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Abstract—Massive device connections in upcoming 6G net-
works have led to a sharp increase in network traffic volume,
posing significant challenges in providing reliable performance
guarantees, e.g., low latency. The Computing Power Network
(CPN) is a new framework for resource integration involving
multiple parties. It integrates the resources of various owners
via the network, providing users with efficient and adaptable
services. Due to the uncertainty of the signal quality, the majority
of existing studies do not adequately organize the topology of
user allocation in CPNs when optimizing network resources.
Reconfigurable Intelligent Surface (RIS) is a new type of network
node for constructing future smart radio environments with high
spectral efficiency and nearly zero energy consumption that can
offer new access options for user allocation in CPNs. In this
paper, we investigate the user access allocation in a RIS-assisted
Ad Hoc Edge (RAHE) scenario where the users are with service-
intensive demands. To maximize the overall service tasks of
the system constrained by a service time threshold, we propose
a RIS-assisted interval scheduler strategy (RS3) approach to
balancing the whole system service completion and total latency.
Specifically, RS3 is a graph-theoretic optimization method based
on the interval scheduling problem. The numerical simulation
results demonstrate that our proposed RS3 approach is superior
to commonly utilized methods in terms of the number of serves
given the service time constraint.

Index Terms—Computing power network, Reconfigurable in-
telligent surface, User allocation.

I. INTRODUCTION

For widespread mobile edge computing (MEC) [1] appli-
cations, computing and storage resources will no longer be
confined to large centralized data centers. Resource nodes
appear to be ubiquitous [2]. In addition to single telecom
operators or cloud service providers, suppliers of resources
will also include small and medium-sized regional service
providers and even individual providers. Concurrently, new
types of services [3] (e.g., digital twin, virtual reality) will
have higher, lower and broader requirements for computing
power, latency, and coverage, respectively. As a novel solu-
tion, computing power network [4] (CPN) has emerged in
recent years. In essence, the objective of CPN is to inte-
grate computing power with network resources in order to
meet the requirements of modern applications for large-scale
computing and data processing. However, effectively meeting
the diverse business requirements of users and maximizing the
utilization of available network resources presents a significant
challenge. In CPN architecture, communication transmission
bridges computing resources and user requirements. However,

Fig. 1. RIS-assisted ad hoc edge scenario under CPN.

the severe path loss in Millimeter Wave (mmWave) or sub-THz
bands in the 6G networks [5] makes it difficult to optimize
the resource utilization of CPN. To address this issue, the
deployment of Reconfigurable Intelligent Surfaces (RIS) [6]
has emerged as a promising technique for improving energy
and spectral efficiency. In particular, it comprises an array of
passive reflective components. Each can dynamically adjust
the amplitude and phase of the impinging signal to serve
the user in a dedicated direction. By reconstructing the radio
propagation environment, RIS provides the new access option
between edge servers and end-users during computing task
transmitting [7].

Based on the preceding discussion, the issue of joint allo-
cation optimization in CPNs introduces new challenges that
must be addressed. In particular, it entails determining how
to effectively leverage RIS to dynamically adjust resource
allocation in order to provide users with optimal network
connectivity options.

Sun et al. [8] propose the need for integrating resources in
CPNs to cope with user allocation requirements. Yang [8] and
Sun et al. [9] introduced RIS as a communication resource in
multi-user MEC systems and formulated offloading energy op-
timization problems. The deployment of RIS aims to achieve
a trade-off between the limited energy and computational re-
sources while meeting strict latency constraints. Nevertheless,
RIS is primarily utilized as a signal enhancement facility and
does not actively collaborate with the user allocation function.
Zhuang et al. [10] proposed a collaborative edge scenario



among multiple RISs, employing multi-agent reinforcement
learning to solve complex RIS configuration and allocation
problems across multiple regions. Most of these studies neglect
RIS’s crucial role as a link within a CPN that can have a
significant effect on the network’s topology.

Therefore, we concentrate on the ad hoc edge scenario under
CPN. Ad hoc edge (AHE) is a self-organizing management
paradigm within the computing power network aimed at
addressing the chaotic and diverse nature of user demands.
Positioned at the underlying layer, AHE dynamically perceives
and optimizes user requirements, enabling the optimal match-
ing and allocation of computational resources. Through self-
organizing management, intelligent decision-making, and re-
source coordination, AHE adapts to varying demands, ensures
efficient resource utilization, and provides reliable computa-
tional support for edge users.

Creating a reasonable network topology in AHE presents
several obstacles: (1) The complex wireless network typolo-
gies in practical and severe path loss of the electromagnetic
wave signal propagation in the mmWave/sub-THz bands make
it challenging to guarantee the critical quality-of-service re-
quirements in the beyond 5G and 6G networks. (2) How to
allocate users under dense heterogeneous services and increase
system throughput brings new challenges in the optimization
of network resource allocation.

RIS-assisted Ad Hoc Edge (RAHE) is an AHE scenario for
RIS-assisted network topology. The architecture of the entire
RAHE system is depicted in Figure 1. Without prior planning,
this network can facilitate temporary communication and data
exchange between servers and users via the new transmission
path established by RIS. The neighboring RIS serves as a
relay to the corresponding server, aiding it in improving
communication performance and offering an alternative access
option for users at their designated location in the network. By
optimizing the network’s topology, redundant nodes and links
can be eliminated, resulting in reduced network construction
and maintenance costs. Therefore, it demonstrates enhanced
resilience and dependability, allowing for smooth operations
in complex and unpredictable environments.

The main contributions are listed in the following:

• To achieve significant resource utilization and meet the
computing power demands of digital transformation, we
implement RAHE in CPN to maximize the use of avail-
able resources in the edge-end layered architecture.

• As part of our graph-based approach, we propose a RIS-
assisted interval scheduling strategy (RS3) to solve the
user allocation problem. By utilizing graph structures,
our proposed approach facilitates the seamless integration
of new users and resources into the system, thereby
enabling optimization across a wide range of scenarios
and meeting diverse requirements.

• The experimental results illustrate the effectiveness of the
proposed RS3 compared to some benchmarks in edge
scenarios. With more services, our system achieves a
request completion rate of up to 94%.

The subsequent sections of this paper are structured as
follows. Section II presents the system model. The graph-based
approach to interval scheduling strategy is discussed in Section
III. Section IV presents the simulation results, and Section V
summarizes the paper.

II. SYSTEM MODEL

We consider a RAHE scenario aided by multiple RISs.
As shown in Figure 1, this service placement architecture
consists of a RIS-assisted communication layer and an edge
computing layer supported by graph topology. The placement
of servers within the system is arbitrary, and each RIS only
assists a single server. We specify that the servers and de-
vices are respectively denoted as M = {1, 2, ....,M} and
N = {1, 2, ...., N}. Denote I = {1, 2, ...., I} as the set of RISs.
Each user will randomly generate a service request, with the
service type indicated by the set S = {1, 2, ...., S}. Assume the
user has one computing service and each service is processed
by a specific dominant server. Let Jn,s = (Ln,s, Qn,s) denote
the service of user n, where Ln,s represents the service upload
data size and Qn,s is the overall number of the CPU cycles
to complete the service. Here, we assume that all the servers
and devices are equipped with a single antenna, and the RIS is
with K reflection elements. These assumptions will not affect
the performance of our proposed algorithms.

Typically, system servers cache only the programs required
for a particular service type. Due to loading, processing new
services can result in lengthy delays. Consequently, servers
have defining characteristics for particular services. Forward-
ing the user’s service to the dominant server in this situation is
preferable. Even though this process incurs additional commu-
nication delays due to forwarding, RIS can significantly reduce
the communication burden. This paper investigates network
configuration and selection methods for RIS-assisted services.

A. Channel Model
In this paper, we assume that all the communication chan-

nels are block-fading based, i.e., the channel coefficients
remain constant during current block data transmission but
may change over different time slots. Therefore, the channel
coefficients from the n-the device to the associated m-th
server, from the n-th device to the i-th RIS, from the i-
th RIS to the associated m-th server are denoted by hn,m,
hi,n ∈ CK×1, and hi,m ∈ CK×1, respectively. The Channel
State Information (CSI) estimation is out of the scope of this
paper. For more details, refer to [11]–[13] for CSI acquisition
between the server and device, server and RIS, as well as
the link between RIS and device. With the full knowledge
of the CSI among all the communication links, the server
can perform resource management strategies to maximize the
computation and communication efficiencies.

B. Computation Model
For the direct link between the m-th server and the associ-

ated n-th device, the offloading rate is given by

Rd
n = B log2

(
1 +

Pn|hn,m|2

σ2

)
(1)



where B denotes the allocated bandwidth, Pn is the transmit
power of the n-th device, σ2 represents the variance of the
Gaussian noise, respectively.

If the direct link between the server and the device is too
weak due to the long propagation distance (i.e., severe path
loss in mmWave or sub-THz bands) or the blockage such as
surrounding vehicles, buildings, etc., the RIS is scheduled to
enhance the end-to-end signal quality. In such case, the rate
between server and device assisted by the RIS is given by [14]

Rr
n = B log2

(
1 +

Pn|hH
i,mΘihi,n + hn,m|2

σ2

)
(2)

where

Θi = diag{η1ejϕi,1 , · · · , ηkejϕi,k , · · · , ηKejϕi,K} (3)

are the matrix of reflection amplitude and phase shift adjust-
ment at the associated i-th RIS. In particular, ηk ∈ [0, 1] and
ϕi,k ∈ [0, 2π). Here, we assume all the RIS elements are with
the ideal reflection amplitudes, i.e., η1 = η2 = · · · = ηK = 1.
In addition, an ideal continuous phase shift ϕi,k (i.e., accurate
phase shift adjustment for signal reflection to the direction of
the scheduled user) is supported here by the hardware for sim-
plicity. Therefore, the decision of user allocation determines
the specific optimization analysis.

We assume that each user generates only one service. The
service j upload time can be obtained as:

ttr(j) =
Ln,s(j)

bm(j) ·Rr
n + (1− bm(j)) ·Rd

n

(4)

where bm(j) = {0, 1} denotes the indicator of the reflecting
link through the RIS between the server and scheduled user.
Specifically, bm(j) = 1 indicates that RIS is scheduled to
serve the user, otherwise bm(j) = 0.

Each user’s computational duties can be delegated to either
the dominant server or the nearest non-dominant server. As-
sume that each server has the essential program to execute its
function. The non-dominant server should have a configuration
delay, such as a cache delay or waiting period. Due to the
difficulty of specifying the configuration time in actuality, we
set the processing rates differently for dominant and non-
dominant servers.

Let am(j) = {0, 1} denote the edge execution indicator,
when am(j) = 1 indicates that the service j is executed on
dominant server m, and 0 is otherwise. In this way, the edge
execution time can be expressed as:

ts(j) =
Ln,s(j)Qs(j)

am(j)fm,1 + (1− am(j)) fm,0
(5)

where Qs indicates the number of CPU cycles required
to process each unit byte, while fm,0, fm,1 represents the
dominant and non-dominant server’s computing capacity to
distinguish the server’s service configuration time. The down-
link transmission time can be neglected due to the small size
of the computing results of j.

C. Problem Formulation

According to the model presented above, the allocated
service of each server in the RAHE scenario has two parts, one
for dominant services and the other for non-dominant services.
The latency for completing the service of server m is

Tm,n,s(j) =
∑

(ttr(j) + ts(j)) (6)

Therefore, the service completion time for each server m can
be expressed as

Tt(j) =
∑

(xn ∗ Tm,n,s(j)) (7)

where xn takes the value 0 or 1 to indicate whether the service
was completed or not. The value of 1 denotes successful
completion of the service, whereas the value of 0 signifies
that the service was not completed. Then, the total number of
services processed by server m can be determined.

Um,n =
∑

(xn|Tt ≤ Tmax) (8)

Our objective is to maximize the size of the subset of
services U while minimizing the total completion time, which
can be formulated as

P1 : max
U,Θi

M,N∑
m,n=1

Um,n

s.t. C1: Tt ≤ Tmax

C2: ϕi,k ∈ [0, 2π), ∀i ∈ I, k ∈ K
C3: am, bm ∈ {0, 1} , ∀m ∈ M
C4: xn ∈ {0, 1} , ∀n ∈ N

Here, C1 ensures that the size of each selected element
is less than Tmax, under the assumption of minimizing the
sum of selected elements. Tmax denotes the upper bound on
the total completion time of the subset of services U . C2
is the phase shift adjustment constraint, i.e., the phase shift
adjustment of each element of the RIS within the range of
0 and 2π. C3 denotes the allocated location of each service
and can only be allocated to one server. C4 is a decision
variable that indicates whether the n-th service allocated to
the corresponding server has been completed. Here, the user’s
position change determines the phase shift adjustment of the
associated RIS.

III. USER ALLOCATION ALGORITHM BASED ON
MAXIMUM INDEPENDENT SET

A. Combinatorial optimization

Depending on the server’s properties, we can transform
the problem into optimal interval scheduling [15]. Consider
services (users) that require a specific machine (server) to be
used for a period of time. The tolerance threshold Tm,n,s of
delay for each user becomes the start time STm,n,s and end
time ETm,n,s specified by a service. These services should be
processed without interruption. Thus, the problem becomes
the need to find a solution for selecting a subset of servers
such that (1) there is no time conflict between user services



Fig. 2. An example for scheduling services in one server: the top diagram
shows the set of user services for scheduling, the middle diagram shows the
service placement of interval scheduling problems, and the bottom diagram
shows the corresponding service association diagram.

in using the servers; (2) all services are processed as much as
possible; (3) the total user latency is as low as possible.

Then Tm,n,s = STm,n,s − ETm,n,s is the service length
of user n. In general, user scheduling can be viewed as the
process of selecting the appropriate server for each user. With
hard deadlines, the following equation should be satisfied
for each user’s service: ∩n∈Jn,s

[STm,n,s, ETm,n,s) = ∅.
Suppose the server wants to allocate users in service set Jn,s.
This means that J =

⋃N
n=1 Jn,s. Each user can only be

allocated to one server, so ∩Jn,s∈JJn,s = ∅. Consequently,
the completion time of the problem can be expressed as

Rm,n,s =

N∑
n=1

∑
n∈Jn,s

Tm,n,s (9)

In P1, there are two different optimization objectives: max-
imizing the size of the service subset Un and minimizing the
total completion time Tm,n,s. Subject to the constraint that
the services do not overlap, these two objectives may conflict,
requiring trade-off considerations. Therefore, we propose a
weight parameter β to balance the trade-off between the two
objectives based on the idea of weighting. The optimization
problem P1 can be transformed into

P2 : max βUn − (1− β)

N∑
n=1

Φ (Jn,s)Rn

s.t. C1: J =
⋃N

n=1 Jn,s
C2: ∩n∈Jn,s [STm,n,s, ETm,n,s) = ∅
C3: ∩Jn,s∈JJn,s = ∅

In P2, Φ (Jn,s) indicates the server location indication for
service completion, which is represented as:

Φ(Jn,s) =

{
0 Jn,s = ∅
1 Jn,s ̸= ∅

(10)

B. Integer Linear Programming for MIS Problem

This interval scheduling problem involves finding the largest
possible set of non-overlapping services. By transforming this
problem into a graph model, the objective becomes finding the
largest subset of vertices with no edges between them, which
is equivalent to the maximum independent set problem.

A conflict diagram is used to illustrate the conflict between
services in Figure 2. The problem can be represented by an
undirected graph G(V,E), called an allocation graph. Each
vertex V = {v1, v2, ..., vn} is a set of n network nodes, where
each node denotes the user service. An edge will connect
the affected nodes if there is a temporal conflict between
two services. Therefore, the maximum number of services
that a server can fulfil corresponds to the maximum number
of independent edges in the corresponding undirected graph.
According to the definition of the maximum independent set,
the number of nodes (services) is selected as the optimal
solution within the constraints specified.

We utilize an Integer Linear Programming (ILP) approach
to address the weighted maximum independent set problem,
incorporating the P2 objective function. The ILP framework
easily accepts different constraints and objective functions
within the graph structure. The mathematical formulation of
the problem is expressed as:

P3 : max
∑
i∈T

[β · xi − (1− β) · Tm,n,s · xi]

s.t. C1: xi ∈ {0, 1}, ∀i ∈ V
C2: xi + xj ≤ 1, ∀(i, j) ∈ E

Algorithm 1 Algorithm for interval scheduling problem
Input:

1: The initial parameter settings, e.g. N users, M servers,
S service types, and the allocation user service, including
an undirected graph G = (V,E)

Output:
2: Optimal interval service scheduling (MIS problem)
3: A maximum independent set L ⊆ V
4: Define 0-1 variables xi ∈ 0, 1, representing whether node

i is in the independent set, where i ∈ V .
5: Define the objective function f(x) =

∑
i∈V xi, which

maximizes the size of the independent set.
6: Add the constraint xi + xj ≤ 1 for each edge (i, j) ∈ E,

which ensures that two adjacent nodes cannot both be in
the independent set.

7: Set the lower and upper bounds for all variables as 0 and
1, respectively, i.e., 0 ≤ xi ≤ 1, where i ∈ V .

8: Solve the linear program to obtain a maximum.
9: Update the MIS L as the best solution

10: Update interval service scheduling

A binary variable xi = 1 in C1 means service i is included
in the optimal subset U , while a value of 0 indicates that
it does not. C2 indicates that two adjacent nodes cannot
simultaneously appear in an independent set.



The initial step of Algorithm 1 is designed for configuring
the environment based on the system model presented in
Section III. Determine the computation time for the RIS-
assisted edge system once the number of users and service
types has been initialized. Then, the ILP problem is formulated
with the objective function consisting of the weighted sum of
the service subset size and the total completion time (lines 4-
6) and the constraints ensuring that no services overlap in
the solution. After determining the upper and lower limits
of L, we perform a linear programming relaxation on the
objective function values L (lines 7-10) to identify the largest
independent set. Therefore, for each examined value of L, we
execute at most N(N − 1) ILP programs.

IV. SIMULATION RESULTS AND DISCUSSIONS

A. Simulation Settings

We evaluate the performance of our algorithm using the
Public EUA dataset [16]. In the simulation, users categorized
randomly into four distinct labels are randomly distributed in
a square area of 1200m × 1200m. The distribution of base
stations is shown in Figure 3. In addition, the eight RISs are
distributed randomly on the circumference that corresponds to
the coverage limits of the eight base stations. These RISs with
fixed altitude H = 5 m provide communication forwarding
functions for all requirements within the set area. Each edge
server needs one of the programs to execute the service, and
it is assumed that the server caches programs for the same
amount of time.

In the simulation, we consider the realistic scenario calcula-
tion configurations, which means all the sizes of services and
user tolerance limits are set randomly. Direct links between
servers and devices will be randomly blocked.

Fig. 3. Diagram of the experimental setup.

To demonstrate the benefits of our proposed algorithm, we
compare it with the following baseline algorithms:

1) Random Selection: The system randomly selects servers
in response to user services.

2) Greedy Selection: The system selects the server closest
to users. Alternatively, the system selects the dominant server.

3) GraphDP Selection [17]: The system employs a graph-
based dynamic programming approach to optimize service
packing near edges with a high overlap ratio.

4) The proposed RS3: Consider both the dominant server
and the nearest server with the assistance of RIS.

B. Simulation Result

1) System throughput simulation: We compared the
amount of system completion for user services at different
time thresholds. Figure 4 shows that the ad hoc edge assisted
by RIS can still effectively allocate user services when the
time threshold is small. When the time threshold of the system
is about 200s, the allocation efficiency of our system is about
one and a half times that of greedy and random. With the help
of RIS, the system’s throughput increases significantly as the
time threshold is gradually increased. The server’s completion
rate of user services is maintained at about 80%, reaching a
maximum of 94%.

At the beginning of the figure, the difference in system
service completion for each algorithm is very small. This is
due to the high volume of user services and the fact that
communication delays are not the primary cause of inter-
service conflicts. As the time threshold increases, the advan-
tages of RIS-assisted communication become gradually more
evident. Due to the shorter service delivery time in the RIS-
assisted edge system, more services can be completed within
the allotted time. Additionally, RIS expands server coverage so
that additional users can be allocated to the dominant server.
RIS offers more user allocation access options in the AHE
scenario. Experiments indicate that the server processes more
dominant services with the assistance of RIS, reducing the
amount of time wasted on cache loading. This significantly
increased the throughput of the system.

Fig. 4. Comparative analysis of user service completion.

2) User allocation simulation: We compare the distribution
of users on the server under different methods. Figure 3 depicts
the information regarding user locations for the practical
dataset. Due to the extremely uneven distribution of user
locations and their service attributes in the dataset, servers
in certain regions are subject to a substantial influx of service
requests. Figure 5 demonstrates that Edge Server 3 experiences
significantly greater load pressure than the other servers. This
server handles two to three times as many requests for service
as the other servers. The results of the experiment indicate that



our proposed RS3 scheme can have a significant impact on the
load balancing of services. In the RAHE scenario, the server
with the highest service pressure receives at least 30% relief.
Although the GraphDP algorithm can also increase the sys-
tem’s service throughput, it is evident that its load-balancing
capabilities are insufficient. Our approach can improve the
system’s service completion while managing the user layer’s
cluttered topology. This enhancement significantly reduces the
server stress imbalance resulting from the density of service
distribution in real datasets.

Fig. 5. Results of user allocation under different intervals.

V. CONCLUSION

In this paper, we have presented a RAHE scenario based
on a computing power network. In this case, the network can
improve user access by modifying the access locations of the
allocated services in the event of high service demand. Then,
we have designed a maximum independent set solver based
on graph theory to optimize the maximum service completion
among users. According to simulation results, our method
has improved the unbalanced distribution of services in real-
world datasets while simultaneously enhancing the system’s

service completion. In systems with more users and services,
the service completion rate has reached 94%, relieving 40%
of the load pressure.
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