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AbstrAct
Digital Twin is a new concept that consists of 

creating an up-to-date virtual asset in cyberspace 
which mimics the original physical asset in most of 
its aspects, ultimately to monitor, analyze, test, and 
optimize the physical asset. In this article, we investi-
gate and discuss the use of the digital twin concept 
of the roads as a step toward realizing the dream 
of smart cities. To this end, we propose the deploy-
ment of a Digital Twin Box to the roads that is com-
posed of a 360° camera and a set of IoT devices 
connected to a Single Onboard Computer. The 
Digital Twin Box creates a digital twin of the phys-
ical road asset by constantly sending real-time data 
to the edge/cloud, including the 360° live stream, 
GPS location, and measurements of the tempera-
ture and humidity. This data will be used for real-
time monitoring and other purposes by displaying 
the live stream via head-mounted devices or using 
a 360° web-based player. Additionally, we perform 
an object detection process to extract all possible 
objects from the captured stream. For some spe-
cific objects (person and vehicle), an identification 
module and a tracking module are employed to 
identify the corresponding objects and keep track 
of all video frames where these objects appeared. 
The outcome of the latter step would be of utmost 
importance to many other services and domains 
such as national security. To show the viability of 
the proposed solution, we have implemented and 
conducted real-world experiments where we focus 
more on the detection and recognition processes. 
The achieved results show the effectiveness of the 
proposed solution in creating a digital twin of the 
roads, a step forward to enable self-driving vehicles 
as a crucial component of smart mobility, using the 
Digital Twin Box.

IntroductIon
Over the last decade, there have been many 
rapid technological advancements in various fields 
such as networking, cloud computing, computer 
vision, Internet of Things (IoT) and Artificial Intel-
ligence (AI). These technologies are supporting 
each other in one way or another. For instance, 
the rapid expansion of IoT devices is expected to 
reach 5.8 billion endpoints by the end of 2020 [1]. 
These devices, among many others, are constantly 
generating and sending data over the network, 
which creates a bandwidth crunch for network 
providers. Consequently, the current network 
infrastructure will be incredibly overwhelmed, 
which desperately pushes toward enhancing the 
network's performance in terms of bandwidth 

and latency. Luckily, the 5G technology is already 
here, or to be deployed soon, to carry out the 
expected sheer volume of the exchanged data. 
Once the data arrives at its destination, it will be 
treated and processed to extract relevant informa-
tion, such as detecting and tracking objects from 
a video stream, and generating useful knowledge. 
The latter task demands heavy computations that 
require powerful RAM, CPU and likely GPU capa-
ble machines which are nowadays easily acces-
sible, thanks to cloud computing technologies. 
Alongside the hardware advances, the abundant 
amount of data we are witnessing in this era has 
essentially contributed to the mushrooming and 
matureness of AI techniques [2].

With continuous technology advances, con-
sumers become more and more demanding and 
their satisfaction level is pushed further. A major 
paradigm we are witnessing nowadays is the shift 
toward automated systems as consumers are 
increasingly looking forward to a fully connected 
world that encompasses most of our life's fields 
including education, healthcare, industry, trans-
portation, and social life. This interconnection 
promises a lavish lifestyle and enhances safety, 
efficiency, productivity, energy consumption, envi-
ronmental protection, and sustainability.

All the aforementioned technological develop-
ments have actively contributed to the emergence 
of new concepts such as smart cities, ultimately 
to further improve the quality of life of people. 
Over the past few years, this concept has drawn 
much attention from many researchers due to its 
countless benefits. The motivation behind this is 
the upward population trend, scarce resources 
and the environmental damage caused by mod-
ern industries and resulting in climate change. 
These factors are primarily threatening the global 
food supply of the coming generations, which are 
expected to reach roughly 10 billion by 2050, 
according to a United Nations forecast [3]. This 
fact desperately urges for rethinking and rede-
signing our actual cities, that are deemed to be 
the main source for the aforementioned issues, to 
make them eco-friendly, optimized, smarter and 
safer. We mean by smarter, a city where every 
object (e.g., buildings, factories, and cars) has the 
capability of safely operating autonomously, tak-
ing decisions, adapting to changing conditions 
while being able to timely communicate and 
exchange information with the other entities. For 
instance, Smart Factories (SFs), Autonomous Vehi-
cles (AVs) and Digital Twins (DTs) are new emerg-
ing and fascinating technologies toward realizing 
the dream of smart(er) cities.
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Digital Twin is a technology that seems to 
drum up a lot of interest in the future. It is defined 
as “a virtual representation of what has been pro-
duced” [4]. So, we have: 
• The physical asset
• The cyber representation of the physical 

asset
• The link between those entities which is the 

data gathered through different sensors and 
sent to the machine that processes the data 
and produces the virtual representation.

This concept is of paramount importance and 
could be used for many purposes such as mon-
itoring, managing, maintaining, optimizing and 
forecasting. It could be effectively employed in 
numerous domains including teaching, healthcare 
consultancy and tourism. To this end, the physi-
cal asset should be equipped with relevant sen-
sors (e.g., humidity and temperature sensors) to 
accomplish specific tasks. These sensors constant-
ly collect data and send it in real-time over the 
network to either edge or cloud servers. Obvious-
ly, the more sensors are deployed to the physical 
asset, the more accurate the view we get. Once 
the data reaches its destination, it will be ana-
lyzed, synthesized, and eventually displayed to the 
users in an adequate representation. In this vein, 
DTs can benefit and leverage new emerging tech-
nologies such as IoT devices at the data acquisi-
tion phase, 5G at the transmission phase, AI and 
ML for data mining, analysis and prediction, and 
finally using video streaming, Virtual Reality (VR) 
and Augmented Reality (AR) for better data rep-
resentation and immersive viewing experience.

In this article, we present and describe our 
Digital Twin Box (DTB) platform for the digital 
twinning of roads. DTB consists of a number of 
devices including 360° camera, GPS device and 
Internet dongle for connectivity. A number of 
DTBs are deployed to the roads to live stream 
the moving objects to the cloud servers. These 
streams are offered to the viewers in real-time 
(live streams) or shifted (VoD) way. Also, the 
video streams go through an Object Detection 
module to extract the different objects and save 
them to the database. Later, these objects could 
be used by several applications and domains such 
as national security, tourism, and Intelligent Trans-
portation Systems (ITS). The use of 360° cameras 
is motivated by immersive user viewing, which 
enables a richer and more engaging experience. 
However, this comes at the expense of over-
whelming the bandwidth since it requires higher 
bitrates [5], which would exert an additional bur-
den on the underlying infrastructure and result 
in lower user QoE compared to legacy video 
streams. As a remediation, we propose to locally 
process the video streams and only transmit the 
outcome from the object detection and recogni-
tion processes.

The rest of this article is outlined as follows. 
We provide a brief review of previous work. We 
describe the proposed DT architecture and its 
different components and modules. The testbed 
setup as well as the experimental results from the 
object detection and recognition processes in 
terms of processing time and number of detect-
ed objects are provided. Finally, we summarize 
the article's contributions and shed light on future 
research directions.

relAted Work
In [6], the authors propose a way for generat-
ing knowledge as digital twins models from the 
huge amount of data generated from industrial 
production lines. To do so, they employ graph-
based query language enriched with reasoning 
rules. The proposed solution aims to facilitate the 
understanding of complex generated data from 
production line management systems and auto-
mate the process of inferring important rules that 
help decision making. The proposed automation 
pipeline consists of four different stages, name-
ly feature extraction, ontology creation, knowl-
edge graph generation and semantic relation 
extraction. Borodulin et al. propose the concept 
of the Digital Twin-as-a-Service (DTaaS) model in 
[7]. The proposed model uses a cloud computing 
platform for the orchestration and simulation of 
industrial processes in smart factories. It consid-
ers the DT as a set of cloud services and permits 
dynamic resource allocation in the cloud.

The authors in [8] tackle the security aspect of 
cyber-physical systems (CPS) in the industrial con-
text since any failure with this regard would have 
catastrophic outcomes for the organization assets 
and could harm human safety. To this aim, they 
propose a new framework called CPS Twining, 
that allows operators to create and maintain secu-
rity-aware digital twins of CPS for monitoring and 
testing purposes in virtual isolated environments. 
The proposed framework allows the creation of 
the virtual environment solely from the specifi-
cation languages (e.g., AML). Additionally, the 
generated virtual environments can be used by 
security experts for testing and validation without 
affecting the production environment. A proto-
type has been implemented to demonstrate the 
effectiveness of the proposed framework. 

For the healthcare domain, particularly for 
elderly health management, a cloud-based digital 
twin framework, dubbed CloudDTH, has been 
proposed by Liu et al. in [9] that allows bridging 
the gap between the medical physical environ-
ment and its clone in cyberspace by designing 
real-time services for the monitoring and manage-
ment of the entire lifecycle of elderly people. The 
proposed framework has been validated through 
application scenarios that include different factors 
such as weather (e.g., wind speed and tempera-
ture), real-time and recorded patient's physiolog-
ical data, to demonstrate the feasibility of digital 
twins in the healthcare field.

In [10], the authors introduce a new digital 
twin model for vertical farming for sustainable 
agriculture. The proposed model enables the 
planning, monitoring and optimization of the 
operations of the farming process, ultimately 
improving the productivity of the farms and low-
ering the costs.

In the sports field, Barricelli et al. have pro-
posed in [11] the integration of digital twin tech-

The use of 360° cameras is motivated by immersive user viewing, which enables a richer and more 
engaging experience. However, this comes at the expense of overwhelming the bandwidth since it 

requires higher bitrates, which would exert an additional burden on the underlying infrastructure and 
result in lower user QoE compared to legacy video streams.
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nology for the monitoring, assessment, prediction 
and behavioral suggestions of the athletes. To this 
end, they propose SmartFit framework that could 
be used by coaches and trainers to monitor in 
real-time the readiness of their athletes for com-
petitions. SmartFit continuously gathers, through 
IoT sensors embedded in wearable devices, rele-
vant data (e.g., mood and food income) from the 
athletes. This data is accumulated in the history 
of the athlete and used later for predicting their 
performance. Using machine learning techniques, 
the data history, including the collected measure-
ments and the coach's feedback, is processed 
and used for suggesting optimized actions for the 
athlete.

In [12], the authors propose a decentralized 
approach, based on blockchain, for the creation 
of a secure digital twins process. The proposed 
approach permits the verification of data sources 
and uses only trusted data for the creation of a 
digital twin. Furthermore, it guarantees the trace-
ability and accessibility of the different logs and 
transactions at the four different phases of digital 
twin creation. The proposed approach has been 
evaluated through different analyses including 
security, cost and digital twins requirements con-
formity.

In [13], El Saddik emphasizes the role of recent 
multimedia content and the Tactile Internet in 
providing a richer and more engaging user experi-
ence. Due to new technological advances in sen-
sory devices, it is now possible to capture and 
save not only the sound and image but also hap-
tics, olfaction and tastes sensing. These advances 
would extend the capability of digital twins tech-
nology to create a cyber clone very close to its 
physical or original copy, which certainly offers 
a richer experience in terms of interactivity and 
collaboration.

For the construction sector, the authors in 
[14] proposed exploring the digital twin technol-
ogy for the management and optimization of the 
building's operations. To do so, they presented 
the different steps for the implementation of a 
case study consisting of a digital twin of a building 
facade. In this research, the authors discuss the 
practically-faced issues and limitations during their 
experiments, mainly related to the IoT devices.

roAd's InfrAstructure dIgItAl tWIn  
use cAses And PotentIAl chAllenges

In this section, we showcase some highly import-
ant use cases and domain applications that 
essentially rely on the digital model of the roads' 
infrastructure and highlight some of its related 
endless benefits. Also, we discuss some of the 
important challenges related to this technology.

use cAses
Self-Driving Vehicles: Self-driving vehicles, 

also known as autonomous vehicles, define a 
new flourishing technology that is gaining ample 
interest from researchers around the globe in 
both industry and academia. This technology is 
promising manifold benefits at different domain 
levels, such as economic and environmental, by 
providing the vehicles with the necessary intelli-
gence to perform common maneuvers and take 
decisions without requiring human assistance. 

However, such advanced intelligence can never 
be achieved with traditional roads' infrastructure, 
since it heavily relies on the constant exchange of 
data with its surroundings, among which the road 
itself. This could be achieved by creating a digital 
twin of the roads, by deploying sensors into the 
physical world, collecting and sending data to the 
IT infrastructure (edge or cloud) to be saved and 
potentially processed to infer knowledge.

National Security: The creation of a digital 
twin of the roads would greatly contribute to the 
diminution of crimes (e.g., car theft) and help the 
authorities to catch and/or track suspicious per-
sons and vehicles. This is achieved by employing 
object detection and recognition mechanisms to 
eventually identify both persons and vehicles and 
check, for instance, if a given person is wanted 
or not.

Insurance and Safety: Roads' digital twins 
would be of utmost importance for insurance 
companies to resolve accident conflicts using the 
recorded footage. Additionally, if the spot where 
an accident occurred is equipped with Internet 
of Things (IoT) devices that measure the ambi-
ent temperature and humidity, this data would be 
useful to construct a better understanding of the 
accident circumstances and would lead to accu-
rate and fair decisions.

chAllenges
In spite of the myriad benefits of the DT technol-
ogy, there are a number of potential salient chal-
lenges. For instance, the presentation of the huge 
amount of generated data in a convenient way to 
the end-user based on their own customization 
and preferences is a hard task. In this vein, the 
use of the local dynamic maps concept could be 
a potential solution. Another possible challenge is 
to study the DTBs’ locations in a way to minimize 
the number of deployed DTBs, which results in 
lowering the deployment and maintenance costs, 
while still ensuring better coverage of the roads. A 
third painstaking challenge that should be deeply 
investigated is the security side of the DT, espe-
cially when data originates from IoT devices. It is 
known that IoT devices are naturally vulnerable to 
security threats, which desperately calls to employ 
reliable and robust frameworks, such as the block-
chain [12, 15], to protect data sources from cyber 
attacks as well as the data itself until it reaches its 
final destination. Any alteration or manipulation of 
the data would result in catastrophic consequenc-
es, especially for some domains such as autono-
mous driving. Indeed, the blockchain framework 
provides a fascinating distributed approach to 
preserve data integrity and traceability. The last 
challenge is the decrease of the detection accu-
racy during the night due to low contrast against 
the background. It is worth noting that all these 
important aspects are out of this article’s scope.

system ArchItecture
In this section, we describe the proposed system 
architecture for the creation of a digital twin of 
the roads and its different components as a step 
toward the realization of the smart cities' dream. 
This step consists of creating a digital model of the 
infrastructure, among which the roads, and make 
them more intelligent. Crucially, this would under-
pin many other technologies, such as self-driving 
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vehicles, that are deemed to be an indispensable 
part of the big dream of smart cities. Specifi cally, 
we introduce the concept of DTB and describe 
its interaction with the edge and cloud infrastruc-
tures. Ultimately, DTB aims to gather various data 
of a diff erent nature that is eventually sent to the 
cloud servers. This data will be stored for ulterior 
exploitation, and potentially processed to extract 
and infer relevant information that could be used 
in many domains, among which security, tourism, 
and transportation. The collected data is mainly a 
360° live stream using a 360° camera, GPS loca-
tion and other relevant data such as temperature 
and humidity.

The global proposed system architecture is 
depicted in Fig. 1. This figure contains different 
components contributing altogether to the effi-
cient creation of a digital twin of the roads' infra-
structure. The proposed architecture allows the 
accommodation of various services with diff erent 
levels of requirements. In the following, we pro-
vide a detailed description of each component, 
its role in the proposed architecture, as well as its 
interaction with the other components.

dIgItAl tWIn box
DTB is a set of IoT devices connected to a Single 
Onboard Computer (SOC), such as a Raspberry 
Pi. Mainly, we find a 360° camera that is capa-
ble of delivering a 360° spherical video stream. 
This SOC keeps streaming live the roads. These 
streams could be accessed in real-time, e.g., for 
monitoring purposes. They are also temporarily 
stored at the cloud servers for shift viewing expe-
rience. More importantly, the received stream 
will go through an object detection and recog-
nition process to extract all possible objects con-
tained in the video. To do so, all video frames 
need to go through the detection process, where 
we first detect the different objects present in 
the frame along with their types (e.g., person, 
car, and traffi  c light). These objects are cropped 
using their coordinates within the frame. In this 
work, we are interested in the tracking of two 

types of objects, namely persons and vehicles 
(e.g., car and truck).

After detecting an object and identifying its 
class category, we perform an object recognition 
task (i.e., focusing only on the categories of per-
sons and cars) to recognize and identify which 
person/car it is and if the system has already 
seen this object previously, in the same or diff er-
ent video, and accordingly register the detect-
ed object in the databases of the system. In the 
case of a new object, we create a new entry 
for it in the objects table, and save the video 
frames, where this object has been seen, in the 
corresponding tables. Otherwise, we retrieve the 
object ID and update its corresponding video 
frames in the database. The idea beneath is to 
keep track of all objects (currently of only per-
son and car types) in the database. These data 
would be of great importance and could be used 
by many other services in various use cases as 
described in the previous section.

Although the global process of object detec-
tion and recognition looks similar for all objects, 
there are some differences in the recognition 
phase. For the person category, a face detection 
and recognition module would be required to fi rst 
locate the face in the whole body image and then 
perform the matching process with previously rec-
ognized persons' faces existing in the database, 
respectively. As to the car identifi cation process, 
it entails two separate modules, namely plate 
detection and plate recognition, to respective-
ly locate the plate number, crop it, and read the 
corresponding alphanumeric string. For the rest 
of the objects (e.g., animal, traffi  c light, and traffi  c 
sign), there is no need to perform the recognition 
process because they are either static objects with 
no identity or simply not worthwhile (and perhaps 
not economical) to identify and track in the con-
text of smart cities.

At the end of the object detection and recog-
nition process, it is important to save all detect-
ed objects in the database as records as well as 
cropped images on the disk. This would be useful 
for inferring new information and making import-
ant recommendations. For instance, if a DTB is 
deployed in a residential area and a dangerous 
animal is detected, this would help to raise an alert 
to the authorities to take the relevant actions. It 
could also be used to generate automatic statisti-
cal reports regarding the frequency of human/car 
circulating in a specifi c area that could be used to 
improve the services provided in that area. Figure 
2 illustrates the fl owchart diagram for the whole 
object detection and recognition process.

It should be noted that the delivered stream is 
accompanied by other sensed data such as GPS 
location, measured ambient temperature, humid-
ity and air quality. For the data coming from IoT 
devices, it could also be collected from sensors 
on board Unmanned Aerial Vehicles (UAVs) that 
are sent for a specifi c mission, which would pro-
vide more accurate measurements [16]. This data 
will also be saved in the database with its corre-
sponding timestamp. The combination and fusion 
of all these data with the video stream feed would 
result in a more holistic view of the area and its 
environment at diff erent points in time during the 
four seasons, which might be useful for tourism 
and insurance domains.

FIGURE 1. Global system architecture.
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Where to Process In the netWork?
The different aforementioned processes use 
Machine Learning (ML) models to accomplish 
their corresponding tasks. Generally speak-
ing, object detection and recognition tasks are 
time-consuming and require high CPU and RAM 
resources. In many cases, it becomes necessary to 
carry them on GPU-capable machines to achieve 
reasonable response times. In this subsection, we 
discuss the different possible options to perform 
such heavy processing tasks.

Extreme Edge: Offloading the object detec-
tion and recognition tasks to the extreme edge 
(i.e., at the SOC) has the advantage of attenu-
ating the cloud servers' workload and reducing 
the streaming latency [17]. The latter would be 
of vital importance for some other technolo-
gies such as autonomous driving whereby, for 
instance, vehicles need to instantly detect, rec-
ognize and interpret traffic signs to take some 
critical actions (e.g., braking and deceleration). 
Furthermore, processing tasks at the extreme 
edge would greatly improve the system's scal-
ability, notably when the number of deployed 
DTBs is high. It also helps reduce pressure on 
the underlying network infrastructure, espe-
cially when the transmitted service is band-
width-consuming such as video streams, and 
only the detected objects are accessed by the 
users. Self-driving vehicle technology would take 
advantage of it to increase their awareness of 
their surroundings, especially to detect objects 

around the corner, by communicating with other 
DTBs located at the same spot. However, this 
would increase the cost of the DTB since it 
requires a powerful GPU-capable SOC such as 
Jetson AGX Xavier.

Edge: Edge computing is also a good choice 
when keeping the latency at lower values is a 
requirement and the extreme edge device has 
very limited resources (e.g., Raspberry pi). Addi-
tionally, it helps to save the bandwidth utilization 
by sending the video streams and the sensed data 
to an edge server that is close to the DTB in ques-
tion, which may offer better processing capabil-
ities while keeping the deployment cost of the 
DTB as low as possible. The edge computing par-
adigm offers an ideal environment for many use 
cases where both the DTBs and the consumers 
of the live streams or the outcome of the object 
detection and recognition processes are in the 
vicinity of the edge servers. It is worth noting that 
we can still do some lightweight object detection 
processes on devices with limited resources using 
some models (e.g. Tensorflow Lite) that are specif-
ically designed and optimized for IoT and mobile 
devices.

Cloud: Cloud computing may offer the most 
powerful and scalable configuration for handling 
heavy tasks due to its highly-available resourc-
es. However, sending live streams to the cloud 
for processing may adversely affect its scalabili-
ty, notably when the number of deployed DTBs 
groes up for fully covering an area. Moreover, this 
would exert high pressure on the network, espe-
cially when streaming bandwidth-intensive videos, 
such as 360° videos.

users
The outcome of the DTBs is the digital twin of 
the roads, consisting of 360° live streams and/
or the detected objects from the live streams as 
well as the different sensed data sent by the IoT 
devices deployed within the DTBs. This result 
could be used by many consumers (e.g., individ-
ual users, corporate, or autonomous vehicles) 
for different purposes, among which monitor-
ing, maintenance and safety, in various use 
cases. In the tourism domain, for instance, users 
can view 360° videos (either live or recorded) 
using head-mounted devices or HTML5 play-
ers to see a specific area they are interested in, 
along with the different sensed data at a specif-
ic period, before they travel. Also, the national 
security authorities can also use the platform to 
search for a suspicious person/car just by using 
their picture/its plate number to see the differ-
ent places visited by that person/car, respec-
tively.

exPerImentAtIon And PerformAnce results
This section describes the setup used during 

the conducted experiments and discusses its out-
come. We first provide details on the device spec-
ifications used to accomplish this experiment, as 
well as the technologies used in our implemen-
tation. Then, we describe the platform setup in 
which we have run our implementation. Finally, 
we provide and discuss the different obtained 
results from the experiment. The conducted 
experiment has been performed using a video 
with 512  512 resolution.

Figure 2. Object detection and recognition flow-
chart.
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devIces sPecIfIcAtIons And technologIes choIce
In this experiment, we show the performance of 
the detection and recognition processes at the 
extreme edge. To this end, we have used a Jet-
son TX2 single onboard computer (SOC) from 
NVIDIA. The Jetson TX2 is a powerful SOC and 
is designed for computation-heavy tasks. It has a 
GPU architecture with 256 NVIDIA CUDA cores, 
a Quad-Core ARM® Cortex®-A57 MPCore, and 
8GB 128-bit LPDDR4 memory. The operating sys-
tem running on this Jetson TX2 is Ubuntu 18.04. 
To detect the different objects in video frames, 
we have used the Single-Shot Detector (SSD) 
mobile net v2 model that ships with Jetson SOCs. 
It is faster and provides more accuracy compared 
to other state of the art models such as YOLO 
and Faster R-CNN models.

For the face detection part, we have used a 
python library called face_recognition that uses 
deep learning models to locate the face within 
a person's body. The model used by this library 
provides very high accuracy of 99.38 percent. 
For the recognition phase, we perform a compar-
ison of the new face with the existing faces in our 
database and we calculate the euclidean distance 

between the two faces. If the distance is above 
a certain threshold (0.7 in our experiments) we 
consider it the same person. 

Regarding the vehicle's plate number, we have 
used Google AI vision API to detect and locate 
the plate number with an accuracy of 81.7 per-
cent, whereas we perform text recognition on 
the text contained inside the plate box. If the text 
does not follow the general pattern of the plate 
numbers in the country, we reject it. Otherwise, 
it will be considered as a successfully recognized 
plate number.

PlAtform setuP
An overview of the platform setup is illustrated in 
Fig. 3. In our OpenStack cloud platform, we have 
three servers, namely web, streaming and data-
base servers. The streaming server receives from 
the DTB the 360° video via the 4G LTE network. 
The SOC in the DTB captures the live stream and 
performs object detection and recognition and 
stores the results in a local database. Also, it con-
stantly reads measurements from the IoT devices 
along with the GPS data and saves the measured 
values locally. A backup module is periodically 
executed to sync the local database at the SOC 
with the real-time Firebase and a MySQL data-
base in OpenStack servers. It is worth noting that 
Firebase is used to store real-time data such as the 
detected objects and GPS data, while the relation-
al database is used to store other data such as the 
user's info and the countries data. On the other 
hand, users can access the 360° streams for dis-
covering or monitoring purposes via head-mount-
ed devices or simply using the web-based player. 
They can also access the web platform to visual-
ize the detected objects and track the recognized 
ones (i.e., persons and vehicles).

PerformAnce results
In this subsection, we show the performance results 
from the detection and recognition processes in 
terms of the time consumed per frame to detect 
and recognize all the objects contained in that 
frame, as well as the number of detected objects.

Figures 4a and 4b illustrate the per frame 
elapsed time to detect and recognize the objects 
at each frame, respectively. It is worth noting 

FIGURE 3. Platform setup.

FIGURE 4. Object detection and recognition time per video frame: a) object detection time per video frame; b) object recognition time 
per video frame.
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that the recognition time, represented in Fig. 
4b, includes the time consumed to recognize 
both persons and vehicles. As we can see, usu-
ally the process of detection does not take too 
much time, especially when there are no objects 
to recognize, for instance, between the interval 
[55, 100] frames and [135, 290] frames. This is 
mainly due to the speed of the SSD mobile net 
v2 model and its ability to detect multiple objects 
in one shot pass. We can also see that when the 
processing of one frame is relatively high, this is 
mainly caused by the recognition process (the red 
curve), as we can see during the intervals [0, 50], 
[110, 135] and [290, 340].

The number of detected objects per video 
frame is plotted in Figs. 5a–5c. These figures 
respectively correspond to three categories of 
detected objects, namely persons, cars and oth-
ers which basically include the rest of the objects 
such as traffic lights. Aligned with the plots from 
Fig. 4, the number of detected objects is higher 
within the frames interval where the time is rela-
tively high, which is quite intuitive since the detec-
tion and recognition of more objects incur more 
time. From Fig. 4 and Fig. 5, we also conclude 
that the recognition process takes more time than 
the detection as we observe time picks in Figs. 
4a and 4b when a person and/or car objects are 
detected as per Figs. 5a and 5b. 

In Figs. 6a and 6b, we show the number of 
detected persons and cars, respectively. These 
figures also show the frequency (orange bars) of 
the recognized objects throughout the video as 
well as the average recognition time. The average 
recognition time for cars is relatively high com-
pared to persons.

conclusIon
In this article, we have proposed a methodology 
to create a digital twin of the roads' infrastructure, 
which is considered as a step toward enabling a 
gamut of essential technologies (e.g., self-driving 
vehicles) and services that are deemed to be a 
crucial part in the journey of realizing the dream 
of smart cities. It consists of deploying Digital 
Twin Boxes (DTB) composed of a 360° camera, 
GPS device and other IoT devices for sensing 
environmental measurements such as ambient 
temperature and humidity. Additionally, we per-
form object detection and recognition on video 
streams to extract all possible objects and save 
them to the database. The recognition process 
is performed on two types of objects, namely 
vehicles and persons, and entails both identifi-
cation and tracking processes to keep track of 
when and where the selected objects appeared, 
along with other measured data received from 
IoT devices. The combination and fusion of all 

FIGURE 5. Number of detected objects per video frame: a) number of detected persons per video frame; b) number of detected cars 
per video frame; c) number of other detected objects per video frame.
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gathered and processed data will give a better 
understanding of the contextual circumstances 
when accessing the data. The resulting database 
would be of great importance for many other 
services and domains such as tourism, insurance 
and national security.

In our next research plan, we endeavor to 
improve both the face and car plate number rec-
ognition to increase their accuracy. Also, we plan 
to optimize the placement of the DTBs in the roads 
to make the overall deployment cost-efficient.
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FIGURE 6. Persons and cars recognition frequency and average recognition time: a) persons recognition frequency and average recogni-
tion time per person.; b) cars recognition frequency and average recognition time per car.
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