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Joint Content Update and Transmission Resource
Allocation for Energy-Efficient Edge Caching of

High Definition Map
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Abstract—Caching the high definition map (HDM) on the
edge network can significantly alleviate energy consumption
of the roadside sensors frequently conducting the operators
of the traffic content updating and transmission, and such
operators have also an important impact on the freshness of the
received content at each vehicle. This paper aims to minimize
the energy consumption of the roadside sensors and satisfy
the requirement of vehicles for the HDM content freshness by
jointly scheduling the edge content updating and the down-
link transmission resource allocation of the Road Side Unit
(RSU). To this end, we propose a deep reinforcement learning
based algorithm, namely the prioritized double deep R-Learning
Networking (PRD-DRN). Under this PRD-DRN algorithm, the
content update and transmission resource allocation are modeled
as a Markov Decision Process (MDP). We take full advantage of
deep R-learning and prioritized experience sampling to obtain the
optimal decision, which achieves the minimization of the long-
term average cost related to the content freshness and energy
consumption. Extensive simulation results are conducted to verify
the effectiveness of our proposed PRD-DRN algorithm, and also
to illustrate the advantage of our algorithm on improving the
content freshness and energy consumption compared with the
baseline policies.

Index Terms—Vehicular Networks, High Definition Map, Edge
Caching, Deep Reinforcement Learning, Content Update, Trans-
mission Resource Allocation, Age of Information.

I. INTRODUCTION

THE High Definition Map (HDM) is an essential tool
to help autonomous vehicles make path planning and

relative driving decision [1]- [3]. Generally, the HDM can
be roughly divided into two layers, namely the static layer
and the dynamic layer [9]. The static layer contains the road
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topology information stored in the remote cloud platform or
pre-cached onboard, while the dynamic layer contains the real-
time traffic condition of the specific road section requiring
frequent information update from the roadside sensors. To
reduce the file response latency and sensor energy consump-
tion of the remote data transmission, a promising solution
is to cache the dynamic layer files of the HDM at different
network edges [4]- [8]. However, the frequent file update still
brings high energy consumption of the roadside sensors due
to the traffic condition perception and the data transmission.
Actually, a large proportion of updates is unnecessary if
the HDM files arriving the destined vehicles can meet the
vehicular requirement on the freshness. Therefore, a new and
dedicated research is deserved to explore how to relieve the
energy consumption of the roadside sensors while keeping a
relatively high file freshness.

The age of Information (AoI) is a promising metric to
quantify the freshness of the dynamic contents, and is defined
as the time elapsed beginning from the time when the content
is generated from the source [10] [11]. The available works
on AoI aim to improve system performances, which include
the average/(peak) AoI minimization, trade-off between AoI
and request latency, by optimizing various parameters such
as content’s AoI, energy consumption by information sources,
and transmission bandwidth occupation. These works either
use different mathematical optimization theories to deduce
an optimal scheduling policies [12]- [27], or use learning-
based methods to make real-time optimal scheduling decision
[28]- [36] (see Related Works of Section II). The traditional
mathematical optimization theories can efficiently deduce the
feasible solution with relatively low algorithm complexity
[37]- [40].

Note that most of the above mathematical optimization
theories rely on the extra information about the models
and the environment, which are difficult to implement in a
practical scenario. The learning-based methods can overcome
this disadvantage, they consider a more realistic case that
the environment information is unknown, and obtains the
optimal decision through the interaction with the environment.
Most of the existing learning-based methods transform the
proposed problem to a Markov decision process (MDP), and
utilize model-based reinforcement learning (RL) (e.g., value
iteration algorithm), or model-free RL methods (e.g., Deep
Q-learning) to obtain optimal policy [41] [42]. The traditional
Q-learning is an effective method to solve MDP problems
[43], which utilizes a two-dimensional Q-table to evaluate
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the system performance of actions taken in each state. How-
ever, when applying to a large-scale reinforcement learning
(RL) problem, it will face the curse of dimensionality due
to the large state or action space and becomes ineffective.
Therefore, the combination of Q-learning and the deep neural
network (DNN), which is called DQN, has been proposed to
approximate the Q-function of state-action pairs and execute
automatic learning under the large system state [44]. The goal
of the natural DQN and its variants is to maximize the long-
term discount reward by utilizing the deep neural network
(DNN) as an approximation function to learn policy and
state value. Their execution usually contains three processes,
namely agent exploration and exploitation, offline training and
online decision [45]. During the exploration and exploitation
process, the agent interacts with the environment and performs
the optimal actions according to the greedy policy. It will cache
the experience in the replay buffer once it performs the relevant
action. When the agent obtains enough training experiences
from the environment, it starts to train the network model with
the cached experiences. Once the network performance has
met the certain requirements, the agent can run the trained
DQN model online to make optimal decision based on the
given MDP. The learning-based methods on AoI optimization
mainly put an eye on minimizing AoI and the relative file
update cost (such as energy consumption, transmission latency,
etc.) by finding out optimal status update policies [28]- [30]
[33]- [34] or transmission related optimizations [35] [36].

However, the status update policy and the relevant trans-
mission optimization are considered separately in the existing
works. In general, reasonable transmission resource allocation
can reduce the number of the instant updating when the real-
time AoI of the request cannot meet the user’s requirement.
This means that more transmission resource can be allocated
to the user whose requested file’s AoI is approaching to its
AoI requirement threshold. Therefore, jointly scheduling the
HDM content update and the transmission resource allocation
in the dynamic edge caching system is a promising solution
in reducing the file update times while keeping a relative high
file freshness. In this paper, we investigate how to satisfy the
vehicular AoI requirements while maintaining relatively low
energy consumption of the battery-powered roadside sensors
in the edge HDM caching scenario by jointly schedule the
content update and the downlink transmission resource allo-
cation. We propose a PRD-DRN algorithm, which combines
the superiority of prioritized double deep Q-learning [47] [61]
and R-learning [46]. In the proposed algorithm, the agent can
interact with environment and execute the optimal scheduling
action for maximizing the long-term average system reward
without adjusting the discount factor.

The main contributions of this paper can be summarized as
follows.

• We first model the joint scheduling problem of the content
update and the downlink transmission resource allocation
in the HDM edge-cached scenario as an MDP, which
depicts the real-time AoI of the edge-cached content and
the AoI difference of vehicles’ requested files in non-
uniform decision epochs. During each decision epochs,
the system cost is derived as the sum of each vehicle’s

AoI-related cost, that is, AoI difference and sensor energy
consumption brought by the content updating.

• We further propose a PRD-DRN algorithm to adaptively
solve the scheduling problem when the vehicular request
patterns and the dynamics of environment information are
unknown. The PRD-DRN algorithm has the properties of
the R-learning, which can obtain the maximal long-term
average reward without adjusting the discount factor in
the traditional DQN-based algorithm.

• Extensive simulation results are conducted to verify the
PRD-DRN algorithm, and also to illustrate the improve-
ment of the content freshness and energy consumption
under the PRD-DRN algorithm compared with the base-
line policies like the heuristics and the traditional DQN-
based policies.

The rest of the paper is organized as follows. Section
II summarizes the related works. Section III introduces our
concerned network model and formulates the problem. In
Section IV, we transform the scheduling problem into an MDP
and propose the PRD-DRN to solve it. Extensive simulation
results are provided in section V. Finally, Section VI concludes
this paper.

II. RELATED WORKS

The available works on AoI can be classified into two
categories: 1) deducing an optimal scheduling policy under
a specific system by utilizing different mathematical opti-
mization theories [12]- [27], and 2) utilizing learning-based
methods to make real-time optimal scheduling decision [28]-
[36]. The former category usually makes the assumption that
the environment information (e.g., the request patterns of
users) is the pre-defined mathematical models or statistics.
The latter category considers a more realistic case that the
environment information is unknown, and obtains the optimal
decision through the interaction with the environment.

AoI has been initially investigated in cache updating sys-
tems to ensure the file freshness when the requested files arrive
at users [12]- [18]. The works in [12] [13] [14] [18] [24]
aim at exploring optimal file update policies to minimize the
average/(peak) AoI of the edge cache system by considering
other factors such as content popularity etc.. The works [15]
[16] [17] optimize the transmission resource allocation in the
edge caching system to realize a trade-off between the file
freshness and the request latency.

Later, researchers find out that the pursuit of AoI mini-
mization in environmental monitoring systems will inevitably
increase the energy consumption of the sensors [34]. Rele-
vant works focus on improving the AoI performance with
lower energy consumption by utilizing different optimization
theories [19]- [23] [25]- [27]. In [19], the authors optimize
the update rate to avoid unnecessary updates and reduce the
energy consumption of the sensors in a monitoring system.
The authors of [20] explore the optimal online status update
policies in the finite battery scenario and the infinite batter
scenario, respectively. A renewal structure is also proposed
in the finite battery scenario to give the order of the sensor
charging and the status update. In [21], the authors prove that
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the erasure status feedback is good for online timely updating
when the available energy of the sensors is limited. The
authors of [22] solve the AoI-Energy optimal problem from a
communication perspective, where optimal transmission poli-
cies for two-hop networks have been investigated. In [23], the
authors investigate optimal state update policies under different
battery recharge models. In [25], the authors investigate the
age-energy tradeoff of IoT monitoring systems and adopt a
Truncated Automatic Repeat reQuest (TARQ) scheme. The
authors of [26] focus on the average AoI and energy cost
for Low Density Parity Check Code (LDPC) coded status
update over Additive White Gaussian Noise (AWGN) and
Rayleigh fading channels. By utilizing the renewal processes
theory, the expressions of the average AoI and energy cost
can be derived. In [27], the authors investigate how to realize
a tradeoff between AoI and energy consumption over an error-
prone channel by taking sleep and retransmission mode into
consideration.

Recently, learning-based methods [28]- [36] have also been
applied to optimize the AoI-related caching problems. These
works usually transform the proposed problem to a Markov de-
cision process (MDP), and utilize model-based reinforcement
learning (RL) (e.g., value iteration algorithm), or model-free
RL methods (e.g., Deep Q-learning) to obtain optimal policy.
The authors of [31] and [32] investigate the achievable opti-
mal information sampling and updating strategies which can
minimize the AoI in the environment monitoring system. The
authors in [28]- [30] [33]- [34] study the status update control
problems under different scenarios where for the unknown
energy-related information of the sensors, they propose various
file update policies to optimize the AoI performance with low
energy cost. Authors of [35] propose an optimal transmission
mode selection scheme to realize a trade-off between AoI and
energy consumption. In [36], the authors aim to minimize
the AoI by controlling the network’s actions on an unknown
network topology and delay distribution. In [40], the authors
investigate the age-energy tradeoff in fading channels with
packet-based transmissions, and solve the specific problem by
using Bellman optimal equations.

We summarize the characteristics of the aforementioned
works in Table I.

III. SYSTEM MODEL AND PROBLEM
FORMULATION

A. Network Model

As illustrated in Fig. 1, we consider a HDM dynamic layer
edge caching scenario consisting of a single Road Side Unit
(RSU), F traffic information acquisition roadside sensors and
several vehicles in the RSU’s coverage range. The RSU is
equipped with Hb transmission resource blocks for downlink
data transmission. Each roadside sensor is responsible for
refreshing the relevant HDM file with the same size l cached
on the RSU. The vehicle and HDM dynamic file sets are
denoted by N={1, 2, ..., N} and F={1, 2, ..., F}, respectively.
To deal with the real-time network changes brought by the
vehicular requests, we consider a time-slotted system, where
each time step t is slotted into equal-sized time slots τ based

on the practical demand. At each time step, the RSU may
receive the vehicular HDM file request, and then it will decide
whether to pull the up-to-date states of HDM files from the
relevant sensors based on the file AoI demands of vehicles.
If the demands can be satisfied, the RSU will respond to
the vehicular HDM file requests with its local cached files.
Otherwise, it will provide the updated HDM files from these
sensors for the vehicle. It is notable that the proposed model
with a single edge node in this paper is also suitable for the
multiple edge nodes with non-overlapping scenario, which is
widely used in the previous works [9] [15] [17].

HDM Files Refreshing

HDM Files Delivery

RSU

Edge Caching

Road Side Sensor

Road Side Sensor

Road Side Sensor

Road Side Sensor

Road Side Sensor

Fig. 1. HDM dynamic layer edge caching scenario.

In any time step t, the query detail for the request of
vehicle n can be represented as a query profile dn(t) ={
d1n(t), d

2
n(t), ..., d

F
n (t)

}
, where dfn(t) = {0, 1}, and f ∈

{1, 2, ..., F}. dfn(t) = 1 represents the HDM file f has been
requested by the vehicle n in the time step t, and dfn(t) = 0
otherwise. Meanwhile, we use an indicator d̃n(t) to represent
whether vehicle n raises a request in the time step t. Then,

d̃n(t) =

{
0,

∑F
f=1 d

f
n(t) = 0,

1, Otherwise.
(1)

The RSU can obtain the query profiles D(t) =
{d1(t), d2(t), ..., dN (t)} of all the vehicles in the time step t,
but it has no prior knowledge of the vehicular request arrival
rates and the popularity of each cached HDM file.

Once if the RSU receives the query profiles D(t), it will
make the HDM dynamic file update decision based on the
requested HDM files and the relevant AoI demands. We use
U(t) = {u1(t), u2(t), ..., uF (t)} to represent the HDM file
update decision in the time step t, where uf (t) ∈ {0, 1}, f ∈
F . uf (t) = 1 represents that the RSU decides to refresh file f
and pull the up-to-date states from the relevant sensor in the
time step t, otherwise uf (t) = 0. The RSU will select file f
to refresh in the time step t based on the comparison between
its real-time AoI on the RSU and the AoI demand in the query
profile D(t). Notice that, when there is no query of file f in
the query profiles D(t), file f may also be updated to reduce
the transmission delay caused by the temporary request update
only if there is available uplink transmission resources. Then,
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TABLE I
THE SUMMARY OF AOI MINIMIZATION IN ENVIRONMENTAL MONITORING SYSTEMS

Optimization Objective Reference Status Update Policy Optimal Transmission Schedule Solution Taxonomy
Optimization Theory Learning-based

AoI only [12] [13] [14] [18] ✓ × ✓ ×
[24] × ✓ ✓ ×

AoI & Latency [15] [16] [17] × ✓ ✓ ×

AoI & Energy Consumption

[19]- [21] [23] ✓ × ✓ ×
[22] [25]- [27] × ✓ ✓ ×
[28]- [34] ✓ × × ✓
[35] [36] [40] × ✓ × ✓

TABLE II
PARAMETERS

Parameters Description
dfn(t) Vehicle n request identifier for HDM file f.
uf (t) Update identifier for HDM file f.

B The available bandwidth of each transmission re-
source block.

Hn(t) The number of the consecutive resource blocks
allocated to the vehicle n.

Y The maximum number of updated HDM files in
each time slot.

µn(t) The max transmission rate from the vehicle n to
the RSU.

Γn(t) The spectrum efficiency of vehicle n associated
with the RSU.

αmax The maximum system AoI a file cached on the
RSU can reach.

αf
0 (t) The real-time AoI value of HDM file f in the RSU.

αf
n(t) The AoI value of the file f requested by the vehicle

n.
T f
r The time consumption for file f to be updated.

Ef The energy consumed by the traffic sensing and the
information uploading for each HDM file f update
operation.

αV
max The AoI limitation for all the vehicular requests.

∆0
n,f (t) The AoI difference of the vehicular request on the

RSU.
∆n,f (t) The AoI difference of the vehicular request on-

board.
∆n(t) The average AoI difference cost of all the HDM

files vehicle n requested.
∆AoI(t) The AoI related cost during each time step t.
PAoI(t) The AoI relevant penalty during each time step t.
PE(t) The energy relevant penalty during each time step

t.
ωAoI The factor to nondimensionalize PAoI(t).
ωE The factor to nondimensionalize PE(t).

the RSU responds the vehicular requests with its cached HDM
files.

In our network model, we consider that the RSU is assigned
with limited transmission resource blocks, which can be op-
timally allocated to the transmission from the RSU to each
vehicle (V2I) based on service requirements of the vehicle’s
request. The max transmission rate µn(t) from the vehicle n
to the RSU in the time step t is given by:

µn(t) = BHn(t)Γn(t) (2)

where B is the available bandwidth of each transmission
resource block, Hn(t) is the number of the consecutive re-
source blocks allocated to the vehicle n, Γn(t) is the spectrum
efficiency of vehicle n associated with the RSU. Here, the
unit of µn(t) is KB per second. Thus, the file transmission

latency from the RSU to the vehicle n can be determined
as l

µn(t)
in the time step t. We consider a more realistic

time-varying channel between each vehicle and the RSU. The
channel is modeled as a finite-state Markov channel (FSMC)
[52] without loss of generality. The spectrum efficiency is
divided into Z levels. Let Z = {γ0, γ1, ..., γZ−1} denote the
state space of the spectrum efficiency: γ0, if γ∗

0<Γn(t)<γ∗
1 ;

γ1, if γ∗
1<Γn(t)<γ∗

2 ; ...; γZ−1, if Γn(t) ≥ γ∗
Z−1. In each

time step, the Γn(t) can change from one state in the set Z
to another with a certain transition probability.

Meanwhile, the total number of resource blocks allocated
to downlink transmissions of N vehicles is no more than Hb,
i.e.,

N∑
n=1

Hn(t) ≤ Hb, (3)

where Hn(t) represents the number of the resource blocks
used by the vehicle n in the time step t.

As for the uplink transmission process of file update, we
consider the update time of each HDM file keeps unchanged
at different time steps due to the identical file size and
transmission time. The update time can be depicted as Tr ={
T 1
r , T 2

r , ..., T F
r

}
, where Tr represents the file update time

consumption set, T f
r represents the time consumption for file

f to be updated, T f
r <T (t), f ∈ {1, 2, ..., F}. T (t) denotes the

duration of time step t. To avoid uplink channel congestion,
the maximum number of updated files in each time slot is no
more than a constant Y , i.e.,

F∑
f=1

uf (t) ≤ Y (4)

where Y <F . Particularly, an update operation for each file f
needs Ef unit energy consumed by the traffic sensing and the
information uploading.

B. AoI Analysis

The real-time AoI value of the cached HDM files is of great
importance for the RSU to conduct a file update decision.
Since the AoI values of the same HDM file may be different
in the RSU and vehicles at the same time slot, we analyse the
real-time AoI value of cached HDM files on the RSU and the
influence of file response latency on AoI when the requested
file received by the vehicle.

We define a metric αmax which represents the maximum
system AoI a file cached on the RSU can reach. For any
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HDM file f in the RSU, its real-time AoI value αf
0 (t) can

be expressed as

αf
0 (t) ={
T (t− 1), uf (t− 1) = 1,

min
{
αf
0 (t− 1) + T (t− 1), αmax

}
, otherwise.

(5)
For a vehicle n, the transmission latency brought by the file

respond process also increases the staleness of the information.
Additionally, the instant file updating 1 also brings extra
response latency to the request. Thus, the AoI value of the
file f requested by the vehicle n can be expressed as

αf
n(t) =

{
αf
0 (t− 1) + l

µn(t)
, uf (t) = 0

T f
r + l

µn(t)
, Otherwise

(6)

To ensure that the AoI of the requested HDM file meets the
demand of each vehicle, we set an AoI limitation for all the
requests in the time step t as

αf
n(t) ≤ αV

max (7)

where αV
max ≤ αmax. Fig. 2 illustrates the AoI variation of

the HDM file cached on the RSU. To meet the communication

Fig. 2. The AoI variation for an HDM file f on the RSU.

needs of other vehicles, the RSU can allocate redundant down-
link transmission resources to vehicles once if the requested
file’s AoI exceeds the threshold αV

max. This will avoid the
occurrence of instant file update and reduce the update energy
consumption. The file update decision and the downlink trans-
mission resource allocation can be jointly optimized to realize
a reduction in the update energy consumption at the cost of
downlink transmission resource while ensuring a relatively low
AoI experience of the vehicles.

C. Problem Formulation

Our objective is to minimize the average AoI experienced
by the vehicles and also to reduce the extra sensor en-
ergy consumption caused by file update. We design a joint
scheduling mechanism for the HDM file update and downlink
transmission resource allocation.

1It will occur when the current AoI of the requested file can not meet the
vehicular AoI requirements.

To better characterize the satisfaction with the AoI of the
requested HDM file, we define a new metric, namely AoI
difference cost, as the gap between the real-time AoI value
of the file and αV

max. The following equations (8) and (9)
express the AoI difference of each vehicular request on the
RSU and on-board, respectively.

∆0
n,f (t) = αf

0 (t)− αV
max, (8)

∆n,f (t) = αf
n(t)− αV

max. (9)

As for a vehicle n, we use the average AoI difference cost
∆n(t) of all the HDM files it requested as the representative of
its AoI satisfaction within time step t, which can be expressed
as:

∆n(t) =
1∑F

f=1 d
f
n(t)

F∑
f=1

∆n,f (t)d
f
n(t) (10)

According to the above analysis, the AoI related cost during
each time step can be expressed as the weighted sum of each
vehicle’s average AoI difference cost, i.e.,

∆AoI(t) =

N∑
n=1

βn∆n(t) (11)

where
∑N

n=1 βn = 1, βn ∈ [0, 1], and the value of each βn

depends on the automatic driving level of the vehicle. Vehicle
with higher automatic driving level possesses a higher value
βn

2. In this paper, we consider the case that each request only
contains one HDM file to simplify the analysis.

Meanwhile, the total energy consumption of the roadside
sensors in each time step can be expressed as E(t) =∑F

f=1 uf (t)Ef . Here, we denote PAoI(t) as the AoI relevant
penalty brought by the average AoI difference cost, and denote
PE(t) as the energy relevant penalty brought by the total
energy consumption in each time step, respectively.{

PAoI(t) =
∆AoI(t)
αV

max

PE(t) =
E(t)∑F
f=1 Ef

(12)

Therefore, the overall system cost in each time step t can
be expressed as:

Ctot(t) = ωAoIPAoI(t) + ωEPE(t) (13)

where ωAoI and ωE are used to nondimensionalize the func-
tion and can realize a tradeoff between the AoI relevant penalty
and the energy relevant penalty in each time step. Since the
AoI requirement of the requested HDM file is more important
than the energy consumption of the roadside sensors. we
consider ωAoI is larger than ωE .

Based on the cost function (13), as the time Tmax goes to
infinity, the average cost of the requesting HDM file can be
defined as

Cave = lim
Tmax→∞

1

Tmax
E(

Tmax∑
t=0

Ctot(t)) (14)

2For vehicles with higher automatic driving level, receiving stale informa-
tion has a greater impact on their judgment on driving behavior.
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Our objective can be formulated as

minimize Cave

s.t. αf
0 (t) ≤ αV

max, f ∈ {1, 2, ..., F}
(3), (4), (5), (8)

(15)

This is a nonlinear and nonconvex optimization problem. It
is generally difficult to solve such a problem. In the following
section, we propose a DRL-based algorithm to solve it.

IV. DEEP REINFORCEMENT LEARNING-BASED
ALGORITHM

This section first formulates the HDM content update and
downlink resource allocation process on the RSU as an MDP.
Then, the PRD-DRN algorithm is further proposed to mini-
mize the long-term average cost of the requesting HDM file
by jointly optimizing the HDM content update and downlink
transmission resource allocation.

A. MDP Model

The MDP in this paper is modeled as a 4-tuple ⟨S,A, P,R⟩,
i.e.,

• State Space S: s(t) = (α0(t),∆
0
1(t), ...,∆

0
N (t),

Γ1(t), ...,ΓN (t)) is defined as the system state at time
step t, which is composed of the real-time HDM file
AoI value on the RSU α0(t) = (α1

0(t), α
2
0(t), ..., α

F
0 (t)),

the AoI difference of each vehicle on the RSU ∆0
n(t) =

(∆0
n,1(t),∆

0
n,2(t), ...,∆

0
n,F (t)), n ∈ {1, 2, ..., N} and the

spectrum efficiency Γn(t) for each vehicle. The whole
state space S at time step t is finite due to the constraint
of the system maximum AoI value αmax and the FSMC
model.

• Action set A: a(t) = (u1(t), ..., uF (t), H1(t), ...,HN (t))
is defined as the system action set in time step t, which
represents the HDM file update decision and the downlink
transmission resource allocation of the RSU.

• State Transition Probability P: P = S×A×S → [0, 1]
represents the distribution of the transition probability
P (s′ | s, a) from the system state s to a new system state
s′ (s, s′ ∈ S) when an action a ∈ A is chosen, which is
largely effected by the real environment conditions, such
as the HDM file request rate, the request popularity of
each cached HDM file, etc.

• Reward Function R:S×A → R maps a state-action pair
to a value R(s(t), A(t)). Our objective in this paper is
to minimize the long-term average cost Cave(t) given in
equation (14) under the constrained conditions, and then
we can define the reward function as R(s(t), a(t)) =
−Cave(t).

Here, we define the policy π as an action a ∈ A that the
RSU will execute by given a specific system state s ∈ S.
Then, the objective function in (15) can be rewritten as:

argmax
π∗

lim
Tmax→∞

1

Tmax
E

[
Tmax∑
t=0

R(s(t), a(t)) | s(0)

]
(16)

B. PRD-DRN Algorithm

With the MDP model aforementioned, we can well charac-
terize the effects of the diverse HDM AoI on vehicles under
different file update actions based on the vehicular autonomous
driving requirements. Here, we need to design an adaptive
and efficient HDM dynamic layer update strategy, which can
proactively make file update decision in each state, so as to
earn a higher reward by considering the long-term system
performance.

In our scenario, the rewards obtained by the agent in dif-
ferent time steps are considered to have the same importance.
Thus, this paper is to maximize the long-term average reward
rather than the long-term discount reward. We modify the
state value function Vπ(s) and the state-action value function
Qπ(s, a) by combining the idea used in the R-learning [46]
as follows:

Vπ(s) = E

[ ∞∑
k=0

(R(s(t+ k), π(t+ k))−Rπ) | s(t) = s

]
(17)

Qπ(s, a) =

E

[ ∞∑
k=0

(R(s(t+ k), a(t+ k))−Rπ) | s(t) = s, a(t) = a

]
(18)

where Rπ is the long-term average reward of taking policy π
in state s, which can be written by:

Rπ = lim
k→∞

1

k + 1

∞∑
k=0

R(s(t+ k), π(t+ k)). (19)

The optimal policy π∗ can be obtained by utilizing the Bellman
Optimality Equation:

Vπ∗(s) = maxa∈AQπ∗(s, a). (20)

The architecture of our DRL-based HDM dynamic layer
update mechanism is presented in Fig. 3. θ and θ∗ are the
DNN parameters of the main network and the target network
respectively. The agent interacts with the environment and
observes the real-time system state. Based on the current
state s(t), the agent selects an action using the ϵ-greedy
strategy. Under such a strategy, the action maxaR(s, a, θ) is
selected with probability ϵ, and the action a ∈ A is selected
with probability (1 − ϵ), where ϵ ∈ [0, 1]). Notice that, the
agent not only uses the previous experience to maximize
current rewards, but also keeps exploration and exploitation
to improve the Qπ(s, a) and the Rπ . After the agent performs
an action a(t), the corresponding reward R(s(t), a(t)) can
be obtained from environment, and the system state s(t)
transfers to s(t + 1). Thus, a new experience tuple E(t) =
(s(t), a(t), R(s(t), a(t)), s(t + 1)) is generated and will be
cached in the experience replay buffer M. Then, the former
steps go into a loop to obtain enough experience in the replay
buffer for the future training. Notice that, the oldest experience
tuple will be discarded when the experience buffer M is full.

As for the training procedure, we first utilize a prioritized
experience sampling scheme [47] to acquire a mini-batch
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Fig. 3. The architecture of PRD-DRN

of the cached experience tuples W = {E1, E2, ..., EWm}
based on the pre-defined batch size Wm, where Ej =
(sj , aj , R(sj , aj), s

′
j), j ∈ {1, 2, ...,Wm}. Unlike the random

sampling, the prioritized experience sampling tends to replay
experiences with high priority more frequently, which is
measured by the magnitude of their temporal-difference (TD)
error δj defined as:

δj = R(sj , aj)−R+max
a′
j

Q′(s′j , a
′
j ; θ

∗)−Q(sj , aj ; θ) (21)

where R is the average reward of the cached experience in
the replay buffer. Meanwhile, the sampling priority of each
cached experience tuple Ej can be determined as pt = |δj |.
The sampling can be executed by utilizing a SumTree method
[47], where the experience tuple with higher sampling priority
has a higher probability of being selected.

After obtaining the batch of sampled experiences and the
relevant TD errors of these experiences, the average reward R
will be updated as:

R = R+ λ

Wm∑
j=1

δj . (22)

After obtaining the update of the sampled experiences set,
the Q value of the target network Qtarget of the PRD-DRN
algorithm can be expressed as:

Qtarget(sj , aj) = R(sj , aj)−R+Q′(s′j , argmaxa(s
′
j , a; θ); θ

∗).
(23)

Meanwhile, the main network and the target network can
be trained by minimizing the loss function L(θ), which can
be expressed as

L(θ) = E[(Qtarget(sj , aj)−Q(sj , aj ; θ))
2]. (24)

In this paper, we use the stochastic gradient descent (SGD)
method to update the DNN parameter θ iteratively as equation
(24):

θ′ = θ + ξ∇θL(θ) (25)

where ξ is the learning rate. The parameter θ of the main
network is updated every step while the parameter θ∗ of the
target network will be updated every i steps. Then, θ∗t = θt−i.

The pseudo code in Algorithm 1 shows the details of
the proposed PRD-DRN algorithm. The replay buffer and
the parameters of the main network and the target network
will be initialized at the beginning of the algorithm. During
each episode, the environment needs to be reset at first. Then,
the agent starts to explore the environment for Tpre loops.
For a given state s(t), the agent selects an action a(t) by
utilizing the ϵ-greedy method. With the ϵ-greedy method, the
agent tends to take a random action from the action set at the
beginning of the iteration since it doesn’t know much about
the environment. After executing multiple iterations, the agent
becomes more aware of the environment, and it will select the
action with the maximum Q-value with a higher probability.
The immediate reward R(s(t), a(t)) and the following state
s(t+ 1) of s(t) can be obtained based on the selected action
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Algorithm 1: PRD-DRN Algorithm
Input: exploration rate ϵ, decay factor ϵ′, replay buffer

size |M|, state S, pre-training step Tpre,
training episode Ttran, learning rate λ and ξ

1 Initialize model parameters θ and θ∗, θ∗ = θ;
2 Initialize average reward R = 0;
3 Initialize m,n = 0;
4 for n ≤ Ttran do
5 Initialize environment;
6 Initialize m = 0;
7 while True do
8 Action Selection;
9 Given the state s(t);

10 Output the corresponding Q(s(t), a, θ) of
actions;

11 Select action a(t) with probability ϵ;
12 Select action a(t) = maxa Q(s(t), a, θ) with

probability (1− ϵ);
13 Replay Buffer Refreshing;
14 Execute a(t), obtain the reward R(s(t), a(t))

and the following state s(t+ 1), append the
new experience tuple
(s(t), a(t), R(s(t), a(t)), s(t+ 1)) to M;

15 m = m+ 1;
16 if m ≥ Tpre then
17 break;
18 end
19 end
20 Training;
21 Sample a mini-batch W from M by utilizing the

prioritized experience replay method in [47];
22 Update the average reward R with the equation

(19);
23 Update parameters θ of the main network by

minimizing the loss function L(θ) value with
SGD;

24 Update parameters θ∗ of the target network with θ
each i steps;

25 Record the model parameters θ and θ∗;
26 n = n+ 1;
27 ϵ = ϵ+ ϵ′;
28 end

a(t). Then, the agent can get a corresponding experience
tuple E(t) = (s(t), a(t), R(s(t), a(t)), s(t+1)) and cache the
tuple in the experience replay buffer M for the subsequent
training. So far, the training of the network model starts
and a mini-batch will be sampled from the experience replay
buffer M by utilizing the prioritized experience replay method
in [47]. The loss function will be minimized by the SGD
procedure to update network parameters until it is converged.
The exploration rate ϵ is set to 0 initially and increased by ϵ′

during each training episode.

C. Algorithm Complexity Analysis

The time complexity of the Artificial Neural Network based
algorithm can be deduced based on its number of network
neurons [48]. Assuming that a fully-connected network has xI

input neurons, xO output neurons and H hidden layers with
xh neurons each layer (h ∈ {1, 2, ...,H}), the time complexity
can be expressed as O(xIx1+xOxH +

∑H−1
h=1 xhxh+1) [49].

Meanwhile, the time complexity of the SumTree method is
O(log|M|) [47]. Thus, for the proposed PRD-DRN algorithm,
the time complexity of each episode can be determined as

O(|S|x1 + |A|xH +

H∑
h=1

xhxh+1 + log|M|) (26)

where |S| and |A| are the dimensions of the state and action
space, respectively. Combining with the network model pro-
posed in this paper, the value of |S| and |A| can be deduced
as: {

|S| = (1 +N)F +N,
|A| = F +N.

(27)

We know that the training process of a DRL is extremely
time-consuming [50]. Similar to [51], we can offline perform
the training procedure in our proposed DRL-based algorithm
for many episodes under different channel states. The trained
model needs to be updated when there is a significant change
in the environment characteristics. Specifically, we can update
the trained model when computing resources are idle (e.g.,
midnight).

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of our proposed
PRD-DRN algorithm. We describe our simulation settings
firstly, which consists of the parameters of the network model
and the hyper-parameters of the PRD-DRN. Meanwhile, the
configurations of the baseline algorithms are also been pre-
sented. Then, we show the performance comparison of the
PRD-DRN with the benchmarks in different environments
and give the relevant analysis. The whole experiment is
implemented by the Tensorflow frame and runs on a PC with
an Intel Core i7-6700 CPU @2.6GHz, Memory 16G.

A. Simulation Settings

Simulation Scenario: We build a simulation scenario, where
there are one RSU with an MEC server, N connected vehicles
and 10 traffic information acquisition sensors. The value of
N ranges from 10 to 40 with the interval of 10. The wireless
channels between the vehicles and the RSU follow the finite-
state Markov channel (FSMC) model. We assume that the
state of the channel is considered to be bad when spectrum
efficiency is 1 or good when spectrum efficiency is 2. The
transition probability of staying at the same state is set to be
0.7, and the transition probability from one state to another
is set to be 0.3 [52]. The value of AoI limitation αV

max is set
to be 20 slots. Meanwhile, the allocated bandwidth B of each
resource block is 1 MHz while the number of resource blocks
Hb is set to be 50.
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In each time step, the arrival vehicular requests for each
edge-cached HDM file follows a Zipf distribution, where the
value of the distribution parameter is set to be 1.5 [53].
This kind of distribution is representative for the practical
vehicular networks which has been widely adopted in many
relevant references [54]- [58]. The proposed algorithm needs
to be retrained if the distribution changes. For each roadside
sensor, the relevant file update latency is randomly selected
from the value set {0.5τ, 0.6τ, 0.7τ, 0.8τ, 0.9τ}, where τ is
the length of the unit time slot. The value of τ is set to
be 1. Once the file update latency of each roadside sensor
has been determined, their values will remain unchanged
during the whole simulation process. Based on this, we set
the extra request latency of a specific file to be the same
as its update latency. In this paper, we consider the edge
nodes (e.g., road side units and base stations) are equipped
with stable power supply facilities, which are less affected
by energy consumption. Thus, we do not consider the energy
consumption of the edge nodes. Meanwhile, the transmission
power for each roadside sensor is set to be 10ρ mW, where
the value of ρ belongs to [0.5,1]. As for a specific sensor, the
energy consumption for traffic status sensing per file updating
is set to be the same as that for data uploading [59].

Training model architecture: As for our proposed PRD-
DRN model, the main network and the target network are
made up of two identical fully-connected ANNs. Each ANN is
consisted of four layers, i.e., an input layer, an output layer and
two hidden layers. The input layer is consisted of (N+1)F+N
cells including the pre-processed system state. Each hidden
layer has 256 cells while the output layer gives the HDM file
update action. We utilize ReLU as the activation function and
Adam [60] as the optimizer. To make the model easier to train,
the input state has been normalized by the maximum allowable
AoI αmax, i.e.,

Xnorm =
X

αmax
(28)

where X is the input value. The learning rate of the PRD-DRN
parameters θ, θ∗ are set to be 4∗10−4. The learning rate of the
average reward is also set to be 4 ∗ 10−4. The target network
update interval i is set to be 2000 steps. The average return
is calculated by the agent interacting with the environment
for 104 steps. The memory buffer size is set to be 2 ∗ 105,
and the mini-batch size Wm is set to be 32, 64 and 128. The
exploration rate increases linearly from 0 to 1 and keeps fixed.

We compare our proposed PRD-DRN algorithm with the
following baseline ones.

Random Policy: During each time step, the RSU randomly
selects an update action for the current state. This policy
doesn’t take into account the transmission resource allocation.

Greedy Policy: During each time step, the RSU manages
to maximize the immediate reward by executing the update
action. This policy doesn’t take the transmission resource
allocation into consideration.

DQN-based Policy: The DQN-based policy is based on the
traditional double DQN (DDQN) algorithm [61]. Its network
architecture is similar to the PRD-DRN, which consists of
a main network and a target network. The objective of the
DDQN is to maximize the cumulative discount reward instead

of the average one. Notice that, the state value function V ′
π(s)

and the state-action value function Q′
π(s, a) in the DDQN

model are defined as

V ′
π(s) = E

[ ∞∑
k=0

γkR(s(t+ k), π(t+ k)) | s(t) = s

]
, (29)

and

Q′
π(s, a) =

E

[ ∞∑
k=0

γkR(s(t+ k), a(t+ k)) | s(t) = s, a(t) = a

]
(30)

where γ is the discount factor equal to 0.95 in the subsequent
simulation. Meanwhile, the DDQN does not adopt the priority
experience sampling method, and its loss function is given by
Equation (31).

Except the differences described above, all the network
training configurations are set to be the same as those in the
PRD-DRN.

B. Simulation Results

1) Convergence Performance: To ensure the reliability
of our proposed PRD-DRN algorithm, we first verify its
convergence performance.

Fig. 4 shows the reward of PRD-DRN under different mini-
batch size (32,64,128). To control variable, we set the ωAoI

to 0.6 and N to 30. We can see from Fig. 4 that different
value of the batch-size has a significant effect on the reward
of PRD-DRN, and a higher value of the mini-batch size helps
PRD-DRN converge faster to a certain extent. This can be
explained as follows. Firstly, the mini-batch size determines
the number of the experience samples used for training per
round. A smaller mini-batch size increases the randomness of
the experience sample, which may impede the convergence
speed of the model. Meanwhile, the PRD-DRN utilizes the
prioritized sampling method, which can reduce the influence
of mini-batch size on the convergence speed to a certain extent
when the mini-batch size becomes larger. However, a large
batch-size can result in a single-direction gradient descending
during the training process, and this may cause a local optimal
solution. We set the mini-batch size to 64 in the subsequent
simulation.

Fig. 5 shows the convergence comparison of the PRD-DRN
and the baseline policies when N = 30. Here, we also consider
that the discount factor γ of the DQN-based policy can affect
its performance in the convergence and the average reward
[61]. Generally, a smaller γ means that the agent pays more
attention to the immediate interests, and the training difficulty
may be smaller. On the other hand, a bigger γ means that
the agent pays attention to the long-term interests, which
may make the algorithm unstable. It can be seen from Fig.
5 that a smaller γ (0.89, 0.92, 0.95) of the DQN-based policy
indeed ensure its convergence speed, while the average reward
becomes higher with a bigger γ. However, an extremely big
γ (0.98) makes the DQN-based model difficult to converge
during the training process. Meanwhile, the greedy policy
and the random policy obtain a relatively low reward. By
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L(θ) = E
[
(R(sj , aj)− γQ′(s′j , argmaxa(s

′
j , a; θ); θ

∗)−Q(sj , aj ; θ))
2
]

(31)
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Fig. 4. The training rewards comparison under different batch-size.

comparison, our PRD-DRN obtains a higher reward while
ensuring a faster convergence speed. It can be explained
as follows. The prioritized experience sampling reduces the
amount of experience the agent required to learn since it
always selects the more valuable experience sample. Although
the sampling process consumes some computation resources
(as the analysis in Section III-C), the increased computational
overhead is acceptable relative to the increased performance
gain. Moreover, the PRD-DRN can achieve a better per-
formance without adjusting the discount factor, which also
reduces the training cost to a certain extent.

Based on the above analysis, we set the discount factor
of the the DQN-based policy to 0.95 in the subsequent
simulation.
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Fig. 5. The training rewards comparison under different policy.

2) Efficiency Analysis: To verify the efficiency of our
proposed method, we make performance comparison with the
mentioned baseline policies.

Fig. 6 shows the average AoI cost when vehicles receive
their requested HDM files under different number of vehicles.
It can be observed from Fig. 6 that the RSU with the PRD-
DRN policy maintains relatively low AoI cost compared
with the baseline policies. Meanwhile, it is interesting to
find that although the number of state-action pairs increases
exponentially with the increase of vehicular number N , the
performance of PRD-DRN keeps stable with respect to N . It is
due to the fact that the PRD-DRN is to maximize the long-term
average reward, and thus it can execute optimal update actions
in response to the vehicular requests. Even when there are no
vehicular request arrival in a specific time step, the RSU may
execute appropriate file update actions based on the historical
request record and the real-time AoI of the cached files. We
can also find out that the average AoI cost performance of the
proposed PRD-DRN algorithm is under the pre-defined value
of the AoI limitation (αV

max=20). Thus, the PRD-DRN can
ensure the stability of the AoI cost performance and realize a
reasonable utilization of the network resources.
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Fig. 6. Performance comparison in average AoI cost.

Fig. 7 shows the average file updating energy consumption
of the system at each time step under different number of
vehicles. It can be seen from Fig. 7 that the PRD-DRN
keeps a relatively low energy consumption compared with the
baseline policies with the increasing number of vehicles. This
is due to the following reason. To achieve a high average
reward, the agent will adjust the balance between the AoI
cost and the energy consumption appropriately. Meanwhile,
available transmission resource is allocated to the vehicle
whose requested file is close to the AoI threshold, which
avoids the unnecessary updates, and thus reducing the file
update energy consumption.
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Fig. 7. Performance comparison in energy consumption.

Fig. 8 shows the average file update time of the system at
each time step under different number of vehicles. We can
see from Fig. 8 that the greedy policy has worse performance
than PRD-DRN and DQN-based policy. This is because the
greedy policy only considers the instant system performance
and is prone to fall into the dilemma of local optimal.
Moreover, the greedy policy ignores the benefit brought by
the optimal transmission resource allocation in reducing the
number of instant file updates. The agents of the PRD-DRN
and DQN-based policy can jointly schedule the file update
and downlink transmission resource allocation from the long-
term interactions with environment. The available downlink
transmission resources are reasonably allocated to different
vehicles to ensure that the AoI of the requested file meets the
requirement of the vehicle with minimum file update times.
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Fig. 8. Performance comparison in average update time.

VI. CONCLUSION

This paper studied the file update and downlink transmission
resource allocation in the vehicular HDM edge caching sys-

tem. For this purpose, we first formulated the file update and
resource allocation as a nonlinear and nonconvex optimization
problem. To solve this challenging problem, we then proposed
a PRD-DRN algorithm combining the perceive capability of R-
learning and the scheduling capability of reinforcement learn-
ing. Under the proposed PRD-DRN algorithm, the content
update and transmission resource allocation procedures on the
RSU were modeled as an MDP. Based on the advantages
of deep R-learning and prioritized experience sampling, we
obtained the optimal decision to minimize the long-term
average cost related to the AoI and energy consumption. The
extensive simulation results show that our PRD-DRN algo-
rithm can achieve high long-term reward without managing
the discounted factor. Remarkably, in comparison with the
baseline policies, our algorithm can achieve lower average AoI
and energy consumption with relative low file update time
during a fixed period. An interesting study is to explore the
joint content update and transmission resource allocation in the
multiple edge nodes scenario with overlapping service region
in our future work.
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[30] E. T. Ceran, D. Gündüz and A. György, “A Reinforcement Learning
Approach to Age of Information in Multi-User Networks With HARQ,”
in IEEE Journal on Selected Areas in Communications, vol. 39, no. 5,
pp. 1412-1426, May 2021.

[31] C. Kam, S. Kompella and A. Ephremides, “Learning to Sample a Signal
through an Unknown System for Minimum AoI,” IEEE INFOCOM
2019 - IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), 2019.

[32] B. Zhou and W. Saad, “Joint Status Sampling and Updating for Minimiz-
ing Age of Information in the Internet of Things,” in IEEE Transactions
on Communications, vol. 67, no. 11, pp. 7468-7482, Nov. 2019.

[33] S. Leng and A. Yener, “Age of Information Minimization for an
Energy Harvesting Cognitive Radio,” in IEEE Transactions on Cognitive
Communications and Networking, vol. 5, no. 2, pp. 427-439, June 2019.

[34] C. Xu, Y. Xie, X. Wang, H. H. Yang, D. Niyato and T. Q. S.
Quek, “Optimal Status Update for Caching Enabled IoT Networks: A
Dueling Deep R-Network Approach,” in IEEE Transactions on Wireless
Communications, vol. 20, no. 12, pp. 8438-8454, Dec. 2021.

[35] C. Tunc and S. Panwar, “Optimal transmission policies for energy
harvesting age of information systems with battery recovery,” in Proc.
53rd Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, USA,
Nov. 2019, pp. 2012–2016.

[36] E. Sert, C. Sönmez, S. Baghaee and E. Uysal-Biyikoglu, “Optimizing
age of information on real-life TCP/IP connections through reinforce-
ment learning,” 2018 26th Signal Processing and Communications
Applications Conference (SIU), 2018, pp. 1-4.

[37] B. Yang, Y. Dang, T. Taleb, S. Shen and X. Jiang, “Sum Rate and
Max-Min Rate for Cellular-Enabled UAV Swarm Networks,” in IEEE
Transactions on Vehicular Technology, vol. 72, no. 1, pp. 1073-1083,
Jan. 2023.

[38] H. Sedjelmaci, S. M. Senouci and T. Taleb, “An Accurate Security Game
for Low-Resource IoT Devices,” in IEEE Transactions on Vehicular
Technology, vol. 66, no. 10, pp. 9381-9393, Oct. 2017.

[39] J. Liu, Y. Xu, Y. Shen, X. Jiang and T. Taleb, “On Performance
Modeling for MANETs Under General Limited Buffer Constraint,” in
IEEE Transactions on Vehicular Technology, vol. 66, no. 10, pp. 9483-
9497, Oct. 2017.

[40] H. Huang, D. Qiao and M. C. Gursoy, “Age-Energy Tradeoff in
Fading Channels with Packet-Based Transmissions,” IEEE INFOCOM
2020 - IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), Toronto, ON, Canada, 2020, pp. 323-328.

[41] J. Du et al., “Resource Pricing and Allocation in MEC Enabled
Blockchain Systems: An A3C Deep Reinforcement Learning Approach,”
in IEEE Transactions on Network Science and Engineering, vol. 9, no.
1, pp. 33-44, 1 Jan.-Feb. 2022.

[42] J. Du, F. R. Yu, G. Lu, J. Wang, J. Jiang and X. Chu, “MEC-Assisted
Immersive VR Video Streaming Over Terahertz Wireless Networks: A
Deep Reinforcement Learning Approach,” in IEEE Internet of Things
Journal, vol. 7, no. 10, pp. 9517-9529, Oct. 2020.

[43] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[44] N. C. Luong et al., “Applications of Deep Reinforcement Learning in
Communications and Networking: A Survey,” in IEEE Communications
Surveys & Tutorials, vol. 21, no. 4, pp. 3133-3174, Fourthquarter 2019.

[45] Y. -A. Wang and Y. -N. Chen, “Dialogue Environments are Different
from Games: Investigating Variants of Deep Q-Networks for Dialogue
Policy,” 2019 IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU), 2019, pp. 1070-1076.

[46] A. Schwartz, “A reinforcement learning method for maximizing undis-
counted rewards,” in Proc. ICML, 1993, pp. 298-305.

[47] Schaul, Tom and Quan, John and Antonoglou, Ioannis and Silver, David,
“Prioritized Experience Replay,” 2015, arXiv:1511.05952. [Online].
Available: https://arxiv.org/abs/1511.05952.

[48] J. Wu, C. Leng, Y. Wang, Q. Hu and J. Cheng, “Quantized Convolutional
Neural Networks for Mobile Devices,” 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 4820-4828.

[49] F. Wu, H. Zhang, J. Wu, Z. Han, H. V. Poor and L. Song, “UAV-to-
Device Underlay Communications: Age of Information Minimization by
Multi-Agent Deep Reinforcement Learning,” in IEEE Transactions on
Communications, vol. 69, no. 7, pp. 4461-4475, July 2021.

[50] H. Jun, X. Cong-Cong, G. Shuyang, and B. Erich, “Drop Maslow’s
Hammer or not: machine learning for resource management in D2D
communications,” in ACM SIGAPP Applied Computing Review, vol.
22, no. 1, pp. 5–14, March 2022.

[51] L. Liang, H. Ye, and G. Y. Li, “Spectrum Sharing in Vehicular Net-
works based on Multi-agent Reinforcement Learning,” IEEE Journal on
Selected Areas in Communications, vol. 37, no. 10, pp. 2282–2292, Oct.
2019.

[52] Y. He, N. Zhao and H. Yin, “Integrated Networking, Caching, and
Computing for Connected Vehicles: A Deep Reinforcement Learning
Approach,” in IEEE Transactions on Vehicular Technology, vol. 67, no.
1, pp. 44-55, Jan. 2018.

[53] A. Sadeghi, F. Sheikholeslami and G. B. Giannakis, “Optimal and
Scalable Caching for 5G Using Reinforcement Learning of Space-Time
Popularities,” in IEEE Journal of Selected Topics in Signal Processing,
vol. 12, no. 1, pp. 180-190, Feb. 2018.

[54] S. Krishnan, M. Afshang and H. S. Dhillon, “Effect of Retransmissions
on Optimal Caching in Cache-Enabled Small Cell Networks,” in IEEE
Transactions on Vehicular Technology, vol. 66, no. 12, pp. 11383-11387,
Dec. 2017.

[55] T. Liu, S. Zhou and Z. Niu, “Joint Optimization of Cache Allocation and
Content Placement in Urban Vehicular Networks,” 2018 IEEE Global
Communications Conference (GLOBECOM), Abu Dhabi, United Arab
Emirates, 2018, pp. 1-6.

[56] C. Hou, C. Zhou, Q. Huang and C. -B. Yan, “Cache Control of Edge
Computing System for Tradeoff Between Delays and Cache Storage
Costs,” in IEEE Transactions on Automation Science and Engineering,
Early Access, doi: 10.1109/TASE.2022.3228250.



13

[57] B. Abolhassani, J. Tadrous and A. Eryilmaz, “Optimal Load-Splitting
and Distributed-Caching for Dynamic Content Over the Wireless
Edge,” in IEEE/ACM Transactions on Networking, Early Access, doi:
10.1109/TNET.2023.3244039.

[58] M. -C. Lee and A. F. Molisch, “Optimal Delay-Outage Analysis for
Noise-Limited Wireless Networks With Caching, Computing, and Com-
munications,” in IEEE Transactions on Wireless Communications, vol.
22, no. 2, pp. 1417-1431, Feb. 2023.

[59] S. Maleki, A. Pandharipande and G. Leus, “Energy-Efficient Distributed
Spectrum Sensing for Cognitive Sensor Networks,” in IEEE Sensors
Journal, vol. 11, no. 3, pp. 565-573, March 2011.

[60] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Computer Science, 2014.

[61] H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning
with Double Q-Learning,” AAAI, vol. 30, no. 1, Mar. 2016.

Gaofeng Hong was born in Nanchang, Jiangxi
province in 1995. He is now a doctoral student at the
National Engineering Research Center of Advanced
Network Technologies, Beijing Jiaotong university.
His research interests include the vehicular network
and mobile edge cloud computing.

Bin Yang received his Ph.D. degree in systems
information science from Future University Hako-
date, Japan in 2015. He was a research fellow
with the School of Electrical Engineering, Aalto
University, Finland, from Nov. 2019 to Nov. 2021.
He is currently a professor with the School of
Computer and Information Engineering, Chuzhou
University, China. His research interests include un-
manned aerial vehicle networks, cyber security and
Internet of Things.

Wei Su was born in October 1978. He got the
Ph.D. degrees in Communication and Information
Systems from Beijing Jiaotong University in Jan-
uary 2008. Now he is a teacher in the School of
Electronics and Information Engineering, Beijing
Jiaotong University. He granted the title of professor
in November 2015. Dr. Su Wei is mainly engaged
in researching key theories and technologies for the
next generation Internet and has taken part in many
national projects such as National Basic Research
Program(also called 973 Program), the Projects of

Development Plan of the State High Technology Research, the National
Natural Science Foundation of China. He currently presides over the research
project Fundamental Research on Cognitive Services and Routing of Future
Internet, a project funded by the National Natural Science Foundation of
China.

Haoru Li was born in Tianjin in 1999. He is
currently pursuing his M.S. degree at the National
Engineering Research Center of Advanced Network
Technologies, Beijing Jiaotong University. He is
mainly engaged in the research of vehicular service
pre-caching and migration in the edge cloud net-
work.

Zekai Huang received his B.S. degree in Communi-
cation Engineering from Beijing Jiaotong University,
P. R. China in 2021. He is currently pursuing his
M.S. degree at the National Engineering Research
Center of Advanced Network Technologies, Beijing
Jiaotong University. His main current research in-
terests include Deep Reinforcement Learning and
Mobile Edge Computing.

Tarik Taleb received the B.E. degree Information
Engineering with distinction and the M.Sc. and
Ph.D. degrees in Information Sciences from Tohoku
University, Sendai, Japan, in 2001, 2003, and 2005,
respectively. He is currently a Professor at the Centre
for Wireless Communications (CWC) – Networks
and Systems Unit, Faculty of Information Tech-
nology and Electrical Engineering, The University
of Oulu. He is the founder and director of the
MOSA!C Lab (www.mosaic-lab.org). Between Oct.
2014 and Dec. 2021, he was a Professor at the

School of Electrical Engineering, Aalto University, Finland. Prior to that,
he was working as Senior Researcher and 3GPP Standards Expert at NEC
Europe Ltd, Heidelberg, Germany. Before joining NEC and till Mar. 2009,
he worked as assistant professor at the Graduate School of Information
Sciences, Tohoku University, Japan, in a lab fully funded by KDDI, the
second largest mobile operator in Japan. From Oct. 2005 till Mar. 2006,
he worked as research fellow at the Intelligent Cosmos Research Institute,
Sendai, Japan. His research interests lie in the field of telco cloud, network
softwarization & network slicing, AI-based software defined security, im-
mersive communications, mobile multimedia streaming, and next generation
mobile networking. He has been also directly engaged in the development and
standardization of the Evolved Packet System as a member of 3GPP’s System
Architecture working group 2. He served as the general chair of the 2019
edition of the IEEE Wireless Communications and Networking Conference
(WCNC’19) held in Marrakech, Morocco. He was the guest editor in chief of
the IEEE JSAC Series on Network Softwarization & Enablers. He was on the
editorial board of the IEEE Transactions on Wireless Communications, IEEE
Wireless Communications Magazine, IEEE Journal on Internet of Things,
IEEE Transactions on Vehicular Technology, IEEE Communications Surveys
& Tutorials, and a number of Wiley journals. Till Dec. 2016, he served as
chair of the Wireless Communications Technical Committee.


