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Abstract—Edge caching is an emerging technology for ad-
dressing massive content access in mobile networks to sup-
port rapidly growing Internet of Things (IoT) services and
applications. However, most current optimization-based methods
lack a self-adaptive ability in dynamic environments. To tackle
these challenges, current learning-based approaches are generally
proposed in a centralized way. However, network resources may
be overconsumed during the training and data transmission
process. To address the complex and dynamic control issues,
we propose a FederAted Deep reinforcement learning-based
cooperative Edge caching (FADE) framework. FADE enables base
stations (BSs) to cooperatively learn a shared predictive model by
considering the first-round training parameters of the BSs as the
initial input of the local training, and then uploads near-optimal
local parameters to the BSs to participate in the next round of
global training. Furthermore, we prove the convergence of the
proposed FADE, and it achieves the expectation convergence.
Trace-driven simulation results show that the proposed FADE
framework reduces 92% of performance loss and average 60%
system payment over the centralized deep reinforcement learning
(DRL) algorithm, achieves only a 4% performance loss of the
desirable omniscient oracle algorithm, and obtains 7%, 11%
and 9% network performance improvements compared to some
existing schemes, i.e., least recently used (LRU), least frequently
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Index Terms—Internet of Things, Edge Caching, Cooperative
Caching, Hit Rate, Deep Reinforcement Learning, Federated
Learning.

I. INTRODUCTION

With the rapid enhancements of wireless access technology
and the Internet of Things (IoT), massive Internet services and
applications are gradually migrating to mobile networks. Due
to the extensive access of sensors, massive interconnections
via IoT devices (e.g., smartphones, tablets and smartwatches)
are embedded in people’s daily lives. For instance, as reported
in [1], the number of IoT devices will surpass 10 billion by
2020, and higher real-time quality service requirements (e.g.,
heart rate monitor, step count and outdoor video live) from
these devices are required. Facing the rocket-rising network
traffic load and Quality of Service/Experience (QoS/QoE) of
user demands, enormous challenges have emerged for mobile
networks and the IoT [2]–[5].

In particular, due to the integration of powerful sensoring
and computing functions, IoT devices are equipped with intel-
ligent identification, behavior tracking and daily management,
heart rate monitoring, etc. [6]–[8]. Meanwhile, the application
of short-range communication technology enables these IoT
devices to form a variety of ad hoc network application sce-
narios (e.g., content airdrops and Apple Edge Cache Service).
For these scenarios, reliable content transmission may fail to
be provided due to the performance fluctuation of nearby IoT
devices. Thus, it is feasible to cache the content on multiple
nearby IoT devices with certain storage capabilities [9]–[11].

Moreover, edge computing has been regarded as a promising
technology that can bring computation and caching services in
proximity to the network edges (e.g., base stations (BSs) and
IoT devices) from the mobile network operator (MNO) or the
cloud. This paper considers that IoT devices are handled by
people to enable operations (e.g., request or receive messages
or sensoring). We consider a general cooperative edge caching-
supported IoT architecture illustrated in Fig. 1. To improve the
resiliency of QoS/QoE and provide the best performance for
IoT devices with content service requirements (e.g., system
update package) from the internet service provider (SP),
related applications exist. For instance, Apple Inc. recently
launched the Apple Edge Cache service [12], enabling the
delivery of Apple content services directly to the equipment
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Fig. 1. Cooperative edge caching-supported IoT architecture.

within SP partner networks. Caching the requested contents
in edge nodes (e.g., BSs) are similar to that in IoT devices,
which improves the efficiency of content access compared to
excessive downloading via backhaul links [13]–[15].

Many efforts have been devoted to addressing the resource
allocation issues in traffic offloading for massive IoT devices
(especially for mobile devices). The studies in [16]–[19]
investigated the architectures of collaborative edge caching in
mobile networks. The authors in [20]–[23] optimized the issue
of content access delay by collaborative caching among BSs,
thereby improving the QoS of users. Other existing schemes
have been proposed to design and optimize edge caching
framework from the perspectives of energy consumption [24]
and context awareness [25].

Recently, learning-based approaches have also been widely
utilized to design and optimize edge caching [26]–[29]. For in-
stance, deep reinforcement learning (DRL) was considered for
comprehensive resource allocation, as in [30]. This approach
maximized the long-term reward of energy consumption and
required no prior knowledge of the considered networks. An
assumption was made that the devices are sufficiently powerful
to train the DRL agents independently. However, IoT devices
can only support lightweight neural networks with small-scale
data processing. In addition, most of the traditional DRL
algorithms train the data in BSs or a datacenter by sharing the
original data, leading to a large amount of network resource
consumption during the data transmission process [31], [32].

To cope with the dynamic environment and ensure data
localization training for IoT devices, we expect to optimize
the edge caching problem in a long-term and decentral-
ized fashion. Motivated by the aforementioned, we propose
a FederAted Deep reinforcement learning-based cooperative
Edge caching algorithm (FADE), which enables IoT devices
(or user equipment (UE)) 1 to cooperatively learn a shared
model while keeping all the training data on the individual
device. The proposed FADE is performed in a decentralized

1In this paper, we use UE to denote the IoT device hereafter.

model. First, a UE obtains the initial training model from the
local BS, improves it by learning from the local data in the
device, and summarizes the update. Then, only the update is
sent to the BS, where all the updates from participating UEs
will be averaged to improve the shared model.

The main contributions of this paper are summarized as
follows:

• We investigate the issue of federated DRL for IoT with
decentralized cooperative edge caching. Particularly, we
model the content replacement problem as a Markov De-
cision Process (MDP) and propose a Federated Learning
framework based on Double Deep Q-Network (DQN) to
address the problem of data sampling in the uncontinuous
huge spaces.

• We propose a FADE framework, which can enable fast
training and decouple the learning process from the data
stored in the cloud in a distributed-centralized way, which
keeps the data training in the local UEs. In addition, we
prove that the FADE is L-smooth and µ-strong and derive
its expectation of convergence.

• Trace-driven simulation results show that the proposed
FADE framework reduces 92% loss performance and
average 60% system payment over the centralized DRL
algorithm and outperforms the existing LRU, LFU and
FIFO by 7%, 11% and 9% improvements, respectively.

The remainder of this paper is organized as follows. Sec. II
summarizes the previous work. We establish the system model
and formulate the optimization problem in Sec. III. The frame-
work design of the proposed FADE is presented in Sec. IV.
Trace-driven simulation results evaluate the effectiveness of
the proposed framework in Sec. V. Finally, Sec. VI concludes
this paper.

II. RELATED WORK

For caching-supported IoT networks, existing studies can be
divided into the following two categories.

The first category is to utilize traditional methods based on
convex optimization or probability modeling to address the
content placement problem for IoT networks. For instance,
[33] focused on maximizing traffic offloading and reducing
the system costs by designing a hierarchical edge caching
strategy. [34] considered the problem of the optimal bandwidth
allocation and minimized the average transmission delay by
deploying a greedy algorithm of cooperative edge caching.
Vural et al. [35] proposed a content replacement strategy
with multi-attribute joint optimization in terms of content
lifetime, the request rate of users, and the hop information
between the source user and the destination. To efficiently
optimize the caching resources of IoT devices, [36] exploited
probabilistic caching in heterogeneous IoT networks in order
to improve traffic offloading. The content caching problem in
IoT networks requires continuous optimization. In other words,
various attributes (e.g., content popularity and user mobility)
in IoT networks are constantly evolving. However, these
strategies are often difficult to adapt to dynamic environments
and hard to deploy due to the global information required in
practice.
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The second classification is based on learning algorithms
such as machine learning/deep learning, which learns key at-
tribute features (e.g., user request behavior, content popularity,
and user mobility distribution) in the network to optimize
the content caching strategy. [37], [38] showed that RL has
great potential for the utilization in the scheme design of
content caching in BSs. Specifically, [37] proposed a cache
replacement strategy based on Q-Learning to reduce traffic
load in future cellular networks, and reinforcement learning
(RL) was also employed for cache placement [38] by using
a multi-armed bandit (MAB). Chen et al. [39] proposed a
popularity-based caching strategy for IoT networks by deploy-
ing deep neural networks to predict the near future popularity
of IoT data. However, most centralized learning algorithms are
prone to posing high cache diversity and storage utilization,
which leads to excessive network communication resource
consumption. On the other hand, the distributed learning
method requires much cache and action space, which will also
cause the above problems.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the topology of cooperative
edge caching-supported IoT systems and then discuss the delay
model. Next, the cache replacement model is demonstrated. Fi-
nally, we formulate the optimization problem of edge caching
for IoT systems. Some key parameters are listed in Table I.

A. Topology of Cooperative Edge Caching-Supported IoT
Systems

The topology of cooperative edge caching-supported IoT
networks is illustrated in Fig. 2. Particularly, in the considered
IoT network, a high number of geographically distributed UEs
(e.g., smartphones, tablets, and smartwatches.) are served by
some BSs via wireless cellular links, and BSs are connected
via wired optical cables. Here, each BS is deployed with an
edge server for computation and caching, and thus, each BS
can cache various contents to satisfy the demands of content
services for IoT devices. As a result, UEs can fetch their
requested contents either locally by edge servers or directly
by downloading the contents from SPs (in the cloud) to the
BSs via the MNO core.

Considering a hierarchical IoT network, N = {1, 2, ..., Nb}
fully connected BSs with a finite cache size of C and U =
{1, 2, ..., Nu} UEs are distributed in the service area. Denote
F = {1, 2, ..., F} as a library of contents that are supported
by Internet SPs and that all UEs may access in the system
for a relatively long time. Denote Df , f ∈ F as the size of
content f 2.

Let (Pf )F×1 be the global popularity, which indicates the
probability distribution of content f requested from all UEs in
the network, and let pnf be the local popularity of content f
under BS n. We consider that Pf =

∑
n∈N pnf , and (Pf )F×1

2We consider D ={D1, D2, ..., Df , ...DF} to be the size of local datasets
as well, which will be introduced in Section IV-B.

TABLE I
KEY PARAMETERS AND NOTATIONS.

Notation Meaning
F Total number of contents
Nb Number of BSs
Nu Number of UEs
C Cache size
F Library of popular con-

tents
Df Size of content f

(Pf )F×1 Global popularity of con-
tent f

M Wireless channels
dcn, dP , db Transmissions delay be-

tween BS n to UE, BS and
SPs, BS and BS, respec-
tively

vu,n Downlink data rate be-
tween BS n and UE u

Pu,f Preference of UE u for
content f

sci,n The set of content caching
state in BS n with each
decision epoch i

χi The state of BS during
each decision epoch i

Φ(χi) = {alocali , aco−BS
i , aSPi } System action with the s-

tate χi

R(χ,Φ) Reward function
Q(χ,Φ;wwwi) and Q̂(χ,Φ; ŵiŵiŵi) Q values of mainNet and

TargetNet, respectively
L(wwwi) Loss function of Double

DQN
Fj(w) Loss function of Federat-

ed DRL

follows the Mandelbrot-Zipf (MZipf) distribution 3 [42] as

Pf =
(If + τ)−β∑
i∈F (Ii + τ)−β

, ∀f ∈ F , (1)

where If is the rank of content f in descending order of
content popularity and τ and β denote the plateau factor and
skewness factor, respectively.

B. Delay Model

We consider the content access delay for a UE as the
round-trip time to receive the requested content. From Fig.
2, db denotes the transmission delay of the BSs’ cooperation
and dp is the delay between the BS and SPs. The wireless
transmission delay dc can be regarded as the period of a
UE obtaining the content from the local BS. Considering
M = {1, 2, ...,M}, wireless channels are deployed, and
au ∈ M is the channel that is assigned to UE u by BS.
Similar to [43], we can obtain the downlink data rate between
BS n and UE u as follows:

vu,n = B log2

(
1 +

qugu,n
σ2 +

∑
v∈U\{u}:av=au

qvgv,n

)
, (2)

where B denotes the channel bandwidth, σ2 represents the
background noise power, qu is the power consumption of BS
n transmission to UE u, and the channel gain gu,n can be
determined by the distance lu,n between BS n and UE u.

3Note that it is also widely used in mobile IoT scenarios [40] [41].
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Fig. 2. Topology of the caching-supported IoT system.

Considering Pu,f = ru,f/Ru, f ∈ F reflects the preference
of UE u for content f , and

∑
f∈F Pu,f = 1, where ru,f is

the number of UE u requests for content f and Ru is the
total request number of UE u in the network. Furthermore,
we define Pu,nf = Pu,faun as the local UE preference for
content f under BS n, aun is the association probability of
UE u and BS n. Thus, the wireless transmission delay dcn can
be obtained as

dcn =
∑
u∈U

∑
f∈F

Pu,nf
Df

vu,n
. (3)

C. Cache Replacement Model

We model the process of content cache replacement in a
BS as a Markov decision process (MDP) [44]. The state of
the cache and request, system action and feedback reward are
demonstrated.

1) Cache and Request State: During each decision epoch i,
we define the content cache state as sci,n := {sci,n,f}, n ∈ N ,
f ∈ F . Here, sci,n,f is the cache state in BS n for content
f ∈ F , and sci,n,f = 1 represents that BS n caches the content
and f , sci,n,f = 0 otherwise. Furthermore, we use sri,u :=
{sri,u,f}, u ∈ U , f ∈ F to denote the request state from UE u,
where sri,u,f is the request state of u for content f . Thus, we
derive the cache and request state during each decision epoch
i as

χi = (sri,u, s
c
i,n) ∈ X def

= {1, 2, .., F} × {×f∈FP}. (4)

2) System Action: To adapt the continuous changes in the
dynamic environment, BSs can choose which contents should
be replaced and decide where the requests are processed (via
local BS, BS cooperation or SPs). We denote Φ(χi) as the
system action with the state χi, and the action space for all
cooperative BSs is defined as

Φ(χi) = {alocal
i ,aco−BS

i , aSPi }, (5)

where there exist three different types of system action Φ(χi),
shown as follows:

a) Local Processing Action: We denote alocal
i

def
=

[alocali,0 , alocali,1 , . . . , alocali,F ] as the local processing action when
the cache state controlled by the local BS is available, where
alocali,f ∈ {0, 1}, f ∈ F , and alocali,f = 1 indicates that content f
needs to be replaced by the current requested content, while
alocali,f = 0 is the opposite. In this case, the content request is
processed locally.

b) Cooperation Processing Action: If the requested content
f is not cached in the local BS, the UE’s request needs
to be routed to its neighbor BS. We define aco−BS

i
def
=

[aco−BS
i,1 , . . . , aco−BS

i,N ] as the cooperation processing action,
where aco−BS

i,n ∈ {0, 1}, and aco−BS
i,n = 1 denotes that BS

n is selected to address the current UE’s request.
c) Remote Processing Action: If the UE cannot obtain the

requested content f from either the local BS or its neighbors.
The local BS decides whether to forward the request to SPs,
denoted as aSPi ∈ {0, 1}, where aSPi = 1 represents the request
that will be handled by SPs. In this case, the UE should obtain
the requested content f directly from the remote SPs.

3) System Reward: When the local BS takes action Φ(χi)
upon state χi, it will obtain the feedback reward. To satisfy
the QoS of UEs, our goal is to minimize the average content
access latency of the system.

Because of fiber communication, dcn may be far greater than
db and dP . Based on the (3) of the communication model
in Section II.B, to achieve the maximum system reward and
guarantee the objective of minimizing the average content
access delay, we use the negative exponential function to
normalize the reward function. Thus, we derive the reward
function as

Rn (χi,Φ(χi))

=


pnfe

−ξ1d
c
n , Cellular Service

pnfe
−(ξ1dc

n+ξ2d
b), BS −BS Cooperation

pnfe
−(ξ1dc

n+ξ3d
P ), Backhaul Service

,

(6)
where ξ1 + ξ2 + ξ3 = 1, ξ1 ≪ ξ2 < ξ3, and pnfe

−ξ1d
c
n is the

reward that a UE obtains content f from BS only via cellular
service; pnfe−(ξ1d

c
n+ξ2d

b) means the UE is served by the BS-
BS cooperation; When a UE has to be served by the MNO
core via backhaul links, the reward will be pnfe

−(ξ1dc
n+ξ3d

P ).

D. Problem Formulation

Based on (6), our optimization objective is to maximize the
expected long-term reward based on an arbitrary initial state
χ1 as

Rlong = maxEΦ

[
lim
I→∞

1

I

I∑
i=1

R(χi,Φ(χi))|χ1 = χ

]
, (7)

where R(χi,Φ(χi)) is the sum of Rn (χi,Φ (χi)).
Moreover, a single-agent infinite-horizon MDP with a dis-

counted utility (8) can be generally utilized to approximate the
expected infinite-horizon undiscounted value, especially when
γ ∈ [0, 1) approaches 1.

V (χ,Φ) = EΦ

[ ∞∑
i=1

(γ)
i−1 · R(χi,Φ(χi))|χ1 = χ

]
. (8)
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Each BS is expected to learn an optimal control policy,
denoted as Φ∗, for maximizing V (χ,Φ) with a random initial
state χ. Then, we can describe the optimal control policy Φ∗

as
Φ∗ = argmax

Φ
V (χ,Φ), ∀χ ∈ X . (9)

Thus, we formulate the corresponding edge caching problem
to maximize the value function and obtain the optimal control
policy, which can be expressed as

max V (χ,Φ)
s.t.

∑
f∈F

sc
i,n,f

≤ C, n ∈ N ,

sci,n,f ∈ {0, 1}, n ∈ N and f ∈ F ,

(10)

where i={1, 2, 3, ...} is the decision epoch index and all the
constraints are used to promise the available cache size at each
BS, and (10) subjects to the BS cache size C.

IV. FRAMEWORK DESIGN OF FADE

In this section, we first formulate the deep reinforcement
learning (DRL) pretraining process on the local BS and ana-
lyze the computation complexity. Furthermore, the federated
DRL-based edge caching algorithm is proposed. Finally, we
carry out the theoretical convergence analysis of the proposed
algorithm.

A. Pretraining Process on BS

In our federated learning-based cooperative edge caching
architecture, the local BS first carries out the corresponding
action senses Φ(χi) based on the current state χi. Then,
the current feedback reward R(χi,Φ(χi)) will be obtained.
Finally, the former system state χi is transmitted into the
next new one χi+1. The pretrained parameters will be sent
to each UE as the initialization input of all the participating
UEs’ federated learning process.

The optimal value function V (χ) can be obtained as follows
based on the Bellman Equation [44]:

V (χ) = max
Φ

R(χ,Φ) + γ ·
∑
χ′

Pr{χ′|χ,Φ} · V (χ′)

 .

(11)

Rewrite the right-hand side of (11) in the form of the Q-
function:

Q(χ,Φ) = R(χ,Φ) + γ ·
∑
χ′

Pr{χ′|χ,Φ} · V (χ′). (12)

The optimal state value function V (χ) can be simply abstract-
ed as

V (χ) = max
Φ

Q(χ,Φ). (13)

Incorporating (13), we rewrite (12) as

Q(χ,Φ) = R(χ,Φ) + γ ·
∑
χ′

Pr{χ′|χ,Φ} ·max
Φ′

Q(χ′,Φ′).

(14)

MiniBatch

Fig. 3. Caching replacement process of double DQN.

Finally, we can obtain the Q-function iteration formula as

Qi+1(χ,Φ) = Qi(χ,Φ)+
αi · (R(χ,Φ) + γ ·max

Φ′
Qi(χ′,Φ′)−Qi(χ,Φ)), (15)

where αi ∈ [0, 1) is the learning rate. The current state χi will
be transmitted into the next state χi+1 after local BS taking
the system action Φ(χi) and obtaining the immediate reward
R(χi,Φ(χi)).

We use double DQN [45] to deploy the pretraining process
in local BSs. The caching replacement process of double DQN
is shown in Fig. 3. By updating the parameter wwwi of the mul-
tiple layer perceptron (MLP), we can obtain the approximate
optimal Q-value according to the following equation:

Q(χ,Φ) ≈ Q((χ,Φ);wwwi). (16)

There is an experience replay pool (namely, transition mem-
ory) with a finite size Nm in each training agent to store the
experienced transitions, denoted as M = {Ti−Nm+1, ..., Ti},
where Ti = (χi,Φ(χi),R(χi,Φ(χi)),χi+1). M is updated
by the most recent experienced transitions, and agent preserves
the Q(χ,Φ;wwwi) and Q̂(χ,Φ; ŵiŵiŵi). The Q network (MainNet)
is used to select a system action, and the Q̂ network (Target-
Net) is utilized for evaluating it. It is worth noting that the
weight parameters ŵiŵiŵi in the Q̂ network periodically update
along with the wwwi in the Q network.

During the whole process of system training, the agent
randomly selects a mini-batch M̃ from transition memory M.
Then, it trains the Q network by minimizing the loss function
at each epoch as

L(wwwi) = E(χ,Φ,R(χ,Φ),χχχ′)∈M̃i

[(
R(χ,Φ)+

γ · Q̂
(
χ, argmax

Φ′
Q(χ′,Φ′;wwwi); ŵiŵiŵi)

)
−Q(χ,Φ;wwwi)

)2]
.

(17)

Moreover, we can obtain the gradient updates of wi by
∇wiL(wi) as follows:

∇wiL (wi) = E(χ,Φ,R(χ,Φ),χ′)∈Mi
[(R (χ,Φ)

+ γ · Q̂
(
χ, argmax

Φ′
Q (χ′,Φ′;wi) ;w

′
i

)
−Q (χ,Φ;wi)) · ∇wiQ (χ,Φ;wi)].

(18)
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Algorithm 1 Pretraining process on local BS.
Initialization: (Offline Training Process)

Construct the reward function R.
Initialize transition memory M with capacity Nm.
Initialize the Q network by a random weight www.
Initialize the Q̂ network by ŵiŵiŵi = www.
Pretraining the main and target network with <
χi,Φ(χi) > and the corresponding Q(χi,Φ(χi);wwwi).

Iteration: (Online Caching Process)
1: for the episode i = 1 to I do
2: BS n receive a request sri,u,f from UE u for content f .
3: if The cache state of requested content sci,n,f = 1 then
4: End episode.
5: else
6: if The BS storage C is not full then
7: Cache the requested content f .
8: Update the caching state χi in BS n and end

episode.
9: end if

10: Receive the caching state χi.
11: Select action argmaxΦ(χi) Q(χi,Φ(χi);wwwi).
12: Execute action Φ(χi).
13: Obtain immediate reward R(χi,Φ(χi)).
14: Get the new state χi+1.
15: Construct Ti = (χi,Φ(χi),R(χi,Φ(χi)),χi+1).
16: Save the transition Ti to M.
17: Randomly select a mini-batch of transition M̃i ∈ M.
18: Update the parameter θθθi by minimizing the gradient

as in (17).
19: Update the parameter wwwi of Q network with

∇wiL (wi).
20: Update the parameter θθθi of Q network with the

gradient.
21: Update the parameter ŵiŵiŵi of Q̂ network periodically.
22: Update the caching state χi.
23: end if
24: end for

The pretraining process on the local BS is shown in Algo-
rithm 1 and has two main procedures:

• Procedure 1 (Offline Training Process): Initialize the
preliminaries of the double DQN training process in
the aspects of experience replay memory M, random
weights www and ŵiŵiŵi selection of the main Q network
and target Q̂ network, respectively. Then, pretraining the
main and target network with < χi,Φ(χi) > and the
corresponding Q(χi,Φ(χi);wwwi).

• Procedure 2 (Online Caching Process): On the premise
of there is no requested content f in BS n and the BS
storage C is full (shown as Lines 2-9), execute double
DQN to train the caching process and update all the
parameters (shown as Lines 10-20).

Computation Complexity Analysis: In terms of the com-
plexity of DRL, we consider mainly two aspects, namely,
transitions and back propagation. Suppose that there are K
transitions into the replay memory; we can obtain the com-

Fig. 4. Overall workflow of the proposed FADE.

plexity of O(K). Let a and b denote the numbers of layers
and transitions in each layer, respectively. It takes O(Ntabk)
time using back propagation and gradient descent to train
parameters. Here, Nt is the number of transitions randomly
sampled, and k denotes the number of iterations. Specifically,
the replay memory stores K transitions, for which the space
complexity is O(K) and has the space complexity of O(ab)
for dealing with the storage issue of the parameters of DDQN.

Similar to related research [47] [48], complexity analysis
proves that our proposed algorithm is sufficiently lightweight
for IoT devices and easy to deploy.

B. FADE: Federated DRL-based Edge Caching Algorithm

As mentioned above, the DRL can find the optimal strategy
dynamically and efficiently. However, it also needs many
computing resources. Therefore, the deployment of the DRL
agent should be carefully considered.

On the one hand, if the DRL agent does the training, it has
three disadvantages:

• It will take a long time even to train each agent well;
• It may endanger sensitive data, especially in industrial

informative scenarios;
• Although training data can be transformed to protect

privacy, the received agent data are less relevant and less
targeted among specific UEs.

On the other hand, if we carry out the training process
distribution, there are still two shortcomings:

• Training each DRL agent from scratch would take a long
time or even impossible to converge;

• Individual training by a separate DRL agent will result
in an additional waste of energy.

Motivated by the aforementioned reasons, we further pro-
pose FADE, a federated deep reinforcement learning frame-
work based on previous DDQN solutions to build a high-
quality decentralized model. Federated agents collaboratively
learn a shared predictive model, while all training data remain
on the individual IoT device (e.g., smartphones, glasses and
laptops, etc.), decoupling machine learning from the data
stored in the cloud.

The workflow of the proposed FADE is shown in Fig. 4,
BS first disperses the initial input parameters to all the UEs
produced by the pretraining process, Then, UE uploads the
near-optimal local parameters to the BS to participate in the
next round of global training. Repeatedly, the BS aggregates
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… …

Edge 
Aggregator

Fig. 5. Mechanism of federated learning.

all the updated local parameters, the improved global model
will be continuously dispersed to local agents. The detailed
mechanism of the federated learning process is demonstrated
in Fig. 5, after the dispersion of the initial parameter wt, Each
UE computes the local update wt+1

j according to (23). The
edge aggregator (i.e., BS) then obtains the global loss function
from the collected parameters by (21). This process iterates
until it converges.

In the following, we formally describe the federated DRL
framework. We consider a wireless system with a BS and
Ns UEs with the local datasets D ={D1, D2, ..., Dj , ...Ds}.
In the learning problem, the task is to find the objective
parameter w with the loss function f(w). Some well-known
loss functions are fi(w) = 1

2mink∥xi − wk∥2, where w :=

[w1, w2, . . . , wk] for K-means and fi(w) = 1
2

∥∥yi − wTxi

∥∥2,
yi ∈ R for linear regression as well as fi(w) = λ

2 ∥w∥
2
+

1
2 max {0, 1− yiw

Txi}2 (λ is const.) for the support vector
machine. For each local dataset Dj at UE j, the loss function
is

Fj (w) :=
1

Dj

Ns∑
j=1

fj (w), (19)

and the local problem is

wt
j = arg min

wj∈Rd
Fj

(
wj |wt−1

j

)
. (20)

The global loss function is defined as

F (w) :=

∑
j∈D

fj (w)

D
=

Ns∑
j=1

DjFj (w)

D
, (21)

where D :=
∑Ns

j=1 Dj and the learning problem is to find

w∗ = F (w). (22)

It is impossible to expect a general solution of (22) due to
the inherent complexity of the local problem [49]. Thus, a
distributed algorithm is needed to solve the problem (22).

1) Gradient Descent Algorithm: We present a general
gradient descent algorithm to solve the learning problem (22),
which is widely used in some work (e.g., [50]). For each UE
j, wt

j is its local parameter and t is the iteration index, where
t = 1, 2, 3, ..., T . The process of the gradient descent algorithm
is shown in Algorithm 2.

Algorithm 2 Gradient descent algorithm for FADE.
Initialization:

w0
j = wi;

wt
i is the pretrained parameter from Algorithm 1;

T is the number of iterations;
η is the step size.

Iteration:
for t = 1, 2, 3..., T do

2: for each UE j do
Compute its local update.

4: wt+1
j = wt

j − η∇Fj (w
t.)

end for
6: Update the global parameter.

wt+1 =

Ns∑
j=1

Djw
t+1

D .
8: end for

First, the initialization values of local parameters are as-
signed by pretrained parameters from Algorithm 1 at t = 0.
For t > 0, each UE j computes its parameter wt+1

j according
to the update rule as follows:

wt+1
j = wt

j − η∇Fj

(
wt
)
, (23)

where η ≥ 0 is the gradient step size. After T iterations, the
global parameter wt+1 is updated at BS, defined as

wt+1 =

Ns∑
j=1

Djw
t+1

D
. (24)

The updated global parameter wt+1 is used to take part in the
next-round training of DRL in the local BS. In the following
section, we will present the convergence analysis of problem
(22).

C. Convergence Analysis

Denote w∗ as the optimal solution. Similar to [51], we have
the following assumptions:

Assumption 1. For all i,
• fi(w) is convex;
• fi(w) is L-smooth, i.e., fi (w

′) ≤ fi (w) + ∇fi (w) ·
(w′ − w) + L

2 ∥w − w′∥2, for ∀ w and w′.
Assumption 1 guarantees the feasibility of the linear regres-

sion and the update rule of federated learning. Thus, we have
the following lemma:

lemma 1: f(w) is convex and L-smooth.
Proof: Please see Appendix A and the triangle inequality.

Theorem 1: Considering that f(w) is L-smooth and µ-
strongly, let ηt = 1/L and w∗ = argminwf(w); thus, we
have

∥wt − w∗∥ ≤
(
1− µ

L

)t
∥w1 − w∗∥ , (25)

where O(ϖ) = L
µ log (∥w1 − w∗∥/ϖ) is denoted as the

gradient dispersion, which is used to illustrate how the
parameter wi is distributed in each user.

Proof: Please see Appendix B.
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We have the convergence in expectations:

[f (wt)− f (w∗)] ≤ ϖt
[
∆t(f (w∗))

]
. (26)

Thus, f(w) is proven to be bounded where ∆t(f(w∗)) =
f(w1)− f(w∗).

Algorithm 3 FADE: Federated DRL-based edge caching.
Initialization:

wt
j = wt

i ;
wt

i is the pretrained parameter from Algorithm 1;
T is the number of iterations;
η is the step size.

Iteration:
for t = 1, 2, 3..., T do

2: for each UE j do
Compute its local update.

4: Set wt+1
j = wt

j − η∇Fj (w
t)

Estimate the convergence according to (26).
6: Return wt+1

j .
end for

8: Send wt+1
j to local BS n.

for each BS n do
10: Receive wt+1

j from each UE j
Update global parameter according to:

wt+1 =

Ns∑
j=1

Djw
t+1

D .
12: Input the global parameter:

wt+1
i = wt+1.

end for
14: BS n disperses wt+1

i to UEs.
end for

We use the aforementioned theoretical analysis and results
to design the FADE algorithm, as shown in Algorithm 3.
Suppose that the BS initiates the DRL learning process, wt

i is
the pretrained parameter from Algorithm 1, which is assigned
by the local BS n. This procedure is responsible for training
the parameter distributed with the local data on each UE j,
and the training process begins using a local update according
to (23), when UE j receives the parameter wt

i , and estimates
the updated parameter wt+1

j by (26) until it converges (Lines
2-6). Then, the updated parameter is sent back to the local BS
n for aggregation computation (Line 8).

After receiving the parameters from all the local UEs, local
BS n aggregates all the distributed parameters (Lines 10-12)
and then disperses the updated global parameter to all the
participating UEs (Line 14).

The core idea of FADE is to federate UEs to collaboratively
train the parameters and accelerate the training process. FADE
consists mainly of two parts: distributed training procedure at
UEs and aggregation computation at BS.

V. TRACE-DRIVEN SIMULATION RESULTS

A. Simulation Settings

In this section, we evaluate the proposed FADE algorithm
in terms of network performance. For simulation purposes, we
consider four BSs, each of which has the maximum coverage

TABLE II
PARAMETER VALUES.

Parameter Value Description
F 10,000-100,000 Content number
B 20 MHz Channel bandwidth
σ2 -95 dBm Noise power
db 20 ms Delay of BS cooperation
dp 200 ms Delay of BS-SP
M 5000 Capacity of replay memory
Df (0,8] Mbit Content size
M̃i 200 Size of minibatch
γ 0.9 Reward decay
ϵ 0.1 State transition probability
α 0.05 Learning rate
ϕ 250 The period of replacing target Q network

of a circle with a radius of 250 meters. In addition, the channel
gain is modeled as gu,n = 30.6 + 36.7 log10 lu,n dB. Each
BS has 20 channels, and the channel bandwidth is 20 MHz
[46]. In addition, the transmit power of the BS is 40W , which
supports at most 300 UEs. The double DQN consists of a fully
connected feed forward neural network with a 1 mid-layer
consisting of 200 neurons, which is used to construct the Q
network and Q̂ network. The values of some key parameters
are given in Table II.

Moreover, we use a large-scale offline MSN real-world
dataset derived from an application Xender. Xender is widely
used in India to share content. The date of experimental
data we used is from 01/08/2016 to 31/08/2016, including
450, 786 trajectories of UEs, over 153, 482 files are shared, and
the number of requests is 271, 785, 952 [33]. To implement the
experiments more practically, we obtain the global and local
content popularity from the real-world datasets.

As shown in Fig. ??, we obtain the plateau factor τ = −0.88
and skewness factor β = 0.35 by fitting the content popularity
of the experimental traces with the MZipf distribution. The
parameters are used for the centralized DRL simulations. Due
to the homophily and locality of content popularity [16],
considering the distribution of differential scenario properties
(e.g., user numbers/user requests, mobility, content popularity,
etc.), we include different local content popularity for 4 local
BSs by various parameters in Fig. ??.

B. Evaluation Results

In this section, we first present the loss function perfor-
mance between the traditional DRL and FADE. Then, the
statistics of system simulation traffic offloading are demon-
strated. Furthermore, to show the efficiency of the proposed
algorithm, we compare the network performance in terms of
the average content access delay of UEs, the content request
hit rate and the system backhaul traffic offload. Some state-
of-the-art caching algorithms are shown as follows: including
the LRU, LFU and FIFO, as well as Oracle [52], which is
conducted as the baseline of best network performance.

First, we demonstrate the loss function between FADE and
centralized DRL training, shown as Fig. 7. The results are
derived from 100 times the average. It is obvious that FADE
reduces the 92% loss in the first 100 training steps and then
obtains almost the same values compared to the centralized
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(a) Global content popularity.
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Fig. 6. Global and local content popularity.

DRL. This finding indicates that our algorithm achieves better
performance in terms of stability and has quick convergence.
This result may be caused by the small training data in the
individual UE.

Moreover, we introduce the offload utility as the system
payment to compare the efficiency between the proposed
FADE and the centralized algorithm. The system payment here
refers to the ratio of offloaded content to downlink data rate at
each episode, indicating the network overhead of information
exchange. From Fig. 8, the proposed FADE outperforms
the traditional centralized algorithm with an average 60%
improvement for the system payment. This situation occurs
mainly because a large amount of content needs to be trans-
ferred to the cloud for training in the centralized algorithm,
while the proposed FADE shares the training parameters. Only
when cache replacement occurs is the content transmitted.
Thus, the network overhead is significantly reduced.

The performance demonstrations of the average content
access delay, hit rate and backhaul traffic offload are shown
in Fig. 9. The parameters of the content number and cache
size of UEs are set as F = 10, 000 and C = 100 MB. Oracle
always shows the best performance over the other strategies.
Compared to it, the proposed FADE algorithm has only an
average 5% performance loss gap, which shows the superiority
of the proposed algorithm.

From Fig. 9(a), the proposed FADE algorithm shows the

0 50 100 150
Training Steps

0

0.005

0.01

0.015

0.02

L
os

s

Proposed FADE
Centralized

Fig. 7. Demonstration of the loss function between FADE and traditional
centralized DRL.

Fig. 8. Demonstration of system payments between FADE and traditional
centralized DRL.

high value of average delay at first, However, after decreasing
rapidly after 2 episodes, the value is maintained in a relatively
stable state. The proposed FADE algorithm outperforms the
other algorithms; it achieves the lowest average delay of 0.29s,
improving the performance of 29%, 27% and 26% compared
to LRU, FIFO and LFU, respectively.

In particular, affected by the advantages in the performance
of average delay, the proposed FADE algorithm also achieves
better performance with respect to the hit rate. Shown as
Fig. 9(b), almost 50% content requests are satisfied by the
proposed FADE algorithm, and it outperforms the LRU, LFU
and FIFO algorithms with up to 8%, 10% and 15% improve-
ments.

From Fig. 9(c), it is observed that the proposed algorithm
can offload more backhaul traffic by 54% to 75%, and outper-
form the LRU, LFU and FIFO algorithms by up to 5%, 20%
and 15%, respectively.

Specifically, the proposed FADE algorithm outperforms the
traditional centralized algorithm in the first two episodes and
then achieves almost the same performance because the system
reward is used to reduce the content access delay of UEs,
which makes the proposed FADE minimize the average delay.

Fig. 10 demonstrates the network performance under differ-
ent content numbers. The content number ranges from 10, 000
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(a) Performance comparison of the average delay.
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(b) Performance comparison of the hit rate.
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(c) Performance comparison of traffic.

Fig. 9. Performance evaluation in terms of the average delay, hit rate and traffic with respect to time.
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(a) Average delay with different content numbers.
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(b) Hit rate with different content numbers.
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(c) Backhaul traffic with different content num-
bers.

Fig. 10. Performance evaluation in terms of average delay, hit rate and traffic with respect to content numbers.

(a) Average delay with different BS numbers. (b) Hit rate with different BS numbers. (c) Backhaul traffic with BS numbers.

Fig. 11. Performance evaluation in terms of average delay, hit rate and traffic with respect to BS numbers.

(a) Average delay with different cache capacities. (b) Hit rate with different cache capacities. (c) Backhaul traffic with different cache capaci-
ties.

Fig. 12. Performance evaluation in terms of average delay, hit rate and traffic with respect to cache capacity.
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Fig. 13. Performance of the hit rate under different exploration probabilities.

to 100, 000, and the cache capacity is set as C = 100 MB.
According to Fig. 10(a)-10(c), the proposed algorithm achieves
the average 3% performance loss compared to the Oracle
algorithm and outperforms the other algorithms. For instance,
the FADE algorithm improves the hit rate performance with
up to 8%, 15% and 11% compared to the LRU, LFU and FIFO
algorithms, respectively, in Fig. 10(b). However, the line trends
in Fig. 10 and Fig. 9 are exactly the opposite because more
popular contents will be cached under the fixed cache capacity
of BS along with the increasing content number, leading to the
rising trend in Fig. 10(a) and Fig. 10(c). The decreasing trend
in Fig. 10(b) is caused by the new requested contents not being
replaced when more popular contents are cached in BSs.

We also evaluate the network performance under different
BS numbers (in this case, the cache size of BS is fixed as 100
MB), as shown in Fig. 11. The network performance of the
proposed FADE fluctuates depending on the BS number. For
instance, FADE achieves the best delay performance when the
BS number is 1 in Fig. 11(a); however, it shows a decreasing
trend with increasing BS number because the number of
information exchanges between UE and BS increased, leading
to the excessive cost of communications. A similar situation
occurs in the aspect of hit rate performance in Fig. 11(b); the
proposed FADE outperforms the centralized algorithm by 30%
when the BS number is equal to 2. However, the performance
of other algorithms is better than that of fade when the number
of BSs is equal to 3 and 4, mainly because other algorithms
do not need to learn the user’s request behavior, and more BS
means more popular content is cached. In this way, it is easier
to obtain better performance for the linear cache replacement
algorithms (e.g., LRU, LFU and FIFO). Fig. 11(c) shows
that the proposed algorithm outperforms the centralized, LRU,
LFU and FIFO algorithms with up to 21%, 35%, 30% and 37%
improvements when the BS number is 2. The performance of
the proposed FADE decreases when the BS number is 3 and
4, mainly because the traffic pressure is apportioned by more
BSs.

We compare the network performance under different cache
capacities of the BS (in this case, the BS number is 4) in
Fig. 12. It can be observed that the proposed FADE achieves

Fig. 14. Performance of the hit rate, backhaul traffic, and average delay
under different reward decays.

better performance in terms of hit rate and backhaul traffic
offload. The similar reason with that of Fig. 11(a), leading to
the poor delay performance. From Fig. 12(b), the proposed
FADE improves the hit rate performance by 5%, 27%, 25%
and 26%, compared to the centralized LRU, LFU and FIFO
algorithms on average. The proposed FADE also achieves
better performance in terms of backhaul traffic offload when
the cache size is larger than 100 MB, as shown in Fig. 12(c).
The proposed FADE outperforms the centralized, LRU, LFU
and FIFO algorithms by 9%, 22%, 20% and 24% because
when the cache capacity is large enough to store more content,
replacement processes rarely occur.

The aforementioned simulation results verify that the pro-
posed FADE achieves almost the same level of network
performance as the traditional centralized approach, which
shows its efficiency. In the centralized training process, since
it is assumed that the training data can be uploaded to the
cloud or edge servers without a loss, the transmission delay
is ignored [30] [47]. However, it is impossible in practical
scenarios, which further proves the efficiency of the proposed
FADE.

We evaluate the proposed FADE on different learning-
related parameters in terms of the exploration probability ϵ,
reward decay γ, learning rate α, and batch size M̃i. In this
case, the cache size of each BS is set as 100 MB, the number
of BS is 4.

Fig. 13 shows the performance comparison for the proposed
FADE in terms of the hit rate with different exploration
probabilities ϵ = 0.1, ϵ = 0.5 and ϵ = 0.9. The explo-
ration probability has strong effects on the convergence and
performance of the FADE algorithm. Simply increasing the
exploration probability may not improve the performance.
Thus, a large number of trials need to be performed to obtain
an appropriate exploration probability in the considered edge
caching scenarios. Hence, in our setting, ϵ = 0.1 is selected
to achieve better performance.

Moreover, we demonstrate the network performance of the
hit rate, backhaul traffic, and average delay in the following
figures. Fig. 14 compares the network performance under
different reward decay γ. It is observed that the proposed
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Fig. 15. Performance of the hit rate, backhaul traffic, and average delay
under different learning rates.

Fig. 16. Performance of the hit rate, backhaul traffic, and average delay
under different batch sizes.

FADE achieves the best network performance of the overall
metrics when γ = 0.9. Note that 0.9 is an empirical value
that is widely used in other studies. The results also prove
the optimality of this value, and γ = 0.9 is selected as the
parameter in our simulations.

We compare the network performance with different learn-
ing rates α in Fig. 15. The performance of the hit rate and
backhaul traffic offload change little with increasing learning
rates. Nevertheless, the average delay shows a stable perfor-
mance change when the learning rate α ranges from 0.01
to 0.1. Thus, we set the learning rate alpha = 0.05 as an
empirical value to maintain the stability and effectiveness of
our algorithm.

Fig. 16 shows the network performance demonstration un-
der different batch sizes M̃i. It can be seen that the batch
size has little effect on the network performance due to the
stochastic selection mechanism from the transition memory.

VI. CONCLUSION

In this paper, we have proposed FADE, a federated DRL-
based cooperative edge caching framework for IoT systems,
to cope with the challenge of offloading duplicated traffic
and improving the specific QoS of delays and the hit rate.

Different from other caching strategies, the proposed FADE
framework has federated all local UEs to collaboratively train
the parameters and feed them back to the BS to accelerate
the overall convergence speed. Finally, trace-driven simulation
results have shown that the proposed FADE framework outper-
forms the baseline schemes of LRU, LFU, FIFO and Oracle in
terms of the average delay, the hit rate and the traffic offload
of backhaul, and achieves the approximate performance of the
centralized DRL scheme on the premise of a low loss function.

APPENDIX

A. Proof of Lemma 1

Proof: Straightforwardly from Assumption 1, according
to the definition of convex, f(w) is the finite-sum structure of
fi(w), and triangle inequality.

B. Proof of Theorem 1

Proof: First, we prove the µ-strongly convexity of f(w):
Given ∀w,w′ ∈ R, β ∈ [0, 1], assume that x := w + w′,

y := βw + (1 + β)w′ and ∃β1, β2 ∈ (0, 1). Derived from the
Taylor formula, we can obtain

f(w)=f(y)+∇f(y)(w−y)+
1

2
(w−y)∇2f(e1)(w−y), (27)

and

f(w′) = f(y)+∇f(y)(w′−y)+
1

2
(w′−y)∇2f(e2)(w

′−y),

(28)
where e1 := y + β1(w − y) and e2 := y + β2(w − y); by
incorporating the two formulas above, we have

βf(w) + (1− β)f(w′)
= f(y)+ 1

2β(1−β)(w−w′)2[(1−β)∇2f(e1)+β∇2f(e2)].
(29)

Recalling the definition of strong convexity, there exists the
constant µ∗ obtaining

1

2
(w − w′)[(1− β)∇2f(e1) + β∇2f(e2)] ≥ µ∗∥w − w′∥2.

(30)
Thus, we rewrite (29) as

βf(w) + (1− β)f(w′)
= f(y)+ 1

2β(1−β)(w−w′)2[(1−β)∇2f(e1)+β∇2f(e2)]

≥ f(y) + µ∗β(1− β)∥w − w′∥2,
(31)

where µ∗ = µ/2 and bring y := βw + (1 + β)w′ in (31), the
µ-strongly convexity of f(w) is proven.

According to the µ-strongly convexity of f(w), we have

∇f(w)(w − w∗) ≥ f(w)− f(w∗) +
µ

2
∥w − w∗∥2, (32)

Thus, we can obtain the following:

∥wt+1 − w∗∥2 = ∥wt − η∇f(wt)− w∗∥2

= ∥wt − w∗∥2 − 2η∇f(wt)(wt − w∗) + η2∥∇f(wt)∥2

≤ ∥wt − w∗∥2 − 2η(f(w)− f(w∗)

+
µ

2
∥wt − w∗∥2) + η2∥∇f(wt)∥2.

(33)
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Note that by smoothing f(w), we can obtain the gradient
bound:

f(w∗) ≤ f(w − 1

L
∇f(w))

≤ f(w)− ∥∇f(w)∥2 + 1

2L
∥∇f(w)∥2

≤ f(w)− 1

2L
∥∇f(w)∥2.

(34)

By incorporating (34), (33) can be transformed as

∥wt+1 − w∗∥2 = ∥wt − η∇f(wt)− w∗∥2

≤ ∥wt−w∗∥2−ηµ∥wt−w∗∥2+2η(ηL−1)(f(w)−f(w∗))

≤ (1− µ

L
)∥wt − w∗∥2 ≤ (1− µ

L
)∥∆∗(w)∥2,

(35)

where η is set as the last step.
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