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Abstract—Offering intelligent services with ultra low latency
and high reliability is one of the main objectives of 6G networks.
Federated Learning (FL) is a solution to enhance the security
of data and the accuracy, in comparison with local training of
data in devices. The transmission cost in conventional FL is high.
Performing FL using edge infrastructure is a solution. However,
edge servers might not be available at every location or the com-
munication with edge resources may prolong the learning process.
This paper proposes a collaborative federated learning approach
to provide intelligent services through collaboration of various
learning levels including central cloud level, edge cloud level,
and device level. Computational capabilities of neighbourhood
devices are exploited to provide a fast recognition via 6G D2D
communication. The learning is modeled as an optimization that
performs trade-off between recognition accuracy and response
time of recognition for devices. Considering the dynamicity in
communication and computation status of the network/devices,
a deep reinforcement learning method is proposed to decide
about the collaboration of learning levels, and performing the
appropriate trade-off. For a DDoS attack detection scenario, the
evaluation results show improvement in the gained rewards, the
attack detection accuracy, the response time of recognition, and
the accumulation of accuracy and response time.

Index Terms- 6G, federated learning, deep reinforcement
learning, recurrent neural network, and DDoS attacks.

I. INTRODUCTION
Mobile communication generations have evolved to pro-

vide ubiquitous and seamless communication infrastructure
for massive distributed end-devices. Supporting intelligent
services e.g., for autonomous vehicles, immersive services,
with ultra-low latency and ultra-high reliability, is one of
the essential visions of 6G networks [1], [2]. To realize
such intelligent services, the infrastructure capabilities of 6G
network should be leveraged to analyze heterogeneous and
distributed data collected by massive end-devices, above all
in real time. Utilizing local training of data can not end to
adequate accuracy due to the small quantity of local data and
computational power limitations of end-devices.

Federated Learning (FL) [3], provides capability to train a
global model over distributed data. In FL, multiple participants
train a shared model through an aggregator server (also called
as parameter server). FL has shown to have the potential to
provide the intelligent services for participating devices in 6G
networks [4], [5]. Furthermore, the sharing of only the learning

model parameters, instead of raw data of the participants, shall
cope with the privacy concerns of end-users; one of the critical
requirements of 6G networks [4].

However, the transmission cost is high in conventional FL,
since the parameters of the learning model need to be trans-
mitted to the cloud. To overcome this problem, some studies
(e.g., [6], [5], [7], [4]) utilized edge processing capabilities
e.g., base stations, Road Side Units (RSUs), for partial model
aggregation. This approach shall reduce the traffic at 6G
backhaul network, however the edge-cloud infrastructure may
not be accessible at some locations. For example, vehicles
may not have access to RSUs at some roads or devices at
disaster-affected sites may be disconnected from edge-cloud
infrastructure. On the other hand, the capability of distributed
cloud computing in 6G offers computation capabilities of
intelligent neighbourhood devices [8], which can provide an
opportunity of fast recognition. The literature, however, lacks
an efficient mechanism for FL that utilizes the full potential
of 6G infrastructure i.e., end-devices, and edge/central-cloud.

This paper proposes a Collaborative Federated Learning
(CFL) method that is consistent with the heterogeneous cloud
computing based architecture of 6G [9]. The proposed method
is capable to provide intelligent services in different learning
levels including end-devices, edge-clouds e.g. MEC servers
and central-cloud. A Deep Reinforcement Learning (DRL)
based controlling mechanism is proposed that decides about
learning levels collaboration. The decision is based on a
trade off between recognition accuracy and response time
of recognition, depending on some variables indicating the
dynamicity of the network. The communication status of the
network, the computation capability of the edge/central-cloud
resources, and geographical location/computation status of
end-devices will be included to optimally collaborate among
various learning levels.

To the best of our knowledge, this paper is the first work
that adopts a FL version that exploits both the advantages
of high accuracy of recognition, available by performing FL
through edge/central-cloud resources; and the fast recognition
capabilities of neighbourhood devices, available through 6G
D2D communications. Furthermore, to the best of our knowl-
edge, this is the first work that exploits collaboration between
various learning levels, and introduces the trade off between
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the recognition accuracy and the response time of recognition
to optimally manage the collaboration.

As security is a major concern in 6G networks, the
proposed method is evaluated for a DDoS attack detection
scenario. The collaborator devices will take part in FL to learn
a model for DDoS attack detection. As attack detection has
shown to have the characteristic of a time-series optimization
and GRU-based detection approaches have shown promising
results in terms of detection accuracy [10], [11], we also
adopt a GRU based method to detect the DDoS attacks.
The evaluation results illustrates the outperformance of
the proposed method in terms of gained rewards and the
recognition accuracy in comparison with existing methods in
the literature; when FL is performed either based on sole edge
infrastructure or sole end-devices computation capabilities.
Furthermore, the response time of recognition has been
reduced in comparison with widely advocated approach in
the literature that performs FL with exploitation of edge
infrastructure. Finally, the experimental results illustrate the
effectiveness of CFL to perform appropriate trade-off between
accuracy and response time. The contributions of this paper
are as follows:

(i) Optimization framework for Collaborative Federated
Learning (CFL) to optimize the accumulated trade-off of
recognition accuracy and response time of recognition for
all devices in the network.

(ii) A deep reinforcement learning based method to solve
the proposed optimization, while considering the net-
work status variables including the network com-
munication/computation status and geographical loca-
tion/computation status of end-devices.

(iii) Extensive experiments to illustrate the outperformance of
the CFL in comparison with the baselines, for a DDoS
attack detection scenario from the aspects of criteria
including the response time of recognition, the attack
detection accuracy, and the accumulated response time
and accuracy.

The rest of this paper is organized as follows. Section II
discusses related works. Section III provides the motivation
and the incorporation of the proposed federated learning in 6G.
In Section IV, we explain our proposed collaborative federated
learning. In Section V, we explain DRL based optimization
and the controlling mechanism for CFL. Section VI gives
the technique for DDoS attack detection, as well as the FL
scenario to learn an attack detection model in a distributed
manner. In Section VII, we discuss the experimental results.
Finally, conclusions and the future work are given in Section
VIII.

II. RELATED WORKS

As this paper studies FL in 6G, we investigate the literature
of FL in the scope of 6G/5G and the relevant scope of
edge computing. The related studies are categorized in two
groups: Edge/Cloud-Based FL and End-Devices-Based FL.
Edge/Cloud-Based FL methods perform FL in a hierarchical
manner with specific parameter aggregator(s) provided by

edge/cloud computing nodes. End-Devices-Based FL methods
perform FL in a fully distributed manner and rely only on
end-devices, with no specific aggregator server at edge/cloud.
In the rest, we discuss the related works, their drawbacks and
the contributions of this paper.

A. Edge/Cloud-Based FL

To reduce the overhead of transmission cost to a central
aggregator in conventional FL, several studies advocate hier-
archical FL by utilizing edge processing capabilities. Indeed,
these studies exploit edge infrastructure elements e.g., edge
servers, Base Stations (BSs), Road-Side Units (RSUs) for
partial aggregation of the model. In the rest, we first review
non-blockchain-based FL methods in the general context of
edge computing and specific applications. Then, we review
blockchain-based FL methods.

FL has been studied in the general context of edge comput-
ing in [6], [12], [13], [14], [15]. The authors of [12] study FL
for the cases of non-Independent and Identically Distributed
(non-IID) data for wireless networks. The study in [6] utilizes
evolutionary game theory to dynamically assign participants to
head clusters in a FL process for an edge intelligence appli-
cation. The authors of [13] focus on the problem of joint user
association and wireless resource allocation in hierarchical FL,
under IID and non-IID cases. In this study, BSs perform partial
aggregation and the central cloud performs global aggregation.
Joint optimization of mobile devices transmission power and
training task scheduling was studied in [14]. Facilitating FL
through intra-cluster collaboration as well as inter-cluster col-
laboration using hierarchical edge servers has been discussed
in [15].

FL has been studied for specific applications of 6G digital
twin [5], [7], vehicular networks [4], [16], and Unmanned
Aerial Vehicles (UAV) networks [17]. Hierarchical FL for
digital twin applications in 6G was investigated in [5], [7].
FL is organized through base stations and macro-base stations
to accomplish the digital twin processing in [5]. Considering
the assignment of digital twin processing to the base stations
as well as the bandwidth allocation, the problem is modeled
as an optimization that minimizes the time/cost of federated
learning. Similarly, the study in [7] provides an application
of digital twin processing at the base stations. Applications of
hierarchical FL in vehicular communications were investigated
in [4], [16], [18]. The study [4] focuses on a CNN based
FL for the application of object detection at which road-
side units perform partial aggregation, and global aggregation
is performed in a central cloud server. The study in [16]
customizes parameters including local training for vehicular
clients and the update time. It also proposes a strategy for
partial client participation to optimize the communication
cost in FL. In [17], UAVs and remote radio heads, besides
a centralized controlling unit, perform the aggregation in a
hierarchical manner. The study focuses on a content placement
decision in 6G, which decides based on the content popularity
and the UE mobility.

Blockchain technology can provide secure storage capabili-
ties and distributed solutions [19]. It has been integrated with
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edge/cloud-based FL to enhance the security/reliability of FL
from the aspects including verification of local models e.g.,
[20], [21], [22], [23]; verification of global models e.g., [18],
[24]; verification of aggregators [25]. Generally, blockchain
can enhance the safety/reliability of FL by providing a dis-
tributed ledger to securely store the local/global model(s) as
transactions data in a transparent and traceable manner e.g.,
[18], [20], [21], [26], capabilities of decentralized coordination
and consensus based decision e.g., [21], [25], and smart
contracts-based controlling e.g., [20], [22], [23]. In the rest,
we explain more details of the blockchain-based FL works.

In [20], FL has been utilized to facilitate content caching
for IoT devices. Hierarchies of edge nodes and a cloud server
form the architecture of FL. Blockchain has been incorporated
to store the model gradients of the edge nodes as transactions,
and accordingly verifying the transactions’ validity based on
a verification smart contract and a consortium decision. The
verified models then, will be obtained by the cloud server
to be federated for the the purpose of caching decision. The
authors of [21] propose a two-layered blockchain architecture
for FL over mobile edge network. The blockchain structure
include a Local Model Update Chain (LMUC) and a Global
Model Update Chain (GMUC). LMUC is used to share the
local models update among devices, with the capability of
a consensus-based verification mechanism. GMUC is used
to store reputation of devices from the aspect of model
quality as well as coordinating cross-validation among Multi-
access Edge Computing (MEC) nodes to form the aggregate
global model. The studies in [22], [23] integrate validation
mechanisms through a test-data-set, with smart contracts to
validate local models against poisoning attacks. The study
in [24], applies FL over 5G infrastructure including devices,
BSs, and a macro-BS. The local models are aggregated by
BSs and macro-BS to form a global model. The global
model is stored in the blockchain, where a cryptographic-based
computation is utilized to authenticate and verify it before
being downloaded by devices. The authors of [18] utilize
FL to facilitate collaborations of vehicles to detect intrusion
detection. The local-trained models of vehicles are aggregated
by RSUs. RSUs jointly maintain a secure blockchain-based
model storage to prevent tampering of the aggregate model.
The authors of [25] study a blockchain-based FL for cross-
domain UAVs with the authentication capability for UAVs. A
consortium blockchain is utilized as a platform for information
exchange. Committee nodes i.e., BSs or RSUs, based on a
consensus-based algorithm, authenticate the UAVs, and select
a subset of the committee nodes for the aggregation of the local
models stored in a model pool. Fusion of blockchain and FL
for data verification at the edge layer has been investigated
in [27] for 5G/6G network slicing application. The authors of
[28] study unintended property leakage problem in blockchain-
based FL for intelligent edge computing. The authors of [26]
propose a decentralized blockchain based trading system to
encourage edge nodes to participate for model training in FL.

B. End-Devices-Based FL
These studies have advocated a fully distributed version of

FL at which it relies only on end-devices and no aggregator

server from edge/cloud computing (e.g., BSs, MEC servers,
RSU, cloud server) is involved in FL . FL has been used in [29]
to augment the capability of road object classification based on
Lidar data in vehicular networks. Each vehicle communicates
with its neighbourhood vehicles to receive the weights of the
learning model and perform the aggregation itself, as well
as updating the neighbours with the aggregated weights. A
consensus based approach with the cooperation of devices
to perform FL for massive IoT network was proposed in
[30]. The studies in [31], [32], [33], [34] apply blockchain
mechanisms in FL. The authors of [31] provide a blockchain-
based architecture to implement a fully distributed FL. The
devices upload the local model parameters to a subset of
devices namely called, the miners. The reliability of the model
parameters are verified by miners. A consensus algorithm e.g.,
PoW, PoS is run in each run to select a miner as the aggregator.
The aggregator device, aggregates the parameters and saves
the new global parameters in a block, from which the devices
download the global parameters for the next round. The study
in [32], propose a fully distributed blockchain-based FL for
vehicular network at which the verfication of the local models
are handled by miners (a subset of vehicles). The verified local
models are stored as blocks in the distributed ledger of the
blockchain, and the global updates are calculated locally at
vehicles. The minimization of system delay and driving the
optimal block arrival rate is also considered in FL. The study in
[33], enhances the data privacy of participants in a blockchain-
enabled FL in beyond 5G, with a Wasserstein Generative
Adversarial Network (WGAN)-based mechanism. The authors
of [34] implement a distributed FL for mobile devices, at
which a requester device triggers the learning task, and other
mobile devices take part in FL through local training models.
To encourage the participation in FL, an incentive mechanism
is utilized and a blockchain based game is designed, according
which the devices can adjust their strategies for participation,
to maximize the individual payoff.

C. The Drawbacks of the Existing Works and the Contribu-
tions of this Paper

Edge-Based FL approaches e.g., [4], [5], [6], [7], [12], [13],
[14], [15], [16], [17] reduce transmission cost by performing
model aggregation at the edge of the network, instead of
parameter transmission to a central cloud. However, still the
latency of parameter transmission to edge infrastructure can
be intolerable for ultra-low latency applications. Although
the blockchain-based FL approaches make the possibility of
parameters uploading/downloading to/from an intermediary
data ledger, still the storage is maintained through edge/cloud
computing. Furthermore, these approaches e.g., [18], [24],
[25], [20], [28] introduce extra computation overhead and
latency, due to storage management, and consensus processing.
Indeed, Edge/Cloud-Based FL approaches do not utilize the
processing capabilities of the neighbourhood smart devices,
accessible via 6G D2D communications. Exploiting the pro-
cessing capabilities of the neighbourhood smart devices can
yield a fast recognition and can be more promising for 6G
ultra-low latency applications. Furthermore, as edge infras-
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tructures may not be available at every location, there is a
limitation in the application of these approaches.

On the other hand, End-Devices-Based FL approaches e.g.,
[29], [30], [31], [32], [33], [34] omit the aggregator server at
edge/cloud and rely on computational capabilities of devices
for the purpose of model aggregation. These approaches
may yield a fast aggregation and accordingly recognition.
However, they can easily deplete devices due to their limited
power, since computation consumes energy in the devices.
Particularly, for the blockchain-based FLs, there is even more
resource consumption due to the blockchain-related processing
at devices e.g., consensus processing [31], model verification
[32], block management [31], [32], [33], [34]. Furthermore,
these approaches may not be as accurate as Edge/Cloud-Based
FL approaches which perform model composition for a wide
range of devices.

To the best of our knowledge, the CFL method proposed in
this paper, is the first work that performs federated learning
by a collaboration of various learning levels including both
edge/cloud-level FL and devices-level FL. The collaborative
approach has the potential of exploiting the advantages of
both approaches i.e., fast recognition of End-Devices-based
approaches and high accuracy of Edge/Cloud-based FL ap-
proaches. On the other hand, the drawback of End-Devices-
based approaches can be avoided by offering the capability of
offloading parameter aggregation to edge/cloud servers (e.g.,
MEC servers) in order to avoid depletion of devices. The
drawback of Edge/Cloud-based FL approaches can be avoided
by offering the capability of sharing the model parameters with
neighbourhood devices when the edge infrastructure becomes
unavailable. Proposing a collaborative FL approach with re-
spect to the dynamic status of communication/computation in
the network, as well as end-devices geographical location, is
the focus of this paper. Section III gives more details about
the motivation of our collaborative FL approach.

III. MOTIVATION AND INCORPORATION

There are three facts that motivate adopting a collaborative
approach to realize federated learning in 6G networks:
(i) 6G network architecture will be based on heterogeneous
cloud computing including central cloud, edge clouds, as well
as intelligent devices [9]. 6G is envisioned to offer ubiquitous
intelligence in the network. In this regard, a federated learn-
ing approach that can provide intelligence in the hierarchies
covering from end-devices, to edge clouds and central cloud,
is required.
(ii) Provisioning the intelligence based on data sharing capa-
bilities of neighbourhood devices would result in fast recog-
nition. On the other hand, provisioning the intelligence using
edge/central cloud can end to more accuracy due to having
access to the learned parameters obtained from wider number
of end-devices. Indeed, in comparison with local federation,
the aggregated model by edge/central cloud can have better
generality, thereby achieving higher recognition capabilities.
An appropriate trade-off is required for an optimal decision
based on the network condition and the application require-
ment.

(iii) Wide-connectivity is a critical requirement in 6G archi-
tecture [35]. In this regard, an efficient scheme is required to
maintain the connectivity of the devices to intelligent services,
when the geographical locations of edge-devices change. Our
proposed scheme applies automatic controlling for dynamic
switching among learning levels of central/edge-cloud-level
and device-level to meet the wide-connectivity requirement.

Fig. 1 illustrates the use case of wide-connectivity/fast
recognition in a 6G terrestrial network. The vehicle at lo-
cation A, uses edge-level FL provided by the edge cloud
infrastructure at the left side. Indeed, the model parameters of
devices in the left-side circle are aggregated and updated by
processing capability of the edge cloud. The vehicle moves
to the location B which is far from the edge cloud. If at
location B, the vehicle continues receiving the intelligent
service from the edge cloud, there will be high latency, which
can be intolerable for ultra-low latency applications or even
be a kind of unavailability of the intelligent service 1. Note
that in the context of this paper, inference based on (partial-
) federated model is considered to be the intelligent service
for devices. To provide fast recognition capability at location
B, the intelligent service can be provided through Device-
Level FL with the participants including the neighbors of the
vehicle at location B. The vehicle at location B, can receive
the neighbors models, aggregate them and update its/their
model. Or a neighbour device can perform the aggregation.
Collaborative Federated Learning (CFL) provides the capabil-
ity of switching from Edge-Level FL to Device-Level FL to
maintain the connectivity of intelligent service and keep the
fast recognition capability, as the vehicle moves. However,
after switching to the new learning level, the accuracy of
recognition might reduce due to a local aggregation of the
models. Indeed, the number of devices that can take part
in Device-Level FL is smaller than the number of devices
that can take part in Edge-Level FL due to shorter distance
limitation for D2D communication, in comparison with wider
coverage radius of BSs. Consequently, less data samples can be
available in Device-Level FL, and the accuracy of recognition
may reduce 2.

To have an efficient collaboration mechanism, an appropri-
ate trade-off is required depending on the priority between
criteria of accuracy and response time of intelligent service.
Our proposed scheme of CFL employs a deep reinforcement
learning based controlling mechanism to automatically per-
form the required collaborations among learning levels, as well
as the aggregator selection, for devices who take part in the
Device-Level learning.

To incorporate CFL into 6G networks, we propose a similar
framework to [17]. Fig. 2 illustrates the proposed incorporation

1Even in the case that another edge cloud be available at location B, an
appropriate decision is required to decide if taking part in Device-Level FL
or Edge-Level FL can optimize the accumulation of accuracy and response
time of recognition, as we have defined it in Eq. (20)-(22).

2Usually, in DNNs with high number of parameters and non-linear
discriminant analysis the accuracy increases when more samples are available
for training. However, the accuracy also depends on other factors e.g., quality
of data, the data samples distribution. It might happen that due to unbalanced
data or low-quality data, the accuracy decreases even if more samples are
available. In the experiments of this paper on CICDDoS 2019 dataset, we
found the increment in accuracy when the number of samples increases.



5

Fig. 1: The motivation behind CFL. Switching from
Edge-Level FL to Device-Level FL for the purpose
of wide-connectivity/fast recognition.

Fig. 2: The proposed incorporation framework.

framework. A number of BSs equiped with edge clouds as well
as a central data center, serve end-devices e.g., autonomous
vehicles, UAVs, pedestrian cellphones, IoT devices. Virtualiza-
tion technologies based on Virtual Network Functions (VNFs),
Virtual Machines (VMs), and network slicing, provide the ca-
pabilities by which the network management algorithms can be
virtualized as applications running over the 6G network com-
modity hardware/data plane. Network slicing [36] can share
physical resources like Centralized Processing Units (CPUs),
Graphics Processing Units (GPUs), Base Band Units (BBUs),
and other computing resources, for the purpose of required
computations of network management applications in the ap-
plication plane e.g., routing, radio resource allocation, network
monitoring, and FL for intelligence provisioning. Software
Defined Network (SDN) control plane manages the software-
defined/virtual resources and the integrated communication
links (e.g., facilitating the communication among devices and
BSs required for carrying out FL). It also performs controlling
functionalities of 6G heterogeneous cloud computing environ-
ment. FL as an application for intelligence provisioning can be
facilitated by our proposed CFL, to improve an accumulation
of response time of recognition and recognition accuracy for
the end-devices, as well as keeping the connectivity to the the
intelligent service. Next section gives details for computation
and networking models to perform CFL.

IV. COLLABORATIVE FEDERATED LEARNING
(CFL)

A 6G network consists of N end-devices, M BSs equipped
with MEC servers, and a (central) cloud. In the rest of this
paper, we represent edge clouds with MEC servers collocated
with BSs, as it is a common edge computing paradigm
to provide computation at the edge of the network. The
data of end-device u with size |Du| is represented with
Du = {(xu

1 , y
u
1 ), ...(x

u
|Du|, y

u
|Du|)}, where y is the label for

input x. Each end-device u performs learning on its local
perceived data to construct a local model Mu, in order to
perform the required recognition (e.g., attack detection). Data
sharing among the end-devices is possible in order to achieve

a more accurate model for the inference. The data sharing
can be done either through D2D communication or through
MEC/cloud infrastructure. Instead of raw data transmission
which has bandwidth consumption overhead, we adopt FL
to learn global model M . To cope with the availability of
MEC/cloud infrastructure, as well as an appropriate trade-off
between the accuracy and the response time of recognition,
the decision is made to optimally select the appropriate data
sharing mechanism through providing a dynamic context-
aware collaboration among the learning levels the device will
be involved. The details will be given in the following sections.

A. Cloud Level Federated Learning

The aim of federated learning is to train a global learning
model Mc based on the distributed data in the devices that
take part in cloud-level learning i.e., Uc. The parameter wc

for model Mc is found in learning process to minimize the
global loss function:

min
wc

Fc =
1

|Uc|

|Uc|∑
u=1

1

|P (u).Du|

|P (u).Du|∑
s=1

f(wc, x
u
s , y

u
s ), (1)

where P is participation vector denoting the training batch size
of the participants in the learning. The entry P (u) indicates
the portion of local batch of user u that will be involved in
the training. Symbol f(wc, x

u
s , y

u
s ) in (1) is the loss value for

the sample s of data of user u.
Considering the computational capabilities of devices in

6G [4], [17] a gradient decent based method is employed at
each end-device to minimize the loss function based on its
local batch data. Then, the devices that take part in cloud-level
learning, will transmit the parameters of the local model to the
BSs for the purpose of partial aggregation (which is performed
by the MEC server co-located with the BS). Let ith BS be
represented with BSi. The partial aggregation at this BS, is
performed as a weighted average of received parameters to
construct the model Me,i, as below :

Me,i =
1

Ki

Ki∑
u=1

N (P (u).|Du|).γu.wu, (2)
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where Ki is the number of end-devices under the coverage of
BSi, who take part in the cloud-level learning; and P (u).|Du|
is the size of batch data of device u involved in the training;
γu is the context-weighting coefficient which prioritizes the
device learned weight according to the context information
(e.g., reputation of device in security report); and finally, wu

is the weight of the trained model of device u. Symbol N (.)
is the normalization operator.

The BSs send the partial aggregated model parameters to
the central cloud to perform the global aggregation. Thus, the
global model Mc is constructed at central cloud as average of
models of BSs as below:

Mc =
1

M

M∑
i=1

Me,i. (3)

The global aggregated parameters will be broadcasted to the
BSs and accordingly to the devices involved in the cloud level
learning. Similarly, the above-mentioned equations can be used
for edge level learning. In this regard, the constructed model
parameters at a edge BS i.e., Me,i is transmitted to the devices
under the coverage of that BS.

Note: In (2), for the purpose of simplicity in representation,
we assumed all devices under the coverage of BS are involved
in edge/cloud level FL. However, in CFL through applying a
DRL method, at each epoch of federated learning, for each
device it is decided if it will take part in edge/cloud level FL
or not. Therefore, only the determined devices and their count
will be involved in calculations of (2). The variables E(τ) and
C(τ) in (22) will define the active devices in edge and cloud
level federated learning, respectively (at epoch τ ).

B. Device Level Federated Learning

The aim of federated learning is to train a global learning
model Md based on the data in a device, defined as aggregator,
and its neighbour hood Nd. Note that the aim is the globaliza-
tion within the neighbourhood. The parameter wd for model
Md is found in learning process to minimize the loss function
as below:

min
wd

Fd =
1

1 + |Nd|
.

∑
u∈d∪Nd

1

P (u).|Du|

|P (u).Du|∑
s=1

f(wd, x
u
s , y

u
s ).

(4)

A gradient decent based method is employed at each end-
device u involved in device level learning, to minimize the
loss function i.e., f(wu, x

u
s , y

u
s ) based on its local batch

data. Then, a device that has been indicated as aggregator,
will receive the parameters of the local models from its
neighbourhood to perform the aggregation. The aggregation
process is calculating a weighted average of neighbourhood
devices parameters as defined in (5). The context-weighting
coefficient of device u i.e., γu and the size of its batch data
i.e., P (u).|Du| define its weight in the aggregation. Note that
in device level FL, all aggregators in the network, in parallel
perform receiving the parameters from their neighbours and

the aggregating. Section V.A discusses how the aggregators
can be defined within a DRL procedure.

Md =
1

1 + |Nd|
∑

u∈d∪Nd

N (P (u).|Du|).γu.wu, (5)

Note: In (4) and (5), for the purpose of simplicity in rep-
resentation, we assumed all neighours are involved in device
level FL. However, in CFL through applying a DRL method,
at each epoch of federated learning, for each neighbour of
aggregator it is decided if it will take part in device level FL
or not. Therefore, only the determined devices and their count
will be involved in calculations of (4) and (5). The variables
D(τ) and G(τ) in (22) will define the active devices in device
level federated learning and the aggregators, respectively.

C. OPTIMIZATION FORMULATION

We use the 6G wireless communication model in [5], [17]
for communication between devices and the base stations. The
transmission rate, according which device u communicates
with BS i i.e., Ru,i, is estimated as below:

Ru,i = Bi ln(1 +
Ptu.gu

η
), (6)

gu = Cg.d
−α
u,i , (7)

where Bi, Ptu, gu, η are respectively, transmission bandwidth
of the base station, transmission power of the device, channel
gain of the device, and background noise power. The channel
gain can be calculated by (7), as a function of path loss fading
coefficient i.e., Cg , distance between device u and base station
i i.e., du,i, and path loss exponent i.e., α.

At every epoch of FL, the response time of recognition for
a device can be estimated as summation of the time it takes
the device receives the new updates of the parameters of the
model and the inference time. Receiving new updates of the
parameters, includes the time slots allocated for local training,
up/down-link parameter transmission, and the aggregation.
These time slots are calculated depending on the learning
level, at which the device operates. Indeed, this time ensures
inference based on the partial/global aggregated model. Note
that in the rest of this section for each levels of learning, we
assume only the devices that have been selected to operate on
that specific learning level, will be involved in the calculations.

1) Cloud-Level Learning:
• Aggregation: The time for partial aggregation at BS i in-

cludes: (a) the time it takes the parameters be transmitted
from devices (who take part in the cloud level learning)
under the coverage area of that base station i.e., Ri to
the base station (the first term in (8)); (b) the aggregation
operation time (the second term in (8)):

T i
ag = max

u∈Ri

|wu|
Ru,i

+
|Ri|.|wg|.f cmp

w

f cmp
i

, (8)

where |wg| is the number of global weights (usually the
same as the local weights i.e., |wu|), f cmp

w and f cmp
i

are respectively the number of required CPU cycles to
aggregate one unit of data, and CPU frequency of base
station i.
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The time for global aggregation at central cloud is calcu-
lated by (9). It includes the time for partial aggregation
at base stations (the first term), as well as the time takes
for global aggregation of the parameters collected from
M base stations at the central cloud (the second term):

Tag = max
i=1..M

(T i
ag +

|wg|
Ri,c

) +
M.|wg|.f cmp

w

f cmp
c

, (9)

where Ri,c is the bandwidth of communication between
BS i and the central cloud, and f cmp

c is the available CPU
cycle at the central cloud. Note that the uplink parameter
transmission time has been considered in the aggregation
time calculations.

• Downlink Parameter Transmission: The required time to
download the parameters at device u under the coverage
of BS i is calculated based on the size of parameters,
the transmission rate between the central cloud and the
base station, as well as the transmission rate between the
base station and the device. Equation below shows the
calculation:

Tdown(u) =
|wu|
Rc,i

+
|wu|
Ri,u

, (10)

• Local Training: Local training time at device u is calcu-
lated based on the computing capability of the device and
the batch size the device will include in training. Equation
below illustrates the calculation:

Tloc(u) =
P (u).|Du|.f cmp

s

f cmp
u

, (11)

where f cmp
s and f cmp

u are respectively number of re-
quired CPU cycles to train one sample of data, and CPU
frequency of the device.

The response time of recognition in one epoch of FL, for
device u who takes part in cloud level learning in that epoch,
is calculated as below:

T c
Int(u) = max

u
K.Tloc(u) + Tag + Tdown(u) +

f inf
u

f cmp
u

, (12)

where K is the local training iterations before applying the
other epoch of learning. In (12), f inf

u is the number of
CPU cycles to perform the recognition for a sample of input
features. Note that in (12), maximum of local training time of
the devices is included in the calculation. The reason is that
the parameter aggregation phase can be started, whenever the
local training of the devices be completed.

The response time of recognition for device u that take
part in edge level learning, is represented with T e

Int(u). It is
calculated similar to the cloud level learning calculations that
we explained above. However, for the calculation the data flow
will be terminated at the base station that cover the device.

Note: At every epoch of FL, only the devices that are
selected for cloud/edge level learning collaboration, will be
involved in calculations of (8)-(12). For simplicity in repre-
sentation, we have not indicated this matter in these equa-
tions. The variables E(τ) and C(τ) in (22) will define the
active devices in the edge and cloud level federated learning,
respectively (at epoch τ ).

2) Device-Level Learning: The 6G infrastructure capabil-
ities for D2D communication, as well as the availability of
distributed cloud computing paradigm in 6G enables collab-
oration of neighbourhood devices for sharing the parameters.
In this regard, in an epoch of learning, it is also possible that
devices take part in the device level learning. In the rest, we
explain the response time of recognition calculation for the
aggregator device and the neighbourhood devices.

The response time of recognition for the aggregator device
u (in one epoch of FL ), is calculated as below:

T d
Int(u) = max

n∈u∪Nu

K.Tloc(n) + Tu
ag +

f inf
u

f cmp
u

, (13)

It includes the time slots required for local training at the
device and the neighbourhoods (the first term in (13)), the
time slots for parameter transmission from the neighbourhood
devices and accordingly the aggregation operation (the second
term in (13)), and finally, the inference time (the third term
in (13)). In (13), Tu

ag is the parameter-download/aggregation
time, and is calculated as below:

Tu
ag = max

n∈Nu

|wn|
Rn,u

+
Nu.|wg|.f cmp

w

f cmp
u

, (14)

where Rn,u is the transmission rate of of device n to commu-
nicate with device u.

When device n who takes part in the device level FL is not
an aggregator, downloading the parameters of the model after
the aggregation (performed by node u) is required for recog-
nition. Thus, the response time of recognition is calculated as
below:

T̂ d
Int(n) = max

u′∈∪Nu

K.Tloc(u
′) + Tu

ag +
|wg|
Rn,u

+
f inf
n

f cmp
n

. (15)

Note: At every epoch of FL, only the devices that are se-
lected for device level learning collaboration, will be involved
in calculations of (13)-(15). For simplicity in representation,
we have not indicated this matter in these equations. For
example, in (14), only the neighbours that have been selected
for the device level learning will be involved in the first term,
and their count will be a replace for Nu in the second term.
The variables D(τ) in (22) will define the active devices taking
part in the device level federated learning, at epoch of learning
τ . Accordingly, the aggregator nodes will be defined by G(τ)
in (22).

3) Objective Function and Constraints: Receiving intelli-
gent service from cloud/MEC servers can end to a higher
recognition accuracy, though causing more delay in the service
or even the unavailability of the service in the locations far
from cloud/MEC infrastructure. On the other hand, partic-
ipation of a device in the device level federated learning
can end to a fast recognition which can be essential for
fast react scenario or ultra-low-latency applications. However,
some accuracy loss might be experienced due to the issue
of more locality in constructing the parameters of the model.
Indeed, in comparison with the cloud/edge level learning
which offers the possibility of aggregating the parameters of
more devices, in device level learning, only the parameters of
the neighbourhood devices are aggregated. Thus, appropriate
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trade-off is required for the optimal collaboration among
learning levels.

The dynamicity in geographical location of devices, the
quality of channel connection among devices and the base
stations/cloud, the dynamicity in D2D channel communication
quality, and the variation of available computation capabilities
of MEC servers/devices can influence the optimal trading-
off decision. Furthermore, controlling on the participation of
devices in the training, from the aspect of batch size involve-
ment can avoid prolonging the learning process due to the
low available computation of devices. Thus, for constructing
an optimization model for collaboration among the learning
levels of cloud, edge, and device, a time-series optimization
modeling is proposed to perform the required trade-off and
the aforementioned controlling, based on the dynamic status
of the network/devices. Note that in the rest of this paper, we
use the terms epoch of learning and interval interchangeably.

The optimization variables are defined as P (τ), D(τ),
E(τ), C(τ), G(τ). Vector variables P (τ) has N entries
which denotes the participation of devices in FL at interval τ .
P (τ)[u] > 0 denotes the batch size of device u for training,
at interval τ . Vector variables D(τ), E(τ), C(τ) each with
N entries, represent FL levels collaboration. D(τ) denotes
the devices which take part in the device level learning at
interval τ . The value of 1 for D(τ)[u] indicates device u
would take part in the device level learning at interval τ (the
value of 0, otherwise). Similarly, E(τ), C(τ) will indicate the
collaboration of devices respectively in the edge level and the
cloud level learning, at interval τ . For example, when E(τ)[u]
is 1, the device u will take part in the edge level learning at
interval τ . As each device participates in either of device, edge
or cloud level of learning at every interval, we have:

∀u : D(τ)[u] + E(τ)[u] + C(τ)[u] = 1. (16)

For the devices that take part in the device level learning,
aggregator nodes are required to be defined. Vector variable
G(τ) with N entries, denotes the aggregators at interval τ . In
this regard, when device u is aggregator, G(τ)[u] has the value
1, otherwise it takes the value 0. The required topology for
device level learning is defined by the aggregators and their
neighbours through constraints (17)-(19).

Constraint (17) ensures an aggregator takes part in the
device level learning. Constraint (18) ensures at least one of
the neighbours of an aggregator device be involved in the
device level learning. Constraint (19) ensures every device
involved in the device level learning be associated to an
aggregator located in the neighbourhood.

∀u : G(τ)[u].D(τ)[u] = G(τ)[u], (17)

∀u : G(τ)[u].
∑

n∈N(u)

D(τ)[n] = G(τ)[u], (18)

∀u : D(τ)[u].
∑

n∈N(u)

G(τ)[n] = D(τ)[u]. (19)

Let the set of devices who take part in the device level
of learning at time interval τ , be represented with Ud, i.e.,

Ud = {u|D(τ)[u] = 1}. Similarly, we represent the users
that take part in the edge level and the cloud level learning
with respectively, Ue and Uc. Finally, we represent the set of
aggregator devices at interval τ with AG = {u|G(τ)[u] = 1}.

The objective function is defined as the mean of the loss
function and the response time of recognition for the devices
in the 6G network. The accumulation of the aforementioned
criteria is defined by performing a trade-off between the gained
loss value and response time of recognition. The trade-off for
devices involved in the device level learning within interval
τ , is calculated by (20), as a weighted accumulation of the
loss function (the first term in (20)) and the response time of
recognition for aggregator devices (the second term), and the
response time for non-aggregator devices (the third term):

Td(τ) = (1− β).
∑
u∈Ud

N (Fu(τ)) + β.
∑

u∈AG

N (T d
Int(τ)[u]))+

β.
∑

u∈Ud\AG

N (T̂ d
Int(τ)[u])),

(20)
where the coefficient β illustrates the priority of the response
time of recognition in comparison with the accuracy. N (.) is
the normalization operator to convert the time and loss in the
same scale.

For devices involved in the edge level learning the accumu-
lation of loss function and response time of recognition for
interval τ is calculated as below:

Te(τ) = (1− β).
∑
u∈Ue

N (Fu(τ)) + β.
∑
u∈Ue

N (T e
Int(τ)[u])

(21)
The trade-off at the cloud-level learning i.e., Tc(τ) is

calculated similar to (21), by replacing Ue with Uc, and T e
Int

with T c
Int.

The objective function is defined as the accumulated loss
function and response time of recognition experienced by the
devices during interval of times, as shown in (22). Here, τM is
the number of FL epochs. Relying on [5], an upper bound is
o(log(1/θL)/1−θG), at which θL is the local accuracy gained
in the end-devices, and θG is the global accuracy gained at the
central cloud.

ϕ = min
D(τ),E(τ),C(τ),P (τ),G(τ)

τM∑
τ=0

Td(τ) + Te(τ) + Tc(τ)

N

(22)
Sbj. to:
(1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13),
(14), (15), (16), (17), (18), (19), (20), (21).

V. DRL BASED OPTIMIZATION AND
CONTROLLING MECHANISM

The search space problem defined in (22) is of exponential
order with non-linear involvements of elements e.g., (1), (4),
(13), and the gradient based learning procedure which is ap-
plied at each device. Due to the dynamic parameters involved
in the problem including wireless channel transmission state,
location of the end-devices (see distance involvement in (7)),
available computational capabilities of MEC servers/devices,
heuristic and (meta)heuristics/evolutionary are not efficient to
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solve the problem. Indeed, the necessity of recalculations in
these methods, every time the parameter changes will make
these methods inefficient to solve the problem [37]. We utilize
Deep Reinforcement Learning (DRL) that automatically cap-
tures the dynamic statistics of the involved parameters to solve
the optimization in (22), and applies the required controlling
and flexibility. The problem in (22) can be formulated in the
form of a Markov Decision Process (MDP).

Function in (22) is the accumulated aggregation of loss
function and response time of recognition within time inter-
vals. Let ϕ(t) be the aggregated value up to interval t. We
have:

ϕ(t) = ϕ(t− 1) +
1

N
.[

(1− β).
∑
u∈Ue

N (Fu(t)) + β.
∑
u∈Ue

N (T e
Int(t)[u])+

(1− β).
∑
u∈Uc

N (Fu(t)) + β.
∑
u∈Uc

N (T c
Int(t)[u])+

(1− β).
∑
u∈Ud

N (Fu(t)) + β.
∑

u∈AG

N (T d
Int(t)[u])+

(1− β).
∑

u∈Ud\AG

N (T̂ d
Int(t)[u])]

(23)

The terms that appear in (23) i.e., T d
Int, T̂ d

Int, T e
Int, T c

Int,
are calculated based on number of model parameters, com-
munication/channel characteristics, as well as computational
capabilities at current time interval t. Loss function calcula-
tions i.e., Fd, Fe, and Fc are also calculated based on data
collected at time interval t. Indeed, ϕ can be calculated by
the current values of the parameters, and it does not depend
on the values of the parameters in previous time slots. This
indicates that ϕ has memory-less property. Based on four
evidences, the problem has Markov property and a MDP
formulation/reinforcement learning can be designed for the
problem: (i) The objective function i.e., ϕ has memoryless
property. (ii) The involved parameters in the current state of
the system include the transmission rates, the computational
capabilities of devices/base stations, the association of devices
to the learning levels, the role of aggregators, and the devices
participation in the training. Considering the parameters de-
termining the current state, every action that is performed by
the agent, will end to a new state transition, that only depends
on the current state. (iii) The objective function is in the form
of accumulated rewards. (iv) According to the evidence that
reinforcement learning has been extensively used for providing
network solutions with dynamic channel/communication status
[38], [39], the motivation behind the use of it to solve the
problem, is enhanced.

A. Main Components of RL Formulation

To solve the optimization in (22), controlling over these
variables are required: collaborations of learning levels i.e.,
device/edge/cloud levels; participation of devices in terms of
the involved batch size in the training; and aggregator selection
(for devices involved in the device level learning). Indeed,
the controlling algorithm should give the appropriate values

to the variables D(τ), E(τ), C(τ), P (τ), G(τ). To realize
the automatic controlling and flexibility in FL, the problem is
formulated by a RL with MDP elements as below:

1) State: The system state at time interval τ is determined
with variables indicating the network status, the devices partic-
ipation status, the association of devices to the learning levels,
and the aggregator status. Note that the values of variable
states change within the intervals (FL epochs), and RL agent
will experience various states within learning. In the rest, we
explain the state variables.

Variables Determining Network Status: These variables in-
clude: (i) Communication transmission rates among devices
and the BSs i.e., Rd,e(τ); (ii) Communication transmission
rates among devices i.e., Rd2d(τ); (iii) Available computing
capabilities of devices i.e., Fcmp

d (τ); (iv) Available computing
capabilities of MEC servers i.e., Fcmp

e (τ).
In the state definition, the transmission rates are realiza-

tion of random variables Ri,j at time interval τ , while the
computing capabilities are realization of random variables
f cmp
i (τ). Note that according to (6) dynamic variation of

factors including available bandwidth, distance of devices
from BSs, wireless channel gain, and power transmission can
vary the transmission rates. Similarly, dynamicity in factors
including available resources, power capabilities, and work
load on devices can influence the computation capability of
a device. In this regard, we define:

Rd,e(τ) =


R1,1(τ) R1,2(τ) ... R1,M (τ)

. . .

. . .

. . .
RN,1(τ) RN,2(τ) ... RN,M (τ)

 , (24)

Rd2d(τ) =


R1,2(τ) ... ... ... R1,N (τ)

. . .

. . .

. . .
RN,1(τ) ... ... ... RN,N (τ)

 , (25)

Fcmp
d (τ) =

(
Fcmp

1 (τ) Fcmp
2 (τ) ... Fcmp

N (τ)
)
, (26)

Fcmp
e (τ) =

(
Fcmp

1 (τ) Fcmp
2 (τ) ... Fcmp

M (τ)
)
, (27)

where Ri,j(τ), Fcmp
i (τ) are the values of the random vari-

ables Ri,j and f cmp
i at time interval τ . Note that considering

the possibility of asynchronous in dynamicity of channel
characteristics for the upload and download cases, separate
values in the state definition can be considered. In this regard,
RUP

i,j (τ), RDN
i,j (τ), RUP

d2d(τ), RDN
d2d (τ), at which UP denote

rates for the upload case, and DN denote rates for the
download case, will be involved in the state specification for
upload and download cases.

Variables Determining Participation Status: The state at
interval τ also includes the participation status of devices
P(τ), as realization of random variables P (τ):

P(τ) =
(
P(τ)[1] P(τ)[2] ... P(τ)[N ]

)
, (28)
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where P(τ)[i] is the value of random variable P (τ)[i] at time
interval τ .

Association of devices to the learning levels: The state at
interval τ also indicates the association of devices to the
learning levels i.e., D(τ), E(τ), C(τ) as realization of random
variables D(τ), E(τ), C(τ) respectively:

D(τ) =
(
D(τ)[1] D(τ)[2] ... D(τ)[N ]

)
, (29)

E(τ) =
(
E(τ)[1] E(τ)[2] ... E(τ)[N ]

)
, (30)

C(τ) =
(
C(τ)[1] C(τ)[2] ... C(τ)[N ]

)
, (31)

where D(τ)[i], E(τ)[i], C(τ)[i] are the value of random
variables D(τ)[i], E(τ)[i], and C(τ)[i] at time interval τ
respectively.

Variables Determining The Aggregators: The devices that
take part in the device level learning and are aggregator at
interval τ , are indicated through the state variables. These
variables are represented with G(τ), which is the realization
of random variables G(τ):

G(τ) =
(
G(τ)[1] G(τ)[2] ... G(τ)[N ]

)
, (32)

where G(τ)[i] is the value of random variable G(τ)[i] at time
interval τ .

In this regard, the state of system at time interval τ is
represented as:

s(τ) =



Rd,e(τ)
Rd2d(τ)
Fcmp
d (τ)

Fcmp
e (τ)
P(τ)
D(τ)
E(τ)
C(τ)
G(τ)


. (33)

2) Actions: The action set at interval τ is represented as
below:

A(τ) =
(
aP(τ), aD(τ), aE(τ), aC(τ), aG(τ)

)
. (34)

In the rest, we explain the actions:
(i) Action aP(τ) is represented with a vector with size of
number of devices. In this vector, the entry i with value in the
range of [0, 1] indicates the batch size participation in training
for device i at interval τ .
(ii) Action aD(τ) is represented with a vector with size of
number of devices. The entry i with value 1, will activate
device i for participating in the device level learning, at
interval τ . The value of 0 indicates no participation in device
level learning at that interval.
(iii) Similar to aD(τ), the actions aE(τ) and aC(τ) are defined
to respectively define the collaborations of devices at the edge
and cloud levels of learning for interval τ .
(iv) Action aG(τ) is represented with a vector with size of
number of devices. The entry i of this vector, decides about

the role of aggregator for device i at interval τ . The value 1
will activate the device to perform the aggregation at interval
τ .

3) Reward: The learning agent will receive a reward after
performing an action, as a feedback quantifying the short-term
affect of an action. The reward is defined as below:

R(s(τ), a(τ)) = −Td(τ)− Te(τ)− Tc(τ), (35)

where Td(τ), Te(τ), and Tc(τ) are accumulated loss function
and response time of recognition (for all devices) gained
respectively in the device, edge, and cloud level participants
at interval τ . These values are calculated according to the
transmission rates and available computational capabilities
defined in the current state i.e. s(τ), using equations (20),
(21). This design of reward function, guides the agent to
optimize the targeted objective function in (22), while the
agent proceeds to find policies that maximizes the accumulated
reward within intervals.

B. DRL for Optimization and Controlling

The optimization and controlling based on Reinforcement
Learning (RL), learns automatic detection of dynamicity of
6G network and applies the required flexibility and collabo-
rations in FL accordingly. The most renowned approach in
RL is Q-Learning, which estimates the long-term quality of
actions at states i.e., Q-values through iterations. However,
the high dimension of the states and actions involved in the
problem, as well as high dynamicity in state transitions due
to the dynamic nature of 6G networks, makes the application
of classic Q-learning impractical. Indeed, under the circum-
stances that experiencing all states and actions by the agent is
not possible, classic Q-learning would not be efficient [40].
Deep Reinforcement Learning (DRL), also called as deep
Q-learning, is a solution which provides generalization of
previously experienced states to non-observed states/actions
through a neural network based approximation of Q-values.
Thereby, eliminating the necessity of visiting all states/actions
to calculate Q-values [41]. Q-learning estimates the Q-value
for state-action pairs as an accumulated discounted reward in
long time, using on an iterative updating of the Q-values based
on Bellman equation as below:

Qτ+1(s, a) =

Qτ (s, a) + αl.[R+ γl.max
a

Qτ (s
′, a)−Qτ (s, a)],

(36)

where R is the reward achieved from performing action a,
s′ is the next perceived state, αl is the learning rate, γl
is the discounting rate. The optimal policy is gained after
experiencing of all state-action pairs in the training phase,
which suggests action a∗ at state s as below:

a∗ = argmax
a

Q∗(s, a). (37)

To cope with impossibility of visiting every state/action
pair in complex problems with high dynamicity, DQN utilizes
neural network to estimate Q values. The set of experiences
of agent within time intervals i.e., < sτ , aτ , sτ+1, Rτ > are
stored in replay buffer, from which random batches are used
to update the weights of a neural network, and accordingly
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estimating the Q-values. As utilizing one neural network can
end to an over-optimistic and unstable approximation of the Q
values due to using the values obtained from the same network
both to select and evaluate an action, a two neural network
based solution has been suggested in [42], that extensively
has been used as a DRL method in various network problems.
Selection neural network which is with parameter θτ and
estimations of QS(s, a, θτ ), is used for selection of actions.
Evaluation neural network which is with parameter θ′τ and
estimations of QE(s, a, θ′τ ), is used for evaluation of actions.
During training, for a batch of experiences in the replay buffer,
target Q-value is calculated as below:

Y Q
τ = Rτ + γ.QE(sτ+1, argmax

a
QS(sτ+1, a, θτ ), θ

′
τ ).

(38)
Accordingly, after forwarding pass, the error function at inter-
val τ is calculated as below:

Er(θτ ) =
1

2
[Y Q

τ −QS(sτ , a, θτ )]
2. (39)

Next, in back propagation phase, the gradient descent update
rule will be applied to the parameters of θτ , and periodically
the value of θτ will be copied to θ′τ . After the training phase,
the error will be acceptably small and the weights will have
the final values. The schematic for training of DRL has shown
in Fig. 3. Table I illustrates the high level pseudocode for CFL.

VI. DDOS ATTACK DETECTION SCENARIO

As security is a main concern in 6G, we apply CFL for
a case of a Distributed Denial of Service (DDoS) attack
detection. In a DDoS attack, IoT devices can be hacked and
become networked zombies, leading to notorious botnets. Such
zombies are utilized by cybercriminals to attack other devices,
thereby paralyzing the functionality of legitimate devices, for
the purposes like stealth or expense [43], [11]. Consequently,
the DDoS attack has become a public hazard on the internet
[11]. DDoS attack goes beyond server targeting and can
target wide-range of smart devices e.g., vehicles in vehicular
networks [44], [45], mobile devices [46], industrial IoT devices
[11], smart cities [47], smart home devices [48].

Centralized learning at which the local train sets of devices
are transmitted to a server for global training is not efficient
in DDoS attack detection due to the latency, bandwidth con-
sumption, and data privacy issues. Performing DDoS attack
detection individually, is also not efficient: First, devices are
usually application-specific and can not provide sufficient
patterns of training samples to infer a precised learning model.
Second, IoT threat landscapes are dynamic due to devices
and applications growth, and a static pre-trained model can
not cope with threat changes [11]. Finally, threats will remain
in the network until the bot be recognized by all individual
devices. The latter case is explained by Fig. 4.

Devices 1...N are the legitimate devices. At time t, devices
N + 1 and N + 2 launch a DDoS attack with a specific
pattern of traffic, against the target device i, as victim (e.g., to
exhaust it’s CPU/memory, or paralyze its functionality [43]).
The Monitoring Module (MM) in device i, registers the pattern
of the traffic (e.g., source, volume, protocol, etc.). At time

t+ X, X ≥ 1, the Training and Detection Module (TDM) at
device i recognizes the traffic pattern as a DDoS attack. When
devices follow an individual detection policy, device j can not
learn the DDoS attack traffic pattern unless the bots target
it in the future which can paralyze its functionality. When
devices i and j collaborate and share their models, device j
can also recognize the malicious traffic pattern at time t+X+1.
Thus, if devices N + 1 and N + 2 launch a DDoS attack
against device j, it will be detected immediately, without
causing malfunctioning. Another possible scenario is when
device N+1 targets device i, and device N+2 targets device
j. The attack patterns oriented from both of devices N+1 and
N +2 can not be detected individually, unless both malicious
devices target each of the devices i and j. Collaboration of
devices in learning can enhance timely detection of the attack
and avoid potential of negative consequences.

Since malicious traffic comes from distributed bots, FL
provides the capability of updating the model dynamically and
detecting the attacks timely through collaboration of devices.
Indeed, FL has been used for DDoS attack detection in recent
studies, e.g., [11], [49], [50], [51]. CFL goes a step forward
and provides collaboration of various FL levels i.e., edge level
FL and device level FL to overcome the below challenges:

1) Attack Detection Accuracy Degradation Due to Discon-
nectivity from Edge Cloud: Devices will have different
data samples to detect the DDoS attack. For example,
in Fig. 4, at time t + X, the data samples in device
i is different from device j. To have an accurate and
timely DDoS attack detection, the mobile devices should
be able to take part in FL and share their models. Edge
level FL can provide sharing capabilities by Aggregation
Module (AM) in MEC servers (see Fig. 4). However,
when the device moves, edge cloud might not be available
in some areas, thereby disconnecting from FL service and
accuracy degrading. Under unavailability of edge infras-
tructure, CFL provides the opportunity of continuation of
FL service through D2D communication (by Aggregation
Module (AM) in devices in Fig. 4). Fig. 1 illustrates a
schematic form of switching from edge level FL to device
level FL. Collaboration of edge- and device-level FLs in
CFL can involve more devices in FL, thereby increasing
data sharing opportunities and enhancing the accuracy.

2) Appropriate Trade-off between Attack Detection Accuracy
and Response Time: As we discussed in Section III, and
mathematically illustrated in Eq. (20)-(22), when both
options of edge level and device level FL are available for
a device to take part in FL, optimal decision to perform
appropriate trade-off is required. Generally, edge level FL
offers higher-sharing opportunity and thus, higher DDoS
attack detection accuracy. Device level FL offers lower-
sharing opportunity due to shorter distance limitation for
D2D communication, however faster response time. CFL
considers application-specific trade-off (i.e., β) to opti-
mize the accumulated of DDoS attack detection accuracy
and response time as defined in (22).

As DDoS attack detection based on GRU, a kind of
recurrent-neural network, has recently been shown to be
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Fig. 3: The training of DRL.

Fig. 4: As a snapshot of network, a DDoS attack has been launched
by Devices N + 1 and N + 2 to target Device i as victim. Device j
might be also a victim in future time steps. Individual detection on
devices i and j can not prevent potential future attack on device j.

TABLE I: High level pseudocode for CFL

efficient in attack detection [11], [10] we also use it for the
attack detection. Let PKfl be the chain of packets in traffic
flow fl:

PKfl = pk1, pk2...pkn. (40)

Let FT be the number of features, based on which the
attack is detected. The feature matrix for the packets in flow
fl is arranged as rows of patterns as below:

FMfl =


x1
1 x1

2 ... x1
FT

x2
1 x2

2 ... x2
FT

... ... ... ...
xn
1 xn

2 ... xn
FT

 =


p1
p2
.
.
.
pn

 (41)

The occurrence probability for each pattern pi is calculated
as a function of previous observations using a GRU. The
operation of GRU is based on the utilization of neural-
operation based gates which enables the forgetting/retaining
of past/current information in prediction. Let w be the size
of previous observations that are considered in occurrence
prediction of the patterns. Let Pi be the occurrence probability
of pattern pi for packet PKi:

Pi = P (pi| < pi−1, pi−2...pi−w >). (42)

The benign traffic usually follows a regular distribution
of patterns. In contrast, the malicious traffic usually deviates
from the regular distribution. Therefore, it is expected that
it has smaller probability of occurring. Packet PKi will be
malicious if it’s occurrence probability is less than a predefined
threshold:

Pi < δ. (43)

The flow will be considered as malicious if the ratio of
the malicious packets in that flow be larger than a predefined
threshold T : ∑

i

1.(Pi < δ)

n
> T, (44)

where 1.(B) is 1 when B is true. The function of GRU for
training is presented as equations below [10]:

rt = σ(Wr.[ht−1, xt] +Br), (45)

ut = σ(Wu.[ht−1, xt] +Bu), (46)

ĥt = tanh(Wh.[rt ∗ ht−1, xt] +Bh), (47)

ht = (1− ut) ∗ ht−1 + ut ∗ ĥt, (48)

where xt is the feature space; ht is the prediction; rt, ut, and
ĥt control the flow of information through GRU; Wr, Wu,
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Wh are weight matrices of the neural networks; Br, Bu, Bh

are bias vectors; σ and tanh are activation functions.

VII. EXPERIMENTAL RESULTS

This section explains the experimental setup we used for
evaluation, and the results.

A. Experimental Setup

For the purpose of evaluation, a scenario that 15 devices
which are moving by vehicles and will collaborate in DDoS
attack detection, is considered. We assume a 8×8 bidirectional
grid environment with 150 m width for each grid cell, where
grid lines are bidirectional roads (See Fig. 5). SUMO simulator
has been used for mobility trace generation of vehicles [52].
Manhattan mobility model [53] which widely has been used
to simulate mobility in urban area with probability of 0.5 for
moving straight and 0.25 for moving right/lef at conjunctions,
is used for mobility of vehicles. The mean speed of vehicles
are 45 km/h. TensorFlow package particularly, Keras deep
learning package has been used to implement the DRL and
GRUs. Due to the limitation in the number of output neurons
with existing tools, without loss of generality, the collaboration
for DDoS attack detection is only performed in the level of
edge computing resources and the devices. Note that the trend
of research in 6G (i.e., most of the studies in the related work),
also have utilized an edge computing based simulation.

The 6G network parameter have been set similar
to [5], [17], [54]. 5 Base Stations (BSs) equipped
with MEC-servers are located in the center and the
middle of four quarters of the region in locations
[525, 525], [225, 225], [825, 225], [225, 825], [825, 825] (See
Fig. 5). The CPU frequencies of MEC servers at the base
stations are 3.2, 2.6, 3.6, 1.8, 2.4 GHz [5]. The coverage
radius, and the transmission bandwidth of BSs are respectively,
240 m [55] and 30 MHz [5]. The D2D-bandwidths have been
chosen randomly in the range of 0.3 THz up to 3 THz [54]
and the distance to utilize the D2D communication is at most
60 m [54]. The CPU frequency of devices are randomly
chosen in the range of 1.8 up to 2.4 GHz. The range has
been selected such that the processing capabilities of devices
be in average less than MEC processing capabilities, whilst
be competitive with the lowest processing available in MEC.
The transmission power of BSs and devices are respectively
34 db [5] and 23 db [17]. The path loss exponent is 5 and
the back ground noise power is -174 db.m [5].

We have used CICDDoS 2019 data set [56] that has
generated realistic traffic to abstract the behviour of human
communications for legitimate and DDoS attack traffic through
different protocols such as HTTP, FTP, and SSH. We have
randomly distributed 19800 instances composed of UDPLag
and SYN DDoS attacks, among devices for training, as well
as 9000 instances for the purpose of test. The dataset pro-
vides 87 extracted IP flow features e.g., source/destination IP
addresses/ports, protocols, flow packet statistics, flag-related
information etc., which we utilize them for the attack detec-
tion.

The size of replay-buffer and mini-batch are respectively
600 and 60. At early iterations of DRL, more explorations
have been used, while the exploitation gradually increases as
the neural networks are trained (up to the greedy selection of
98% at the last episode of learning). Assessing the range of
0.05 to 0.35, the RL-discount rate of 0.15 that has gained the
highest mean cumulative reward in episodes, has been selected
(See Fig. 6). We found the learning rate of 0.2 appropriate for
stochastic gradient descent optimization of neural networks in
DRL. We rely on LearningRateSchedule package of Keras
optimizer to reduce the learning rate within time steps for the
purpose of convergence. For GRUs, we found learning rate of
0.07 appropriate for attack detection, and we used the hidden
layer with size of 32 neurons. The out-layer of GRU is a
neuron to predict the occurrence probability of a packet.

SUMO [52] lets applying random seed to generate different
traces with the same mobility pattern and speed features. In
the training phase, various random seeds have been utilized
within episodes, so that the learning occurs over general
exploration of states. For testing, we give the results for two
mobility-traces: Mobility-Trace 1 and Mobility-Trace 2. Fig. 7
and Fig. 8 illustrate the BS-coverage and the neighbourhood
status under respectively, Mobility-Trace 1 and Mobility-Trace
2. The BS-coverage and the neighbourhood of devices are
changing within epochs of FL. For example, in Mobility-
Trace 1 at epoch 5, MEC-servers are not available for 30%
of devices and 36% of devices have neighbourhood. Note that
two devices are regarded as neighbours if their distance be less
than the maximum distance required for D2D communication
i.e., 60 m. In Mobility-Trace 2, MEC-server capabilities are
available for 93% of devices, while 40% to 60% of devices
will have neighbourhood and can exploit D2D-communication
capabilities for data sharing.

The baselines for comparison are as below:
(i) No-FL: In this method, no FL is performed and each device
exploits the model trained with its local data to detect the
DDoS attack.
(ii) Device-Level FL: In this method, at every iteration of
FL, the devices that has been determined as aggregator,
aggregate the trained models of the neighbourhood devices
and broadcast the results back to them for the attack detection.
Depending on the dynamic nature of the network, defined by
(33), the selection of aggregators will influence the response
time of recognition and loss value experienced by devices.
To deal with dynamicity of the network, the same DRL
approach explained in Section V has been applied for the
implementation. However, we have adopted the agent policy
exploration, so that at each interval, all entries in action-vector
aD(τ) have the values of 1 (The values of entries of aE(τ)
are 0). This implementation will provide a fair comparison,
at which Device-Level FL can optimize the accumulated
response time of recognition and loss value experienced by
devices as calculated by (22).
(iii) Edge-level FL: This method generally has been advocated
in [5], [7], [17], [11]. Particularly, it can be considered as
an adopted version of the method in [11], at which no
mechanisms are applied for attack mitigation and training
scheduling. In contrast, we assume all devices will take part in
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Fig. 5: Simulation environment. The collaborators in
DDoS attack detection, are smart devices in 6G network
that are moving through some vehicles.

Fig. 6: Effect of DRL discount rate in mean cumulative reward of
CFL.

(a) (b)

Fig. 7: Mobility-Trace 1 generated by SUMO (a) Coverage status of devices with BSs (b) Neighbourhood Status.

(a) (b)

Fig. 8: Mobility-Trace 2 generated by SUMO (a) Coverage status of devices with BSs (b) Neighbourhood Status.

FL. In this method, at every iteration of FL, the base stations
aggregate the local trained models of the devices under their
coverage, and broadcast the aggregated results to them for
the attack detection. To implement this method, the learning
agent explained in Section V, will select edge level FL at
every interval, irrespective to the observed state i.e., ∀s(τ) :
all entries of action-vector aE(τ) have the values of 1 (The
values of entries of aD(τ) are 0). Also, all entries of action-
vector aG(τ) have the values of 0.
(iv) DFL [29]: In this method, the FL is performed in a
distributed manner. At each round of FL, every device receives
the weights (or a subset of weights) of learning models from its
neighbourhood devices and aggregates the weights (with the
coefficients in proportion with the data size). The aggregated
weights will be broadcasted to the neighbour devices, where

Adam optimization is performed to update the weights with
local data for the next round. To have a fair comparison, the
phase of parameter selection for transmission in [29] has been
omitted, and we assume that all the weights of the model are
transmitted.
(v) TFL-CNN [4]: In this FL method, the local training
at devices is performed using CNN. The devices will send
the parameters to the associated BSs and the aggregation of
parameters are performed at BSs. The aggregated results will
be broadcasted to the devices. The mentioned process will
be repeated through the iterations of learning 3. The study in
[4] focuses on object detection problem. To adopt CNN for

3The contextual-related weights in aggregation, as suggested in [4] have
been assumed to be equal for all devices since data in devices are equally
important in attack detection.



15

attack detection, we used the same CNN-architecture as in
[57]. The data with dimensions of packet sequences and IP-
features of the flow, is given as input to a CNN, to decide
about the occurrence probability of the flow. For example, the
entry at row i, and column j of the input matrix indicates
the value of the jth IP-feature for packet i in the flow.
The CNN comprises a convolution layer (Conv1D), a max-
pooling layer, a flatten layer, and a dense (fully-connected)
layer. The output neuron with sigmoid activation function
predicts the occurrence probability of the flow. The input
matrix is operated by convolutional layer with filters with size
of kernel size × feature size (87). Each filter convolves
with a step of 1 to extract the attack-related features. As hyper-
parameters, like [57], we also found the kernel size of 3
and the pool size of 2, appropriate for the attack detection.
We found that the most effective parameters in accuracy and
response time is the number of filters, accordingly we did the
evaluation with 32 and 64 filters (this value also has been
shown to be effective in DDoS attack detection in [57]). Table
II summarizes the baselines. We use the comparison of CFL
with No-FL, Device-Level FL, and Edge-Level FL [11] to
illustrate the effect of collaboration of learning levels in CFL.
Finally, the performance gain of CFL is investigated with
comparison with two existing methods in the literature i.e.,
DFL [29] and TFL-CNN [4].

TABLE II: The baselines for comparison

Method Reference Attack Dtec-
tion Method

Learning
Level

No-FL - GRU -
Edge-Level FL [11] GRU Edge
Device-Level FL - GRU Device
DFL [29] GRU Device
TFL-CNN [4] CNN Edge

Fig. 9: Cumulative reward in CFL for 8000 episodes of
federated learning.

B. Results

1) Training: Fig. 9 illustrates the gained reward within
training phase for 8000 episodes; every episode is composed
of 12 epochs of learning. Thus, total of 96000 learning epochs,
each with collaboration of 15 devices, are involved in the
training. Two cases of SDQN [41] and DDQN [42] have
been considered. SDQN, is conventional DRL at which the
same Neural Network (NN) (i.e., single NN) is utilized for
both action selection and evaluation [41], while DDQN [42],

exploits two separate NNs as explained in Section V.B. As it
can be seen, within the episodes of training, in both methods
the agent improves the policy of collaboration among various
learning levels of FL, by increasing the reward values. At early
iterations, there are larger fluctuations in the reward values
due to the higher exploration of actions. However, gradually,
the neural network weights and accordingly, the Q-values,
will be rather stable and due to the more exploitation of the
learnt policy, the fluctuation reduces. DDQN has outperformed
and increased the rewards from -65 up to more than -50,
while SDQN experiences more fluctuations and has gained
less rewards and becomes stable around -52. The performance
degradation in SDQN is justified with the over-optimistic and
unstable approximation of Q-values due to utilization of the
same NN for action selection and evaluation [42].

TABLE III: The collaboration of devices in FL in Mobility-
Trace 1 (β = 0.5). The results are mean values over 10 epochs
of learning.

Method Total
Involved
Devices in
FL

Device Level
Collabora-
tion Ratio

Edge Level
Collabora-
tion Ratio

CFL 85% 25% 75%
Edge-Level
FL

76% 0% 100%

Device-
Level FL

33% 100% 0%

No FL 0% 0% 0%

2) Effect of Collaboration of Learning Levels in CFL:
Table III indicates the involvement of devices and collabo-
ration of various learning levels in federated learning over
Mobility-Trace 1. The results are mean values over 10 epochs
of learning and β = 0.5. Obviously, No-FL can not involve
any device in FL. Device-Level FL could involve the lowest
fraction of devices i.e., 33% in FL. The reason is that in
average 33% of devices have neighbourhood in Mobility-
Trace 1 4 (See Fig.7.b). As BSs can cover 70% till 80% of
devices (See Fig.7.a), Edge-Level FL involves higher portion
of devices in FL i.e., 76%. CFL could involve the highest
ratio of devices i.e., 85% in the FL. Within the epochs of
learning, a device takes part in FL through mean device level
collaboration ratio of 25% and mean edge level collaboration
ratio of 75%. Indeed, 20% to 30% of devices that do not
have access to any BS can take part in FL through their
neighbourhoods, if available. Thus, we see a 9% increment
in total involved devices in comparison with edge-level FL.
Similarly, the average of 67% of devices that do not have
neighbourhood (See Fig.7.b) can take part in edge-level FL, if
edge infrastructure is available. Thus, we see a 52% increment
in total involved devices in comparison with Device-Level FL.
Finally, CFL is not able to involve all devices in FL, since 15%
of devices in Mobility-Trace 1 are not covered by any BS, and
do not have any neighbour.

Fig. 10 compares CFL with No-FL, Device-Level FL, and

4As in the first epoch of learning in Mobility-Trace 1, the neighbourhood
ratio is low in comparison with other epochs, for device level collaboration
statistic, we reported the median value.
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(a) (b) (c)

Fig. 10: The behaviour of methods in federated learning epochs for Mobility-Trace 1. (a) response time of recognition. (b)
DDoS attack detection accuracy. (c) mean reward (β = 0.5)

Edge-Level FL for Mobility-Trace 1. Fig. 10.a shows the mean
response time of recognition experienced by devices. No-FL
has achieved the lowest response time of recognition stable
around 3.5 ms, since it performs only local training. The
response time of recognition in Device-Level FL is almost
7 ms. As D2D communication setting is in order THZ, the
transmission of parameters takes negligible time, and the
dominant factors in response time will be the time for training
and aggregation. In Device-Level FL, the response time is
rather stable due to the same size of train sets in epochs of
learning. The response time of recognition of Edge-Level FL is
higher than Device-Level FL, due to the overhead of parameter
transmission to the base stations. CFL has reduced response
time of recognition up to 7% (0.6 ms) in comparison with
Edge-Level FL. The reason is that CFL exploits collaborations
of both the device and the edge learning levels to minimize the
accumulated response time and accuracy. Note that improve-
ment in the scale of 0.6 ms in the simulation is acceptable
for 6G scenario at which the time is discussed in the scale of
ms, particularly for ultra-low latency applications.

Fig. 10.b illustrates the mean attack detection accuracy
in devices. The lowest accuracy has been achieved by No-
FL, since it does not utilize any data sharing. When num-
ber of epochs increases, the accuracy increases as well in
Device/Edge-Level FL and CFL, due to experiencing more
iterations for the model parameters sharing. Edge-Level FL
has gained higher accuracy in comparison with Device-Level
FL. The reason is that Edge-Level FL provides the capability
of model parameter sharing for 70%-80% of devices in com-
parison with average of 33% in Device-Level FL (See Fig. 7.a
and Fig. 7.b). CFL could achieve almost the same accuracy as
Edge-Level FL and even higher in the early epochs of learning.
There are two reasons: First, CFL still exploits collaboration
of Edge-Level learning, to enhance the accuracy. Second, CFL
provides the facility for model parameter sharing through the
neighbourhood devices, for 20%-30% of devices that do not
have access to MEC servers (See Fig. 7.a). These reasons,
can end to the involvement of more devices in FL, as we
discussed in Table III. Thus, there will be a higher accuracy in
comparison with Edge-Level FL, particularly in early epochs
of learning, when the model parameters have not been shared
enough among devices.

Fig. 10.c illustrates the achieved reward by devices. The
highest reward has been gained by CFL. The reason is
that CFL learns to optimize the accumulated criteria of the
response time of recognition and the attack detection accuracy,
through exploiting the Edge-Level FL to increase the accuracy
and exploiting the Device-Level FL to decrease the response
time of recognition. After epoch 8, the difference between
Edge/Device-Level FL and CFL decreases. Because, at the late
epochs of learning, the accuracy becomes high in all methods
(See Fig. 10.b) and only the outperforming in the response
time of recognition becomes the determining factor.

Fig.11 illustrates the results for Mobility-Trace 2. In compar-
ison with Mobility-Trace 1, higher attack detection accuracy
has been gained by Edge-Level FL, since 93% of devises are
under coverage of BSs in Mobility-Trace 2, which is higher
than 70%-80% in Mobility-Trace 1. Similarly, higher accuracy
has been achieved by Device-Level FL, since 40%-60% of
devices have neighbourhood in Mobility-Trace 2, which is
higher than 33% in Mobility-Trace 1 (See Fig. 7.b and Fig.
8.b). In comparison with Mobility-Trace 1, from the aspect
of accuracy, the outperformance of CFL in comparison with
Edge-Level FL has reduced. The reason is that parameter shar-
ing can be done for 93% of devices through edge-Level FL.
With β = 0.5, CFL has gained higher reward in comparison
with No-FL, Device-Level FL, and Edge-Level FL, due to high
accuracy, as well as acceptable response time.

TABLE IV: The effect of β on response time of recognition,
attack detection accuracy, and the ratio of devices collaborate
in device level learning in CFL with 7 epochs of learning

β Response
Time of
Recognition
(ms)

Accuracy Device Level
Collabora-
tion (Mean)

Device
Level Col-
laboration
(Maximum)

0 8 0.97 21% 28%
0.5 7.8 0.94 25% 33%
1 7.6 0.9 27% 33%

3) Effect of Trad-off Coefficient in CFL Operation: Table
IV indicates the β effect on the response time of recognition,
the accuracy, and the device level collaboration in CFL, for β
values of 0, 0.5, and 1. Note that the results are average over
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(a) (b) (c)

Fig. 11: The behaviour of methods in federated learning epochs for Mobility-Trace 2. (a) response time of recognition. (b)
DDoS attack detection accuracy. (c) mean reward (β = 0.5)

all epochs of learning. The case of β = 1 only considers
the response time of recognition (attack detection) in the
optimization, whilst the case of β = 0 only considers the
accuracy in the optimization. When β increases, the response
time of recognition reduces from 8 ms to 7.6 ms, and the
accuracy decreases from 97% to 90%. Indeed, to decrease the
response time of recognition from 8 ms to 7.6 ms, CFL has
increased the mean device level collaboration ratio from 21%
to 27%. This will offer the updates on the model parameters for
the attack detection, at closer distances to the devices, to speed
up the recognition. The table also illustrates the maximum
collaboration rates of device level learning in the epochs. The
rates increase when the importance of the response time of
recognition increases in the optimization, i.e., for higher values
of β.

4) Performance of CFL with Various β-Trade-off Coeffi-
cients: Fig. 12 illustrates the performance of CFL with β
values of 0.2, 0.5, 0.8 versus DFL [29] and TFL-CNN [4]
in Mobility-Trace 1. Fig. 12.a shows the attack detection
accuracy. TFL-CNN has gained the least accuracy since, CNN
is not able to encode the effect of temporal dependency in
attack detection. Furthermore, the pattern of traffic encoded in
two dimensions with large number of features in one dimen-
sion, i.e., 87, makes the (ab)normal pattern recognition more
difficult in CNN. TFL-CNN with 64 filters has outperformed
TFL-CNN with 32 filters. DFL which relies on GRU has
gained higher accuracy. CFL has gained the highest accuracy
due to the exploitation of both edge level and device level
data sharing; thereby increasing the total number of devices
involved in FL (See Table III). In CFL, when β increases,
the accuracy decreases due to the more priority to response
time optimization. In comparison, with DFL and TFL-CNN,
respectively up to 7%, and 46% accuracy enhancement has
been achieved by CFL, during epochs of learning.

Fig. 12.b shows the response time. TFL-CNN with 64 filters
has gained the highest response time (between 11,6 to 11,9 ms)
due to the large number of parameters involved in training
and transmission i.e., 17345 versus 8673 in TFL-CNN with
32 filters, and 11841 in CFL/DFL. The response time in DFL
is higher than CFL. The reason is that in DFL, every device
receives the parameters and performs the aggregation, which
increases the computation and transmission time. In contrast,

in CFL only the aggregator nodes perform the aggregation.
Fig. 12.c, Fig. 12.d, and Fig. 12.e show the objective

function for β-values of respectively 0.2, 0.5, and 0.8. When
the β increases the priority of response time in optimization,
increases as well (See Eq. (20)-(22)). When β is 0.2, the
objective function mostly reflects the accuracy, and therefore
TFL-CNN with the lowest accuracy, has operated the worst.
When β is 0.8, the objective function mostly reflects the
response time, and therefore TFL-CNN with 64 filters with
the highest response time, has operated the worst. When β is
either 0.2 (Fig. 12.c) or 0.5 (Fig. 12.d), CFL has gained the
minimum of the objective function. The reason is that through
DRL, CFL optimizes the trade-off between response time and
accuracy as the objective function. However, TFL-CNN and
DFL are not able to do the trade-off. When β is 0.8, TFL-CNN
with 32 filters has gained the best performance. The reason is
that when response time is dominant in the optimization, CFL
that operates based on GRU with 11841 parameters consumes
more computation and transmission time than TFL-CNN with
8673 parameters. However, this is a model-related issue and
as it can be seen in Fig. 12.c and Fig. 12.d, CFL targets the
optimization of accumulated accuracy and response time and
outperforms the other methods.

VIII. CONCLUSION

Performing partial aggregation in edge servers has been
advocated for 6G networks to reduce the transmission cost
overhead of conventional federated learning. To deal with
unavailability of access to the edge servers, or higher latency
in comparison with processing at the neighbourhood devices,
this paper, propose a collaborative federated learning. The
collaboration of learning levels including cloud, edge, and
device levels are modeled as an optimization problem. In the
proposed optimization, the accumulated trade-off of recogni-
tion accuracy and response time of recognition for all devices
in the network is optimized. Deep reinforcement learning
is proposed to solve the optimization, while considering the
dynamicity in the communication and computation status of
the network/devices. For a DDoS attack detection scenario
based on a GRU based detection mechanism, the evaluation
results show improvement in the gained rewards, the attack
detection accuracy, the response time of recognition, and the
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Fig. 12: The performance of CFL vs. other baselines evaluated over Mobility-Trace 1. (a) DDoS attack detection accuracy. (b)
response time of recognition. (c) objective function (β = 0.2) (d) objective function (β = 0.5) (e) objective function (β = 0.8)

accumulation of response time and accuracy, in comparison
with the existing methods in the literature. Evaluating the
performance of the proposed method for beyond security
applications can be regarded as a future work.
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