et
al. [20] addressed the complex coupling relationship between
request scheduling and container retention decisions, and
proposed Onco, which incorporated the two aspects mentioned
above for multiple vehicle services. Literature [24] designed
a container-aware strategy with auto-scaling for microservices
deployment in the cloud environment. The requested appli-
cations were deployed on best-fit lightweight containers, to
achieve the minimum deployment time. Other studies inves-
tigated the service deployment problem from the view of the
virtual network functions (VNFs), e.g., Xiaojun et al. [25]
examined the challenge of highly available and cost-effective
service function chains (SFCs) under edge resource limita-
tions and time-varying VNF failures, they proposed RAD, a
reliability-aware adaptive deployment scheme to efficiently
place and back up SFCs. Similarly, A. Jindal et al. [26]
addressed the challenge of identifying the capacity for each
microservice and evaluated the implementation performance
in tool Terminus with four different applications. However,
most of the previous studies on the design of microservice de-
ployment strategies mainly focused on cloud-centric solutions,
resulting in excessive bandwidth or spectrum consumption
when transmitting massive data from the cloud center to the
edge server or UE.

Some other studies employed the flexible multi-layer com-
puting architecture to deploy the microservice, i.e., by migrat-
ing a certain execution of microservices to the edge of the
network, meeting the requirement of fast-response [27]–[30].
M. Alam et al. [31] proposed a highly dynamic microservice
deployment system with the aid of docker technology and
edge computing, the fault tolerance and system availability
are dispersed across different layers, to achieve the mini-
mum impact on the overall system performance. Some pre-
vious works focused on optimizing the communications delay
through dynamic service placement but ignored the effect of
access network selection [32]–[34], e.g., Bin et al. studied the
problem of jointly optimizing the access network selection and
service placement for MEC, intending to improve the QoS by
trade-off the access delay, communication delay and service
switching cost.

Meanwhile, to tackle the challenges raised by the dynamic
environment, DRL was an emerging and promising solution
where the MDP was employed to model the interactions
between users and the environment. For example, the liter-
ature [12] introduced an edge-cloud collaborative architecture
and proposed a microservice deployment strategy by utilizing
a deep deterministic policy gradient to minimize the service
access delay. Qiying et al. [35] introduced a novel client
selection mechanism for leveraging the correlations across
local datasets to accelerate the training process, and proposed
a neural contextual combinatorial bandit algorithm to establish
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Fig. 3. Illustration of service DAG of fingerprint identification.

relationships between client features and rewards, to enable the
adaptive selection of client. To extract the relationship among
microservices, W. Lv et al. [36] employed an undirected
weighted interaction graph, i.e., DAG, to reflect the internal
dependencies of the EC networks, and proposed a multi-
objective microservice deployment strategy based on reward-
sharing deep Q-learning, to achieve the minimum communi-
cations overhead while balancing the load trade-off. However,
the above studies construct the strategy by merely considering
a single factor of the system (e.g., energy consumption),
ignoring the wealth system context information derived from
both the infrastructure and microservice conditions.

III. SYSTEM MODEL

In this section, we first introduce the overall three-layer
hierarchical architecture with an illustration of service DAG.
The execution models on each layer are further demonstrated.
Some main notations are summarized in Table I.

A. Architecture Overview

The overall three-layer architecture is shown in Fig. 1 which
consists of a cloud data center C in the Cloud Layer, edge
servers K = {1, 2, ..., k} in the Edge Layer, and mobile users
M = {1, 2, ...,m} in the UE Layer. Given M = {1, 2, ...,m}
UE, S = {S1, S2, ..., Sn} services, each service elaborates
a directed acyclic graph (DAG). Denote the service DAG
SD
n = {MSn, En}, where MSn = {msin|i = 1, 2, · · · , I, · · · }

is the set of microservice of Sn and En = {eijn |i, j ∈
{1, 2, ..., I}, i < j} represents the set of the internal dependen-
cies of microservices, i.e., the precedence relation such that
microservice msin should be completed before msjn starts.
Taking fingerprint identification as an example illustrated in
Fig. 3, it contains five sequential processes: fingerprint image
acquisition, enhancement preprocessing, feature extraction,
minutiae matching, and decision making [37]. The whole
process is initiated from the forward equipment (FE), and the
dependency exists in the following way: the system is required
to complete the feature extraction before minutiae matching
starts, and finally, the database (DB) receives the service when
all the microservices are accomplished. Specifically, we define
FE and DB as two virtual microservices mson and msI+1

n

indicating the entry and exit of service S1, respectively.
Furthermore, we define each microservice msin in Sn is

associated with the two-tuples (cin, d
i
n), where cin is the

required CPU cycles to finish the microservice msin and din
denotes the size of the input microservice. Thus, we have
c0n = cI+1

n = 0, which ensures the place where service Sn

starts and ends. We define a deployment variable αi,l
n = {0, 1},
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l ∈ I, which indicates that the deploy location is on which
device in which layer, and I = {M,K,C} denotes the set
of all the infrastructure, e.g., αi,K(3)

n = 1 indicating the
microservice msin is deployed on the number 3 edge server of
Edge Layer, and 0 is otherwise. Recall that α0,l

n = αI+1,l
n = 1,

which ensures the beginning and ending deployment of service
Sn at FE and DB, respectively.

We have the following definitions to introduce the time and
energy consumption of service execution:

Definition 1 (Ready Time): The time that the microservice
msin has all the prerequisites (e.g., input data and computation
resources) for execution. Let RT i,l

n , l ∈ I denote the ready
time of microservice msin executed at UE Layer, Edge Layer
and Cloud Layer, respectively.

Definition 2 (Finish Time): The time that the microservice
msin accomplishes all the workload cin. We define FT i,l

n , l ∈ I
as the finish time of microservice msin executed at UE Layer,
Edge Layer and Cloud Layer, respectively.

Definition 3 (Wireless Receiving Time): Accordingly, we
define RT i,wt,l

n , FT i,wt,l
n , l ∈ I as the ready time and finish

time of the microservice msin when receiving the wireless
channel indicated by the superscript wt from the Edge Layer
and Cloud Layer, respectively.

B. UE Layer Execution Model

In the UE layer execution model, each microservice msin is
deployed on the user equipment. The latency of local execution
consists of two parts: 1) The microservice processing time for
computing workload on user equipment m; 2) The receiving
time of the pre-microservice msi−1

n if it is deployed at
Edge Layer or Cloud Layer.

Assume that each UE has σm cores with the cm CPU
frequency, i.e., the maximal number of a UE microservice
processing ability is σm. Denote FTσ,m the minimum finish
time for all microservices in UE m. Furthermore, we have
FTσ,m = 0 when an idle core is assumed in UE m. Then the
ready time is calculated as follows:

RT i,m
n = max

m′∈pre{m}
gi,mn , (1)

and

gi,mn = max{FT i,m′
n , FT i,wr,m′

n , FT i,wr,k
n , FT i,wr,c

n , FTσ,m′},
(2)

where pre{m} is the set of immediate predecessors of mi-
croservice msin, note that the execution of msin will not start
unless all the predecessors have been accomplished due to the
internal dependencies.

Accordingly, the local execution time depends on the ac-
tual operating frequency cUE

m by T i,m
n =

di
n

cUE
m

. Thus, the
finish time of microservice msin at UE Layer is FT i,m

n =
RT i,m

n + T i,m
n . The corresponding energy consumption of

microservice msin at local execution can be obtained as
ϵi,mn = κmd

i
n(c

UE
m )2 [38], where κm is the coefficient related

to chip types. Note that we have ϵ0,mn = ϵI+1,m
n = 0 for the

FE and DB, respectively.

TABLE I
NOTATION DESCRIPTION

Notation Description
RT i,l

n Ready time of microservice
FT i,l

n Finish time of microservice
RT i,wt,l

n Ready time receiving from wireless channel
FT i,wt,l

n Finish time receiving from wireless channel
cin Required CPU for microservice
din Size of input microservice
αi,l
n Deployment variable

qi,xn Indicator function of UE’s satisfaction
wx Feature embeddings of infrastructure
wy Feature embeddings of microservice
τOxy Structure importance on meta-chain O

µO
xy Normalized structure attention score function

wO
x Infrastructure representation

ΛOu Final score function of a service-chain O

ωOu Normalized score function of ΛOu

Wx Final infrastructure embedding
Wy Final service embedding
St System state space
At System action space

Rt(St,At) System reward
H Policy entropy

ΓπQ
(
st,at

)
Modified bellman backup operator

DKL KL divergence operation
JQ (ϱ) Soft Q-function
JV (ϖ) Soft value function
Jπ(κ) Policy function

C. Edge Layer Execution Model

The microservice msin is deployed at an edge server k on
Edge Layer, assume that the user m sends the microservice
msin directly to edge server k via cellular links, denoted
by T i,w,k

n = din/vm,k, vm,k is the uplink transmission rate
between edge server k and UE m [39]. In this paper, we set
the channel gain as gm,k = −4 db power of the distance
between UE m and the edge server k. In this case, the energy
consumption of UE m is ϵi,kn = gm,k × T i,w,k

n .
Thus, the ready time on Edge Layer can be obtained as

follows:
RT i,k

n = max
m′∈pre{m}

gi,kn + T i,w,k
n , (3)

and

gi,kn = max{FT i,m′
n , FT i,wr,m′

n , FT i,wr,k
n , FT i,wr,c

n }. (4)

Suppose that each edge server equips σk
m cores with the ckm

CPU frequency and the minimum accomplishment time for all
the microservices is denoted as FTσk

m . Note that we consider
both edge servers and cloud server can satisfy the demand
to perform concurrent microservices potentially, thus we have
σk
m =∞. Therefore, the execution time of microservice msin

on Edge Layer can be calculated as

T i,k
n =

din
ckm

. (5)

Consequently, the finish time of microservice msin on
Edge Layer is FT i,k

n = RT i,k
n +T i,k

n . The energy of microser-
vice execution in edge server k is ϵi,kn = κkd

i
n(c

k
m)2.
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D. Cloud Layer Execution Model

If the microservice msin is deployed in the Cloud Layer,
similar to the execution on Edge Layer. We consider that the
microservice msin is first sent to the edge server and then
delivered to the cloud server directly via fibre connections,
the data transmission delay can be ignored in this way. Thus,
the ready time of microservice msin on Cloud Layer can be
regraded as

RT i,C
n = FT i,k

n . (6)

The CPU capable of the cloud is denoted as cC , and the
execution time of msin is TC

n,i = din/c
C . Accordingly, the

energy consumption in Cloud Layer can be obtained as ϵi,Cn =
κCd

i
n(c

C)2. Therefore, the finish time of microservice msin is
presented as FT i,C

n = RT i,C
n + T i,C

n .

IV. PROBLEM FORMULATION

Recall that the deployment variable αi,l
n = {0, 1}, and l ∈ I,

here we define the average cost of time-varying energy (CTE)
ξm as follows:

ξm = ωt × (FT I+1,l
n − FT 0,l

n ) + ωe × E, (7)

where E is the total energy consumption of all devices, ωt

and ωe holding ωt + ωe = 1, are the coefficients of execution
time and energy consumption, respectively.

Besides, the microservices deployment fee (MDF) is ζl, l ∈
I, where ζm ≫ ζk ≫ ζC . Therefore, the overall system cost
can be expressed as follows:

A =
∑

i∈msin

∑
x∈X

∑
n∈SD

n

(
αi,l
n ζ

l +
1

X

X∑
x=1

ξx

)
, (8)

where X ⊆ I is the number of devices executing the
microservices, and one of our objectives is to minimize the
overall system cost, shown as follows:

min
α

A (9)

s.t. ωt + ωe = 1 (9a)
l ∈ I, x ∈ X, (9b)
α = {0, 1} (9c)

ζm ≫ ζk ≫ ζC (9d)

Define δ = tUE−FE+tmsin
is the whole time consumption,

where tUE−FE is the communication latency between UE and
FE, and tmsin

is the serving time, which is regarded as msin
processing time related on the hardware conditions of devices.
Furthermore, assume that δmax is the maximal tolerant time
of the UE with the demand for the delay-sensitive services,
and we denote qi,xn as the indicator function that satisfying
the demand of a UE when executing the microservices.

qi,xn =

{
1, δi,xn < δmax

0, otherwise
, (10)

and we define the quality of service (QoS) of the UE as:

B =
∑

i∈msin

∑
x∈X

∑
n∈SD

n

αi,l
n q

i,x
n (11)

The other objective of this work is to maximize the overall
QoS for UE in the system,

max
q

B

s.t. α = {0, 1}
qi,xn ∈ {0, 1}

(12)

By comprehensively considering both the system cost and
the QoS, we can balance different performance metrics crucial
for the system’s overall efficiency. Finally, the problem of
microservices deployment (MSD) can be modelled as the
max−min joint optimization problem Z(A,B) = η1A+η2B,
which ensures that we first minimize the overall system cost,
thereby achieving a balanced solution that maximizes the
consistent QoS across all UE in the system, shown as follows:

max
q

min
α

Z(A,B)

s.t. η1 + η2 = 1,

(9a)− (9d), (10)

(13)

where the coefficients η1 and η2 balance the trade-offs between
the two subproblems A and B. The constraints (9a) − (9d)
ensure the feasibility and adherence to predefined criteria, such
as resource limits and binary decision variables. Note that the
quadratic terms αi,l

n q
i,m
n in the objective (11), the problem

is a binary integer linearly constrained quadratic program-
ming (BILCQP) problem. Meanwhile, the terms αi,l

n ζ
l in the

objective (8) is a mixed binary integer linearly constrained
programming (MBILP). It has been proved as a NP-hard [40]
problem, thereby it is not feasible to solve the problem by
heuristic algorithm or dynamic programming because of its
high computational and spatial complexity and large scale.
Thus, a deep reinforcement learning (DRL) method is derived.
Before introducing the proposed DRL framework, it is neces-
sary to embed the representation of nodes and microservices in
the network to cope with the excessive state and action space.

V. ATTENTION-BASED MICROSERVICE REPRESENTATION

This section first introduces the attention mechanism-based
microservice representation (AMR) layer to extract the system
features using a multi-head attention mechanism, shown in
Fig.4. First, the features of microservice and infrastructure are
extracted into the structure attention space. Then, the service-
chain attention space is derived by feeding with the obtained
weighted representation. The final infrastructure and service
embedding are concluded.

A. System Infrastructure Embedding

The infrastructure features fx, x ∈ I is based on the
calculation of service and energy overhead, related to the
features of user devices, edge servers, and the cloud server.

• For UE Layer, we abstract the features fm, m ∈M from
the following information: microservice makespan fMM

m ,
CPU computation ability fCPU

m , microservice expectation
finish time fEFT

m , distance from the local edge server fDm ;
• For Edge Layer, we have the features fk, k ∈ K by

considering the information of CPU computation ability
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fCPU
k , channel state information fCSI

k , microservice
waiting queue fMWQ

k ;
• For Cloud Layer, we extract the features fc, according to

the information about computation ability on each virtual
machine fVM

c , microservice waiting for queue fMWQ
c .

Aiming to learn the embedding of the infrastructure status,
the features extracted from the infrastructures are fed into the
MLP (multilayer perceptron) with 2 hidden layers and 1 output
layer, containing 512 neurons on each layer. Furthermore,
we use the transformation matrix H to map the features
of the infrastructure status fx, the process of obtaining the
embedding wx can be expressed as wx = H · fx.

B. Microservice Embedding

In order to capture the overall structure of the deployment
of service and make the optimal re-deployment policy for each
microservice msin ∈ MSn. Considering the dependencies of
microservices, we employ the same transformation matrix H
to map the microservice’s features fy, y ∈ msin (e.g., the
size/type of microservice). Thus, the corresponding embedding
wy is expressed as wy = H · fy .

C. Structure Attention

We utilize the self-attention mechanism to learn the im-
portance of the infrastructure-service (structure) neighbours.
Given a meta-chain of the service DAG O, the structure self-
attention τxy indicates the importance of structure (service
embedding) y to the structure (infrastructure embedding) x
on the meta-chain. The expression is shown as follows:

τOxy = βSS([wx,wy],O), (14)

where βSS(·) is the deep neural network-based self-attention.
It is applied to learn the cross-dependencies, thereby identi-
fying the importance of each service embedding in relation
to each infrastructure embedding. Note that it can be shared
by the infrastructure-service pairs when they are in the same
meta-chain, since the mapping patterns are similar to each
other under a certain meta-chain.

This is achieved by computing the attention scores between
each pair of infrastructure and service embedding using the
masked attention mechanism deployed to inject the graph
structure information. We have the normalized structure at-
tention score expressed by the softmax function as follows:

µO
xy = softmax(τOxy) =

exp(ψ(wO · [wx||wy]))∑
h∈NO

h
exp(ψ(wO · [wx||wh]))

, (15)

where wO indicates the chain-attention vector for the service
meta-chain O, NO

h is the set that the neighbors h of microser-
vices deployed in infrastructure x on the service meta-chain
O1, and ψ(·) denotes the LeakyReLU (with negative input
slop α = 0.2) function with the concatenation operation [·||·].

1Say if ms11 in Fig. 3 is allocated on infrastructure x, the neighbors ms31
and ms21 are in the set NO

h .

Thus, we can obtain the representation of the infrastructure
x by integrating the learnable weighted sum of the neighbour-
ing service y as:

wO
x = ψ(

∑
y∈NO

y

µO
xy ·wy), (16)

Furthermore, the multi-head attention mechanism is utilized
to stabilize the learning process [41] by applying U inde-
pendent heads to compute the hidden states. Specifically, we
calculate the sum of the Eq. (16) for U times and obtain the
average, resulting in the following output representation:

wO
x = ψ(

1

U

U∑
u=1

∑
y∈NO

y

µO
xy ·wy). (17)

Finally, we respectively have U groups of chain-specific rep-
resentations of the infrastructure embedding space WOu

x , and
the service embedding space WOu

y , where u = {1, 2, . . . , U}.
These attention scores quantify how much each service embed-
ding should influence each infrastructure embedding, thereby
identifying the importance of each microservice embedding
concerning each infrastructure embedding.

D. Service-chain Attention

Generally, the infrastructure can be associated with mi-
croservice through multiple meta-chains with different seman-
tic information in a DAG. Therefore, from the infrastructure
perspective, one infrastructure (e.g., edge server) could ob-
tain multiple semantic-specific service embeddings generated
based on different meta-chains. To obtain a comprehensive
representation of the infrastructure, a novel service-chain
attention mechanism is proposed to learn the importance of
different meta-chains for semantics selection.

For each meta-chain, semantic-specific service embeddings
are generated by considering the unique semantic information
conveyed by the meta-chain. The attention mechanism then
computes attention scores for each meta-chain to determine its
relevance. The service-chain attention takes U chains of infras-
tructure embeddings {WO1

x ,WO2
x ,WO3

x , . . . ,WOU
x } learned

from structure attention as input, and learn the attention values
of service-chain as follows:

(ωO1 , ωO2 , . . . , ωOU ) = ΩO(WO1
x ,WO2

x , . . . ,WOU
x ),

(18)
where ΩO indicates the deep neural network promised service-
chain attention. Thus, the chain attention can capture multi-
semantic information revealed by meta-chains in the system.

We can obtain the score function ΛOu for the service-chain
Ou as follows, indicating the importance of different meta-
chains: First, the learned service-chain embedding is derived
from the structure attention WOu

x by applying a nonlinear
transformation function, which captures the complex depen-
dencies and semantic information within the service-chain.
Next, the score function of the service-chain is calculated by
measuring the similarity between this transformed embedding
and a predefined service-chain attention vector g, using meth-
ods such as dot product or cosine similarity to quantify their
relevance. Finally, to obtain the overall score function ΛOu in
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the following, we average the importance scores of all service-
chain embeddings, providing a comprehensive assessment of
the significance of each meta-chain and enabling effective
prioritization and optimization in the deployment of services
on edge computing resources.

ΛOu =
1

| U |

U∑
x∈U

gT · tanh
(
W ·wOu

x + b
)
, (19)

where W is the weight matrix and b denotes the bias vector.
Similarly, the final service-chain attention can be calculated

by the normalized softmax function of score function ΛOu :

ωOu = softmax
(
ΛOu

)
=

exp
(
ΛOu

)∑U
x=1 exp (Λ

Ox)
. (20)

In this way, the weight ωOu can be considered as the impor-
tance of the service-chain Ou for the microservice deployment
rating prediction, wherein the higher Ou scored, the more
important the service-chain is.

Taking the learned meta-chain attention as coefficients in the
system, the final infrastructure (FI) embedding Wx and final
service (FS) embedding Wy can be derived by the aggregation
of the service-chain embeddings as:{

Wx =
∑U

u=1 ω
Ou ·WOu

x , x ∈ I
Wy =

∑U
u=1 ω

Ou ·WOu
y , y ∈ msin

. (21)

This service-chain attention mechanism allows the model to
dynamically select and emphasize the most relevant semantic
information from multiple meta-chains, thus providing a richer
and more accurate representation of the infrastructure. By
capturing the importance of different meta-chains, the model
can effectively integrate diverse semantic insights.

The overall process of the AMR algorithm is shown in Algo-
rithm 1. In the initialization phase, we obtain the microservice
DAG sDn and input the infrastructure fx and microservice
features fy as well as the service-chain set (Line 1). For
the infrastructure and microservice on each service-chain Ou,
we first select the neighbours of microservices which are
deployed in infrastructure from the set NO

h , then calculate
the structure attention weight µO

xy (Line 4-11). After getting
the learnable infrastructure representation wO

x by (17), we
have the infrastructure and microservice embedding, then the

Algorithm 1 AMR Algorithm
1: Initialize: Microservice DAG SD

n = {MSn, En};
Infrastructure features fx, x ∈ I;
Microservice features fy, y ∈ msin;
The service-chain set O1,O2, . . .OU .

2: Output: The learnable structure attention weight µO
xy;

The service-chain attention weight ωOu ;
The final infrastructure and microservice representation
Wx and Wy;

3: for Ou ∈ {O1,O2, . . . ,OU} do
4: for t = 0, 1, 2, ..., T do
5: Compute the infrastructure and microservice embed-

dings wx ← H · fx, wy ← H · fy .
6: for x ∈ I do
7: Select the neighbourhood microservices deployed

in infrastructure from the set NO
h ;

8: for y ∈ msin do
9: Calculate the structure attention weight µO

xy;
10: end for
11: end for
12: Calculate the learnable representation of the infras-

tructure wO
x by (17);

13: Obtain the infrastructure and microservice embed-
dings WOu

x and WOu
y .

14: Compute score function ΛOu by (19).
15: Calculate the weight of final service-chain attention

ωOu by (20).
16: Obtain the final infrastructure and microservice em-

beddings Wx and Wy by (21), respectively.
17: end for
18: Return µO

xy , ωOu , Wx and Wy .
19: end for

final service-chain attention ωOu is obtained by normalizing
the score function ΛOu , we get the final infrastructure and
microservice embeddings lastly (Line 12-17). The iterative
processes of the AMR algorithm, as well as the calculations
involved in attention mechanisms and embedding updates, are
what primarily determines its computational complexity. It it-
erates over U service chains, T time steps, and I infrastructure
features, resulting in an external complexity of O(U · T · I).
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For each infrastructure feature, the algorithm processes Nh

neighbouring microservices, contributing an additional factor
of O(Nh). Matrix multiplications and non-linear transfor-
mations drive the core operations, which involve computing
embedding and attention weights. Specifically, embedding
computations and attention weight calculations (Eq. (14)-(19))
have a complexity of O(d2) due to matrix operations, while
normalized softmax operations (Eq. (20)) and final embedding
aggregations (Eq. (21)) contribute O(U ·d) for each feature and
microservice. In this way, we have the overall computational
complexity of the AMR algorithm as O(U · T · I ·Nh · d2).

VI. ATTENTION-BASED DEEP REINFORCEMENT
LEARNING

The system learns the deployment strategy by considering
the obtained representation context of FI and FS. In this paper,
we adopt the attention-aided soft actor-critic (ASAC) method
to solve the aforementioned joint optimization problem. The
implementation of the proposed ASAC algorithm is shown in
Fig. 5.

A. DRL-based Microservice Deployment Strategy Design

We consider the deployment policy learning to be in the
continuous action spaces, and a finite-horizon Markov Deci-
sion Process (MDP) is deployed as follows:

1) System State: Recall that we obtain the FI embedding
Wx and FS embedding Wy from the AMR algorithm. Here
we define the system state vector space in a manner of two-
tuple St = {st}×(x,y) = {stx, sty}, where stx = (Wt

x)x∈I and
sty = (Wt

y)y∈msin
indicate the system infrastructure state and

microservice placement state, respectively.
2) System Action: For the service deployment, the system

decides which microservice is executed in which infrastruc-
ture. Formally, we define the system action space as At =
{atn}, where atn = {αi,l

n }. To this end, the system action can
be expressed as follows:

At = {atn}×Sn = {αi,l
n },∀n, i ∈ msin,∀l ∈ I. (22)

3) System Reward: Considering system reward is usually
calculated as the weighted sum of current reward r, in this
manner, we formulate the system reward according to the joint
optimization objective, expressed as:

Rt(St,At) = η1At + η2Bt, (23)

where At = (αi,l
n ζ

l+ 1
X

∑X
x=1 ξ

x)t denotes the overall system
cost and Bt = (αi,l

n q
i,x
n )t is the QoS, respectively2. The

coefficients hold η1+η2 = 1, and A, B are both non-negative,
the system reward meets Rt > 0.

In this paper, we focus on minimizing the system cost while
improving the QoS, the deployment policy π(at|st) : St → At

designed for mapping from the system state under the dynamic
environment to the action. Let r(at, st) ∼ Rt(St,At) denote
the current reward at t-th transition. By utilizing the SAC

2Note that in order to calculate the long term reward of the learning process,
here we take the immediate system cost and QoS as the reward input at each
round t, rather than the long term system objective defined as (13).

mechanism, we consider the stochastic policy by augmenting
the cumulative system reward with the expected entropy of the
policy over ρπ(st) in the finite-horizon scenario. Our objective
is to find the optimal policy π∗, shown as follows:

π⋆ = arg max
π

T∑
t=0

E(st,at)∼ρπ

[
r
(
st,at

)
+ ϕH

(
π
(
· | st

))]
,

(24)
where ϕ > 0 is the trade-off coefficient indicating the relative
importance of the entropy term against reward, so as to
control the stochastic of the optimal policy. H (π (· | st)) =
Eat∼ρπ

[−logπ (at | st)] is the policy entropy which measures
the uncertainly of the random variable.

B. Soft Policy Model

In the maximum entropy paradigm, policy evaluation and
policy improvement alternate in order to learn the optimal
maximum entropy policies. For a deterministic policy, we can
obtain the soft Q-value starting from any function Q : S×A→
R iteratively with a modified Bellman backup operator Γπ

given by:

ΓπQ
(
st,at

)
≜ r

(
st,at

)
+ γEst+1∼p

[
V
(
st+1

)]
, (25)

where V (st) = Eat∼π [Q (st,at)− log π (at|st)] is the soft
state-value function.

Accordingly, we have the entropy-augmented soft returns as
follows:

rsoft(s
t,at) ≜ r

(
st,at

)
+ γEst+1∼ρπ

[
θH
(
π
(
· | st+1

))]
,

(26)
denotes that the accumulated returns under the system state st

obtained by the current policy π.
To this end, we can calculate it for policy π by repeatedly

computing the modified operator Γπ according to the follow-
ing lemma.

lemma 1: Given the entropy-augmented return, rsoft(st,at),
the soft Q-value function Qϱ(s

t,at) converges to the optimal
soft Q-value function Q∗

ϱ(s
t,at) under the policy πκ in the

finite action space A.
Proof: To show the convergence of the soft Q-value

function, we start by considering the Bellman equation for
the entropy-augmented return:

rsoft(s
t,at) = r(st,at) + γEst+1∼ρ(s

t+1|st,at)
[
Vϖ(st+1)

]
,

(27)
where

Vϖ(st+1) = Est+1∼πκ
(·|st+1)

[
Qt+1

ϱ − θlog πκ
(
at+1|st+1

)]
.

(28)
The soft Q-value update is given by:

Qϱ(s
t,at) = rtsoft+γE(st+1,at+1)∼ρπ

[Vϖ(st+1,at+1)]. (29)

Substituting Vϖ(st+1) into the soft Q-value update equation,
we have:

Qϱ

(
st,at

)
=rt + γEst+1∼ρπ

(
st+1|st,at

)
[Eat+1∼πκ

(
·|st+1

)
[Qϱ

(
st+1,at+1

)
− θlogπκ

(
at+1|st+1

)
]].

(30)
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Rewriting the update as a recursive relation, we get:

Qϱ

(
st,at

)
=rt + γEst+1∼ρπ,at+1∼πκ

[Qϱ

(
st+1,at+1

)
− θlogπκ

(
at+1|st+1

)
.

(31)

To establish convergence, we analyze the fixed point of this
recursive update. Let Qfixed

ϱ (st,at) be the fixed point of the
above equation, satisfying:

Qfixed
ϱ

(
st,at

)
=rt + γEst+1∼ρπ,at+1∼πκ

[Q∗
ϱ

(
st+1,at+1

)
− θlogπκ

(
at+1|st+1

)
.

(32)
Recall the modified Bellman backup operator Γ in Eq. (25), we
seek to show that Γ is a contraction mapping, which ensures
the convergence to a unique fixed point. Thus, for any two
Q-value functions Q1 and Q2, we have:

Γ ∥ Q1 −Q2 ∥≤ γ ∥ Q1 −Q2 ∥ . (33)

This follows from the properties of expectation and the bound-
edness of the entropy term.

Since γ < 1 and Γ is a contraction mapping. By the
Banach fixed-point theorem [42], the sequence of Q-value
functions generated by the Bellman update converges to a
unique fixed point Qfixed

ϱ . Thus, the soft Q-value function
Qϱ(s

t,at) converges to the optimal soft Q-value function
Q∗

ϱ(s
t,at) under the policy πκ.

Proof completes.
The agent can concurrently learn the entropy-augmented

policy evaluation and soft policy improvement by alternately
updating the policies towards the exponential of a new Q-
function. The particular choice can be guaranteed to result
in an improved policy in terms of its soft value. The main
purpose is to find the new deployment policy πnew which
is better than the current policy πold. Denote the Π as the
set of policies, and we have the constraint π ∈ Π. To obtain

the guaranteed deployment policy improvement, we update the
policy by using Kullback-Leibler (KL) divergence, and output
the Gaussian distribution as follows:

πnew(·|st) = arg min
π′∈Π

DKL

(
π′ (·|st) ∥ exp (Qπold (st·))

Zπold (st)

)
,

(34)
where DKL(·) is the KL divergence operation, and the parti-
tion function Zπold (st) is used to normalize the distribution.
Note that Zπold (st) is always intractable and usually can be
ignored due to it contributes nothing to the gradient concerning
the new policy. In this way, it is noticed that the new policy
πnew can achieve a higher value than the old one in terms of
the objective of Eq.(24). To this end, we have the following
lemma to formalize the improvement process.

lemma 2: Let πold ∈ Π and let πnew be the optimizer of
the minimization problem defined in Eq.(34). Then we have
Qπnew

(st,at) ≥ Qπold
(st,at), ∀(st,at) ∈ S × A, where |

A |<∞.
Proof: First, let Jπold(π′(·|st)) = DKL (π′(·|st)||·).

Recall that expression of soft value function V (st), we can
expand the KL-divergence and obtain the expectation as

Jπold
(π′ (· | st))

≜ DKL (π′ (· | st) ∥ exp (Qπold
(st, ·)− logZπold

(st)))
=
∫
π′ (at | st) (logπ′ (at | st)

+logZπold
(st)−Qπold

(st,at))dat

= Eat∼π′ [logπ′ (at | st) + logZπold
(st)−Qπold

(st,at)]
(35)

In this way, there always exists a policy πnew = πold ∈ Π,
holding that

Jπold
(πnew(· | st)) ≤ Jπold

(πold(· | st)) (36)

then apply the standard convergence proof from literature [19],
and lemma 1 leads to the convergence to Qπnew

.
Proof completes.
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C. ASAC Learning Process

In order to deal with the large continuous domains, the
function approximators for both Q-function and policy are
employed by alternating between optimizing both networks
with stochastic gradient descent (SGD). We employ a param-
eterized soft Q-function Qϱ(s,a), value function Vϖ(st) and
the deploy policy πκ(a | s), where ϱ and κ are the coefficients
of networks, and the policy can be given as a Gaussian with
mean and covariance by the neural networks.

The soft Q-function parameters can be trained by minimiz-
ing the soft Bellman residual, shown as follows:

JQ (ϱ) = E(st,at)∼D

[
1

2

(
Qϱ

(
st,at

)
− Q̂

(
st,at

))2]
, (37)

and

Q̂
(
st,at

)
=r
(
st,at

)
+ γE(st+1,at+1)∼ρπ

[Qϱ̄

(
st+1,at+1

)
− θlogπκ

(
at+1 | st+1

)
].

Then (37) can be optimized via computing its stochastic
gradients as:

∇̂ϱJQ (ϱ) =∇Qϱ

(
st,at

)
(Qϱ

(
st,at

)
− rt

− γ[Qϱ̄

(
st+1,at+1

)
− θlogπκ

(
at+1 | st+1

)
]

=∇Qϱ

(
st,at

)
(Qϱ

(
st,at

)
− rt − γVϖ̄

(
st+1

)
)

(38)
where the ϖ̄, from a target value network Vϖ̄, is used to
stabilize the training process by exponentially moving the
average of the soft Q-function weights.

The soft value function Vϖ(st) is to be trained by minimiz-
ing the mean squared error (MSE) as follows:

JV (ϖ) =Est∼D[
1

2
((Vϖ(st))− Eat∼πκ [Qϱ(s

t,at)

− logπϖ(at | st)])2],
(39)

where D is the replay buffer storing the historical experiences,
then we can estimate the (39) by using the unbiased estimator:

∇̂ϖJV (ϖ) =∇ϖVϖ(st)(Vϖ
(
st
)
−Qϱ(s

t,at)

+ logπϖ(at | st)])2].
(40)

In this way, it is observed that the actions are selected
according to the current policy, rather than from the replay
buffer D.

Similarly, the policy parameter can be trained by directly
minimizing the KL-divergence from (34), shown as follows:

Jπ(κ) =Est∼D,̊at∼Å[logπϖ
(
fϖ
(̊
at; st

)
| st
)

−Qϱ

(
st, fϖ

(̊
at; st

))
],

(41)

where å is an input noise vector, sampled from a fixed
spherical Gaussian distribution, holding fϖ (̊at; st) = at. In
this way, we can approximate the gradient as follows:

∇̂κJπ (κ) =∇κlogπκ
(
at | st

)
+∇κfκ

(̊
at; st

)(
∇at logπκ

(
at | st

)
−∇atQ

(
st,at

)) (42)

The process of the proposed ASAC is shown in Algorithm 2.
Input the system state {st}×(x,y) and action {at}×Sn obtained
from AMR layer (Line 3), compute the current reward and
next system state at each episode (Lines 4-9), Then, the soft

Algorithm 2 ASAC Algorithm
Initialize: Infrastructure features fx, x ∈ I;
Soft Q-function parameters ϱ1, ϱ2;
Value function parameters ϖ and target value network
parameters ϖ̄. Soft policy parameters κ.

2: for t = 0, 1, 2, ..., T do
Obtain the system state st from Algorithm.1;

4: for each episode do
Get the system action at according to the input sys-
tem state st in actor-network, holding at ∼ πκ(a

t |
st).

6: Obtain the current reward rt and the next system state
st+1.
Store the quadruplet into replay memory D ←
{(st,at, rt, st+1)}

⋃
D.

8: Randomly sample a batch of N samples from D.
end for

10: for each gradient step in batch N do
Update the soft Q-function parameters ϱ and ϱ̄ ac-
cording to (38).

12: Update the soft value function parameters ϖ̄ ← τϖ+
(1− τ)ϖ̄ according to (40).
Update the soft policy parameters κ according to
(42).

14: end for
end for

Q-function, value function, and soft policy parameters will be
updated until convergence (Lines 10-14).

The computational complexity of the proposed ASAC al-
gorithm can be comprehensively analyzed by considering
the key processes, e.g., MDP process, gradient updates, and
parameter optimisation. The algorithm begins with initializing
infrastructure features and Q-function parameters, which has
a complexity of O(1). It then proceeds with an outer loop
that runs for T times. Within each time step, the proposed
ASAC selects actions based on the policy network πκ with
a complexity of O(d) and computes the current reward and
next state, both operations being O(1). Storing transitions in
the replay memory and sampling batches involve O(1) and
O(N) operations, respectively. Furthermore, the computation-
intensive part of the proposed ASAC involves updating the soft
Q-function parameters ϱ and ϱ̄, value function ϖ, and policy
parameters κ via gradient descent, each with a complexity
of O(P ), where P denotes the number of parameters in
the neural networks. The soft Q-function is updated using
the soft Bellman Equation (Eq. (30) and (29)), which in-
cludes expected value computations over future states, adding
O(P ) complexity for each update. Additionally, the policy
update through KL-divergence minimization (Eq. (33)-(34))
and entropy-augmented returns further contribute to the overall
complexity. In conclusion, we have the total computational
complexity of the proposed ASAC as O(T ·E · (N +G ·P )),
where E is the number of episodes, N is the batch size, G
represents the number of gradient steps, and P accounts for
the parameter updates in the networks.
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VII. EXPERIMENT

A. Experimental Settings

In this section, we conduct the experimental simulations
in the Python environment, the main parameter values of
computation ability of UE layer cm, edge layer ckm, and cloud
layer cC are uniformly set at 1.0–1.2 GHz, 2.4–2.5 GHz, and
3.0 GHz, respectively. The number of microservices ranges
from 5 to 20, with a uniform size of [300 kb, 500 kb]. The
number of UE and edge servers are set in the range of [5, 10]
and {3, 5, 10}, respectively. The discount rate γ is 0.85, and
the batch size is 128. We set the learning rate as 3e − 4, the
system runs 1000 episodes, and all the experimental results are
the average values for 20 runs. Other simulation parameters
in this work are similar to [39] and we summarize some
important parameter settings in Table. II in the following.

TABLE II
MAIN SIMULATION PARAMETERS SETTINGS

Parameter Value
cm 1.0-1.2 GHz
ckm 2.4-2.5 GHz
cC 3.0 GHz

Microservice number [5, 20]
Size of microservice [300 kb, 500 kb]

UE number [5, 10]
Edge server number {3, 5, 10}

Discount rate γ 0.85
Batch size 128

Learning rate 3e− 4
Coefficient of execution time ωt 0.5

Coefficient energy consumption ωe 0.5

The data is generated in the form of the service DAGs by
a random graph generator [43], where the depth of a DAG
is limited from 2 to 5, and the parameters of fat (affects
the height and width of the DAG3), desity (determines the
number of edges between two levels of the DAG), and regular
(determines the uniformity of the number of tasks in each
level) are set as [0.3, 0.5, 0.7], [0.6, 0.7, 0.8], and [0.5, 0.7,
0.9], respectively.

B. Performance Metrics and Baselines

1) Performance Metrics: To evaluate the performance of
the proposed algorithm, we first demonstrate the measurements
of the proposed ASAC in terms of average system cost, QoS,
and reward under different numbers of microservices (MS),
user equipment (UE), and edge servers (ES).

Recall that the average system cost function is derived from
(9) which considers the time-varying energy consumption and
deployment fee. Moreover, we design the average system QoS
based on (12) that outputs the performance of the proposed
algorithm from the user part. Furthermore, the performance of
average system reward is integrated with the aforementioned
two metrics from the DRL model-design perspective. In this

3The width in each level is defined by a uniform distribution with a mean
equal to fat. The height is created until MSs are defined in the DAG. The
width of the DAG is the maximum number of tasks that can be executed
concurrently.

way, we carry out the system cost, QoS, and reward at each
time slot, and then obtain the average outputs.

2) Baselines: The comparisons of the following three al-
gorithms are derived:

• Soft Actor-Critic (SAC) [19]: The original SAC algo-
rithm without considering the attention-aided mechanism.

• Double Q-Learning (DDQN) [44]: A classical deep
reinforcement learning method is proposed by using
experience replay to learn in small batches.

• Random allocation: The microservices are randomly
allocated in the system.

• All Local: The microservices are only deployed and
executed on local user equipment.

• All Edge: The microservices are only deployed and
executed on the edge servers.

• Cloud First: The microservices tend to be executed on
the cloud server.

(a) System reward with different batch sizes.

(b) System reward with different learning rates.

Fig. 6. Performance of average system reward with different batch sizes and
learning rates.

To validate the effectiveness of the proposed ASAC algo-
rithm, recall that the optimization objective (13) comprises two
sub-problems: minimizing the system cost and maximizing the
system QoS. Besides, the system reward function represents
the long-term cumulative gains of these two sub-problems.
Hence, we first compare the immediate reward performance
by evaluating the average system cost and system QoS. This
part illustrates the network performance comparison in terms
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(a) Average system cost with different MS number. (b) Average system cost with different UE number. (c) Average system cost with different ES number.

Fig. 7. Performance of average system cost with different MS, UE, and ES numbers.

(a) Average system QoS with different MS number. (b) Average system QoS with different UE number. (c) Average system QoS with ES number.

Fig. 8. Performance of average system QoS with different MS, UE, and ES numbers.

of the cost of CTE, i.e., finish time (FT) jointly energy
consumption, and user QoS, respectively. Furthermore, we
compare the performance in terms of average system reward,
which effectively demonstrates the advantages of the proposed
learning algorithm architecture. Additionally, we also present
performance under different batch sizes and learning rates.

C. Simulation Results

We first conduct the convergence performance of the av-
erage system reward with different learning rates and batch
sizes, respectively. As shown in Fig. 6(a), we observe that
varying the batch sizes has distinct effects on the reward
curves. A batch size of 64 demonstrates fast initial conver-
gence but exhibits significant fluctuations, indicating instabil-
ity in training. When the batch size is 128, the curve shows
smoother behaviour with moderate initial convergence and
improved stability. Nevertheless, a batch size of 256 provides
the most stable performance, though it has a slower initial
convergence. These results suggest that larger batch sizes
enhance training stability and final performance but at the
expense of slower initial convergence, highlighting the need
to balance convergence speed and stability when selecting
batch sizes. Fig. 6(b) shows the performance of system reward
under different learning rates. However, there is a significant
difference in the convergence rate among the three rates. The
performance reaches stability when lr = 3e− 4 after the 300
episodes, while lr = 3e− 2 and lr = 3e− 3, the curves start
to level off after 800 and 600 episodes, respectively. It shows

that a higher learning rate gives a quicker convergence speed.
Accordingly, the batch size and learning rate are respectively
set as 128 and 3e− 4 for the hereafter simulations.

1) Scalability and Efficiency Performance: In considering
the equal importance of both latency and energy consumption
to user experience in equation (7), the weights ωt and ωe are
set to 0.5. Additionally, the structures of MS are randomly
generated with the DAG depth limited to 5. This section
evaluates the performance of average system cost with varying
numbers of MSs, UEs, and ESs. From Fig.7(a) and Fig.7(b),
it is observed that the average system cost increases with the
number of MSs and UEs. Conversely, Fig. 7(c) shows that the
average system cost decreases as the number of ESs increases.
The increase in system cost with more MSs and UEs can be
attributed to the higher network resource occupancy, which
results in increased costs. On the other hand, an increased
number of ESs enhances network computation capabilities,
thereby reducing the overall system cost.

From Fig.8, it is evident that the average system QoS
improves with the increasing number of MSs, UEs, and ESs.
The performance significantly increases in the scenario with 10
UEs and 5 ESs, achieving nearly an 8-fold improvement when
the number of MSs is increased from 5 to 20, as depicted in
Fig.8(a). Fig. 8(b) illustrates the case with varying numbers
of UEs while maintaining 20 MSs and 10 ESs. It can be
observed that with 20 UEs, the system QoS performance peaks
after 400 episodes. Conversely, the system exhibits a faster
convergence rate with 10 UEs. These results are somewhat
counterintuitive, considering that the QoS function is designed
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(a) Average system reward with different MS num-
ber.

(b) Average system reward with different UE num-
ber.

(c) Average system reward with different ES num-
ber.

Fig. 9. Performance of average system reward with different MS, UE, and ES numbers.

to reflect the accumulated satisfaction of UEs. Accordingly,
the average system QoS performance enhances as the number
of UEs increases over time. In contrast to the previous two
cases, Fig. 8(c) shows that the system achieves almost identical
performance with 5 ESs compared to 10 ESs. This indicates
that the performance benefits saturate at a certain number of
ESs, highlighting the diminishing returns on system QoS with
further increases in ESs beyond a certain threshold.

We demonstrate the performance of the average system
reward in Fig. 9, which exhibits trends similar to the previously
discussed evaluation cases. In Fig. 9(a), the average system
reward significantly improves as the number of MSs increases.
Specifically, the reward is approximately 7 times higher when
the number of MSs is increased from 5 to 20, and 1.67
times higher when the number of MSs is increased from
10 to 20. This substantial increase is due to the efficient
utilization of network resources, as more MSs can handle a
greater volume of tasks, leading to higher cumulative rewards.
In Fig. 9(b), the system reward improves by 1.75 times and
37.5% when the number of UEs is increased to 20 compared
to 10 and 5, respectively. This enhancement is attributed to the
increased number of UEs, which bring more network resources
into the system. With more UEs, there is a higher demand
and utilization of resources, resulting in better overall system
performance and reward, even though the number of MSs
remains constant. Fig. 9(c) displays the average system reward
with varying numbers of ESs. The performance trend here is
similar to that observed in Fig. 8(c). The system reward is
relatively stable when the number of ESs increases from 5
to 10. This stability indicates that the system reaches a point
of diminishing returns with additional ESs. Beyond a certain
number of ESs, the improvement in system performance and
reward is marginal. This behaviour suggests that there is an
optimal number of ESs for the given system configuration,
beyond which additional ESs do not significantly enhance
performance. The figures highlight that the average system
reward increases significantly with the number of MSs and
UEs due to better resource utilization and higher task-handling
capacity.

2) Convergence Performance: Fig. 10(a) demonstrates that
the proposed ASAC algorithm significantly outperforms the
SAC, DQN, and Random algorithms, achieving improvements

of up to 15.8%, 22.2%, and 120%, respectively, in an evalu-
ation setup with 20 MSs, 20 UEs, and 10 ESs. This superior
performance of ASAC is attributed to several key factors. First,
ASAC’s advanced feature extraction capabilities enable it to
effectively capture the system’s state, leading to more informed
decision-making. Second, it optimizes resource allocation
and utilization, minimizing latency and energy consumption.
Third, the decision-making process and reinforcement learning
techniques allow it to learn optimal policies for task offloading
and resource management, resulting in faster convergence,
especially noticeable after 300 episodes. Additionally, the
ability to handle dynamic environments and scalability en-
sures high performance even as system configurations change.
Furthermore, its balanced consideration of latency and energy
consumption optimizes both aspects simultaneously, ensuring
system efficiency and sustainability. In contrast, while SAC
and DQN perform better than the Random algorithm, they
lack the advanced capabilities of ASAC, resulting in similar
but lower performance levels. The Random algorithm’s poor
performance highlights the importance of intelligent algorithm
design in optimizing system performance.

Moreover, from Fig. 10(b), it is observed that the Random
scheme achieves the best performance when the number of
MSs is 5, due to the sufficient availability of UEs and ESs
allowing for efficient random allocation of a small number
of MSs. However, as the number of MSs increases, the
performance of all schemes improves significantly, except for
the Random scheme. The proposed ASAC algorithm consis-
tently outperforms the other schemes, reaching the highest
performance levels due to its advanced adaptive learning and
predictive capabilities, which allow it to efficiently allocate
resources and manage tasks based on real-time feedback. The
proposed ASAC provides the ability of feature extraction
and targeted task prioritization to ensure optimal resource
utilization, while its balanced optimization of latency, energy
consumption, and computational efficiency further enhances
performance. Additionally, ASAC’s scalability ensures that
it maintains high performance even as the system grows,
making it an ideal choice for dynamic and large-scale network
environments where efficient resource management is crucial
for maximizing system rewards.

Fig. 10(c) illustrates the reward performance with varying
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(a) Average system reward with different episodes. (b) Average system reward with different MS number.

(c) Average system reward with different UE number. (d) Average system reward with different ES number.

Fig. 10. Comparisons of average system reward under different episodes, MS, UE, and ES number.

numbers of UEs, with the numbers of MS and ES set to
20 and 10, respectively. The Random algorithm maintains a
stable trend as the number of UEs increases since most of the
MSs are stochastically allocated to UEs initially. However, the
proposed ASAC algorithm significantly outperforms the other
schemes, showing much better performance as the number
of UEs increases. The performance of the proposed ASAC
is attributed to its ability to fully extract critical features
from the system and optimize deployment at a lower cost.
This capability allows ASAC to efficiently manage resources
and enhance system reward, demonstrating its effectiveness in
handling increased UEs compared to SAC, DQN, and other
baseline schemes.

From Fig. 10(d), the performance of the proposed ASAC
algorithm shows an initial improvement followed by a de-
crease as the number of ESs increases, achieving the highest
reward performance when the number of ESs is 10, and then
declining at 20 ESs. In contrast, other schemes like SAC
and DQN exhibit a stable, increasing trend. This behaviour
is due to the ASAC algorithm’s efficient utilization of system
resources, which are fully occupied and optimized at 10 ESs.
However, when the number of ESs increases to 20, the system
becomes overloaded with higher computational demands for
network representation, leading to a decrease in performance.

The ASAC algorithm’s ability to balance resource allocation
and computational efficiency allows it to outperform other
schemes under optimal conditions, highlighting its advantage
in managing system resources effectively.

VIII. CONCLUSION

In this paper, we have investigated the microservice de-
ployment (MSD) problem in hierarchical edge computing
networks, to jointly minimize the overall system cost and
maximize the quality of service (QoS) of users. To achieve this
goal, the internal dependency of the microservices is revealed
by employing the directed acyclic graph (DAG) to model
the execution sequence of the microservice. We focus on the
crucial information in the networks that impacts the decision-
making of microservice deployment strategies and have pro-
posed attention-based microservice representation (AMR) to
extract the system context better. Specifically, we have first
embedded the information of the network infrastructure (e.g.,
the makespan, CPU computation capabilities, channel state)
and microservice itself (e.g., the input size/type) respectively.
Then, the service-chain attention is constructed to learn the
importance level of the different service DAGs by coupling the
two information above embedding. The final infrastructure and
microservice embedding will be utilized in the forthcoming
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strategy design to tackle the NP-hard MSD optimization
problem, which is formally defined as a BILCQP problem.
To effectively adapt to the continuous deployment problem,
we modelled the MSD problem as an MDP and proposed
the attention-modified soft actor-critic algorithm (ASAC) to
solve it. The experimental simulation results have shown the
superiority of the proposed algorithm.
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