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Abstract—To address the challenges of small target features
being less prominent, susceptibility to background interference,
and sample imbalance in road traffic sign detection, which
leads to insufficient model detection accuracy, as well as the
high complexity of current object detection models that struggle
to operate efficiently on resource-constrained edge devices, we
propose a traffic sign detection model based on GCA-YOLO. By
adding small target detection layers and removing large target
detection layers, the model enhances its small target detection
capabilities and reduces its parameter size. The introduction of
the T-BiFPN (Tiny-BiFPN) structure improves multi-scale feature
fusion, while the C2f-CP module increases computational effi-
ciency on edge devices. The GCA (Global Coordinate Attention)
mechanism enhances feature extraction, and the Focaler-CIoU
loss function enables the model to focus more on difficult samples
and accelerate the convergence of bounding boxes. Experimental
results show the superiorities of the proposed GCA-YOLO that
compared to YOLOv8n, GCA-YOLO improves precision, recall,
mAP@50, and mAP@50:95 by 8.6%, 6.1%, 8.7%, and 6.2%,
respectively, while reducing the model’s parameter count and
size by 38.57% and 33.21%, respectively.

Index Terms—Traffic Sign Detection, Multi-Scale Feature Fu-
sion, Edge Computing, Attention Mechanism, YOLOv8

I. INTRODUCTION

The rapid development of intelligent transportation systems
and advanced driver assistance systems has highlighted the
growing importance of addressing traffic management and
safety challenges. Traffic signs are essential for road traffic
regulation, and their accurate real-time detection enhances
the safety and reliability of autonomous driving systems
while supporting traffic data analysis and management [1]–
[3]. However, traffic signs often occupy fewer pixels in images
due to their placement on roadsides or overhead and the
distance from devices like surveillance cameras or dashcams.
Furthermore, complex road environments with background
interferences, such as vehicles, buildings, and trees, exacerbate
detection challenges. Issues like small target size, background
interference, and sample imbalance demand higher accuracy
in traffic sign detection [4].
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Fig. 1. GCA-YOLO network model structure diagram

Traditional object detection algorithms, which rely on hand-
crafted features and classifiers, face significant limitations in
complex scenarios involving occlusion, varying angles, and
lighting changes [5]. In contrast, deep learning-based object
detection algorithms have been widely adopted across various
fields and are generally categorized into single-stage and two-
stage methods. Two-stage algorithms, such as R-CNN [6],
Faster R-CNN [7], and D2Det [8], first generate candidate
regions and then classify them, achieving high accuracy but
suffering from slower detection speeds due to their complex
structures, limiting real-time applicability. Single-stage algo-
rithms, including SSD [9], RetinaNet [10], and YOLO [11],
directly predict object locations and categories using a single
neural network, offering faster speeds and better suitability
for practical scenarios. Recently, Transformer-based models
[12], leveraging self-attention mechanisms, have shown po-
tential in object detection but require significant computational
resources due to their high parameter count and complexity.

In intelligent transportation and driving systems, detection
tasks often rely on edge devices for local processing, reduc-



ing dependence on cloud servers while mitigating bandwidth
limitations and transmission latency, thereby improving sys-
tem responsiveness and reliability [13], [14]. However, the
limited storage capacity of edge devices poses challenges for
deploying complex object detection models, despite their high
accuracy [15]–[17]. To address this, this paper adopts the
single-stage YOLOv8n model as the benchmark, known for its
fast detection speed and simple structure [18]. Nevertheless,
directly applying YOLOv8n to traffic sign detection reveals
challenges such as insufficient accuracy and relatively large
model size, limiting its practical applicability.

To address the constraints of model parameters and size
on edge devices while enhancing the accuracy of traffic sign
detection, this paper proposes a GCA-YOLO based traffic sign
detection model, with its architecture illustrated in Fig. 1. The
main contributions of this paper are as follows:

• We propose GCA-YOLO, a novel traffic sign detection
model specifically designed to address the challenges
of small target detection, background interference, and
sample imbalance in traffic scenarios. The model is
optimized for deployment on resource-constrained edge
devices by balancing detection accuracy and computa-
tional efficiency.

• To enhance small target detection, the proposed model
incorporates a specialized design by adding small target
detection layers while removing large target detection lay-
ers. Additionally, the T-BiFPN structure is introduced to
improve multi-scale feature fusion, effectively capturing
detailed features across scales.

• Besides, the model integrates the C2f-CP module with
Partial Convolution (PConv) to reduce computation and
memory usage, the GCA mechanism to enhance feature
extraction by focusing on key regions, and the Focaler-
CIoU loss function to refine bounding box regression by
prioritizing hard samples and accelerating convergence.

II. RELATED WORK

The YOLOv8 algorithm is available in variants of differ-
ent sizes: YOLOv8x, YOLOv8l, YOLOv8m, YOLOv8s, and
YOLOv8n.The architecture of this model consists of four main
components: Input, Backbone, Neck, and Head. The Backbone
is used to extract features from the image. The neck adopts
a PANet structure to fuse multi-scale features and enhance
information flow, leading to improved detection accuracy.
The head utilizes a decoupled design and an anchor-free
mechanism for efficient object classification and localization.

Single-stage and two-stage object detection algorithms are
widely applied in traffic sign detection. Zhang et al. [19]
proposed a cascaded R-CNN structure with a multi-scale
attention mechanism using dot product and softmax weighting
to enhance traffic sign features and detection accuracy. Han
et al. [20] developed YOLO-SG, integrating the SPD-Conv
down-sampling structure and GhostNet for improved small
traffic sign detection in complex scenarios. Xiong et al. [21]
introduced Ghost-YOLOv8, integrating the GAM attention
mechanism, GIoU loss function, and a C2fGhost module

to improve feature extraction while reducing model param-
eters. Chen et al. [22] proposed a semi-supervised framework
combining CNN and Transformer encoder-decoder structures.
Using a hierarchical sampling method (HSM) and a local-
global information aggregator (LGIA), their framework en-
hances feature representation by fusing local and global traffic
sign features.

III. IMPROVED GCA-YOLO ALGORITHM

A. Small Object Detection Layer

In practical scenarios, recognizing small-sized traffic signs
from long distances is often critical. However, the YOLOv8n
network utilizes detection layers with scales of 20×20, 40×40,
and 80×80. For small objects, lower-resolution feature maps
struggle to capture fine details and edge information, leading to
challenges in accurate detection and localization. In contrast,
high-resolution feature maps better preserve the detailed fea-
tures of small objects. To address this, a 160×160 small object
detection layer is added, enhancing the model’s capability to
capture and recognize small objects, while the 20×20 large
object detection layer is removed to reduce model complexity
and parameter count.

B. T-BiFPN Multi-scale Feature Fusion Structure

The Neck part of the YOLOv8 uses the PANet structure as
shown in Fig. 2(a). However, for small traffic sign targets,
although PANet enhances feature fusion at different levels
through top-down and bottom-up paths, the small size of the
targets can lead to information loss and inadequate feature
representation. Therefore, based on the added small object
detection layer and BiFPN [23], a T-BiFPN feature pyramid
structure is designed to effectively fuse multi-scale features
while reducing the model’s parameter count.

Bidirectional Feature Pyramid Network (BiFPN) structure
enables bidirectional cross-level connections between feature
maps at different scales, allowing information to flow both
bottom-up and top-down within the network. At the same time,
it performs feature fusion in the horizontal direction, thereby
achieving more effective multi-scale information integration.
Its structure is shown in Fig. 2(b). Meanwhile, BiFPN employs
a weighted feature fusion mechanism, i.e.,:

O =
∑
i

ωi

ε+
∑

j ωj
× Ii (1)

where ω is the weight of the input, ε = 0.0001 is used to
avoid numerical instability, and Ii denotes the input features.

Although BiFPN effectively fuses multi-scale features, its
lack of shallow feature fusion can result in the loss of high-
resolution details, reducing accuracy for small targets. To
address this, the T-BiFPN structure is proposed, as shown in
Fig. 2(c), based on the modified network with a small target
detection layer. To reduce model parameters, unnecessary
feature fusion connections are removed, retaining only the P2,
P3, and P4 feature maps for output. However, the P5 layer is
preserved to extract abstract global semantic features, which



Fig. 2. PANet, BiFPN, and T-BiFPN feature pyramid structures

are fused with the P4 channel to enhance representation. Ad-
ditionally, the high-resolution feature maps of the P1 layer are
fused with the P2 channel, improving detection performance
for small traffic signs in complex scenarios.

C. C2f-CP Module

To reduce network parameter count and mitigate high
similarity and feature redundancy among channels caused
by excessive stacking of 3×3 convolution operations in the
Bottleneck structure, the C2f-CP module is proposed. This
module replaces one of the 3×3 standard convolutions in
the original Bottleneck with a Partial Convolution (PConv)
from FasterNet [24], achieving a balance between parameter
efficiency and detection performance. The structure of the C2f-
CP module is illustrated in Fig. 3.

Fig. 3. C2f-CP module structure diagram

The PConv in the C2f-CP module retains the benefits of
DWConv while mitigating the drawback of increased memory
access frequency. Leveraging the high similarity of feature
maps across channels, PConv performs convolution operations
on a subset of input feature map channels while leaving the
remaining channels unchanged.

PConv not only significantly reduces memory access vol-
ume but also effectively decreases redundant computations,
thereby enhancing overall computational efficiency. The com-
putational complexity of standard convolution and PConv is:

FLOPsConv = h× w × k2 × c2

FLOPsPConv = h× w × k2 × cp
2

(2)

where h and w are the height and width of the feature map,
k is the size of the convolution kernel, c is the number of
channels for the regular convolution operation, and cp is the
number of channels for the PConv operation. When cp = c

4 ,
the FLOPs of PConv are 1

16 of those of a standard convolution.
Although PConv preserves substantial information from the

original channels, it may struggle with capturing complex

spatial feature variations. To address this, an additional 3×3
standard convolution layer is retained, creating a complemen-
tary structural design that significantly enhances the network’s
capability to capture spatial features.

D. GCA Attention Mechanism

The GCA attention mechanism, inspired by Su et al. [25],
is designed to enhance feature extraction for small targets
and improve detection performance, as illustrated in Fig. 4.
It begins by applying average pooling and max pooling along
the height and width of the input feature map X , preserving
spatial directional information by combining global average
and prominent feature details. The resulting pooled maps
are stacked along their respective directions to generate new
feature maps Xh and Xw, which are then transformed and
fused to produce the enriched contextual feature map Y . To
capture directional information more effectively and reduce
model complexity, 1×2 and 2×1 convolutional kernels, along
with a decay rate r, are employed to reduce dimensionality,
resulting in the refined feature map Y

′
.

Xh = c (Avgh (X) ,Maxh (X))

Xw = c (Avgw (X) ,Maxw (X))

Y = c (Xh, Xw)

Y
′
= F1 (Y )

(3)

where Avgh and Maxh denote average and max pooling
operations along the height direction, respectively, while Avgw
and Maxw represent the corresponding operations along the
width direction. The operator c indicates concatenation along
specified dimensions, and F1 refers to convolutional kernels
of size 1×2 or 2×1.

The segmented feature maps are then processed using a 1×1
convolution to enable cross-dimensional interaction between
features from two directions. This design ensures lightweight
efficiency, preserves the independence of directional informa-
tion, and effectively captures long-range dependencies. Finally,
the feature weights for both directions are computed using a
sigmoid function and multiplied with the original feature layer,
producing the final output feature layer Z.

Y
′

h, Y
′

w = f1×1

(
Y

′

split

)
Y

′′

h , Y
′′

w = F3

(
δ
(
F2

(
Y

′

h, Y
′

w

)))
Z = X ∗ σ

(
Y

′′

h

)
∗ σ

(
Y

′′

w

) (4)

where split denotes the segmentation operation, f1×1 rep-
resents the 1×1 convolution operation, and F2 and F3 are
1 × 1 × C × C/r and 1 × 1 × C/r × C convolution ker-
nels, respectively. δ represents the ReLU function, and σ
denotes the sigmoid function. The GCA attention mechanism
enhances feature representation by capturing complex spatial
and channel dependencies through multi-level processing and
information fusion, thereby improving the discriminative ca-
pability of the features.The lightweight design of the GCA



Fig. 4. GCA attention mechanism

Fig. 5. C2f-GCA module

attention mechanism allows it to be integrated into the Bottle-
neck structure, forming the Bottleneck-GCA, which is further
combined with the C2f module to create the C2f-GCA module,
as illustrated in Fig. 5.

E. Focaler-CIoU Loss Function

Bounding box regression is critical in object detection.
YOLOv8 employs the CIOU loss function, which accounts
for overlap area, center distance, and aspect ratio to provide
a comprehensive measure of the difference between the pre-
dicted box and the ground truth box. Although the CIOU
loss function considers geometric relationships between boxes,
it overlooks the impact of sample difficulty on regression,
particularly the insufficient focus on hard samples such as
small objects, which reduces detection accuracy.

To address the aforementioned issues, the Focaler-IoU
bounding box regression loss function [26] has been intro-
duced. Its formula is as follows:

Lfocaler−IoU = 1− IoUfocaler,

IoUfocaler =


0, IoU < d,
IoU−d
u−d , d ≤ IoU ≤ u,

1, IoU > u.

(5)

where IoUfocaler is reconstructed using a linear interval
mapping method that dynamically adjusts the weights of easy
and hard samples. The parameters [d, u] ∈ [0, 1] control the
range of d and u, enabling IoUfocaler to focus on regression
samples with varying levels of difficulty.

To fully exploit the strengths of both approaches, Focaler-
IoU and CIoU are combined to form the Lfocaler−CIoU loss

function, effectively addressing sample imbalance in small
target traffic sign detection. This enhances bounding box
regression for hard small target samples, improves detection
accuracy, and ensures precise identification and localization
in complex traffic scenarios. Moreover, it boosts the model’s
robustness and adaptability. The Focaler-CIoU loss function is
defined as follows:

Lfocaler−CIoU = LCIoU + IoU − IoUfocaler (6)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Dataset

In this study, the TT100K Chinese traffic sign dataset,
jointly released by Tsinghua University and Tencent Lab,
was used. After filtering, 45 categories with more than 100
instances were selected, resulting in 9,737 images, which were
split into 7,230 for training and 2,507 for validation. However,
some categories in the training set had fewer samples, poten-
tially affecting the model’s generalization. To address this, data
augmentation techniques such as random rotation, brightness
adjustment, and noise addition were applied to categories with
fewer than 200 samples, ensuring each had over 200 images.
This increased the total number of training images to 10,944.

B. Experimental Configurations

This experiment is conducted on a hardware environment
consisting of a Windows 10 operating system, an NVIDIA
GeForce RTX 3080 (10GB), an Intel Xeon Gold 6148 CPU,
and 32GB of memory. The software environment includes
Python 3.8, CUDA 11.8, and the PyTorch 1.11.0 deep learning
framework. The training setup uses an image size of 640×640,
the SGD optimizer, and runs for 150 epochs with a batch size
of 32. The initial learning rate (lr0) is set to 0.01, momentum
to 0.937, and weight decay to 0.0005.

The performance metrics used to analyze the experimental
results include Precision, Recall, Parameters (Params), Model
Size, FPS, and Mean Average Precision (mAP). Among
these, the mAP metric is evaluated using mAP@0.5 and
mAP@0.5:0.95 [27].



TABLE I
ABLATION EXPERIMENT RESULTS

A B C D E Precision (%) Recall (%) mAP@0.5 (%) mAP@0.5:0.95 (%) Params (106) Model size (MB)

70.3 63.7 70.0 52.7 3.019 5.99

✓ 75.7 69.5 76.3 57.2 2.073 4.35

✓ ✓ 76.5 68.1 76.8 57.9 1.885 4.01

✓ ✓ 78.7 67.0 76.6 57.5 1.995 4.2

✓ ✓ 76.4 70.7 77.0 57.5 2.073 4.35

✓ ✓ 78.3 68.8 77.2 57.8 2.088 4.42

✓ ✓ ✓ 76.1 69.8 77.2 58.4 1.839 3.93

✓ ✓ ✓ ✓ 76.3 70.3 78.0 58.1 1.839 3.93

✓ ✓ ✓ ✓ ✓ 78.9 69.8 78.7 58.9 1.854 4.00

TABLE II
COMPARISION EXPERIMENT RESULTS

Model Precision (%) Recall (%) mAP@0.5 (%) mAP@0.5:0.95 (%) Params (106) Model size (MB) FPS

Faster-R-CNN – – 62.8 44.7 28.36 316 12

YOLO-SG [20] – – 75.8 – 4.00 8.80 –

Ghost-YOLOv8 [21] 71.7 66.7 71.9 54.7 2.796 6.07 –

YOLOv5n 70.3 61.7 68.2 50.8 2.517 5.06 68

YOLOv7-tiny 43.8 51.8 46.2 32.2 6.134 11.9 33

YOLOv8n 70.3 63.7 70.0 52.7 3.019 5.99 67

YOLOv9-T 69.0 63.9 70.0 52.5 2.014 4.44 55

YOLOv10-N 70.2 59.7 66.6 50.2 2.724 5.53 82

GCA-YOLO (ours) 78.9 69.8 78.7 58.9 1.854 4.00 51

C. Ablation Experiment

To evaluate the impact of the proposed GCA-YOLO, nine
ablation experiments are conducted using YOLOv8n as the
baseline model. In these experiments, A represents the small
target detection layer, B denotes the T-BiFPN multi-scale
feature fusion structure, C refers to the C2f-CP module, D
represents the Focaler-CIoU loss function, and E denotes the
GCA attention mechanism. The results of these experiments
are presented in Table I.

From the results in Table I, adding the small target de-
tection layer significantly enhances the model’s ability to
identify small targets, reflected in notable improvements in
Precision, Recall, and mAP. Additionally, the removal of the
large target detection layer reduces the model’s parameters
and size by 31.33% and 27.38%, respectively. Replacing the
original PANet structure with the T-BiFPN structure further
improves multi-scale feature fusion, yielding increases of 0.5%
in mAP@0.5 and 0.7% in mAP@0.5:0.95, along with reduc-
tions in parameters and model size. Incorporating the C2f-
CP module, which integrates PConv, enhances Precision and
mAP while further reducing model parameters and size. The
Focaler-CIoU loss function effectively improves the model’s
ability to focus on hard small target samples, significantly
enhancing detection performance. Although the GCA attention
mechanism slightly increases model parameters and size, it
strengthens the model’s ability to focus on key information,

leading to higher overall detection accuracy. By combin-
ing these improvements, the GCA-YOLO model achieves
substantial performance gains over the original YOLOv8n.
Specifically, it improves Precision by 8.6%, Recall by 6.1%,
mAP@0.5 by 8.7%, and mAP@0.5:0.95 by 6.2%, while
reducing model parameters and size by 38.57% and 33.21%,
respectively.

D. Comparison Experiment

To evaluate the performance of the GCA-YOLO algorithm,
comparative experiments were conducted on the TT100K
dataset. The algorithm was compared against Faster R-
CNN, YOLOv5n [28], YOLOv7-tiny [29], YOLOv8n, and
advanced YOLO series models, including YOLOv9-T [30]
and YOLOv10-N [31]. Additionally, comparisons were made
with existing improved traffic sign detection models from
the literature [20], [21]. The results of these experiments are
presented in Table II.

As shown in Table II, while the two-stage Faster R-
CNN achieves higher detection accuracy than some YOLO
series algorithms, its large parameter count and model size
hinder deployment on edge devices. In contrast, the GCA-
YOLO algorithm surpasses all other algorithms listed in Table
II, including the state-of-the-art YOLOv10-N, with improve-
ments of 8.7%, 10.1%, 12.1%, and 8.7% in precision, recall,
mAP@0.5, and mAP@0.5:0.95, respectively. Furthermore,



GCA-YOLO demonstrates significant efficiency, with only
1.854 × 106 parameters and a model size of 4 MB, making
it highly suitable for edge device deployment. Additionally,
its FPS performance satisfies real-time requirements, further
enhancing its practicality.

V. CONCLUSION

This paper has proposed GCA-YOLO, an optimized version
of YOLOv8n. By adding small-object detection layers and
removing large-object ones, the model has enhanced small-
object detection while reducing parameters. A T-BiFPN struc-
ture has been introduced for improved multi-scale feature
fusion, and the C2f-CP module has reduced memory access
to boost efficiency. The proposed GCA attention mechanism
has captured spatial and channel dependencies, while Focaler-
CIoU loss has addressed class imbalance by focusing on
hard samples. Experiments on TT100K have shown notable
gains in precision, recall, and mAP, along with reduced model
size, making it suitable for edge-based traffic sign detection.
Future work will focus on real-world deployment and further
performance optimization.
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