EASE: EPC as a Service to Ease Mobile
Core Network Deployment over Cloud

Tarik Taleb, Marius Corici, Carlos Parada, Almerima Jamakovic, Simone Ruffino,
Georgios Karagiannis, and Thomas Magedanz

Abstract
The objective of this article is to demonstrate the feasibility of on-demand creation
of cloud-based elastic mobile core networks, along with their lifecycle manage-
ment. For this purpose the article describes the key elements to realize the architec-
tural vision of EPC as a Service, an implementation option of the Evolved Packet
Core, as specified by 3GPP, which can be deployed in cloud environments. To
meet several challenging requirements associated with the implementation of EPC
over a cloud infrastructure and providing it “as a Service,” this article presents a

number of different options, each with

ifferent characteristics, advantages, and

disadvantages. A thorough analysis comparing the different implementation options

is also presented.

obile data traffic has been growing at an

unprecedented rate over the last few years.

According to forecasts from Cisco, mobile

data traffic will grow at high compound annual
growth rates (CAGR) [1]. New mobile applications, high-end
devices, and the almost ubiquitous high-bandwidth coverage
will further drive this significant growth. Mobile operators are
struggling to cope with these increasing data demands coming
from an ever-increasing number of tablets and smartphones.
Indeed, new technologies, such as Long Term Evolution
(LTE), are helping to increase the capacity of radio access
networks (RAN). However, mobile operators are not taking
full advantage of higher transmission rates provided by the
new radio interfaces, placing even greater demands on core
networks to support many diverse devices and applications.
This shortfall may be attributable to highly centralized core
networks and strong dependency on custom hardware compo-
nents. In addition, the current core network components are
not designed with elasticity in mind. Indeed, traffic patterns
can be highly dynamic and unpredictable, and operators are
forced to overprovision components considering peak hours,
keeping them unused during off-peak periods. In this situation
it is difficult to balance active sessions with other less loaded
components in real-time and even more difficult to increase
the components’ capacity based on the real-time demands. On
the other hand, it is also difficult to optimize resources during
non-peak hours. Effectively, this may also lead to resources
being wasted in terms of energy, processing, and network (e.g.

Tarik Taleb is with the School of Electrical Engineering, Aalto University,
Finland (work done while at NEC Europe).

Marius Corici and Thomas Magedanz are with Fraunhofer FOKUS Institute.
Carlos Parada is with Portugal Telecom Inovao.

Almerima Jamakovic is with University of Bern.

Simone Ruffino is with Telecom Italia.

Georgios Karagiannis is with Huawei Technologies.

energy and bandwidth) capacity. The waste of resources is
costly and influences directly the Operational Expenditures
(OPEX).

Nowadays, the network of a mobile operator is typically
built using a variety of network appliances. These include the
network entities for control and data planes, the surrounding
platforms used to filter, control, and charge the services
offered to the end-users, and management functions, as well as
the infrastructure needed to deliver services going beyond pure
connectivity (e.g. application servers or IP multimedia subsys-
tem (IMS)). All these entities are typically based on custom
hardware and need to be statically deployed and configured.
Consequently, this whole environment does not support any
elasticity or on-demand features. The network is typically
dimensioned based on the load foreseen for the next three to
five years and the peak hours. For example, to increase the
network capacity, it requires the deployment of new entities in
specific network sites. Hence, the operation of such a static
network is a costly, cuambersome, and time-consuming process.
Furthermore, in the current LTE/EPC or any other mobile
architecture, any network equipment failure causes tremen-
dous strain on mobile operators, as it may lead to temporary
service outage. Indeed, due to the failure of a network node,
all active services in that specific node may be interrupted.
Consequently, end-users may experience poor quality of the
delivered service, such as voice call interruptions and video
glitches. Moreover, the session re-establishment of impacted
users may generate a significant amount of signaling as new
connections with the end users must be established. This may
create a signaling storm at the mobility management level and
may, ultimately, cause total network breakdown.

The solution to the above problems could be found in the
convergence of mobile networks and cloud. That convergence
creates the capability for mobile operators to use network
function virtualization (NFV) concepts [2], in order to virtual-
ize and decentralize their core network to be able to cope
with the upcoming traffic demands. In this way operators can

78 0890-8044/15/$25.00 © 2015 IEEE

IEEE Network * March/April 2015

create, scale, and deploy network components whenever they
are needed, all in accordance with the particular real-time
traffic conditions. In contrast, cloud platforms are built using
commercial off-the-shelf (COTS) hardware, primarily to maxi-
mize cost-efficiency of the provided services. This type of
hardware is cheaper (i.e. as it benefits from large-scale sell-
ing), homogeneous, and easy to procure, manage, and main-
tain. It has different characteristics from the high-end, highly
specialized hardware upon which the current generation of
mobile core networks (EPC) is built. General purpose hard-
ware does not provide the same level of redundancy of every
physical element and is not equipped with dedicated proces-
sors, for example, for data packet forwarding or for optimiz-
ing processing latencies. The convergence between mobile
networks and cloud is challenging, but can be efficiently real-
ized by building these features on top of COTS.

Moreover, cloud services run a virtualized environment in
which the physical hardware resources are shared. CPU,
memory, storage, and networking are provided in abstract
slices to a set of virtual machines (VMs). VMs represent the
most granular manageable entity, being the basic building
block of every cloud service. Virtualization also provides a
number of benefits, including workload consolidation and
scaling, that is, to allocate more resources to a VM (i.e. verti-
cal scaling) or to allocate more VMs to a service (i.e. horizon-
tal scaling), both providing in the end more computational
power. All of these new features pose new requirements on
the design of an EPC for implementation in a cloud comput-
ing environment and its offering “as a Service” (aaS). These
requirements lead to numerous challenges that need to be
tackled in the design of EPCaaS, as detailed later. To cope
with these challenges, this article presents a number of differ-
ent implementation options for EPCaaS, each with different
characteristics, advantages, and disadvantages. It is worth
pointing out that EPCaaS is an implementation of the 3GPP’s
EPC, and as such will implement all the standardized refer-
ence points and functions, so that, from the perspective of
another legacy EPC or individual EPC legacy nodes, it will
behave transparently as a non-cloudified implementation of
EPC, with full compliance with the 3GPP standards [3]. In
fact, combined solutions (cloud-based and traditional/legacy)
are some of the most interesting use cases.

The remainder of this article is structured as follows. First a
brief overview of the Evolved Packet System (EPS) is provid-
ed, highlighting as well some related research work. The main
EPCaaS requirements and their associated challenges are
then discussed. The following section provides a list of possi-
ble EPCaaS use scenarios, and the next section describes and
compares an imperative number of EPCaaS implementation
options. Then we discuss the management and orchestration
of EPCaaS. The article is concluded in the final section.

Related VWork

Before delving into recent initiatives that are relevant to
EPCaaS, we first give a brief overview of the EPS architecture.
EPS includes both the RAN and EPC networks. EPC has been
designed as a flat all-IP architecture supporting only packet-
based services. EPC aims at providing seamless Internet con-
nectivity between user equipment (UE) and correspondent
applications. EPC separates between the control and the user
data planes, enabling LTE connectivity using the native RAN
— the e-UTRAN (Evolved Universal Terrestrial Radio Access
Network) — or legacy technologies (e.g. UTRAN/GERAN).
E-UTRAN’s main component is eNodeBs (eNBs), which have
two interfaces: the X2 interface used to interconnect eNBs,
and the S1 interface connecting eNBs to EPC (i.e. SI-MME

for control traffic and S1-U for user data traffic). EPC has a
simplified flatter structure, consisting of only a few main enti-
ties: mobility management entity (MME), serving gateway
(SGW), and packet data network gateway (PGW). These enti-
ties are responsible for forwarding the user traffic to and from
the network, by creating one or more channels with the end
user, namely, bearers. The QoS (Quality of Service) level of
each bearer is decided by PGWs. To efficiently deliver packets
in the core network, the UE states, associated with each EPS
bearer (i.e. the signaling radio bearer and the data radio bear-
er), are maintained in the volatile storage (e.g. memory) of
MME, SGW, and PGW (and also in UE). The content details
of the EPS bearer can be found in [3]. The GPRS Tunneling
Protocol (GTP) [4] and Proxy Mobile IP (PMIP) are among
the main communication protocols within the EPC architec-
ture. GTP supports two main components: the GTP-U (GTP
user plane), which is used to transfer user traffic in separated
tunnels for mobility management over S1 and S5 interfaces;
and the GTP-C (GTP control plane), which is used to estab-
lish, update, and maintain the GTP-U tunnels. Signaling
exchanged over the S11 and S5 interfaces are based on GTP-
C. MME uses the S1-AP protocol over the SI-MME interface
to transfer radio and GTP tunneling parameters to eNBs.
PMIP is an alternative solution for GTP in S5 and S2b inter-
faces; the S2a interface also uses PMIP.

Network functions virtualization (NFV) has emerged as an
important topic of inquiry among all major players in the net-
working domain [2]. It aims at offering network services using
network functions implemented in software and deployed in
an on-demand and elastic manner on the cloud. We will men-
tion several recent works on network virtualization enabled by
the concept of Software Defined Networking (SDN) so as to
virtualize mobile network function over an OpenFlow [5] net-
work.

In several pioneering research papers (e.g. [6, 7]), one sees
from-design-to-implementation ideas of how to move toward
software-defined mobile networks. For instance, the authors
in [6] describe an advancement of EPC utilizing SDN that
allows only the control plane to be moved into a datacenter.
In detail, they extend the OpenFlow to allow the GTP control
plane to be implemented as an application on top of Open-
Flow, in this way separating out the GTP control plane and
eventually enabling the entire GTP control plane to be imple-
mented in a datacenter. In [7] the authors go one step further
and introduce the software-defined mobile network architec-
ture that builds on the full decoupling of data and control into
the mobile network user plane and a new control stratum.
The key enablers in their architecture consist of the Mobile-
Flow forwarding engine (MFFE) responsible for the user
plane, and MobileFlow controller (MFC) responsible for the
control plane. Forwarding in MFFE can be fully defined in
software, while the control software can flexibly steer user
traffic to different service enablers that can be distributed
throughout the mobile network. This design is different from
an OpenFlow-based network, as MFFEs are not switch-level
equipment and must support carrier-grade functionality, such
as network layer (i.e. L3) tunneling and flexible charging.

In three recent research works [8-10], virtualization of net-
work functions is furthermore explored. In [8] the authors
present a proof-of-concept implementation of the routing net-
work function over an OpenFlow-enabled network, by exter-
nalizing routing decisions from the actual equipment. The
authors use different scenarios, that is, the separation between
IPv4 and IPv6 routing and offering inter-domain routing
under the OpenFlow network to demonstrate the applicability
of the NFV-powered implementation proposed into actual
production environments. In [9] the authors focus on the vir-

IEEE Network * March/April 2015

79

* Geo-distribution

On-demand creation iy

and lifecycle mgmt. component, EPC)

Migration

3GPP standards compliant

Iz 117 Backward-compatibility

Easier operations

Improve O&M

Requirements

A pool of compute, storage, and
networking

Cloud-native be managed

orchestrates VMs

High availability the hardware (COTS)

(99.999 is a must)

issue?

New components added to a

Scaling (horizontal,

" complex and costly configuration

operations, especially on other
running/legacy components

Challenges

* Inter-VM, intra-DC, inter-DC
Load balancing

Table 1. EPCaaS requirements and challenges.

tualization of EPC. In particular, nodes such as MME, HSS
(home subscriber server), SGW, and PGW, are mapped
according to their functions on four alternative deployment
frameworks based on SDN and OpenFlow. Their finding
points to an easier deployment of those EPC nodes that
involves high data packet processing such as tunneling on the
data-plane network element, that is, realized by an OpenFlow
switch. Hence, they argue for an enhanced OpenFlow network
element, referred to as NE+, which contains additional net-
work functions next to the basic OpenFlow protocol. The
work presented in [10] devises an entire framework for the
creation of end-to-end mobile services, including mobile
transport networks on the cloud, via a joint or separate virtu-
alization of the EPC and RAN. Besides these classical
research studies, research work presented in [11] addresses
the problem of designing and building experimental facilities
to exploit SDN and NFV concepts in the wireless networking
domain. In [11] the authors present EmMPOWER, an experi-
mental testbed offered as an open platform on top of which
novel concepts can be tested at scale.

EPCaaS: Requirements and Challenges

This section introduces the most important requirements asso-
ciated with the implementation of an EPC mobile core net-
work over a cloud infrastructure. As any EPCaaS
implementation shall be compliant with the original 3GPP

* Monitoring (i.e. UE, service instance

Explore other features: incremental
release upgrade without downtime

VM, as the smallest entity that can be

A software platform that controls/

One cannot assume it is provided by

Fault tolerance and resiliency: design

running instance must not require

* Improvements on standard-defined
static and DNS-based mechanisms

* Latency for control plane components

PEifEma e * Throughput for user plane components
Management * Complexity hiding
(i.e. O&M, OSS) * What and how to virtualize?

standards [2, 12], EPCaasS shall be designed to provide
the same levels of availability, resiliency, service quality,
service continuity support, and fault tolerance that are
provided today by traditional solutions, while at the
same time leveraging the benefits of the cloud, in terms
of dynamicity, optimized usage of physical resources,
on-demand provisioning of resources on a fine-grained,
self-service, and near real-time basis. As such, EPCaaS
shall be designed in a way that facilitates:

e Scaling (horizontal and/or vertical).

* Load balancing among VMs, across servers, and
across datacenters (DCs) to meet a variable workload
in near-real time.

* VM migration and access to a shared backend
database (persistent/non-persistent data).

* High availability of the components to provide fault
tolerance and resiliency.

EPCaaS shall also support compatibility with legacy
systems, supporting a smooth migration path. Most
importantly, it shall incur no additional latency to the
traffic of both user data and control planes. EPCaaS
shall also support the dynamic adaptability of EPC func-
tion instances to topological changes in near-real time,
monitoring their location, workload, and stability [13, 14].
It shall also support incremental software/release
upgrades on EPC function instances without any down-
time in service.

Given the above requirements, several fundamental
design issues and challenges shall be taken into account
when designing EPCaaS. These give rise to the follow-
ing fundamental questions:

* What are the EPC components that can be virtual-
ized (i.e. deals with complexity of EPC)?

* How are these components virtualized, that is, what
are the characteristics and number of VMs on which
each virtualized EPC functional component can be
deployed?

* How to interwork, that is, not to break interoperabil-
ity with legacy EPCs and other legacy elements, in
particular NMSs (network management systems)?

* How to manage and orchestrate EPCaaS as a whole and in
an end-to-end fashion covering both the service layer (i.e.
packet data network (PDN)) and RAN [15]?

Table 1 summarizes and categorizes the most important
requirements of EPCaaS and associated challenges.

EPCaaS: Scenarios

This section describes a set of important use scenarios of
EPCaaS. The primary use case consists of a cloud-enabled
mobile virtual network operator (MVNO). MVNO usually refers
to the provision of mobile communication services without the
need to own a mobile network infrastructure. It is an important
player in the mobile telecommunication industry. MVNOs need
to perform different functions that can either be handled in-
house by an MVNO itself or outsourced to a mobile network
operator (MNO), meaning that MVNOs can adopt different
operating models. This combination of different functions varies
from a simple reselling communication services model to a more
complex model, which combines the full range of functions of an
MNO, except RAN. In the cloud-based context, a cloud-enabled
MVNO means addressing the issue of running services provided
by various stakeholders on top of a cloud infrastructure, with the
aim of incorporating a minimal function of maintaining a busi-
ness relationship with the end-users, or a more extensive function
of building a specific MVNO type by integrating services provid-
ed by (one or all) of the stakeholders involved.

80

IEEE Network ¢ March/April 2015

In contrast to an MVNQO, an MNO owns a mobile network
infrastructure, which includes implementation of all relevant
network entities, from EPC itself, through the surrounding
platforms used to manage and charge the services offered to
the end-users, to the infrastructure needed to deliver services
going beyond pure connectivity. The cloudification of EPC
and of the aforementioned surrounding platforms creates the
opportunity for an MNO to move to a completely different
network paradigm, where the network functions (e.g. MME,
PGW, SGW, and HSS) that are used to be implemented on
physical boxes and deployed on specific points of presence
(PoPs), become workloads running on top of a cloud infras-
tructure. The workloads, instantiated in the cloud, are not
statically bound to a specific location, but can be transparently
moved between physical servers located in the same datacen-
ter or across datacenters, without causing any service disrup-
tion to end-users. In addition to the obvious advantage of
reducing the heterogeneity of deployed hardware, this
approach allows the evolution from today’s mostly static
deployments to highly dynamic network implementations,
where the network topology, configuration, and dimensioning
can be changed over time depending on a variety of factors. It
also offers advantages for end-users in terms of improved
quality of experience by introducing the concept of dynamic
workload placement. Nevertheless, the most significant end-
user advantage should be the reduction in the service fees.

An important use scenario furthermore is an end-to-end
(e2e) service, which is a composed service that comprises sub-
services that are combined together with additional logic and
configuration (integration) in order to make a new end-to-end
service offering. Typically, in mobile networks there are three
main service domains: wireless access service or RAN domain;
EPC service or core network domain; and packet data net-
work domain. These service domains can also be offered as
compute and storage services as part of a datacenter domain.
It is possible to offer these services in an integrated, orches-
trated, and uniform fashion, to a stakeholder (e.g. mobile
application developer) that offers application services,
referred to as the application services provider (ASP), directly
to its service consumers (or individual end-users). These ser-
vices can be offered with additional support services, such as
an operations support system (OSS) and business support sys-
tem (BSS).

EPCaa$ Implementation Options

This section describes the development of an efficient EPCaaS
architecture to be deployed, in an on-demand and elastic
manner, on the cloud. It also provides an overview of an over-
all supporting architecture. For this purpose, a set of consid-
erations were identified regarding the suitability for running
the specific 3GPP EPC functions in a cloud infrastructure,
resulting to two high-level virtualization models (as shown in

Fig. 1):

e Full virtualization: all control plane (CP) and user plane
(UP) functional entities are implemented in VMs. User
data must “traverse” hardware, hypervisor, and operating
system of VMs. Routing and processing of UP is fully “con-
tained” in the cloud, controlled and managed by the man-
agement and orchestration framework described later.

e Partial virtualization: only control plane functional entities
are implemented in VMs, while user traffic is forwarded
and handled by high performance hardware switches. The
orchestration framework, described later [15], manages CP
VMs and controls the forwarding of the user plane on the
hardware switches, for example using SDN, for example,
OpenFlow.

The two approaches stem from the original design of EPC
whereby the intention was to clearly separate user data pro-
cessing functional entities (e.g. SGW and PGW) from control
plane functional entities (e.g. MME, HSS, and policy and
charging rules function (PCRF)), that is, those responsible for
user mobility management, location update, security, and data
session set-up. Control and user data plane entities usually
have different architectures to cope with different require-
ments. Currently, both types of entities are implemented in
hardware-based devices, but specialized for the different types
of processing. In particular, S/PGWs are designed to achieve
high throughput of user packets, while performing traffic anal-
ysis and applying filtering policies. MME and other control
plane entities usually have fewer requirements in terms of
throughput capacity, but stricter requirements in terms of pro-
cessing latency and computation. For this reason, control
plane entities can be considered as being more suitable to be
virtualized, leveraging the high availability of computing
resources in the cloud. Other drawbacks of the virtualization
of the user data plane are related to the large amount of traf-
fic coursed and the routing performance advantages of spe-
cialized hardware in comparison to COTS. However, this does
not mean that user data plane entities are not suitable to be
virtualized in specific scenarios.

In the remainder of this article the focus will be on the full
virtualization approach, in order to demonstrate that both
throughput-demanding services and control/latency-
sensitive/computational-intensive services can be supported
over cloudified mobile core networks.

As stated earlier, EPCaasS is an implementation of 3GPP
EPC. We do not envision adding any new functional entity to
the 3GPP EPC standard architecture, nor do we envision mod-
ifying interfaces between EPC nodes. We only describe how
EPC can be implemented and provided “as a service” in a
cloud computing environment, providing compute, storage,
and networking as atomic services. We note that EPCaaS is an
example of a composed type of service as its entities, used to
represent aspects of service orientation, are a service, a service
instance (SI), and a service instance component (SIC). There-
fore, we define as an implementation option a “mapping”
between EPC functional entities and service instance compo-
nents (SIC), which are eventually mapped on physical/virtual
resources. In the following, we will detail the architecture ref-
erence models of four implementation options envisioned for
EPCaaS, as shown in Fig. 2, highlighting some observations we
made about our initial practical implementations [16].

I:1 Mapping — Each 3GPP EPC functionality is mapped 1:1
to a running VM (Fig. 2a), which implements all functions
and 3GPP interfaces of that specific entity. For example, one
MME is implemented in one running VM, and one PGW on
another running VM. This implementation version is especial-
ly beneficial for an immediate translation of an EPC to a
cloudified version, provided indeed that the legacy software
can be deployed on top of a VM. The functional elements for
this architecture directly follow the 3GPP standards. The ref-
erence points within an SIC and between an SIC and the
external entities are the ones defined by 3GPP, thus not
requiring any adaptation in terms of communication protocols
or state machines.

In this architecture each running VM is state-full in regards
to the individual service consumers; that is, it stores the data
of the session state for the users, including the UE mobility
context, the bearer context, and the security context. The data
is valid only for the duration of the user session, not being
permanently stored. It is worth noting that some sessions, such
as basic connectivity, may have a long duration, for example,

IEEE Network * March/April 2015

81

Control plane (GTP-C,
session management,
mobility etc.)

+
user plane (GTP-U)

Full virtualization

Control plane (GTP-C,

session management,
mobility etc.)

Control
/' protocol

User plane -

(GTP-U)

Physical L2/L3 switch

Partial virtualization

Figure 1. Virtualization approaches: Full vs. Partial EPC Virtualization.

for as long as a device is connected to the network, which is
currently increasing with the always-connected mobile devices.

Every running VM requires a specific configuration of
EPC-related parameters (e.g. GPRS timers, access point
name (APN) definitions, and pre-emption policies), a specific
configuration of networking parameters (i.e. IP addresses on
the virtual interfaces), and interfaces toward the O&M systems.

To support SIC elasticity, a new component of the same
type as the previous ones may be started, moved, or stopped.
The introduction of the new component in the system can fol-
low an automated version of the legacy hardware deployment
procedures, not requiring modifications on the legacy element
management systems (EMSs).

The 1:1 mapping architectural option is conceptually sim-
ple, as it requires no major changes to the current deployment
model of EPC (one function—one hardware device), and is
also the first one we have practically realized [16]. However, it
should be noted that this architectural option has some disad-
vantages. First, the automatic configuration of virtual EPC
components presents a scalability challenge. Each virtual com-
ponent must be configured with a different set of 3GPP-spe-
cific parameters, and when the SIC needs more capacity and
more virtual components are instantiated, scalability problems
may arise in managing and maintaining the configuration of a
high number of VMs. In the 1:1 implementation described
in [16], a complete EMS system had to be developed specifi-
cally for this type of operation. Moreover, there are also
impacts on external nodes (real or virtual). For instance, when
adding a new MME to an MME pool, a configuration change
is needed on all eNBs managed in that pool and this, in turn,
poses unexpected requirements on EMSs of eNBs, which
today have static behaviors. Specifically, eNBs should be able
to recognize dynamic IP address allocations to MME.

Second, instantiating new virtual components to increase
capacity is a relatively straightforward operation (instantiate a
new virtual component and configure it), but decreasing
capacity by turning them off (as the load decreases) is a com-
plex operation, because virtual components are state-full; that

is, each of them contains the state of active user sessions, and
the virtual components cannot simply be shut down without
impacting ongoing user sessions. Transferring this user state
to other virtual components is theoretically possible. For
example, 3GPP has defined a MME relocation procedure, but
these procedures imply additional signaling overhead.

Finally, each virtual component should be managed, as any
other core network node in any operator network, by one (or
many) external NMS. During scaling, when the number of
components increases, there can be additional scalability
requirements on the O&M itself, to be able to scale at the
same speed. From our implementation perspective [16], NMS
and the management and orchestration have comparable
complexity in terms of controlling the system deployment and
configuration.

I1:N Mapping — Each 3GPP EPC network function is decom-
posed into multiple elements of the following three types,
which collectively build a virtual component pool (Fig. 2b):
 The front end (FE), which takes care of the communication
interfaces toward other entities. It terminates specific inter-
faces and protocol state communication between entities

(e.g. it terminates GTP protocol).

* A stateless virtual component, named worker (W), which
actually implements the logic of that specific EPC function-
al entity. Each worker is logically connected to a storage
named “operational data storage,” which stores log files
and possibly other information needed for the basic opera-
tions and troubleshooting of the service.

* The state database (SDB) contains user session state. This is
the central point where the state information handled by
the workers (W) is stored. This feature makes the workers
(W) stateless.

This implementation model, as shown in Fig. 2b, follows
the multi-tiered web services deployment model for cloud-
based applications. Each network function instance of EPC is
therefore implemented by instantiating multiple virtual com-
ponent pools, each one corresponding to a former 3GPP EPC

82

IEEE Network ¢ March/April 2015

- 1:1Mapping ----------,

~——~ Discovery
‘ R 1
! ' VM : 3 3
e —— y ‘
7~ . VM 33 VM ‘
aling | 16
SGW k- ‘=L PGw || PDN
M DataL VMI
~ 1
(a)
N:1 Mapping -

e e Il B

Figure 2. Architecture reference models of four implementation options envisioned for EPCaaS. a) 1:1 mapping; b) 1:N mapping;

¢) N:1 mapping; d) N:2 mapping.

functional entity. Each component pool is seen by an external
entity as a single EPC node, terminating all the 3GPP stan-
dard interfaces of that specific entity. As a side effect, only
one configuration of EPC-specific parameters is needed per
pool. This design simplifies O&M from external nodes, lower-
ing the number of logical management connections compared
to the 1:1 mapping.

Workers share the same EPC-specific node configuration
and are state-less. As such, they can scale out/in without
impacting external connected peers and independently from
other VMs, while all the state information is stored and pro-
vided by SDB. Therefore, auto-scaling rules can be set for
each pool independently from other pools and horizontal scaling.

The scaling of SDB, which is a state-full component, is pos-
sible although it requires careful design, for example, for the
choice of the database (e.g. SQL or NoSQL). Moreover, load
balancing can be implemented in a more granular way (with
respect to 3GPP mechanisms, which are based on DNS),
exploiting all available workers. Additionally, multiple front
ends for the same workers may be placed in the network scal-
ing based on current 3GPP mechanisms.

A final important aspect of this architecture is that it
enables high availability of EPCaaS as a whole, because a
state-less component can fail without causing disruption of the
ongoing user sessions. This provides the required robustness
and resiliency to the failure of a VM as well as physical
servers (as long as the mapping between physical and virtual
machines is cautiously performed). However, there are some
possible disadvantages to this implementation option. First,
there may be possible synchronization issues between the dif-
ferent virtual components, which will result in serialization of

the access to SDB, deterring the overall system performance,
especially when SDB is acting as a distributed storage. Addi-
tionally, the processing of a specific control or data plane
message has to pass through multiple nodes — at least one
FE, one worker, and one SDB, which increases the design
complexity since it requires a specific level of synchronization
between these components and may introduce longer process-
ing delays.

Due to the high complexity of the design, expected high
delays as well as due to the lack of readiness to support such
features in the current available software, we have decided to
implement such a 1:N architecture only for specific dedicated
EPC components which relate to EPCaaS support to non-
3GPP access networks, not presented in this article [16].

N:T Mapping — In the N:1 mapping option of EPCaa$S (Fig.
2c), all the functional entities of EPC are collapsed into one
virtual component, named merged-EPC, which fully imple-
ments all EPC components. It has the functionality of all con-
trol and user plane functional entities of EPC — MME,
SGW, PGW, HSS, and PCRF — conceptually acting as a sin-
gle application server providing the whole connectivity service.

Each subscriber (or a group of subscribers, depending on
the maximum capacity of an SIC) is served by one merged-
EPC containing all the specific user session state information.
Since all interfaces between EPC functional entities serving
the same subscriber are contained in one virtualized compo-
nent, it is straightforward to optimize internal processing of
control and user plane messages for that particular subscriber.
Specifically, for each 3GPP EPC interface, the messages can
be directly forwarded between processes implementing the

IEEE Network * March/April 2015

83

Mapping option

Basic concept

Rationale

Advantages

Disadvantages

1:1

Each EPC component is
mapped to a VM

Maintaining the complete
consistency with legacy

Simple

* Scaling is not easy:
automatic configuration
and O&M are complex

* Design is not fault-
tolerant: if a VM fails,
all the sessions are gone.

1:N

Each EPC component
becomes a pool of
resources

Based on the web services
paradigm

* Stateless design facilitating
—Scaling

—High availability

—Load balancing
Complexity hiding

Easy backward
compatibility

Possible synchronization
issues between compo-
nents

Possible larger processing
delay due to passing
through multiple nodes

N:1

Processing for an
end-device happens in a
single component

Low delay, high
parallelization using
uniform functions

* Minimal number of
interfaces

* Highly low delay
processing

* High parallelization of
the same component

e Less granular scaling
* Mixture of control and
data planes

N:2

Same as N:1 with
control-data plane split

Low delay, high
parallelization, control-
user plane split

* Control and user data
planes split

e Stateless design

* Fewer interfaces

e Scaling is less granular
than 1:N

¢ Scaling of user plane
component is not
trivial

Table 2. Comparison among the four envisioned EPCaaS mapping options.

logic of the different EPC components, thus making redun-

dant at both interface ends the following functionality:

* The reference point state machine (e.g. S11, S5, and S6a)
synchronizing the end user state.

* The communication protocol state machine (e.g. diameter,
GTP, and S1-AP) enabling consistent communication
between the two entities.

* The encoding and decoding of the communication messages
into the specific protocol format, enabling the transfer of
binary self-designed data structures.

In a more radical format, the message queue, which enables

the forwarding between the different worker processes imple-

menting the different EPC components, may be further
merged into a single worker procedure, thus not requiring any
internal synchronization at all.

Each merged-EPC has a separate address space for sub-
scribers and separate storage for subscriber data and session
data. It is worth noting that only local storage is needed in
this option, and not a fully-fledged database system, unlike
the 1:N option, which places higher performance and resilien-
cy requirements on the database.

Having all EPC interfaces internal to the single merged-
EPC, the only remaining external interfaces are the ones
toward the PDN to which the user is connected (e.g. Internet
and SGi), RANs (e.g. eNBs and S1), and toward the O&M
and billing system of the cloudified EPC service provider.

However, it is worth noting that this option, while achieving
the highest possible optimization as a software realization of
EPC, presents management problems similar to those high-
lighted for the 1:1 mapping option. In particular, management
of a potentially high number of virtual components can pose
scalability challenges on both management entities and exter-
nal/legacy nodes and networks, although this issue can be alle-
viated by having all components of the same type (absolute
uniformity of the network). Moreover, subscriber data man-
agement is highly complicated in this option, as the (before
centralized) HSS is actually split into smaller databases, each
containing information about a small number of subscribers.
This indeed poses hard scalability requirements on the (exter-
nal) provisioning platform. Another important limitation con-
sists in the fact that interfaces between EPC components
become internal, making it impossible for an operator to use

multi-vendor solutions. Each EPC has to be provided by a sin-
gle vendor.

In order to alleviate these limitations, one implementation
option is to combine the N:1 mapping with a 1:N design
through the introduction of a load balancer and a user state
database for the single merged-EPC component, and through
this to use the advantages of the 1:N design for scalability and
state sharing, and the advantages of the N:1 design for pro-
cessing simplicity, management uniformity, and short service
delay. For the sake of simplicity, this hybrid implementation
model is not further presented.

N:2 Mapping — The N:2 implementation architecture
model, shown in Fig. 2.d, is a refinement of the previous N:1
mapping wherein the control and data planes are split. A split
may be necessary due to the different processing needs of the
two types of components. For example, for each message
received, the control components fetch the state of the rele-
vant UE from the subscriber state repository, analyze the
message, make different access control and policy based deci-
sions, and then update the specific state. Instead, for the data
path components, the state should not be modified and the
data packets should be immediately forwarded. Additionally,
from the UE perspective, the control procedures may have
longer delays compared to the user data path forwarding.

For the N:2 implementation option, the following virtual-
ized components are defined:

* The state database (SDB) has the same functionality as SDB
of the 1:N option.

* A control (CTRL) component encompassing all the control
functions of EPC. In particular, the CTRL functions include
the functions of MME, PCRF, HSS, and the control plane
relevant functions of SGW and PGW.

* A switch (SW) component handling only user data packet
processing and policy enforcement. Thus, it functions as
SGW-U, PGW-U (i.e. user plane functions of S/PGW), or a
combination of the two.

The switch component could remain non-virtualized and
reside outside the cloud; this would result in an implementation
of the partial virtualization approach presented earlier (Fig. 1).

This implementation architecture enables a large part of
the advantages of the N:1 option, including short delay pro-

84

IEEE Network ¢ March/April 2015

cessing, a small number of interfaces, and high uni-
formity, with the ability to separately handle con-
trol and user plane messages. However, it shares a
large part of the limitations of the N:1 option,
especially the scaling of the user plane compo-
nents.

This implementation option was practically real-
ized by using the Fraunhofer OpenEPC toolkit and
the adapted management and orchestration of the
1:1 option [16]. Although less flexible than the 1:1
option, due to the very low delay of the control
and user planes, the N:2 option presented large
advantages in terms of complexity management,
thus making it more suitable for fast deployments
of customized core networks.

For the sake of illustration and readability,
Table 2 compares the four envisioned implementa-
tion options, briefly describing the basic concept of
each and the rationale behind it, highlighting the

Monitoring

Other SOs

Service manager I

Configuration and
e | scaling policies

S
EPCaas SO

-| Triggers SO-D ITG

‘ SO-E STG

VMs EPC
configuration nfiguration

| Cloud controller I

s
HSS

VM

advantages and pitfalls of each. It should also be
noted that the implementation options described
above may be grouped into other hybrid versions,
wherein for each subscriber one of the parallel
running implementations is selected, for example,
depending on its subscriber profile. Additional implementa-
tion options may be further considered, especially in regard to
the transfer of part of the functionality to what is currently
considered as the radio access network and to its virtualiza-
tion.

Management and Orchestration of EPCaaS

The entire lifecycle management of EPCaasS is performed by
the service orchestrator (SO) as part of the architecture
described in [15] and schematically depicted in Fig. 3. In this
architecture, all functional elements are implemented as ser-
vices, implemented, in turn, by resources that operate ser-
vice-related entities. These entities are managed in a
common consistent fashion regardless of their category by
three key architectural entities. The service manager (SM),
which offers to enterprise end users (EEUs), for example,
MNOs, multi-tenant capable services, and an external inter-
face, both programmatic and visual. Moreover, the SM is
used in two dimensions: the business dimension, which
encodes business agreements, and the technical dimension,
which manages the different SOs of a particular tenant. The
SO embodies how a service is actually implemented and is
controlling the complete end-to-end orchestration of a ser-
vice instance, including creation and scaling. The SO moni-
tors metrics related to the service instance. The third key
architecture entity is the cloud controller (CC), which is
used to deploy, provision, and dispose SOs. Moreover, the
CC is responsible for cloud infrastructure resource provi-
sioning and deployment, together with the management of
virtual resource coordinating with the SO. The technical life-
cycle of a service is controlled by the management and
orchestration framework associated with the particular ser-
vice, such as EPCaaS.

Indeed, for provisioning, orchestrating, and managing
EPCaaS, interactions among the SM, SO, and CC must be
considered, which are developed as part of the cloudified ser-
vice enablement platform and contextualized specifically for
EPC; the role of each is detailed below. EPCaaS follows a
common lifecycle model based on the lifecycle of telecom ser-
vices as standardized by TMF (TeleManagement Forum),
including the following stages:

» Design: at this stage the service’s technical design is carried out.

Figure 3. High level diagram of the EPCaaS service orchestrator’s archi-
tecture.

* Implement: with a service design, the service is implement-
ed. This entails the implementation of the SM and SO.

e Deploy: in order for the SM to take requests to create new
service instances, the SO needs to be deployed using the CC.

* Provision: this phase is when the SO is instantiated and begins
to create the services necessary to satisfy the SO’s needs.

* Runtime and operation: the SO has completed its job of
providing the corresponding tenant with the requested ser-
vice instance and is now monitoring and managing the ser-
vice instance. It is during this step when scaling in and out
of components is carried out. Scaling in occurs when a com-
ponent is releasing resources; scaling out occurs when new
resources are allocated to a component.

* Disposal: the service instance’s sub-components are
destroyed and deleted.

The SO makes decisions and manages the initial provision-
ing and scaling of EPCaaS. A high-level diagram of its archi-
tecture is shown in Fig. 3. Details of its initial implementation
are provided in [16]. The SO includes the following high-level
functional blocks:

* SO decision (SO-D): functional entity deciding on the EPCaaS’s
virtual component deployment during the initial EPC provision-
ing and the runtime phases. SO-D includes a policy engine that
is able to customize the specific EPCaasS service instance accord-
ing to the requirements of the EPC customer (e.g. MVNO).

* SO execution (SO-E): functional entity handling the
EPCaaS deployment or disposal management. This entity
communicates to the CC, for the new EPCaaS SIC deploy-
ment, as it needs to transmit configurations to the CC for
running or stopping a specific SIC, including the additional
information that is required at the start-up of SIC. Addi-
tional to the provisioning and the configuration of the virtu-
al machines running the EPCaaS components, SO-E has
the role to configure the EPCaaS software running on these
virtual machines. For this purpose, it directly communicates
with the EMS collocated within the same virtual machine
with the EPC components.

e Infrastructure template graph (ITG): the infrastructure
graph is a data structure that contains the topology of the
hosts underlying the EPCaaS instances. ITG has the role to
provide information on the substrate for the received
parameters and for the decisions contextualizing SO-D to a
specific instance.

IEEE Network * March/April 2015

85

NFV management and
orchestration
Os-Ma :
V.- OSS/BSS ! —{ Orchestrator :
E j S Se-Ma : I
] i ervice, and infrastructure |) !
0 == description p p
: i i 40r-Vnfm :
p— ——— - ;
P EMS 1 EMS 2 EMS 3 ! Ve-Vnfm ! E
o : . S VNF :
o - —_ —_ g i | manager(s) ;
P UNF 1 VNF 2 UNF3 | 5 1 orvi
CI S I . - VR-Nf m e - ; Vi-Vnfm :
| NFVI E :
5 Virtual Virtual Virtual i :
E computing storage network I :
: — Nf-Vio E
E irtua |za.t|on ayer l_ } . Virtualized — :
: VI-HaI i | infrastructure g
z ® ' manager(s) g
‘ Hardware resources i :
eeqe Computing Storage Network : :
hardware hardware hardware p !
E)c()ei;g:lon reference ___I___ Other reference points IF\)/Ic;aiLr}SNFV reference

Figure 4. ETSI NFV architecture (copied from [17]).

* Service template graph (STG): STG is a data structure that
describes the current EPCaaS SIC topology as deployed on
top of the infrastructure, including the network connec-
tions, the interfaces, and the resources consumed.

As stated earlier, the EPCaaS SO makes decisions based on
various inputs, that is, triggers, STG, and ITG information, as
well as on internal policies for the specific EPCaaS of EEUs.
The triggers that the EPCaaS SO receives may include the
following:

» Explicit requests from the SM: the SM may request a new
EEU service topology or may change policies and parame-
ters for instantiated and automated runtime service.

* Triggers from other SOs: other SOs transmit information on
STG modifications of other services cooperating with the
EPCaaS services (e.g. RAN as a service (RANaaS)) provid-
ed by the EPCaaS SO.

* Triggers from supporting services: a monitoring service may
notify the SO on passing the load thresholds, both high
and low. The SO may be notified about the impossibility to
fulfill the service level agreement (SLA) of running
EPCaaS. Additionally, the SO may receive explicit notifica-
tions on the current resource availability to be consumed
by an EPCaasS instance, optionally, along with billing infor-
mation.

The CC supports the deployment, provisioning, and dispos-
al of SOs. For this purpose, it is able to instantiate virtual net-
works, to instantiate virtual machines, to connect them to the
virtual networks, and to dynamically allocate to them IP
addresses. The CC functionality acts as a wrapper toward the
specific service deployments of the northbound interface of
OpenStack, the de-facto open source standard for cloud com-
puting research activities [15].

The ETSI NFV Industry Specification Group (ISG) was
formed to analyze the issues of the virtualization of traditional
network functions. The working group has released the first
version of their reference architecture [17], along with a termi-
nology document [18]. Although the definition of both the
architectural functional entities and the reference points is an
ongoing effort, it is worth analyzing here the current ETSI
NFV management and orchestration (MANO) framework and
comparing it to the architecture described above. Figure 4 rep-
resents the ETSI NFV architecture: a complete description is
out of the scope of this article, but can be found in [17]. The
architecture, depicted in Fig. 3, follows and extends the current
MANO framework. Indeed, compared to MANO, the
described architecture is based on a more granular approach
to functionality, enabling a large set of heterogeneous services
to be composed into a single virtual network deployment,
enabling turn-key solutions for end-to-end communications.
Effectively, ETSI NFV does not explicitly address service-ori-
ented concepts, although a VNF could be considered as the
instantiation of a service (i.e. a service instance in the architec-
ture described herein), composed of a single VM or of multi-
ple VMs, whose interconnection is defined by a service graph.
Table 3 details a possible mapping between our envisioned
architectural elements and the ETSI NFV elements. The
aggregation of the new core network functions, namely the
SM, SO, and CC, and the cloud-based systems, such as Open-
Stack, has the exact functional role as the ETSI MANO frame-
work. For instance, the EPCaaS SO described above represents
the MANO virtual network functions manager (VNF Manag-
er), being one of the initial practical implementations of such a
solution, proving that the NFV MANO architecture is feasible
for further production. Additionally, our envisioned functions

86

IEEE Network ¢ March/April 2015

Proposed architecture

ETSI NFV architecture

Service instance
Service instance component

Service orchestrator

Service manager

Cloud controller

OpenStack,?
with extensions for metering

SO bundle

VNF.

VNF component (if the VNF is composed by multiple VMs, otherwise there is a one-to-one mapping
between SI/SIC-VNF/VNF component).

VNF manager, but SO also has some functions in common with the ETSI NFV orchestrator.

No corresponding entity; SM is actually a higher level entity, which EEUs interact with (also possibly
through a GUI). Such interaction is not in the scope of ETSI NFV. However, some SM functions can be
covered in the orchestrator (namely the realization of "network services" mentioned in its definition).

No corresponding entity; CC is designed to provide an environment where SOs run with an SDK for SO
implementation. It acts basically as an “actuator” of the SO logic, but, besides atomic services, it also
manages support services and network connectivity. Its functions could be covered by an interaction of
VNF manager, virtualized infrastructure manager, and orchestrator! together.

Virtualized infrastructure manager.

Service, VNF and infrastructure description; ETSI NFV definition of this information model is vague, but
it contains data similar to the ones contained in SO bundle (apart from the SO code, which is CC specif-

network connectivity.

ic). It is worth noting that STG and ITG seem to be a super-set of the VNF-FG, which only deals with

1 ETSI NFV orchestrator has in fact an interface towards virtualized infrastructure manager (Or-Vi); envisioned CC has also an interface

towards “the Cloud.”

2 OpenStack is not an element of the envisioned architecture, but rather a reference technology. It has been included in the table since it
may be an example of technical realization of an ETSI virtual infrastructure manager. Other relevant examples could be VMware

vCloud director.

Table 3. Comparison among the four envisioned EPCaaS mapping options.

add a northbound interface through the SM toward the end-
users of cloud services that is not in the scope of ETSI, as cur-
rently NFV mainly addresses single-operator environments. In
this vein it is worth noting that the SM provides an easy means
to comprehend and to adapt the EPCaasS structure requiring
medium skill level for administration. Since a full, precise
mapping of the two architectures is not possible, we are not
analyzing here the mapping of the reference points. However,
it can be noted that some interfaces could be mapped on our
envisioned reference points. For example, Vi-Vnfm corre-
sponds roughly to the southbound interface of the CC, and
Ve-Vnfm corresponds to the service-specific interfaces
between SICs of EPCaaS services and SO.

Conclusion

Mobile operators are in a highly dominant and advantageous
position as they “own” the network and thus can provide
guarantees to services that no other cloud service provider can
do so far. However, they are not exploiting the situation to
their advantage. Indeed, they need to leverage the cloud and
understand how to adapt to cloud technologies. Understand-
ing this, the cloudification of mobile core networks may be
the first step in unlocking this potential. In this vein, this arti-
cle discussed the feasibility of “cloudifying” mobile core net-
works, in particular EPC as specified by 3GPP, highlighting
the requirements and challenges associated with this vision of
EPC as a service. For that, the architectural composition of
EPCaaS has been demonstrated along with a number of dif-
ferent implementation options. Importantly, each implemen-
tation option is thoroughly motivated, each with different
characteristics, advantages, and disadvantages, because they
need to cope with different challenges associated with an on-
demand creation of a cloud-based elastic EPC service. Fur-
thermore, the article introduced the EPCaaS management

and orchestration platform that provides a way to manage
network functions very similarly to IT application services,
that is, following a service-centric approach, facilitating
automation, control, and management of the service itself. In
particular, it enables the EPCaaS composition and orchestra-
tion as well as orchestration across multiple domains and service
types. While this article provides a concise overview on EPCaaS
and its challenges, further details can be found in [16, 19].

Acknowledgments

The research work presented in this article is conducted as
part of the Mobile Cloud Networking project, funded by the
European Union Seventh Framework Program under grant
agreement number [318109].

References

[1] “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 20132018,” White Paper, Feb. 2014.

[2] Authored by network operators, “Network Functions Virtualization: An
Introduction, Benefits, Enablers, Challenges, & Call for Action,” Oct.
2012.

[3] 3GPP TS 23.401, “General Packet Radio Service (GPRS) Enhancements
for Evolved Universal Terrestrial Radio Access Network (E-UTRAN)
access.

[4] 3GPP TS 29.060, “General Packet Radio Service (GPRS); GPRS Tunnelling
Protocol (GTP) across the Gn and Gp interface, Rel. 12, March 2014.

[5] N. McKeown et al., “OpenFlow: Enabling Innovation in Campus Net-
works,” SIGCOMM CCR, vol. 38, no. 2. ACM, 2008, pp. 69-74.

[6] J. Kempf et al., “Moving the Mobile Evolved Packet Core to the Cloud,”
Proc. WiMob, Barcelona, Spain, 2012.

[7] K. Pentikousis, Y. Wang, and W. Hu, “MobileFlow: Toward Software-
Defined Mobile Networks,” IEEE Commun. Mag., vol. 51, no. 7, Jul.
2013, pp. 44-53.

[8] J. Batalle et al., “On the Implementation of NFV over an OpenFlow Infras-
tructure: Routing Function Virtualization,” Proc. 2013 IEEE SDN for Future
Networks and Services (SDN4FNS), Trento, ltaly, Nov. 2013.

[?] A. Basta et al., “A Virtual SDN-Enabled LTE EPC Architecture: A Case
Study for S-/P-Gateways Functions,” Proc. 2013 IEEE SDN for Future Net-
works and Services (SDN4FNS), Trento, ltaly, Nov. 2013.

IEEE Network * March/April 2015

87

[10] T. Taleb, “Towards Carrier Cloud: Potential, Challenges, & Solutions,”
Proc. IEEE Wireless Commun. Mag., vol. 21, no. 3, Jun. 2014. pp.
80-91.

[11] R. Riggio, T. Rasheed, and F. Granelli, “EmPOWER: A Testbed for Net-
work Function Virtualization Research and Experimentation,” Proc. 2013
IEEE SDN for Future Networks and Services (SDN4FNS), Trento, ltaly,
Nov. 2013.

[12] 3GPP TS 22.101, “Service Aspects; Service Principles,” Rel. 13, Dec.
2013

[13] T. Taleb and A. Ksentini, “Gateway Relocation Avoidance-Aware Net-
work Function Placement in Carrier Cloud,” Proc. ACM MSWIM 2013,
Barcelona, Spain, Nov. 2013.

[14] M. Bagaa, T. Taleb, and A. Ksentini, “Service-Aware Network Function
Placement for Efficient Traffic Handling in Carrier Cloud,” Proc. IEEE
WCNC 14, Istanbul, Turkey, Apr. 2014.

[15] MCN D2.2, “Overall Architecture Definition, Release 1,” EU MCN Deliv-
erable D2.2, Oct. 2013

[16] MCN D4.2, “First Mobile Network Cloud Software Components,” EU
MCN Deliverable D4.2, May 2014.

[17] Network Functions Virtualisation (NFV); Architectural Framework. GS
NFV 002: http://www.etsi.org/technologies-clusters/technologies/nfv

[18] Network Functions Virtualisation (NFV); Terminology for Main Concepts
in Nva;, GS NFV 003: http://www.etsi.org/technologies-clusters/technolo-
gies/n

[19] MCN D4.1, “Mobile Network Cloud Component Design,” EU MCN
Deliverable D4.1, Oct. 2013.

Biographies

TARKK TALEB (S04, M'05, SM'10) received the B.E. degree (with distinction) in
information engineering and the M.Sc. and Ph.D. degrees in information sci-
ence from Tohoku University, Sendai, Japan, in 2001, 2003, and 2005,
respectively. Dr. Taleb is a professor at the school of electrical engineering,
Aalto University, Finland. He has been a senior researcher and Third- Genera-
tion Partnership Project Standardization Expert with NEC Europe Ltd., Heidel-
berg, Germany. He was then leading the NEC Europe Labs Team, working on
research and development projects on carrier cloud platforms. Prior to his work
at NEC, he worked as assistant professor at the Graduate School of Informa-
tion Sciences, Tohoku University. His current research interests include architec-
tural enhancements to mobile core networks (particularly 3GPP), mobile cloud
networking, mobile multimedia streaming, and social media networking. He
has also been directly engaged in the development and standardization of the
Evolved Packet System as a member of 3GPP’s System Architecture working
group. He is an IEEE Communications Society (ComSoc) Distinguished Lecturer.
He is a board member of the IEEE ComSoc Standardization Program Develop-
ment Board. He is serving as the Chair of the Wireless Communications Techni-
cal Committee, the largest in IEEE ComSoC. He founded and has been the
General Chair of the IEEE Workshop on Telecommunications Standards: From
Research to Standards, which is a successful event that received the “Best
Workshop Award” from |EEE ComSoC. He is/was on the editorial board of
IEEE Transactions on Wireless Communications, IEEE Wireless Communications
Magazine, IEEE Transactions on Vehicular Technology, IEEE Communications
Surveys & Tutorials, and a number of Wiley journals. He has received many
awards, including the IEEE ComSoc Asia Pacific Best Young Researcher award
in June 2009. Some of his research work has also received Best Paper Awards
at prestigious conferences.

MARIUS CORICI has been a senior researcher in Fraunhofer FOKUS's Next
Generation Network Infrastructures (NGNI) department for 10 years, currently
leading the Reliable Network Infrastructure team in charge of research and
innovation in the areas of 5G, NFV, and SDN, and the development of the
correspondent software toolkits: Open5GCore (www.open5Gcore.net) for
wireless ecosystem developments, and OpenSDNCore (www.opensdncore.org)
for network service enablement based on virtualization technology, sustaining
the industry and academia R&D to obtain and to demonstrate meaningful
results with high impact toward standardization.

CARLOS PARADA has a degree in informatics and systems engineering from the
University of Minho (Portugal) and a master’s degree from Carnegie Mellon
University (CMU), United States. He joined Portugal Telecom Inovao in 2000,
and since then has been working in the networks area, both for research pro-
jects and for industry projects, as a consultant. He has also worked on the
development of products for mobile networks. Recently he has participated in
projects related to cloud, NFV, and SDN, especially from a telco perspective.

ALMERIMA JAMAKOVIC holds MSc and Ph.D. degrees in electrical engineering
from the faculty of Electrical Engineering, Mathematics and Computer Science
at Delft University of Technology (TU Delft), the Netherlands. During her Ph.D.
work from 2004 to 2008 she performed research in the field of complex net-
works, focusing on quantitative characterization and its relevance to the
robustness analysis of large-scale real-world structures. After obtaining her
Ph.D. in 2008 Almerima joined TNO - The Netherlands Institute for Applied
Research, where she worked on quantitative analysis and modeling of net-
work performance, and network optimization. Since January 2012 she has
been at the Communication and Distributed Systems CDS research group of
the University of Bern (UniBE), Switzerland. Besides her main task of leading
parts of research in the fields of mobile and wireless (mesh) networking and
cloud computing, Almerima’s further areas of interest include characterization
and modeling of complex networks, network topology analysis, and network
performance analysis in general. She has been a technical steering and tech-
nical program committee member for a number of international conferences,
and she also participated in Dutch, Swiss, and European projects. Almerima
is currently participating in the EU FP7 IP project “Mobile Cloud Networking,”
among others.

SIMONE RUFFINO graduated in computer engineering from the University of
Genova and joined Telecom ltalia in 1998. He is currently involved in R&D
projects on network function virtualization and software defined networking,
and his focus is on cloud technologies, applied to operators’ fixed/mobile net-
works. He is responsible for assessing and testing new commercial and open
source SDN/NFV solutions. He has been participating in several EU-funded
integrated projects in the future Internet area. In the past he followed the con-
formance and performance testing of innovative products for the Mobile Core
Network (GPRS/EPC). He was involved in several standardization activities in
the WiMAX Forum and IETF, in the area of mobile ad-hoc networks and IP
mobility.

GEORGIOS KARAGIANNIS holds a Ph.D. degree and a M.Sc. degree in electrical
engineering from the University of Twente, the Netherlands. From 1994 to
1998 he worked as a researcher at the University of Twente. In 1998 he
joined the Wireless Multimedia Research unit of Ericsson Eurolab Netherlands
in Enschede, Netherlands, where he stayed until April 2003. From April 2003
to August 2014 he worked as an assistant professor in the Design and Analy-
sis of Communication Systems (DACS) group of the University of Twente. In
September 2014 he joined Huawei Technologies Dsseldorf GmbH. His
research interests are in the fields of fixed, mobile and wireless (inter)network-
ing, SDN, NFV, cloud computing, end-to-end QoS signalling and provision-
ing, mobility and routing in communication networks, and performance
evaluation. He was a technical steering and technical program committee
member for a number of international conferences, and he is currently active
within the IETF. He has also participated in Dutch and European RACE, ACTS,
IST, and FP7 projects.

THOMAS MAGEDANZ has been actively performing R&D in the field of converg-
ing networks and ICT for more than 25 years. Since 2000 he has been direc-
tor of the “Next Generation Network Infrastructures” division of the Fraunhofer
Institute FOKUS, where he is responsible for the development of the globally
recognized OpenXXX testbed toolkits that enable industry and academia to
prototype the newest network and service platform technologies. Since 2004
he has also been a full professor on the Electrical Engineering and Computer
Sciences faculty at the Technische Universitt Berlin, Germany, leading the
chair for Next Generation Networks and educating master and Ph.D. students.

88

IEEE Network ¢ March/April 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

