
Deep Reinforcement Learning-based Task
Offloading over In-Network Computing and

Multi-Access Edge Computing
Zhao Ming∗, Qize Guo∗, Hao Yu∗, and Tarik Taleb∗

∗Oulu University, Oulu, Finland
Email: {zhao.ming, qize.guo, hao.yu, tarik.taleb}@oulu.fi

Abstract—With the blooming of information technology and
network applications/services, emerging multi-access edge com-
puting (MEC) and in-network computing (INC) are regarded as
key computing paradigms to support time-sensitive tasks and
requests by task offloading. Existing studies concerning task
offloading seldom considered the combinations of MEC, INC,
and cloud computing. In this paper, we explore INC-enhanced
task offloading in MEC networks and design a three-layer task
offloading network architecture, which consists of not only user
equipment, edge servers, and cloud, but also network elements
like routers/switches. We focus on reducing the system latency
and energy consumption (EC) and formulate the optimization
problem as minimizing the weighted sum of these two indicators.
To solve this problem, we propose a deep reinforcement learning-
based framework and creatively map the actions of the agent
to the offloading policies and resource allocation strategies
for determining these two indicators simultaneously. Simulation
results show that the proposed INC-enhanced task offloading
framework achieves fast convergence speed with double deep Q-
network and outperforms other baselines in reducing the system
latency and EC.

Index Terms—Task Offloading, In-networking Computing,
Deep Reinforcement Learning

I. INTRODUCTION

With the rapid development of information technology and
the emergence of various network services and applications
such as Internet of Things (IoT), Internet of Vehicles, and
Augmented Reality, a huge number of devices and facilities
are connected to the network to serve vertical industries,
posing great challenges to the running and maintenance of
the network. On the one hand, the time-sensitive requests
may need to be processed even within 0.1 ms [1]–[3], which
is hard to be met by the remote cloud; on the other hand,
processing tasks at user equipments (UEs) will introduce huge
energy consumption (EC) and high latency due to the limited
calculation resources. Under this circumstance, an emerging
computing paradigm, Multi-access Edge Computing (MEC),
was proposed to address this challenge [4]–[8]. As a key
technology of MEC, task offloading focuses on offloading the
tasks from UEs to the edge of the network or the remote
cloud, and can significantly reduce the latency of processing
tasks and the EC of UEs [9]–[11].

In-network computing (INC), which tries to utilize the
network elements like programmable switches/routers for
computation, is witnessed to achieve much lower latency

and has received a great deal of interest recently [12], [13].
Specifically, to meet the strict service requirements of tasks,
these programmable network elements can not only be utilized
for packet manipulation and forwarding but also for processing
requests from UEs that are close to, by exploiting the vacant
resources for calculation [14]. Thus, INC can further improve
the calculation capacity of the network, reduce the latency for
processing tasks, and reduce the network traffic.

Lots of researchers have investigated INC for processing
tasks and requests, for instance, in [13], the researchers
proposed an INC-empowered task offloading framework to
offload lightweight critical tasks to the INC devices. In [14],
Leonardo et al. designed a multi-source deep learning-based
task offloading model and proposed a particle swarm opti-
mization algorithm to solve the problem. The authors in [15]
proposed to solve the formulated in-network task offloading
problem by the integer linear programming algorithm. Besides,
in [16], the authors proposed an energy-efficient in-network
computing paradigm that integrated network functions into
a computing platform that supports the co-optimization of
resource utilization and network communication overhead
and mimicked real application data requests for evaluation.
However, these studies either didn’t consider the combination
of INC, MEC, and cloud computing for task offloading, or
utilized heuristic methods to solve the optimization problem,
rather than adopting more intelligent AI-based solutions. Thus,
the design of a systematical and intelligent INC-enhanced
task offloading framework, with MEC and cloud computing
considered, is still unexplored well.

In this paper, we investigate INC-enhanced task offloading
in MEC networks with cloud computing considered. Specifi-
cally, we design a three-layer task offloading network architec-
ture that consists of UEs, edge servers (ESs), INC devices, and
the remote cloud, and formulate the problem as minimizing
the weighted sum of system latency and EC. To solve this
problem, we propose a double Deep Q-learning (DQN) based
framework and creatively map the actions of the agent to the
task offloading policies and resource allocation strategies for
determining these two indicators simultaneously. To evaluate
our proposed framework, we perform numerical experiments
and simulation results have demonstrated that our proposed
scheme outperforms existing schemes in reducing the system
latency and EC. The main contributions of this paper are as

follows:
• We propose a comprehensive INC-enhanced task offload-

ing framework in MEC networks, which combines INC,
MEC, and cloud computing for task offloading, and
design a general three-layer network architecture under
this scenario;

• We focus on reducing the system latency and EC and
formulate the optimization problem as minimizing the
weighted sum of the two indicators. To solve this prob-
lem, we propose a DRL-based task offloading algorithm
and creatively map the actions of the agent to offloading
policies and resource allocation strategies, to determine
these two indicators simultaneously;

• Simulation results have demonstrated that the proposed
scheme has fast convergence speed and outperforms
existing schemes in reducing the system latency and EC.

The rest of this paper is organized as follows. Sect. II
introduces the system model and formulates the optimization
problem. The DRL-based task offloading framework for solv-
ing the problem is provided in Sect. III, Sect. IV presents the
simulation results. Finally, Sect. V concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this part, we introduce the network architecture and
system model and formulate the optimization problem.

A. Network Architecture

The considered network architecture of INC-enhanced task
offloading in MEC networks is shown in Fig. 1, which consists
of three layers, i.e., device layer, edge layer, and cloud layer. In
the device layer, we simultaneously consider indoor and out-
door scenarios. The indoor UEs include smartphones, tablets,
personal computers, IoT devices, etc., and are connected to
routers via wireless links. Besides, in the outdoor scenario,
different kinds of UEs are geographically distributed and
connected to Base Stations (BSs). We assume a UE can only
be served by one router or one BS in this paper. In the
edge layer, the routers and BSs are connected to the core
network and the remote cloud through network switches via
backhaul links, which are generally built with optical links.
Moreover, the switches are also connected to their neighbors
by optical links. Note that these network elements with limited
calculation/storage resources not only can support packet
manipulation but also can be programmed for processing tasks.
Moreover, we consider the BSs to be equipped with ESs with
limited calculation and storage resources, and the cloud has
large capacities for calculation and storage.

For the task offloading scenario, we assume that tasks are
generated at UEs and can be processed locally (at the UEs), or
offloaded to the routers/ESs, switches, or the cloud. We con-
sider the INC-enhanced task offloading scenario periodically.
Specifically, in each period, the UEs continuously generate
tasks, and each router/ES collects task information (e.g., task
size, require CPU cycles, etc.) and device information (e.g.,
remaining resources of UEs, routers, ESs, etc.) and send to
the cloud to determine the offloading policies and resource

Fig. 1. The considered network architecture of INC-enhanced task offloading
in MEC networks.

allocation strategies of tasks. After that, these tasks are of-
floaded to the corresponding devices for processing, and the
network status information like system latency will be utilized
to measure the performance of the decision policies. Moreover,
we neglect the time for collecting task and device information
and for decision-making in this paper.

B. System Model

We consider a general INC-enhanced task offloading sce-
nario with N UEs denoted as N and M switches denoted
as M = {1, 2, . . . ,M}. The total storage and calculation re-
sources of UE n ∈ N are denoted as Dn and Cn, respectively,
where Dn indicates the number of bits n can cache, and Cn

indicates the CPU cores of n. The total storage and calculation
resources (in CPU cores) of m ∈ M can be denoted as Dm

and Cm. UE n generates a task Tn in each period, the size
and calculation amount (in CPU cycles) of Tn can be denoted
as DTn

, and CTn
,∀n ∈ N , respectively. Moreover, we denote

Ln as the router or ES that n links to, where Ln should be
a router when UE n is an indoor device or an ES when n is
an outdoor device. Similarly, the total storage and calculation
resources (in CPU cores) of Ln can be denoted as DLn and
CLn

. Ln can only connect to one of the switches, we denote
Sn ∈ M as the switch Ln connects to. The total storage and
calculation resources of the cloud are denoted as D and C.

C. INC Enhanced Task Offloading Model

For task Tn, it can be processed at UE n (defined as
locally), offloaded to the linked router/ES (Ln), offloaded to
one of the switches m ∈ M, or offloaded to the cloud.
Moreover, allocating how many CPU cores to process task
Tn should also be considered when offloading Tn. We define
πn ∈ {−1, 0, 1, . . . ,M,M + 1} as the offloading policy and
γn as the resource allocation strategy of Tn, respectively. Here,
−1, 0, and M + 1 indicate Tn is processed locally, offloaded
to Ln, or offloaded to the cloud, respectively; 1, 2, . . . ,M
indicate Tn is offloaded to switch 1, 2, . . ., or M , respectively.

Besides, γn represents the number of CPU cores that should
be allocated to process Tn.

Tn should firstly be transmitted from UE n to where it is
offloaded, we denote the transmission latency as ttransn and
the EC as etransn . When Tn is processed locally (πn = −1),
intuitively we have ttransn = etransn = 0. Otherwise, if Tn

is offloaded to its linked router/ES (πn = 0), it should be
transmitted from n to Ln by wireless links. We denote the
wireless channel gain from n to Ln as hn, the transmit power
of n as Pn, the bandwidth of the wireless communication as
W , thus, we can calculate the upload speed from n to Ln

(denoted as Rn) as

Rn = Wlog2(1 +
Pn|hn|2

σ2
). (1)

Thus, ttransn can be calculated as ttransn =
DTn

Rn
, and etransn

can be calculated as etransn = Pnt
trans
n . Otherwise if πn = 1,

2, . . ., or M , it should first be uploaded to Ln by wireless
links, then sent to Sn, and finally sent to the destination via
optical links. In this case, we denote the shortest path from
Sn to πn as a set Ωn, which consists of |Ωn| switches. Thus,
the transmission latency ttransn should be calculated as

ttransn =
DTn

Rn
+ |Ωn|

DTn

R
, (2)

where R denotes the transmission speed of optical links. We
denote the transmission power between switches as PS , thus,
etransn can be calculated as

etransn = Pn
DTn

Rn
+ PS |Ωn|

DTn

R
. (3)

Otherwise if πn = M + 1, Tn should be offloaded to the
remote cloud for processing. Without loss of generality, we
consider the latency and EC of the system for transmitting
Tn from Ln to the remote cloud as fixed numbers in this
paper, denoted as tC and eC , thus, we have the ttransn and
etransn as the sum of the latency/EC of uploading Tn to Ln

and transmitting Tn from Ln to the remote cloud, written by{
ttransn =

DTn

Rn
+ tC ,

etransn = Pn
DTn

Rn
+ eC .

, ∀n ∈ N . (4)

Based on the analysis above, we have

ttransn =


0, πn = −1
DTn

Rn
, πn = 0

DTn

Rn
+ |Ωn|DTn

R , πn ∈M
DTn

Rn
+ tC , πn = M + 1

, ∀n ∈ N . (5)

The EC for transmission Tn to where it should be processed
can be calculated by

etransn =


0, πn = −1
Pn

DTn

Rn
, πn = 0

Pn
DTn

Rn
+ PS |Ωn|DTn

R , πn ∈M
Pn

DTn

Rn
+ eC , πn = M + 1

, ∀n ∈ N .

(6)

We denote the calculation latency of Tn as tcaln , which can
be calculated by tcaln =

CTn

γnF
, where F denotes the capacity

of a CPU core, i.e., the CPU cycles that a CPU core can
calculate per second. Moreover, when a task is processed in
routers/ESs, switches, or the cloud which are connected to
the power supply, we denote the power of one CPU core as
PC , the calculation EC of Tn when processing in UEs can be
obtained by

ecaln =

{
κ(γnF)2 ∗ CTn

, πn = −1;
PCγnt

cal
n , otherwise;

, ∀n ∈ N , (7)

where κ = 10−26 indicates the EC coefficient of chips. Thus,
the latency and EC for offloading task Tn can be given by{

tn = ttransn + tcaln ,
en = etransn + ecaln ,

, ∀n ∈ N . (8)

D. Problem Formulation

We focus on minimizing the weighted sum of system latency
and EC. Denote an indicator variable Θn,X ∈ {0, 1} to
represent if πn equals to X or not, where “1” means πn = X
and “0” means not. Thus, we can formulate the optimization
problem with constraints as

min
{πn,γn}

∑
n∈N

αtn + βen (9a)

s.t. Θn,−1 DTn ≤ Dn,Θn,−1 γn ≤ Cn, (9b)
Θn,0 DTn ≤ DLn ,Θn,0 γn ≤ CLn , (9c)
Θn,Sn DTn ≤ DSn ,Θn,Sn γn ≤ CSn , (9d)∑
n∈N

Θn,m DTn
≤ Dm,∑

n∈N
Θn,m γn ≤ Cm,∀m ∈M\Sn, (9e)∑

n∈N
Θn,M+1 DTn

≤ D,
∑
n∈N

Θn,M+1 γn ≤ C, (9f)

∀n ∈ N . (9g)

Here, constraints (9b), (9c), and (9d) ensure that the re-
quested resources of task Tn can be satisfied when Tn is
offloaded to n, Ln, and Sn, respectively; constraints (9e) and
(9f) ensure the requested resources of tasks that offloaded to
the switches and the cloud swarm can be satisfied, respectively.

III. DRL-BASED INC-ENHANCED TASK OFFLOADING
FRAMEWORK

In this section, we introduce a DRL-based framework for
INC-enhanced task offloading to determine the offloading
strategies in each period. The system state, system action, and
system reward are given as follows.

A. DRL Framework Design

1) System State: The size and requested computation
resources of task Tn, as well as the available resources
of all the system facilities (UEs, routers, switches, ESs,
and the cloud), will simultaneously affect the decision-
making strategies of where to process the task and how

…

-1

1 2

…

0

1 2

…

M+1

1 2

…

Actions

…

0

0 1

…

0

…

1

0 1

…

M+2

0 1

-1

+1

1 (M+3)* -1

…

Fig. 2. The action mapping framework.

many computation resources should be allocated. We de-
fine D̂ι and Ĉι as the available storage and calculation
resources for a facility ι, and D̂ and Ĉ for the cloud.
Thus, the state of task Tn can be represent as Sn =
(DTn , CTn , D̂n, Ĉn, D̂Ln , ĈLn , ∪

∀m∈M
(D̂m, Ĉm), D̂, Ĉ).

2) System Action: In this part, we first define the system
action and then introduce the mapping from system action
to task offloading policy and resource allocation strategy for
determining these two indicators simultaneously.

i) Definition: For each task Tn, it can be processed lo-
cally, offloaded to the connected router/ESs, offloaded to the
switches, or offloaded to the remote cloud, we denote the
action of Tn as An, which is defined as follows.

ii) Action Mapping: Moreover, we simultaneously decide
the CPU resources allocated for processing the task, as shown
in Fig. 2. To this end, we consider that the allocated CPU
core(s) for task Tn as a range [1, 2, . . . ,Γ], which means Tn

should be allocated at least 1 CPU core and at most Γ CPU
core(s). We set the action of task Tn as An ∈ {0, 1, . . . , (M+
3)× Γ− 1}, and let mod(An,Γ) = qn, rn, where mod(·) de-
notes An divided by Γ, qn ∈ {0, 1, . . . ,M,M+1,M+2} and
rn ∈ {0, 1, . . . ,Γ − 1} represent the quotient and remainder,
respectively. At last, let q′n = qn − 1 and r′n = rn + 1, we
have q′n ∈ {−1, 0, . . . ,M,M + 1} and rn ∈ {1, 2, . . . ,Γ},
and q′n and r′n can be map to πn and γn, the details of action
mapping is provided in Algorithm 1 (see Line 6-10).

3) System Reward: To improve the decision-making per-
formance of the agent, after executing each action, the agent
obtains feedback from the system to train the model parame-
ters. According to the optimization goal of this paper, we set
the reward of Tn as Rn = θ exp(−(αtn + βen)/Υ),∀n ∈ N ,
where θ and Υ are variables to control the range of the reward.
Moreover, when the agents adopt actions that don’t meet the
resource constraints, we set negative feedback and set Rn as
a penalty variable η < 0.

B. Double DQN Model

We use the double DQN model in this paper for training
the agent to avoid possible overestimation of the conventional
DQN, the whole process is shown in Fig. 3. Specifically,
we consider the tasks to form a queue to be offloaded by
the agent, each task observes the current state (the requested

Fig. 3. The DRL-based INC-enhanced task offloading framework in MEC
networks.

storage and calculation resources of the task, as well as the
available resource of all facilities), then the agent decides
the action for the task. After the action is executed based
on the mapping policy, the agent can get feedback and also
the available resources of facilities will change due to task
offloading, which will be the next state of the system.

Specifically, the double DQN model leverages two neural
networks (target network and main network) for action selec-
tion and evaluation, and the Q-function can be given as

Q(Sn,An) = Rn + γ ·
∑
Sn+1

Pr{Sn+1|Sn,An}·

max
An+1

Q(Sn+1,An+1).
(10)

We adopt deep neural network (DNN) to approximate
Q(Sn,An) and update the parameters of DNN by the stored
experience in the replay buffer. Let Qi(Sn,An; θn) denote the
DQN model with parameters in episode i, we have

Qi+1(Sn,An; θn) = Qi(Sn,An; θn) + αi·
(Rn + γ ·max

An+1

Qi(Sn+1,An+1; θ̂n)−Qi(Sn,An; θn)),
(11)

where αi denotes the learning rate, θn and θ̂n denote the
parameters of the main network and the target network, re-
spectively. The main network’s loss function used for updating
the parameters by gradient descent can be expressed as

L(θn) =
∑
n∈Bn

(yi −Qi(Sn,An; θn))
2, (12)

where yi = Rn + γ · maxQi+1
An+1

(Sn+1,An+1; θ̂n). Here Rn

denotes the reward when offloading Tn in episode i, Bn
denotes a mini-batch when offloading Tn. Algorithm 1 il-
lustrates the proposed double DQN-based INC-enhanced task
offloading algorithm. Let l and τ denote the numbers of layers
and transitions in each layer, and Nn denote the number of
transitions randomly sampled, the complexity of Algorithm 1
for training the parameters can be expressed as O(Nnlτ).

Algorithm 1: Double DQN Based INC Enhanced Task
Offloading Algorithm.

Input: Sn, N , M, γ, Γ.
1 Initialize: The Q-function Q(Sn,An; θn) of the target

network with random θn, the decay rate of ϵ as ξ, the
episode index i = 1.

2 for i ≤ Epsisode Number do
3 Get the system state Sn from the environment.
4 for n ∈ N do
5 With probability ϵ, select an action An

randomly, otherwise select
An = argmax

An

Qi(Sn,An; θn).

6 //Action Mapping
7 Calculate An ÷ Γ, get the quotient and

remainder qn and rn.
8 Set πn ← qn − 1.
9 Set γn ← rn + 1.

10 Offload Tn to the corresponding device that πn

represents, and allocate γn CPU cores.
11 Get the reward Rn and the next-state Sn+1.
12 Store the data (Sn,An,Rn,Sn+1) in the replay

buffer.
13 Randomly sample from the replay buffer.
14 Calculate the loss function L(θn) by (12),

update θn to minimize L(θn) by gradient
descent.

15 i← i+ 1.
16 Update ϵ← e−i/ξ.

17 Update the parameters in the target network
periodically, i.e., θ̂n ← θn after several episodes.

IV. SIMULATION RESULTS

In this section, we evaluate our proposed scheme and
compare it with other baselines.

A. Setup and Baseline

We evaluate the proposed INC-enhanced task offloading
scheme with several areas (an area defined as a cell), each
of which consists of a router/ES (depending on the indoor
or outdoor scenario) and 5 UEs. We consider the system
consists of 20 switches and one cloud swarm. The total storage
resources of the UEs, the routers/switches, the ESs, and the
cloud swarm are set as 100 Mbits, 2 Gbits, 5 Gbits, and 1
Tbits, respectively; the total computation resources (in CPU
cores) are set as 1, 32, 128, and 6400 cores, respectively.
The computation capability of a CPU core is set as 2 × 109

CPU cycles. The data sizes of the tasks are randomly set as
[80, 100] Mbits. The computation intensities of tasks are set as
300 Cycles/bit. The uplink bandwidth of UE is set as 5 MHz,
and the transmission speed of optical fiber is set as 1 Gbits/s.
The latency and EC for transmitting a task from Ln to the
cloud are set as 10 s and 1 J. The transmit power of wireless
communication and optical fibers are set as 1 W and 0.1 W,

0 250 500 750 1000 1250 1500 1750 2000

Episode

100

80

60

40

20

R
e
w
a
rd

Episode_mean_system_reward

Fig. 4. The system reward.

respectively. The channel gain is set as 127 + 30 × log(d),
where d represents the distance in meters. The Gaussian noise
power σ2 is set as 2× 10−13 W [11], [17], [18]. The weights
α and β for measuring the importance of system latency and
EC are set as 0.7 and 0.3, respectively.

We compare our proposed framework to conventional DRL-
based MEC task offloading (defined as DRL-MEC) [19] to
evaluate that INC can enhance edge offloading; moreover,
we also compare the proposed scheme to random offloading
(randomly choose action and if failed, process the task locally)
and local processing in INC-enhanced networks to see how
much the proposed scheme can improve.

B. Evaluation Results

We first present the system reward of the agent to see the
convergence performance of the proposed INC-enhanced task
offloading algorithm, as shown in Fig. 4. The system reward
gradually increases at the beginning episodes of training,
followed by a shape rise at the 256-th episode (which is
the batch size set in the experiment). Since after the stored
experience of the agent is more than the batch size, the agent
starts learning. Afterwards, the system reward declines slowly
and eventually stabilized and converged after 500 episodes.

With different numbers of cells, we compare the proposed
scheme with the DRL-MEC, random offloading, and local
processing schemes as shown in Fig. 5. From Fig. 5(a), we
observe that the system latency increases with the number of
cells, as the number of UEs increases with cells. The proposed
scheme outperforms other schemes in all cell numbers and gets
more obvious advantages as the number of cells increases,
since when we have more UEs, the proposed scheme can
offload more tasks to the INC devices, contributing to much
lower system latency. Overall, the proposed scheme can reduce
the system latency by up to 40.63%, 63.86%, and 70.37%
compared to DRL-MEC task offloading, random offloading,
and local processing schemes, respectively.

Moreover, in Fig. 5(b), we compare the system EC of
the four schemes. Similar to the system latency, the system
EC of all schemes increases with the cell number, while
the proposed scheme has a slight advantage over the DRL-
MEC scheme since these two schemes can both effectively

10 20 30 40 50
Cell Number

200

400

600

800

1000

1200

1400

La
te

nc
y

Total Latency
Proposed-INC
DRL-MEC
Local
Random

(a) System latency.

10 20 30 40 50
Cell Number

0

2000

4000

6000

8000

10000

12000

14000

EC

Total EC
Proposed-INC
DRL-MEC
Local
Random

(b) System EC.

10 20 30 40 50
Cell Number

0

1000

2000

3000

4000

5000

W
ei
gh

te
d
Su

m
 o
f L

at
en

cy
 a
nd

 E
C

Total Weighted Sum of Latency and EC
Proposed-INC
DRL-MEC
Local
Random

(c) Weighted sum of system latency and EC.

Fig. 5. The system latency, EC, and the weighted sum of the considered system versus different cell numbers.

offload the tasks to the facilities connected to the power
supply, which have the same power for every CPU core.
On the other hand, the EC of random offloading and local
processing is much higher and increases with the number of
cells. Overall, the proposed INC-enhanced task offloading and
DRL-MEC offloading schemes can reduce the system EC by
up to 86.71% and 88.86% compared to random offloading and
local processing, respectively.

At last, we summarize the weighted sum of system latency
and EC achieved by these schemes, as shown in Fig. 5(c).
Overall, the proposed INC-enhanced task offloading scheme
can reduce the weighted sum of system latency and EC by up
to 22.42%, 81.83%, and 85.36% compared to the DRL-MEC,
random offloading, and local processing schemes, respectively.

V. CONCLUSION

In this paper, we have considered INC-enhanced task of-
floading in MEC networks to reduce system latency and EC.
To this end, we have designed a three-layer end-edge-cloud
network architecture with INC elements considered and then
proposed a DRL-based framework to solve the formulated
optimization problem. Particularly, we map the action of the
agent to offloading policy and resource allocation strategy to
simultaneously determine these two indicators. Simulation re-
sults have demonstrated that our proposed INC-enhanced task
offloading scheme achieves fast convergence and outperforms
other schemes in reducing system latency and EC.

ACKNOWLEDGMENTS

This research work is partially supported by the Business
Finland 6Bridge 6Core project under Grant No. 8410/31/2022,
the Academy of Finland 6G Flagship program under Grant
No. 346208, and the Academy of Finland IDEA-MILL project
under Grant No. 352428.

REFERENCES

[1] M. Shokrnezhad and T. Taleb, “Near-optimal cloud-network integrated
resource allocation for latency-sensitive b5g,” in Proc. IEEE Global
Communications Conference (GLOBECOM), 2022, pp. 4498–4503.

[2] H. Mazandarani, M. Shokrnezhad, T. Taleb, and R. Li, “Self-sustaining
multiple access with continual deep reinforcement learning for dynamic
metaverse applications,” in Proc. IEEE International Conference on
Metaverse Computing, Networking and Applications (MetaCom), 2023.

[3] O. A. Wahab, A. Mourad, H. Otrok, and T. Taleb, “Federated machine
learning: Survey, multi-level classification, desirable criteria and future
directions in communication and networking systems,” IEEE Communi-
cations Surveys & Tutorials, vol. 23, no. 2, pp. 1342–1397, 2021.

[4] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
multi-access edge computing: A survey of the emerging 5g network edge
cloud architecture and orchestration,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1657–1681, 2017.

[5] Z. Ming, X. Li, C. Sun, Q. Fan, X. Wang, and V. C. M. Leung, “Sleeping
cell detection for resiliency enhancements in 5g/b5g mobile edge-cloud
computing networks,” ACM Transactions on Sensor Networks (TOSN),
vol. 18, no. 3, pp. 1–30, 2022.

[6] H. Yu, Z. Ming, C. Wang, and T. Taleb, “Network slice mobility for
6g networks by exploiting user and network prediction,” in Proc. IEEE
International Conference on Communications (ICC), 2023.

[7] R. A. Addad, D. L. C. Dutra, T. Taleb, and H. Flinck, “Toward using
reinforcement learning for trigger selection in network slice mobility,”
IEEE Journal on Selected Areas in Communications, vol. 39, no. 7, pp.
2241–2253, 2021.

[8] I. Maity and T. Taleb, “Resq: Reinforcement learning-based queue allo-
cation in software-defined queuing framework,” Journal of Networking
and Network Applications, vol. 2, no. 4, pp. 143–152, 2022.

[9] L. Hu, Y. Tian, J. Yang, T. Taleb, L. Xiang, and Y. Hao, “Ready
player one: Uav-clustering-based multi-task offloading for vehicular
vr/ar gaming,” IEEE Network, vol. 33, no. 3, pp. 42–48, 2019.

[10] Y. Chen, Y. Sun, C. Wang, and T. Taleb, “Dynamic task allocation and
service migration in edge-cloud iot system based on deep reinforcement
learning,” IEEE Internet of Things Journal, vol. 9, no. 18, pp. 16 742–
16 757, 2022.

[11] Z. Ming, X. Li, C. Sun, Q. Fan, X. Wang, and V. C. M. Leung,
“Dependency-aware hybrid task offloading in mobile edge computing
networks,” in Proc. IEEE International Conference on Parallel and
Distributed Systems (ICPADS). IEEE, 2021, pp. 225–232.

[12] S. Kianpisheh and T. Taleb, “A survey on in-network computing:
Programmable data plane and technology specific applications,” IEEE
Communications Surveys & Tutorials, vol. 25, no. 1, pp. 701–761, 2023.

[13] T. Mai, H. Yao, S. Guo, and Y. Liu, “In-network computing powered
mobile edge: Toward high performance industrial iot,” IEEE Network,
vol. 35, no. 1, pp. 289–295, 2021.

[14] L. Gobatto, M. Saquetti, C. Diniz, B. Zatt, W. Cordeiro, and J. R.
Azambuja, “Improving content-aware video streaming in congested
networks with in-network computing,” in Proc. IEEE International
Symposium on Circuits and Systems (ISCAS), 2022, pp. 1813–1817.

[15] L. Hu, Y. Chai, Q. Li, W. Li, and Y. Zhang, “Multi-source dnn task
offloading strategy based on in-network computing,” in Proc. Interna-
tional Conference on Advanced Communication Technology (ICACT),
2023, pp. 226–231.

[16] N. Hu, Z. Tian, X. Du, and M. Guizani, “An energy-efficient in-
network computing paradigm for 6g,” IEEE Transactions on Green
Communications and Networking, vol. 5, no. 4, pp. 1722–1733, 2021.

[17] C. Sun, X. Wu, X. Li, Q. Fan, J. Wen, and V. C. M. Leung, “Cooperative
computation offloading for multi-access edge computing in 6g mobile
networks via soft actor critic,” IEEE Transactions on Network Science
and Engineering, 2021.

[18] J. Li, Z. Yang, K. Chen, Z. Ming, X. Li, Q. Fan, J. Hao, and L. Cheng,
“Dependency-aware task offloading based on deep reinforcement learn-
ing in mobile edge computing networks,” Wireless Networks, pp. 1–13,
2023.

[19] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne, “Privacy-
preserved task offloading in mobile blockchain with deep reinforcement
learning,” IEEE Transactions on Network and Service Management,
vol. 17, no. 4, pp. 2536–2549, 2020.

