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Abstract

Edge cloud technologies working in conjunction with AI-powered solutions
can help surmount the challenges associated with the distributed execution
of immersive services and contribute to delivering a positive end-user experi-
ence. Intelligent resource management, orchestration, and predictive systems can
enhance service deployment, adapt to changing demands, and ensure seamless
service operation. This paper introduces an innovative architectural paradigm
that enables multi-domain edge orchestration for highly distributed immersive
services by leveraging various AI solutions and technological tools to support
multi-domain edge deployments. The proposed architecture is designed to func-
tion based on multi-level specification blueprints, separating high-level user-intent
infrastructure definition from AI-driven orchestration and the final execution
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plan. This architectural design enables the incorporation of AI solutions to be
conducted in a modular manner. Furthermore, the Application Management
Framework (AMF) provides a visual language and tool as an alternative to formal
methods for creating intent blueprints. The proposed architecture is evaluated
within the frame of an immersive virtual touring use-case scenario.

Keywords: Edge cloud, immersive service, orchestration, cluster, Kubernetes,
centralized management, and decentralised management

1 Introduction

Extensively dispersed immersive services hold the promise of transforming various
sectors, offering novel and inventive approaches to perceiving and engaging with our
surroundings. For example, Virtual Reality (VR) and Augmented Reality (AR) can
offer students interactive and captivating educational encounters. Similarly, VR sim-
ulations can assist in training professionals in diverse fields, including healthcare and
aviation. Within the realm of entertainment, immersive services have revolutionized
the gaming industry, enabling players to completely immerse themselves in virtual
realms, while AR can enrich live events by superimposing interactive digital elements
onto real-world settings.

Unfortunately, the delivery of immersive services at a high level of Quality of Ser-
vice (QoS) hinges on the availability of extremely low latency and high bandwidth
connections, as referenced in previous studies [1–4]. Existing scientific literature rec-
ommends that to ensure a satisfactory end-user experience, the end-to-end latency
should not surpass 15 milliseconds, and the available bandwidth should scale up to 30
Gbps, as outlined in relevant research [5–7]. Moreover, potential glitches in task pro-
cessing can disrupt service delivery and jeopardize the immersive experience’s integrity.
Hence, it is imperative for such applications to possess fault-tolerance capabilities.

Additionally, immersive applications demand substantial computational resources
involving intricate 3D models and high-quality graphics. However, embedding these
essential computational resources within end-user devices would lead to bulky and
costly setups, contradicting the core principles of immersive applications, which
prioritize portability and affordability of end-user equipment, as discussed in [8].
Cloud computing presents a solution by offloading the computational load to remote
resources, enabling end-user devices to remain portable and cost-effective. Never-
theless, cloud topologies face limitations in meeting immersive services’ ultra-low
latency and high bandwidth requirements, primarily due to the complex networks that
intervene between end-user devices and cloud servers.

The primary goal of edge computing is to minimize the volume of data sent to
remote cloud servers, enabling data processing to occur in close proximity to the data
sources. Consequently, edge architectures offer advantages such as quicker response
times, enhanced data transfer speeds, and improved scalability and reliability. Con-
sequently, deploying immersive services across a distributed cloud-edge infrastructure
would be advantageous for application developers, contributing to the maintenance

2



of high-quality Quality of Service (QoS) provisioning, as noted in the study by Taleb
(2022) [9].

However, a significant challenge remains unresolved: the efficient allocation of
distributed tasks across the network and computational resources within the cloud-
edge continuum, particularly within the requirements in terms of latency, bandwidth,
scalability, and reliability inherent to distributed immersive applications. To address
these challenges, Machine Learning (ML) and Deep Learning (DL) can play a pivotal
role by offering intelligent resource management and orchestration systems capa-
ble of adapting to the evolving requirements of end users. For instance, Artificial
Intelligence (AI)-driven load balancing and resource allocation algorithms can opti-
mize service deployment across the cloud-edge infrastructure, accounting for variables
such as network conditions, computational resources, and user demands. Addition-
ally, AI-powered predictive analytics can be harnessed to foresee future demands and
proactively allocate resources as needed [10], thus averting potential bottlenecks or
service disruptions. Furthermore, AI-driven monitoring and fault detection systems
can contribute to the seamless operation of services and the early identification of
issues before they impact the end-user experience.

On top of the aforementioned AI solutions, Application Management Frameworks
(AMFs) play a crucial role in the deployment of applications in edge computing. AMFs
offer a systematic approach for creating, documenting, controlling, and implementing
applications within an edge computing environment. The significance of AMFs lies in
their capacity to establish a common language and framework that allows stakeholders
to collaborate effectively in the design, execution, and management of applications.
Through the adoption of standardized practices, AMFs can ensure uniformity, inter-
operability, and scalability throughout the system while also empowering stakeholders
to make well-informed decisions regarding trade-offs between cost, performance, and
other factors.

Moreover, it is imperative to integrate the necessary technological facilitators to
streamline the orchestration and management of highly distributed immersive ser-
vices, particularly as these deployments often span multiple domains. Therefore, these
technological facilitators have to prioritize multi-domain edge orchestration. In line
with this objective, this paper presents an innovative architecture that simplifies
intelligent multi-domain edge orchestration for immersive services. The proposed archi-
tectural framework is designed to operate using multi-tier specification blueprints,
distinguishing the high-level user-intent infrastructure definition from AI-powered
orchestration and the ultimate execution strategy. This architectural approach facili-
tates the integration of AI solutions in a modular fashion. Additionally, the AMF offers
a visual language and tool as an alternative to formal techniques for shaping intent
blueprints. The viability of the proposed architecture is assessed within the context of
an immersive virtual touring use-case scenario.

This work aims to expand upon the findings of one of our previous works [11] by
providing a deeper and more detailed analysis of the intricacies of the proposed archi-
tecture. Towards achieving this goal, the remainder of this paper is organized in the
following manner: Section 2 explores some research work relevant to intelligent multi-
domain edge orchestration. Section 3 introduces the architecture of the envisioned
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Table 1 Structure of this paper.

Section Title

2 Related Work
3 Intelligent Multi-Domain Edge Orchestration
3.1 Native AI and Intent-driven Multi-domain Orchestration Architecture
3.2 From Application Intents to Infrastructure Blueprints
3.3 Service Deployment Planning
3.4 Decentralised and Centralised Cluster Management
3.5 AI-Driven Provisioning and Lifecycle Management
3.6 Infrastructure and Application Monitoring
3.7 Inter-Cluster Peering
3.8 Execution Graph-based Blueprint Orchestration
4 Immersive Service Use Case
4.1 Immersive Virtual Touring
4.2 Harnessing Metrics for Intelligent Orchestration
4.3 Application Management Framework
4.4 Architectural Evaluation
5 Conclusion

intelligent multi-domain edge orchestration system. Section 4 describes an immersive
virtual touring use-case scenario to validate the proposed architectural paradigm, as
well as a corresponding Application Management Framework (AMF) which provides
a visual language and tool alternative to the formal approach for the intent blueprint.
Finally, Section 5 summarizes the merits of this work. An overview of the paper
structure is depicted in Table 1.

2 Related work

Edge computing is geared towards addressing the growing demands and requirements
of the next generation of highly distributed applications [12]. Each cluster of edge
nodes is responsible for processing data from multiple applications and is designed to
handle the specific processing needs of these applications to reduce latency, improve
data privacy, enable real-time decision-making, achieve high scalability and resilience,
and allow better resource utilization. 3GPP SA6 [13] proposes an edge computing-
based architecture for enabling Edge Applications (EdgeAPP). EdgeAPP is built on
principles of application portability, service differentiation, flexible deployment and
interworking with the 3GPP network. EdgeAPP specification discusses aspects such as
service provisioning, registration, Edge Application Server (EAS) discovery or Service
Continuity (i.e., maintaining a service in case of user mobility or migration).

Moreover, a trend is emerging in favour of multi-cloud architectures [14][15].
Such a new paradigm allows for harnessing the advantages offered by diverse cloud
providers strategically distributed across geographical locations. Each provider offers
unique functionalities while sidestepping the limitations of single-cloud and single-
provider architectures. Nevertheless, orchestrating a multi-cloud environment remains
a complex challenge. Previous studies have delved into diverse aspects of resource pro-
visioning, resource selection, and the overall management of multi-cloud environments.
In [16], the authors systematically reviewed cloud resource orchestration frameworks,
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comparing their distinctive features, deployment models, interoperability or integra-
tion with external services and systems. One of their observations emphasises the
relevance of application portability and the usage of standards for describing them.
In 2013, the OASIS Foundation introduced Topology and Orchestration Specifica-
tion for Cloud Applications (TOSCA) to promote the standardization of cloud-native
applications and services [17]. TOSCA enables describing these applications using a
universal YAML language that remains agnostic to specific orchestration solutions or
tools. Since then, TOSCA specification has been used in several works. In [18], the
authors present an architectural design that facilitates Kubernetes cluster federation
and cloud applications, capitalizing on utilising TOSCA blueprints across diverse cloud
providers. Other authors have explored the networking factors associated with multi-
cluster architectures. In [19], the authors focused on the challenge of interconnecting
multiple clusters (and clouds) and service mobility between them. They proposed using
Network Service Mesh (NSM) operating at a Layer2-L3 level to interconnect the var-
ious clusters. A more integrated orchestration platform for multi-cloud deployments
with policy-based scheduling, autoscaling, and cloud bursting capabilities was pre-
sented in [20]. It aligns with Kubernetes’ core principles, seeking to optimize resource
utilization, ensure application placement within available resources, adapt applications
to changing traffic patterns, and avoid over-provisioning concerns.

ZSM (Zero-touch network and Service Management) is an end-to-end manage-
ment reference architecture developed by ETSI to provide a flexible and automated
[21] approach to managing services and infrastructure in a 5G network. It com-
prises six building blocks: Management Services, Management Functions, Management
Domains, E2E Service Management Domain, Integration Fabric, and Data Services.
The ZSM Management Services provide a standardized and consistent way to expose
different management capabilities across a multi-domain deployment. Management
Functions combine multiple capabilities to form broader management features. The
Management Services are organized into Management Domains, where services can
either be internal or exposed outside the domain. The ZSM framework also allows
for a hierarchy of Management Domains, where multiple domains can be stacked on
top of each other. Integration Fabrics facilitate communication between management
functions. The Domain Integration Fabric connects services within the same domain,
while the Cross-Domain Integration Fabric facilitates communication over different
domains. Both fabrics are used as a communication bus and to register, discover, and
invoke different supported services. Data Services allow for the decoupling and reusing
of the same management data across distinct management services. Ultimately, ZSM
can be seen as a strategy to move from automatic to autonomous (A2A) orchestra-
tion architectures considering mechanisms such as policy-driven, intent-based, network
governance, network stability, reinforcement learning, and transfer learning [22]. In
[23], ZSM enabling technologies and networking automation solutions are analysed to
close the gap between mobile networking and ZSM. In [24], the authors explore the
potential of cloud-native architectures for enhancing service development and resource
management to meet different service requirements. In [25], a ZSM-inspired orches-
trator was proposed for managing network services autonomously while profiling the
performance of such services.
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Following the advancements in AI methodologies, there have also been numerous
attempts [26],[27] at incorporating them to build further ZSM developments in differ-
ent aspects, such as multi-tenancy management, traffic monitoring, and architecture
coordination. In [28]. ETSI details a list of relevant AI-enabling areas for AI-driven
network management, such as Trustworthy Machine Learning, Decentralised Machine
Learning, AI/ML model validation, Anomaly Management using AI/ML-based closed
loops, ML model cooperation and federated learning.

Multi-domain E2E service lifecycle management can be split into three categories
of processes: onboarding, fulfilment and assurance [29]. The first two deal with the
aspects of the service bootstrapping (e.g., service onboarding, service activation, recon-
figuration, decommissioning), whereas assurance processes are used to continuously (in
a close-loop) monitor and guarantee processes are running as supposed and according
to the expected Service Level Agreement (SLA) and QoS [30]. Likewise, Intent-driven
architectures provide manifold benefits, including the promise to help to simplify the
management of complex infrastructures such as 5G multi-vendor deployment scenarios
as described in 3GPP specifications [31, 32]. Intents focus on what needs to be achieved
regardless of the actual implementation or the underlying infrastructure details [33].
ETSI created the Experiential Network Intelligence (ENI) framework to enable net-
works to leverage the benefits of AI methodologies while ensuring they meet Quality
of Service requirements [34]. The ENI Cognitive Architecture model involves a set of
hierarchical closed control loops based on the Observe-Orient-Decide-Act model, with
extensions to accommodate collaborative decision-making, learning, and policy man-
agement. These enhancements enable the system to adapt its behaviour according to
changes in user needs, business goals, and environmental conditions. It operates in two
modes: recommendation and command. The former functions as an assistant recom-
mending actions, and the latter functions as an actual governing other management
components.

There is also now a plethora of emerging tools and enablers focused on support-
ing the management of containers, Virtual Machines (VMs) and services across the
edge and cloud environments. Open Network Automation Platform (ONAP) [35] is
designed to automate the composition and creation of network services. Akraino Edge
Stack [36] is a Linux Foundation project focused on creating a framework for edge
computing, providing a set of blueprints and reference architectures that help develop-
ers build and deploy edge applications. ClusterAPI [37] is a Kubernetes project that
aims to provide declarative APIs for cluster creation, management, and lifecycle man-
agement, simplifying the creation and management process of Kubernetes clusters in
multiple cloud providers, on-premises data centres, and hybrid environments. Open
Source MANO (OSM) [38] is an ETSI project that aims to provide a platform for
deploying, managing, and monitoring virtual network functions (VNFs) and network
services. Cloudify [39] is a multi-cloud management platform designed to automate and
manage the deployment of complex applications and services across multiple clouds
and data centres with support for hybrid and multi-cloud environments. OpenShift[40]
is a container application platform built on top of Kubernetes that provides develop-
ers with an integrated environment for building, deploying, and scaling containerized
applications.
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Unfortunately, none of the aforementioned solutions are specifically designed to
facilitate the intricacies that are intertwined with the multi-domain edge orchestra-
tion for highly distributed immersive services. This work aims to fill this research
gap by proposing a novel architectural framework that considers the various aspects
of the aforementioned technologies and solutions that, when combined, can facilitate
multi-domain edge orchestration for highly distributed immersive services. In fact, the
incorporation of the necessary technological enablers can enhance the organization and
control of extensively distributed immersive services. This is particularly crucial given
that these deployments often extend across various domains. Consequently, these tech-
nological enablers should prioritize orchestrating activities across multiple domains
at the edge. In pursuit of this objective, this paper introduces an inventive architec-
ture that simplifies intelligent multi-domain edge orchestration for immersive services.
The proposed architectural framework is crafted to function using multi-tier specifica-
tion blueprints. It distinguishes the high-level definition of user intent infrastructure
from AI-driven orchestration and the eventual execution strategy. This architectural
approach facilitates the modular integration of AI solutions. Finally, the AMF pro-
vides a visual language and tool as an alternative to formal techniques for shaping
intent blueprints.

3 Intelligent Multi-Domain Edge Orchestration

This section discusses the key strands of the proposed intelligent multi-domain edge
orchestration, namely the reference architecture, the blueprints to express applications
and infrastructure, the service planning and deployment steps, the role of Native AI
and AI-based mechanisms to fulfil the needs of immersive services, the monitoring and
the core metrics and finally, the concept of inter-cluster peering to facilitate distributed
application deployments.

3.1 Native AI and Intent-driven Multi-domain Orchestration
Architecture

Edge computing and multi-domain architectures are two emerging technologies meant
to disrupt how immersive services are built and delivered. Amongst others, they
enable service deployments closer to users, a more efficient and, therefore, sustainable
edge-cloud continuum utilization, and last but not least, heterogeneous infrastructure
composition (i.e., no restrictions to a single provider or single cluster deployments).
Nevertheless, there is a gap between immersive application developers’ intentions
and the expertise needed to maintain and orchestrate a (complex) multi-domain
environment. Apart from the infrastructure, a deep understanding of cloud-native
architectures, tools, mechanisms and protocols is needed. Managed solutions provide a
step towards alleviating such complexity. Still, they typically fail to deliver an intuitive
way of expressing the developer’s intentions or do not include advanced features such
as autonomous service deployment and lifecycle management, which are increasingly
relevant in these scenarios.

Figure 1 depicts the proposed native AI and intent-driven multi-domain orches-
tration architecture conceived to support the service provisioning and life-cycle
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management of highly distributed immersive services across a distributed edge-cloud
infrastructure. Such architecture aims to empower immersive application develop-
ers with tools for (visually) expressing and composing their applications. Later,
the proposed architecture aims to translate application blueprints into orchestra-
tion and execution blueprints, which are used to ensure the expected lifecycle of the
application’s components.

Such architecture was designed to: i) take into consideration immersive ser-
vice expectations and intents; ii) abstract the virtualized physical infrastructure
from applications-specific deployments; iii) take advantage of multi-domain, multi-
stakeholder environments and exploit the full Edge-Cloud continuum; iv) incorporate
the concept of Native AI orchestration capabilities (c.f. Section 3.5; v) energy effi-
ciency and QoE optimization (e.g. by deciding the most suitable location for allocating
resources, on-demand resource provisioning - including the cluster creation, or by con-
tinually monitoring and reacting to resource patterns) vi) service lifecycle automation
leveraging the concept of Zero-Touch and automated closed loops.

Fig. 1 Intelligent Multi-Domain Edge Orchestration architecture.

The proposed architecture is composed of five key substrates as follows:
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• Application Management Framework - a user-friendly front-end UI for immer-
sive application developers to compose their applications. Automatically translates
component composition and definitions provided by developers into application
intent blueprints in TOSCA format (c.f. Section 3.2). Provides the means to trig-
ger application deployments via human interaction or via API (for deployments
triggered by devices).

• AI-Driven Provisioning and Life-cycle Manager - includes the Native AI
mechanisms for intelligently devising applications’ best scheduling plans based on
infrastructure characteristics (e.g., place services requiring GPU support on GPU-
enabled locations) or based on optimization criteria (e.g. user-proximity, energy
efficiency, security constraints). This substrate is also responsible for continuously
predicting resource utilization to support proactive service and infrastructure man-
agement (e.g. scale-in/-out clusters and components on-demand, anticipate service
migration needs).

• Infrastructure and Application Monitoring comprises the set of monitoring
agents responsible for gathering and exposing application, cluster and infrastructure
metrics.

• Orchestrator and Resource Manager - comprises the building blocks and prim-
itives which allow enforcing the decisions (i.e., orchestration blueprints) into an
execution plan (i.e., the execution blueprint). Orchestrator and Resource Man-
ager allow seamless integration with different cloud and infrastructure providers by
providing the means to create clusters across numerous domains transparently to
end-users. Such clusters form a cohesive edge-cloud computing continuum, provid-
ing the flexibility to leverage multiple locations and select the most suitable one
for each service component, allowing optimal resource utilisation and enhancing the
deployed services’ overall efficiency.

• Multi-Domain Virtualized Infrastructure is formed by aggregating available
infrastructure providers and a list of existing clusters and application services.

3.2 From Application intents to infrastructure blueprints

Our proposed orchestration solution is built around three types of blueprints: User
Intent, Orchestration and Infrastructure Blueprints. Together, they define different
layers of details related to the application deployment. This allows the separation of
concerns between what the end-user intends at a high level from the actual implemen-
tation and execution, including the AI-driven optimized decisions and the low-level
infrastructure deployments and configurations.

3.2.1 User Intent Blueprint

At a high level, users describe their intention regarding the functional architecture
of their applications regardless of the underlying infrastructure. This description pro-
vides opportunities for an intelligent scheduler to optimise networking and resources
while respecting the initial user intent. Based on an extended version of the indus-
try standard OASIS TOSCA (Topology and Orchestration Specification for Cloud
Applications) [41], a blueprint specification is defined for the application deployment
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Fig. 2 High-level flow of operations for the deployment of an XR service, with cluster selection or
creation and activation of monitoring and forecasting

model. The user intent blueprint includes a high-level view of the application repre-
sented as a composition of so-called XR Service Enablers - modular services packaged
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into containers or Virtual Machines - defining user application services images and
the connection points and virtual links between them. In addition, users can specify
requirements in terms of resource needs (e.g., number of cores, RAM, GPU, storage),
number of replicas, and expected Quality of Service (e.g., bandwidth and latency).
Resource definitions drive the choices of the decision layer on the most suitable targets
for infrastructure provisioning. On the other hand, QoS requirements define SLAs that
the selected infrastructure must satisfy at runtime. Hence they are drivers for the mon-
itoring and service lifecycle loops. For the blueprint definition phase, users describe
their application from the AMF graphical front end, which guides them in defining the
building blocks, their interconnections, and the requirements and the input parame-
ters or environment variables that may be required at deployment time. The AMF
then generates the related TOSCA representation for the application model. Figure
3 describes the high-level sequence of interactions between an XR Developer and the
AMF to create an XR Service Blueprint.

For the deployment phase, the AMF front-end provides two modes: human and
machine-to-machine interaction. Human interaction leverages the GUI front-end to
select an application blueprint and deploy from it an application instance, with forms
for manually entering input parameters. Machine-to-machine interaction leverages a
REST API to be invoked by a device or a system to trigger the deployment of a
specific blueprint. The overall operational flow for deploying an XR Application, com-
prising the orchestration phases for cluster selection or creation and the activation of
monitoring and forecasting [42], is depicted in the sequence diagram in Figure 2.

3.2.2 Orchestration Blueprint

The TOSCA user intent blueprint defines the application at a higher level. It doesn’t
specify how the infrastructure and the services are created and which resources are
used. The intelligent scheduler harnesses the TOSCA definition and the live monitor-
ing data during application runtime to create and update the orchestration blueprint
containing the detailed infrastructure and services provisioning. The orchestration
blueprint structure is specified using a Kubernetes CRD (Custom Resource Defini-
tion) [43] and submitted to a management cluster. CRDs provide a way to extend
Kubernetes with new kinds of resources. As detailed further, a CRD leverages an
accompanying operator for the lifecycle management of the new type of resource. The
orchestration blueprint uses a similar structure to the TOSCA User Intent blueprint
but enriches it with the required details for the Kubernetes cluster provisioning. It
specifies the infrastructure providers used for Kubernetes cluster provisioning with
additional parameters such as the number of control planes and worker machines,
deployment region to be used, machine images, etc.

Moreover, the TOSCA user intent blueprint only provides high-level hints of edge
needs for guiding their provisioning. It does not specify how the edges will be created,
how many will be required and where they need to be provisioned. On the contrary,
the orchestration blueprint specifies all the Kubernetes-based edge clusters that will
be provisioned with the required infrastructure parameters as any other Kubernetes
cluster in the orchestration blueprint. It is important to note that the intelligent
scheduler updates the edge definitions in the blueprint during application runtime
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using the live monitoring data and the performance hints specified in the TOSCA user
intent blueprint. The decision blueprint is divided into three sections as follows:

• Clusters: defines the Kubernetes clusters to be created. It specifies the cluster
provider parameters and details (i.e., number of machines, deployment region, etc.).

• Services: defines the containerized services to be deployed. It specifies in which clus-
ter the service will be deployed, the container image used, ports exposed, the number
of replicas and other parameters required for correct execution (e.g. environment
variables).

• Links: defines which services expositions across two clusters using secured virtual
links. This allows strong multi-domain communication security without publicly
exposing services over the internet.

While the blueprint parameters are currently fixed for the different sections, an
extensible blueprint specification has to be considered in the long term to make the
orchestration of different use cases viable.

3.2.3 Infrastructure Blueprints

Based on the orchestration blueprint, the initial application deployment and subse-
quently updated deployments are handled by a Kubernetes Operator. This later is a
software extension to execute the orchestration blueprint corresponding to a Kuber-
netes Custom Resource instance. It is important to note that the Operator pattern and
CRDs (Custom Resource Definitions) are the de facto pillars for extending Kubernetes
functionalities.

Based on clusters section details in the orchestration blueprint, the operator set up
the required third-party clusters bootstrapping blueprints required for their provision-
ing on the specified cloud/infrastructure provider. Currently, ClusterAPI was chosen
as the provider for cluster setup. ClusterAPI provides manifold benefits, including the
ability to instantiate and manage the lifecycle of Kubernetes on widely used cloud
providers. Services section in the orchestration blueprint is used by the operator to
set up the necessary Kubernetes deployment resources to the specified cluster. From
the links section in the orchestration blueprint, the operator set up the VPN links
through inter-cluster peering. Liqo, detailed later, is used as the third-party tool for
this operation.

3.3 Service Deployment Planning

As explained earlier, the operator sets up the required clusters for the application
services to be deployed. Regarding deployment planning, at least two approaches can
be considered: different services and applications isolated in their own clusters or
having them deployed unto the same cluster for consolidation purposes. In the first
approach, every new service deployment requires tearing up a new cluster for the
application beforehand. This process requires a certain amount of time, which adds to
the application setup time. In the latter approach, the consolidation reduces the setup
time. Nevertheless, it adds a significant amount of logic complexity and an elaborate
security system that must be in place to guarantee complete isolation between services
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Fig. 3 Operations for editing a Blueprint Template for an XR Service

from different applications. For the sake of simplicity, the first approach was chosen,
although improvements are planned to support additional deployment schemes, which,
although more complex, can bring manifold benefits, including a more sustainable
infrastructure utilization.

3.4 Decentralised and Centralised Cluster Management

The proposed solution involves the usage of distinct Kubernetes clusters for man-
agement and deploying application components. The orchestration components are
deployed in a dedicated Kubernetes cluster for security, resource efficiency, and opera-
tional flexibility. This allows for better isolation of sensitive data and critical resources,
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including the orchestration blueprints. Nevertheless, we can further consider different
architectural strategies, considering how the orchestrator keeps track of application
blueprint changes and synchronises their states with the actual infrastructure or
how the different components are exposed. Two main approaches can be pursued:
centralised or decentralised (cf. Fig. 4).

Fig. 4 Centralised(top) vs decentralised(bottom) multi-domain management clusters

In a centralised approach, a single Kubernetes cluster manages the multi-domain
infrastructure. All the orchestration components and the application’s blueprints
reside in the same cluster. Even considering the possibility of a multi-node cluster sce-
nario, the management part can still be considered a Single Point of Failure (SPOF)
at the cluster level. Such an approach can also lead to scalability issues as we increase
the number of elements to manage (i.e., more applications and workload clusters).
Moreover, the redundancy strategies are limited to the cluster scope (e.g., compo-
nent replicas within the same cluster or high-availability Kubernetes cluster). On the
other hand, maintaining and managing a single cluster is simpler as there are no
multi-domain constraints, heterogeneity or inter-cluster communication to consider.

As opposed to that, in a decentralised approach, multiple management clusters are
used. Those clusters are used for either replicating components, ensuring fault toler-
ance and availability, or distributing them for enhanced scalability and performance.
In a replication approach, each replica can be seen as an independent entity containing
one or more replicas of the various components. Whereas this approach allows for more
than a single-point failure, it has the significant downside of requiring tight coordina-
tion among different parts, hence more complexity. For instance, application blueprint
replicas require synchronization and consistency (e.g., using eventual or strong con-
sistent strategies). Likewise, when a change is detected, a singular entity, such as a
designated operator, orchestrates the conversion into infrastructure operations. This
can be achieved through leader-based consensus algorithms or load-balancing individ-
ual tasks to various replicas. In that case, replication also contributes to the overall
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scalability by allowing the parallelization and load distribution of operations across
multiple domains.

On the other hand, a decentralised approach consisting of simply distributing
the components (without replication) is also possible. Multiple clusters remove the
barriers of single-cluster architectures and can be used to spread components across
different domains, administratively or technology-wise. In such a scenario, a more
strategic component placement can be considered for better resource efficiency, geo-
graphic diversity and isolation between environments (i.e., the clusters). Compared to
multi-node Kubernetes architectures, it’s worth noting that a multi-cluster approach
represents a step further in infrastructure isolation. In the latter, component decentral-
ization is not contingent upon a Kubernetes cluster’s internal operations or Kubernetes
nodes’ synchronisation. All the coordination in that case is application-dependent.
Still, the components spanning the various domains need to communicate with each
other. A solution for that can be the usage of inter-cluster communication tools (refer
to Section 3.7). Implementing a decentralised hybrid approach, combining replication
and distribution, is indeed also possible. This approach allows us to account for a truly
heterogeneous multi-domain environment, combining the benefits of replication and
distribution. Nevertheless, as we move towards more decentralised approaches with
all of their advantages, we must acknowledge that we are also introducing additional
complexity and potential challenges in terms of synchronization.

3.5 AI-Driven Provisioning and Lifecycle Management

Highly distributed immersive applications in edge computing face several latency,
bandwidth, reliability, and scalability challenges. These challenges can impact user
experience and the overall performance of the application. AI solutions can be used for
the lifecycle management of highly distributed immersive applications in edge comput-
ing. These solutions can significantly contribute towards optimizing the performance
and reliability of these services throughout their lifecycle and ensure efficient resource
allocation and management. In the context of the proposed architecture, the vari-
ous AI solutions that shall be examined in this subsection correspond to the Deep
Learning paradigm. Such solutions can be leveraged to accommodate the complexity
associated with Multi-Domain Edge Orchestration for Highly Distributed Immersive
Services. To achieve this goal, the authors of this work have identified two types of
AI solutions. This taxonomy, which draws inspiration from the ENI specification from
ETSI, was briefly explored in the Related Works section and is based on the role of
AI in the context of the orchestration process.

The first type is indicative of AI solutions that use the available information to pro-
duce valuable insights that can be leveraged in the context of the orchestration process
in the form of predictive analytics. This type describes a plethora of Deep Learning
time-series forecasting[44] methodologies that are capable of performing accurate pre-
dictions regarding numerous critical factors such as network conditions, computational
resources, and user demand. The orchestrator leverages these predictions. The second
type is indicative of AI solutions designed to operate as orchestrators. To produce
the various orchestration strategies, they examine a plethora of information, which
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includes the aforementioned critical factors. This type describes various Deep Rein-
forcement Learning[45] methodologies that are in charge of functionalities such as task
offloading, load balancing, and resource allocation.

Both types of AI solutions are implemented as parts of closed-control loops, sim-
ilar to those described within ZSM and ENI specifications. As such, they play an
integral role in the decision-making process and can contribute towards tackling the
aforementioned challenges. Figure 5 illustrates a taxonomy that includes a plethora of
AI solutions based on the challenges they can tackle.

Fig. 5 A taxonomy that includes a plethora of AI solutions based on the challenge that they are
capable of tackling.

3.5.1 Latency

Edge computing involves processing data as close as possible to the source or end-user
devices instead of centralizing all processing in a remote data centre. This proximity
to the data source minimizes the physical distance data must travel, significantly
reducing latency. Edge computing, therefore, plays a crucial role in addressing latency
concerns in immersive applications. However, it’s important to note that distributing
an application across multiple edge nodes can introduce latency due to data transfer
between these nodes. The challenge here is to ensure that the distribution of the
application and data is well-optimized to minimize these inter-node latencies.

Latency is a critical concern in immersive applications, where even the slightest
delay can profoundly impact the user experience. In this context, latency refers to
the time it takes for data to travel between the user’s device and the processing unit,
encompassing actions like rendering graphics, processing user inputs, and delivering
real-time feedback. Edge computing has emerged as a powerful solution to reduce
latency by processing data closer to the source, but it also introduces challenges related
to the distribution of the application across multiple edge nodes. AI plays a vital role
in mitigating these latency issues by proactively predicting user behaviour and appli-
cation requirements. AI-Driven Latency Mitigation can be achieved via the following
measures:
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• Predictive User Behavior Analysis: AI can analyze and learn from user
behaviour and interaction patterns. By understanding how users interact with the
application, AI can predict their future actions [46]. For example, in a gaming appli-
cation, if a user is engaged in a fast-paced action sequence, the AI can predict that
they will need more processing power for rendering graphics and physics calculations
in the near future. By predicting these actions, the AI can ensure that the necessary
resources are pre-allocated, reducing the likelihood of latency during high-demand
situations.

• Application Behavior Prediction: AI also extends its predictive capabilities
to the application itself. It can monitor the application’s behaviour and resource
consumption patterns [47]. For instance, AI can detect when the application is
about to enter a resource-intensive phase, such as rendering a complex 3D scene
or processing a large dataset. By anticipating these processing requirements, AI
can instruct the edge nodes to allocate additional computing resources in advance,
ensuring smooth operation during resource-intensive tasks.

• Resource Allocation Optimization: With the ability to predict both user
behaviour and application requirements, AI optimizes resource allocation in real-
time. It can dynamically distribute computing power, memory, and other resources
across the edge nodes to match the changing demands of the application [48]. For
example, if AI anticipates a surge in user interactions that require immediate pro-
cessing, it can allocate additional resources to the edge node responsible for handling
those interactions.

3.5.2 Bandwidth

Bandwidth is critical to immersive applications, particularly those involving multime-
dia content, such as VR and AR. These applications require substantial bandwidth
to stream high-quality content in real time. In the context of immersive applications,
limited bandwidth in edge networks can lead to delays and interruptions in streaming
multimedia content. To mitigate these challenges, AI can play a pivotal role in opti-
mizing the use of available bandwidth. To address this issue, AI offers several strategies
for optimizing bandwidth usage:

• Predictive Content Delivery: AI can analyze user behaviour, preferences, and
historical data to predict the type of content that users are likely to access. By
understanding user patterns, AI can preload relevant multimedia content onto edge
devices [49]. This reduces the need for real-time streaming and minimizes data
transfer requirements. Consequently, it conserves bandwidth and accelerates content
delivery, reducing the risk of interruptions in the streaming experience.

• Dynamic Adaptive Streaming: AI can dynamically adjust the quality and
resolution of multimedia content based on the available bandwidth and device capa-
bilities [50]. When network bandwidth is limited, AI can reduce video resolution or
compress audio, ensuring a smooth user experience. Conversely, when bandwidth
improves, AI can enhance content quality, optimizing the streaming experience.

• Content Caching and Prefetching: AI can identify popular or trending content
likely to be accessed by users. It can proactively cache or prefetch this content on
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edge servers or devices, reducing the need for repeated downloads over the network
[51]. This not only conserves bandwidth but also speeds up content access, especially
for frequently requested items.

• Network Traffic Management: AI can analyze network traffic patterns and opti-
mize data distribution across the edge network. It dynamically prioritizes and routes
data based on real-time demand and network conditions, reducing congestion and
ensuring efficient resource utilization [52].

3.5.3 Reliability

Reliability is a crucial concern in highly distributed immersive applications that oper-
ate within an edge computing environment. By virtue of their decentralised nature,
these applications can be susceptible to network and node failures. The consequences of
such failures can be disruptive, resulting in a degraded user experience or even service
downtime. To address these reliability challenges, AI plays a pivotal role by continu-
ously monitoring the performance and behaviour of the application and implementing
proactive measures to ensure uninterrupted service. AI systems are equipped to mon-
itor the performance and behaviour of the application in real-time. They continuously
analyze many metrics, including network throughput, processing speed, resource uti-
lization, and application response times. By doing so, AI can quickly detect any
anomalies or deviations from the expected behaviour [53]. For example, if a node’s
performance starts to degrade or if there is a sudden increase in latency, AI can
promptly identify these issues. Thus such systems are capable of enhancing reliability
in edge-based immersive applications in the following ways:

• Anomaly Detection: AI leverages its analytical capabilities to detect anomalies
in the application’s performance [54]. When discrepancies are observed, such as an
unusual surge in network traffic or a sudden spike in error rates, AI can raise alerts
or take predefined actions to mitigate these issues. This rapid anomaly detection is
vital in preventing minor problems from escalating into major failures.

• Predictive Failure Analysis: AI can go beyond mere anomaly detection and pre-
dict when a node is likely to fail. By analyzing historical data, hardware conditions,
and the node’s current state, AI can estimate the likelihood of a failure occurring
in the near future. This proactive prediction enables the system to take preventive
measures before failure happens [55].

• Auto-migration of Applications: In anticipation of an impending node failure,
AI can orchestrate the seamless migration of the application to a different node.
This proactive approach ensures continuity of service and minimizes disruption to
users. The migration process involves transferring data, state, and processing tasks
to a healthy node, all while ensuring data consistency and minimal downtime [56].

3.5.4 Scalability

Immersive applications are known for being resource-intensive. They require signif-
icant computing power, memory, and network bandwidth to deliver a seamless and
engaging experience. Additionally, as the number of users grows, so does the demand
for resources, making it essential to efficiently manage and allocate these resources to
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ensure a consistently high-quality experience. AI is pivotal in addressing these resource
management and scalability challenges in immersive applications.

• Predictive Resource Demand: AI leverages its predictive capabilities to estimate
the number of users, their behaviour patterns, as well as the underlying resource
usage [57]. By analyzing historical usage data and monitoring real-time user interac-
tions, AI can make informed predictions about how many users are likely to access
the application and what kind of activities they will engage in. For instance, in a
VR application that involves multiple simultaneous users, AI can predict if there
will be a surge in users during peak hours or special events.

• Efficient Resource Allocation: With predictive insights about user demand, AI
can dynamically allocate resources more efficiently [58]. This involves provisioning
the right amount of computing power, memory, and network resources to meet the
anticipated demand. For example, if AI predicts a spike in user activity, it can
allocate additional server capacity to handle the increased load, ensuring that the
application remains responsive and performs optimally.

• Auto-Scaling: AI can automate the process of scaling resources up or down based
on demand [59]. When the user count increases, AI can trigger the auto-scaling of
additional servers or edge nodes to handle the load. Conversely, during periods of
reduced demand, AI can release excess resources, optimizing cost efficiency.

• Load Balancing: Furthermore, AI can automate the process of load balancing
across the various edge nodes based on a plethora of parameters [60]. Many immer-
sive applications are distributed across multiple edge nodes for load balancing and
redundancy. AI can optimize the allocation of resources across these nodes and
dynamically route users to nodes with available resources, avoiding overloading any
single node. Additionally, AI can monitor the performance of each node in real-time
and redistribute workloads to ensure that no single node becomes a bottleneck.

• Cost Optimization: AI can also contribute to cost optimization by ensuring
that resources are allocated in a cost-effective manner. It can balance the need for
resource availability with cost constraints, helping organizations manage their cloud
or edge computing expenses effectively [61].

Thus, within the frame of the proposed architectural paradigm, the two types of
AI solutions do not operate independently but are instead envisioned to conduct their
functionalities collaboratively. More specifically, the predictions/ insights produced
by the first type of AI solutions can be leveraged by the orchestrating entities that
belong to the second type. This enables the latter to devise more refined orchestra-
tion strategies that consider the future state of the multi-domain edge environment.
Furthermore, the incorporation of the federated learning paradigm [62] into the afore-
mentioned AI-driven functionalities is intertwined with a plethora of benefits in terms
of privacy preservation, distribution of AI knowledge sharing, and enhanced learning
efficiency in the context of distributed edge computing.

Federated learning [63] is an ML approach that enables training models across
multiple decentralised / edge devices while keeping the data on those devices. Instead
of sending data to a central server for training, the models are trained locally on
the edge devices, and only the model updates or gradients are shared with a central
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server for aggregation. This approach preserves data privacy and security, as sensi-
tive data remains on the devices where it is generated. Edge devices contribute locally
trained models, which are aggregated to create a global model. This process establishes
cross-domain learning, where knowledge is shared without compromising privacy. The
distributed nature of federated learning facilitates knowledge transfer from resource-
rich to resource-limited devices, benefiting all devices. On top of that, training models
on edge devices [64] reduces latency and allows real-time decision-making. Federated
learning only exchanges model updates instead of raw data, thus minimizing commu-
nication overhead and conserving bandwidth. Finally, distributing the learning among
edge devices [65] allows for horizontal scalability. As more edge devices join the fed-
erated learning process, the system can handle larger volumes of data and train more
complex models without relying solely on centralized infrastructure.

3.6 Infrastructure and Application Monitoring

For the correct operation of the AI-driven provisioning and lifecycle management
component, it must have access to historical and live monitoring data. Historical mon-
itoring data are essential for correct network performance or workload predictions,
particularly inter-cluster latency and bandwidth and edge devices network latency
and application usage in our immersive experiences use-case. Live monitoring data
act as real-time feedback to the smart scheduling decisions and determine whether
the expected performances have been achieved or the infrastructure resources can still
cope with the submitted workload.

Based on the defacto Kubernetes clusters monitoring tool Prometheus [66], the
monitoring component creates a set of agents that aggregates all the historical and live
monitoring data for the given application. Depending on a specific deployment layer
performance we are interested in, different metrics agents can be deployed, namely:
infrastructure metrics agents, cluster metrics agents, and application metrics agents.

3.6.1 Infrastructure Metrics Agents

All the application clusters are deployed unto the existing virtualized regional cloud
infrastructures. The AI-driven provisioning and lifecycle manager harnesses historical
data for the existing cloud regional infrastructure metrics to guide the cluster place-
ment. Agents are deployed to the regional cloud infrastructures to gather the required
metrics. These agents provide the resource data, latency, and historical bandwidth
data between the cloud infrastructure regions. The provisioning and lifecycle manager
can then make the required predictions for the placement and migrations of appli-
cation services. Note that these agents can either be based on software deployed by
the cloud provider or as part of a dedicated monitoring cluster independent of any
application deployment.

3.6.2 Cluster Metrics Agents

Every cluster in the given application is able to handle the required deployed services
workload while achieving the target performances. A set of cluster metrics agents
are deployed into each cluster to continuously monitor the hardware resources (e.g.,
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CPU, Memory) consumed by each node and deployed container, as well as network
performance between clusters (e.g., latency and bandwidth). The provisioning and
service lifecycle management component will then use these metrics to scale up or
down the cluster nodes depending on the workload or for migrating services from one
cluster to another to achieve better network latency or bandwidth.

3.6.3 Application Metrics Agents

Custom hints can be specified in the User Intent Blueprint as part of specific network
or application workload performances. These hints are first aggregated from well-
defined sources using a dedicated monitoring system [67] and, later, harnessed by
AI-driven provisioning and lifecycle manager to optimise the intended hint criteria. A
plugin system is put in place to achieve maximum flexibility in integrating the various
application-specific metrics. Amongst others, this allows the case of communicating
edge devices network performances and geolocalisation hints metrics. Metrics agents
can also measure a particular application’s Quality Of Service (QoS), such as a specific
job of application queuing time, helping the user plan for service replication. Better,
automated as part of our potential improvements to our system.

3.7 Inter-Cluster Peering

Nowadays, an immersive application consists of multiple micro-service components,
which can benefit from being distributed across different clusters. Immersive appli-
cation components highly depend on the capability to communicate with each other,
regardless of whether they sit in the same or different locations (and clusters). As such,
a transversal connectivity solution capable of enabling connectivity between clusters
is increasingly required. Such a solution facilitates the deployment of cross-domain
applications, enabling dynamic location-aware scheduling decisions (whether based on
developer requirements or an AI-driven decision) independently from labour and time-
consuming developer configurations. Several technologies, such as Liqo or Submariner,
promise to address such automated peering cluster connectivity and service discov-
ery across Kubernetes clusters [68]. Liqo, both free and open-source, is the solution
adopted in our proposed architecture. Liqo is designed to enable seamless connectiv-
ity among geographically distributed clusters (e.g., on-premises, edge or cloud). Liqo
relies on peer-to-peer secure (encrypted) connections between clusters to validate the
identity clusters. Remote clusters are seamlessly abstracted through the concept of
virtual nodes on the local cluster, allowing transparent communication between the
peered clusters, regardless of the CNI plugin installed. Indeed, for bidirectional peer-
ings, a virtual node is created in each cluster representing the resources the remote
one provides. Moreover, Liqo also brings the notion of offloading to reflect and exe-
cute workloads on top of those virtual nodes (e.g., namespaces, services and pods).
This allows exposing services or even the execution of workloads in remote clusters.
For instance, when a namespace is offloaded, Liqo extends that namespace by creat-
ing a twin namespace in the remote cluster, enabling the pods and services to run
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on that cross-cluster shared namespace. Figure 6 compares pod offloading versus ser-
vice offloading. Both modes start with the peering of clusters (i.e., creating a dynamic
VPN tunnel) and the creation of a shared namespace.

Fig. 6 Pod and Service Offloading comparison.

Nevertheless, the pod offloading strategy includes moving the actual execution of
pods and the services to a peered cluster(e.g., in Figure 6, the application components
are first deployed on the original Green Cluster and later executed in the Rose cluster).
For instance, high-demand computing tasks, such as video processing or handling
requests during peak traffic periods, can be easily moved to a (more suitable) cloud
cluster. By offloading some of the application workloads to a cloud cluster, one can
optimize the use of resources across the edge-cloud continuum, reducing costs and
improving overall efficiency. Contrary, service offloading consists of exposing only the
Kubernetes services on a remote cluster. In that case, the pod execution continues
at the original cluster, and the pod deployment is performed from the beginning in
the targeted cluster. The remaining components are also aware of the names of the
services on the remote cluster.

3.8 Execution Graph-based Blueprint Orchestration

AI-driven provisioning and Lifecycle Manager set the execution blueprint to reflect
the desired infrastructure state. The Orchestrator and Resource Manager choose the
resources to initiate and in which order to achieve the target state. At the core of
the Orchestrator and Resource Manager, a Kubernetes Operator watches the Orches-
tration Blueprint represented by a CRD (Custom Resource Definition) spec section
and updates its status section to reflect the current infrastructure status. To achieve
such flow, for every Orchestration Blueprint creation or update, an execution graph is
generated describing the different steps and their dependencies to achieve the target
state. In Figure 7, we illustrate an example of the initial version of such a Blueprint.
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Fig. 7 Initial Orchestration Blueprint Example.

The Blueprint describes an application of two clusters with two different infras-
tructure providers connected with Liqo (links subsection). The services are omitted for
brevity. To achieve such orchestration, an execution graph is generated and illustrated
in Figure 8. The dashed lines indicate the associated data for each node.

Fig. 8 Initial Execution Graph Example.

The resulting Execution Graph expresses the creation of the clusters with Liqo
installation in each, which can be done in parallel, as shown. Once Liqo is installed in
both clusters, peering can be set up between them. Now, let’s suppose the orchestration
blueprint is updated while the first cluster has been deployed. In Figure 9, we illustrate
such a blueprint.

In this new orchestration blueprint, the first cluster has a new infrastructure
provider (provider2 ). The status section contains the existing infrastructure state rep-
resented by the old first cluster properties. A new execution graph is then generated
from this updated orchestration blueprint. A first approach is illustrated in Figure 10.
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Fig. 9 Updated Orchestration Blueprint Example.

Fig. 10 First Approach of the updated Execution Graph Example.

In such an execution graph approach, the old version of the first class is removed
before setting up the rest of the infrastructure. While such an approach is an acceptable
one for achieving the goal state, the issue remains if ensuring the continuous working of
the application is mandatory while transitioning to a new infrastructure state. Another
approach is to consider the uninterruptible transition to the new infrastructure as
illustrated in Figure 11.
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Fig. 11 Second Approach of the updated Execution Graph Example.

In this new execution graph, the new cluster with the new provider is constructed
before the old cluster version is deleted. Moreover, a transition node is added to
allow uninterruptible operation before final deletion. While the corresponding opera-
tion related to the transition step is beyond the paper content, the execution graph
is extensible enough to cover all the possible scenarios. Once the execution graph is
updated, Executors instances are created corresponding to nodes with no precedence
and with an equivalent class. Hence, an AddClusterExecutor will be created for the
corresponding AddCluster node. Once the executor finishes execution, the correspond-
ing execution graph node is removed, the Orchestration Blueprint status section is
updated, and new unconstrained nodes are selected to create executor instances. The
process continues once all the execution graph nodes have been processed.

4 Immersive Service Use Case

4.1 Immersive Virtual Touring

One use case that can benefit from this architectural paradigm is Cyango Cloud
Studio[69], a VR SaaS (Software as a service) that allows anyone to create Virtual
Reality experiences. Cyango empowers businesses with a solution that allows them to
explain, show, teach and sell directly in real-time with interactive 360º video experi-
ences. Cyango Cloud Studio targets content creators and marketing agencies requiring
a seamless workflow for creating enhanced Virtual Reality experiences. Cyango Cloud
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Studio delivers high-quality VR editing capabilities to content creators and high-
quality 360 VR content to end-users. This content can be video, image, audio or 3D
models.

Besides many features, Cyango allows four distinct use cases:

• Real-time video streaming: where the users can stream video and audio to many
viewers using any recording device (e.g., a 360º camera).

• Asset converting: where users upload different kinds of assets and convert it to
multiple quality levels that can be later adaptively loaded.

• Video editing: allows users to perform remote video editing without requiring a
powerful ad-hoc machine.

• Static video consuming: where users can load and visualize the immersive expe-
rience with 360º videos using HLS protocol that adapts to different network speeds
and devices.

The Cyango Cloud Studio provides a graphical interface for users to upload and
edit their assets and build the virtual experience, as seen in Figure 12.

Fig. 12 Screenshot of Cyango Cloud Studio Web Interface.

The user can access such an interface in the browser where all the actions, like video
converting and editing, are made. This makes it necessary to have a very low latency
response in video editing. For instance, user edits on the browser must be reflected in
(near) real-time in a way that feels like a fast response to the edit action. Moreover,
Cyango Cloud Studio deployments consider the ability to scale and adapt the content
delivery according to the number of concurrent users and achieve the best possible
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QoS and QoE. This can be achieved with algorithms that create the optimal number of
content quality levels, allowing streaming and adapting to situations where bandwidth
and resources vary. From a developer perspective, there is also a need to quickly push
new code to a versioned source code repository and seamless integration with CI/CD
pipelines. Cyango Cloud Studio is based on WebXR and WebGL technologies and uses
a micro-service architecture comprising several containerised components (cf., Figure
13).

Fig. 13 Cyango Cloud Studio Components Architecture.

The users (i.e., content creators and VR experience consumers) interact with
cyango-story and cyango-cloud-editor components, which are strategically placed in
edge locations to minimize the latency of video editing and consumption. The cyango-
media-server component also requires a strategic location for serving and performing
real-time video/audio transcoding and live streaming. The service placement of them
is implemented in a manner that maximizes the QoE of different users at different
locations. Components cyango-story and cyango-cloud-editor use Three.js, a WebGL
library abstraction for Javascript. This library allows video and image as textures in a
3D environment while allowing interactivity. It provides an immersive 3D experience
that can be loaded on smartphones, desktops and VR headsets. The TOSCA-enabled
custom orchestration platform described in 3.2.2 (supporting the TOSCA simple
profile version 1.3 [70]) enables the selection of the most suitable locations of these com-
ponents considering the specific hardware capabilities to improve the overall processing
performance (e.g., GPU-enabled nodes). The cyango-backend component works as an
API component that communicates and delegates processing tasks to cyango-workers.
The cyango-worker(s) can be considered the most resource-expensive components as
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they handle all the heavy tasks like converting the video and audio from any file exten-
sion to a standard HLS protocol playlist that can be consumed using an adaptive
bitrate method. This component uses ffmpeg native libraries to convert audio, video,
and other kinds of assets (e.g., images using the sharp library to manipulate the image
and convert it to standard extensions that are readable as WebGL textures). Repli-
cas of cyango-worker(s) must be replicated using a Horizontal Auto Scaling strategy.
The cyango-messaging component acts as a messaging bus between cyango-backend
and cyango-worker(s) for an asynchronous task-based processing schema. Finally, the
cyango-database component stores all the stories, assets and details. The storage com-
ponent stores the processed files, which users will later consume. These two storage
components can also greatly benefit from an intelligent scheduling placement approach
minimizing the network latencies when accessing and persisting the assets.

4.2 Harnessing Metrics for Intelligent Orchestration

This subsection is dedicated to exploring how various metrics that are closely asso-
ciated with the performance of the immersive service use case can be harnessed.
The collection of such metrics is crucial towards establishing intelligent orchestration.
Figure 14 represents a deployment of a VR Tour Creator application considering a
multi-cloud environment.

The scenario is composed of two clusters: one cluster for hosting the orchestrator
components (the management cluster) and a second one used for the deployment of
the VR Tour application components (the workload cluster). For the sake of simplicity,
the VR Tour components were deployed in a single cluster. Such workload cluster is
created and managed by the orchestrator. On top of the orchestrator components,
the management cluster also includes the orchestration blueprints and the metrics-
related components. The blueprints consist of application definitions and requirements.
Meanwhile, the metrics collector endpoint represents the metrics aggregated from the
various applications’ exposed metrics endpoints. On the other hand, the workload
cluster hosts the media server, the cloud editor and the remaining VR application
components.

Moreover, the replicated VR Tour scenario intends to replicate how real users would
consume content on-demand in a fast and seamless way. In this case, we recreated a
scenario where content creators want to promote their services and products through
an engaging live shopping experience. This scenario consists of a user that possesses a
360 camera which is capable of live streaming through an RTMP URL to a consumable
VR experience for the potential buyers to access via any browser in any device, be it
desktop, smartphone or XR headset (cf. Figure 14).

The first stage consists of a live-streaming scene that must be configured using
the cloud-editor component, which generates an RTMP URL coupled with a unique
stream key. After publishing the story to a public online URL, any end-user can start
consuming it. In the second stage, the creator initiates the live streaming using a
360-degree camera specially designed for wired streaming. We used a high-resolution
camera capable of streaming 4096x2048 pixels, 30 FPS and a 5 Mbps video bitrate.
Such a stream was sent to the media server component residing in the workload cluster
using the RTMP protocol. Later, this stream was consumed and exposed through the
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Fig. 14 Experimental Streaming Scenario

story component, enabling end-users to immerse themselves in the 360 VR experience.
At the same time, upon establishing a new WebRTC connection within the story
component, the collection of metrics was performed. The metrics encompass various
facets of WebRTC communication and were systematically gathered and transmitted
from the story component to a dedicated endpoint within the backend component.
The story component uses an open-source library called webrtc-stats from peermetrics
[71]. We measured the Available Incoming Bitrate from the video stream in bps, the
Bytes Discarded On Send in bytes, the Bytes Received in bytes, the Bytes Sent in
bytes, the Current Round Trip Time in milliseconds and the Total Round Trip Time in
milliseconds. These metrics can define how good the user experience is when consuming
the VR live stream and how the system performs. In particular, the round trip time,
which can be influenced by:

• Distance: The span a signal must cover directly affects the time it takes for a request
to travel from a user’s browser to a server and back with a response.

• Transmission Medium: The type of pathway used to guide a signal, whether it’s
copper wiring or fibre optic cables, can influence the speed at which a request is
sent to a server and relayed back to the user.

• Number of Network Hops: Whenever a signal encounters intermediate routers or
servers, it encounters processing delays, which increase the Round-Trip Time (RTT).
The greater the number of these signal ”hops”, the higher the RTT.

• Traffic Levels: RTT tends to rise during peak network congestion when there’s a
surge in traffic. Conversely, during periods of low network activity, RTT tends to
decrease.

29



• Server Response Time: The time required for a designated server to respond to a
request depends on factors such as its processing capacity, the volume of requests
it’s handling, and the complexity of the request. A longer server response time
contributes to an increase in RTT.

Finally, the VR tour backend component processed the collected connection metrics
and exposed them as a Prometheus endpoint. This facilitates subsequent analysis and
visualization of the metrics, which are crucial for assessing the performance and quality
of the WebRTC connection in the context of the 360-degree VR livestream. Figures
15 and 16 illustrate the obtained values observed in Prometheus UI.

Fig. 15 Streaming Incoming Bitrate

Fig. 16 Streaming Round Trip Time
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4.3 Application Management Framework

Application Management Framework (AMF) offers immersive application developers
an environment for defining and deploying highly interactive and collaborative next-
generation services. AMF can be considered an entry point for immersive application
developers, from which they define the modules of their applications and visually
shape and compose them by specifying properties, parameters, relationships and
requirements in terms of computational resources and expected QoS at runtime. This
information is critical as it provides the algorithms used by the orchestration layer, to
select the best topology for the deployment of the application components.

The modules are software artifacts packaged into containers or virtual machine
images. The AMF provides a dedicated registry where immersive application devel-
opers upload their artifacts. A specific section in the user interface helps developers
upload new images and presents them as a list of the available images (cf. 17).

Fig. 17 AMF VNF Images management: list of VNF Images uploaded by Cyango developers for
the Cyango Cloud Studio application

For every image in the list, by clicking on their name, users can get detailed infor-
mation related to their build history (as shown in Figure 18) and, more importantly,
to possible security concerns.

In fact, as the first step of application provisioning, AMF triggers a DevSecOps
chain to check the uploaded images against security threats. A detailed report is
generated (cf. 19), and pointers to descriptions about each security issue and possible
resolutions are shown to the users (cf. 20).

Once the needed images are loaded into the AMF registry, the developers can
define the application blueprints for their services visually in the AMF. The user
interface guides the developers in the steps required to define the application compo-
nents. Figure 21 shows how the AMF Blueprint Editor is used to model the Cyango
application described in the previous section. Developers define the application name,
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Fig. 18 AMF VNF Images management: details about the build history for an image uploaded into
the AMF registry

Fig. 19 AMF VNF Images management: vulnerabilities report generated by the DevSecOps pipeline

description, version number and privacy level. Also, in this phase, it is possible to define
global input parameters required at deployment time when launching an application
from a blueprint.
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Fig. 20 AMF VNF Images management: vulnerability details

Fig. 21 AMF Blueprint Editor: sample of the definition of the Cyango Cloud Studio application
module (VNF).

The second step is the definition of external devices or systems that are not directly
managed by the orchestration platform but are required by the application. There-
fore, they must be represented in the model to understand how to communicate with
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them. An example of this category is an end-user mobile device which connects to the
deployed application or a cloud service (e.g., Amazon S3) used by the application to
gather some data. The next step is the definition of the set of modules (called Virtual
Network Functions in the AMF) constituting the application, together with details on
resource requirements in terms of cores, RAM, GPU, storage, the support for replicas,
the input and environment parameters, and the connection points to communicate
with other components. Connection points specify the port numbers and protocols for
outgoing or incoming communication flow. The orchestrator later uses them to create
the corresponding services and required connections between clusters. This is done for
every module composing the application.

The final step is the definition of the virtual links (Figure 22) and the communi-
cation channels allowing modules to interact via their connection points. A dedicated
form allows the user to select the available connection points defined on the VNFs in
the previous steps and to select from a checkbox the ones that must be connected,
hence defining the communication path between the modules. For every virtual link
defined, users can set requirements for QoS related to bandwidth and latency. This
can be done by filling values in a form or interacting with a slider.These two met-
rics are closely associated with service performance. Reliability and scalability, on the
other hand, constitute desired emergent properties of highly distributed systems that
support the ability of these systems to facilitate the various requirements in terms of
latency and bandwidth. Consequently, users need to define only their requirements in
terms of latency and bandwidth, while reliability and scalability are established via
the use of the aforementioned AI solutions.

Fig. 22 AMF Blueprint Editor: sample of the definition of communication links and QoS properties.

Every time the users define a new item, a graphical representation is updated on
the top side of the GUI so that the developers can have visual feedback on what they
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are modelling. The final representation of the Cyango Cloud Studio model is shown
in Figure 23.

Fig. 23 AMF Blueprint Editor: model of Cyango Cloud Studio application.

Upon completion of the blueprint, the AMF generates a TOSCA representation
that will be used at deployment time (cf. 24). To trigger a deployment request, devel-
opers will first click a ”Manage application” button to access a form for specifying
the input parameters modelled in the blueprint (cf. 25). After filling in the input val-
ues, they ask for the deployment by clicking a ”Deploy new application” button. The
AMF will then pass the input parameters and the TOSCA application model to the
lower orchestration layers.

4.4 Architectural Evaluation

Existing standards and solutions like ETSI MANO and ZSM provide outstanding
network-centric reference architectures to structure multi-domain Edge Orchestration.
Nevertheless, such specifications remain highly complex to implement and lack high-
level components to provide pervasive, scalable orchestration as a service to end users.
In the same way, Platforms as a Service provide a scalable and simpler programmable
interface to an underlying complex infrastructure compared to Infrastructure as a
Service.

Our architecture proposes the concept of user intent blueprints as an application-
centric programmable interface towards a full-featured multi-domain intelligent orches-
tration as a Service. The blueprint provides a declarative design at a very high level of
the multi-domain infrastructure. Further care has been put into providing the visual
specification tool AMF on top of the blueprint. The TOSCA user intent blueprint
and AMF have been validated with use-case owners for completeness and usability.
The AI alleviates a lot of the complexity of multi-domain orchestration through a
smart fine-tuning of the application infrastructure details. Existing reviewed solutions
don’t define a detailed set of infrastructure decisions and the corresponding required
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Fig. 24 AMF Blueprint Editor: excerpt of the TOSCA model generated for the Cyango use case.

Fig. 25 AMF Application management: page with input parameters form for and button to trigger
the application deployment towards the orchestration layer.

monitoring data. Our orchestration blueprint provides another level of declarative
infrastructure design but with the more fine-grained tuning of the infrastructure details
by an AI component. It is important to note that an AI can be plugged in without
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any prior API adaptation compared to existing solutions, guaranteeing that the spec-
ification models are compatible (Graph-based, for example). Furthermore, we have
identified monitoring data required for the intelligent conversion between the user
intent and orchestration blueprints. Existing multi-domain orchestration architectures
and tools specify a set of API endpoints and layered communication channels to set
up and update the application infrastructure. Nevertheless, by not being based on an
actual application infrastructure state specification, the execution plan is manually
defined and ensured by the end user or a third-party automation tool. Any observed
failure requires another level of management not covered in the reference architec-
ture. Our Orchestration and Resource Manager provides a decoupling between the
intelligent infrastructure orchestration decision and the infrastructure execution plan
required during the application’s initial setup and its update during its lifetime. The
operator nature of this component ensures that the proper application infrastructure
state is ensured by following an execution plan that respects the agreed-upon Orches-
tration Blueprint. Moreover, any notable failure that deviates the infrastructure from
the target state triggers a remediation plan by the component.

5 Conclusion

This publication presented a new design approach that can enable efficient manage-
ment of immersive services across multiple domains at the edge, using a range of
AI solutions and technology to support multi-domain edge deployments. Our new
architecture proposes a new paradigm based around a set of multi-level specification
blueprints which decouple the high-level user-intent infrastructure definition from the
AI-driven orchestration and the final execution plan. Our Orchestration and Resource
Manager component adheres to the operator pattern, facilitating the separation of the
application infrastructure state from the associated execution plan, both for the ini-
tial setup and lifecycle management. The innovative ClusterAPI and Liqo have been
harnessed as the main pillars for the execution plan operations. Moreover, we delved
into the utilization of various AI techniques in component provisioning and lifecy-
cle management, the architectural considerations of centralized versus decentralised
orchestration approaches, and the decomposition of the execution plan into a detailed
execution graph that describes the sequential steps and their interdependencies for
attaining the desired infrastructure state. The AMF provides a visual language and
tool alternative to the formal approach for the intent blueprint. We provided details
about how developers can leverage the various aspects of AMF and validate them
with the Immersive virtual touring use case owner. Finally, we recreated a distributed
VR Tour application scenario and offered valuable insights into how the proposed
architecture effectively addresses its orchestration requirements, spanning from the
provisioning phase to the monitoring of application-specific metrics.
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