
1

Federated Deep Reinforcement Learning for
Prediction-Based Network Slice Mobility in 6G

Mobile Networks
Zhao Ming, Student Member, IEEE, Hao Yu, Member, IEEE, and Tarik Taleb, Senior Member, IEEE

Abstract—Network slices are generally coupled with services
and face service continuity/unavailability concerns due to the
high mobility and dynamic requests from users. Network slice
mobility (NSM), which considers user mobility, service migration,
and resource allocation from a holistic view, is witnessed as a
key technology in enabling network slices to respond quickly to
service degradation. Existing studies on NSM either ignored the
trigger detection before NSM decision-making or didn’t consider
the prediction of future system information to improve the NSM
performance, and the training of deep reinforcement learning
(DRL) agents also faces challenges with incomplete observations.
To cope with these challenges, we consider that network slices
migrate periodically and utilize the prediction of system informa-
tion to assist NSM decision-making. The periodical NSM problem
is further transformed into a Markov decision process, and we
creatively propose a prediction-based federated DRL framework
to solve it. Particularly, the learning processes of the prediction
model and DRL agents are performed in a federated learning
paradigm. Based on extensive experiments, simulation results
demonstrate that the proposed scheme outperforms the consid-
ered baseline schemes in improving long-term profit, reducing
communication overhead, and saving transmission time.

Index Terms—Prediction-based Network Slice Mobility,
Incomplete Observation, Deep Reinforcement Learning

I. INTRODUCTION

During the past few years, network technology has de-
veloped rapidly and brought humans into the 6G era with
much stricter and more heterogeneous network requirements,
e.g., increased data rates, enhanced network capacity, ultra-
low latency, and massively connected devices [1]–[3]. To cope
with these challenges, network slicing, which is empowered by
the emerging software-defined networking (SDN) and network

Part of this work was presented at IEEE International Conference on
Communications (ICC), Rome, Italy, May 2023, which is cited as [1]. This
work has made a significant extension on system modeling, scheme design,
and evaluation results. (Corresponding author: Hao Yu).

This research work is supported in part by the European Union’s HE
research and innovation program HORIZON-JUSNS-2023 under the 6GPath
project (Grant No. 101139172), the European Union’s HE research and inno-
vation program HORIZON-JUSNS-2022 under the 6GSandbox project (Grant
No. 101096328); and by the AerOS project funded by the European Union’s
Horizon Europe, the EU’s key funding program for research and innovation
under Grant No. 101069732. The paper reflects only the authors’ views, and
the European Commission bears no responsibility for any utilization of the
information contained herein.

Zhao Ming is with the Centre for Wireless Communications (CWC),
University of Oulu, Oulu, 90570 Finland (email: zhao.ming@oulu.fi).

Hao Yu is with ICTFicial Oy, 02130, Espoo, Finland (email:
hao.yu@ictficial.com).

Tarik Taleb is with the Ruhr University Bochum, Bochum, Germany (email:
tarik.taleb@rub.de).

function virtualization (NFV) technologies, aims at building
multiple virtual logically independent networks by construct-
ing flexible and highly adaptable communication networks.
Network slicing has achieved great progress in supporting
specific demands of customers [4], [5], industries [6], and
emerging applications [7]–[9] and is witnessed as a key
technology for supporting specific demands in 6G networks.

On the other hand, built on top of physical facilities to
provide customized services to user equipment (UE), network
slices not only depend on physical facilities to adjust the
virtual network topology and to decide on the resource al-
location strategies, but also are deeply coupled with services
and UEs for ensuring service continuity [10], [11]. Under this
circumstance, when the slices’ serving UEs move across areas,
the ongoing sessions between each pair of the moving UEs and
slices may suffer a degradation in quality of service (QoS) and
thus induce service continuity concern [12], [13]. Additionally,
the dynamically changing requests from associated UEs also
require the slices to quickly adjust their provisioning resources,
which can lead to resource unavailable issues. These problems
will even aggregate in 6G networks due to the increasing
number of connected equipment and emerging scenarios with
high mobility or dynamic resource requests. To tackle these
issues, the authors in [14] considered user mobility, request
dynamics, and service continuity simultaneously and proposed
the notion network slice mobility (NSM) to decide the slice
migration and resource allocation from a holistic perspec-
tive. Specifically, in the considered NSM paradigm, network
slices are assembled from multiple virtual network functions
(VNFs), which can monitor the requests/positions of users in
a timely manner and collect system information, including
available physical facilities resources. Additionally, the slices
can manipulate their VNFs to migrate between physical hosts,
scale the allocated resources, and even change the connection
relationships among VNFs. The main NSM triggers were
defined and summarized in [15], where the trigger selection
methods were also investigated.

Lots of pioneering studies have investigated NSM-
related issues including slice trigger classification [14], slice
anomaly/trigger detection [15], [16], and VNF/service place-
ment and migration [17], [18], but there still exists several
challenges that have not been resolved. Firstly, these studies
either focused on the detection of slice anomalies/triggers
or aimed at slice deployment and migration independently.
However, to ensure service continuity, we maintain that slice
migration should be performed only after a slice anomaly

2

occurs. As the anomalies in slices occur intermittently, NSM
should also be performed intermittently rather than frequently,
which is rarely considered. Secondly, though DRL-based
schemes are widely adopted for solving NSM decision-making
problems and have demonstrated their efficiencies, when we
consider NSM intermittently, the DRL agents can only observe
the system information (including user requests and resource
utilization of servers) for one time slot to make decisions, after
the NSM, the requests and positions of UEs will continuously
change until the next anomaly triggers. Under this circum-
stance, the DRL agents face the challenge that they only have
incomplete observations of the environment, as they cannot
observe future requests that affect the feedback. Thus, they are
unable to receive stable rewards. Lots of studies also discussed
the effect of incomplete observation on unstable reward in
DRL training [19]–[21]. Finally, the dynamically changing
user requests and continuously growing BSs in 6G networks
also put great challenges to the flexibility and scalability of the
core network and radio access network (RAN), as well as the
cost for the MNOs to have dedicated RAN facilities. Moreover,
centralized algorithms for detecting the NSM anomalies or
deciding the slice migration strategies have high computation
complexity that increases with the number of slices, which will
introduce high communication overhead and execution time.

To cope with these challenges, in this paper, we design a
general network architecture for NSM in 6G networks, which
considers the decentralized core network to be realized by
the VNFs deployed at edge servers (ESs) and the RAN built
by the VNFs under the Open-RAN paradigm. Afterward, to
mimic the intermittent NSM process, we model it periodically
without loss of generality, assuming that the anomaly occurs at
the first time slot of each period. To cope with the incomplete
observation challenge, we creatively integrate the prediction
of user behaviors to improve the NSM decision-making per-
formance inspired by [22], [23]. The problem is formulated
to maximize the long-term system profit of MNOs, and we
propose a prediction-based federated DRL (FDRL) framework
that learns users’ requests and position information to solve
this problem. Specifically, the framework consists of a long
short-term memory (LSTM) prediction module for prediction
and a double deep Q-learning (DDQN)-based decision-making
module for determining the NSM strategies. Particularly, dur-
ing each period, the DRL agents can only observe the first time
slot’s system information and make decisions with the current
observation and the predictions, after which the overall system
profit of the period is set as the feedback. The training of the
LSTM model and DRL agents is performed in a federated
learning (FL) manner to reduce the communication overhead
and transmission time of original user data and preserve
users’ privacy. Based on extensive experiments, simulation
results demonstrate that our proposed scheme outperforms
the considered baseline schemes in improving the long-term
system profit and reducing communication overhead/time. The
main contributions of this paper are summarized as follows:

• We design a general NSM network architecture that
considers a decentralized core network to be realized by
the VNFs deployed at ESs and the RAN built under the

Open-RAN paradigm to improve the system flexibilities
and scalabilities.

• To cope with the dynamic user requests and unstable
feedback caused by incomplete observation of agents, we
consider NSM from a periodical perspective and utilize
future information prediction for DRL agent training to
improve the NSM decision-making performance.

• We formulate the problem as maximizing the long-
term system profit and propose a prediction-based FDRL
framework to solve this problem. Specifically, the frame-
work utilizes LSTM for future information prediction and
DDQN for decision-making, and the learning processes
of the LSTM model and DRL agents are integrated with
the FL paradigm.

• Simulation results demonstrate that the proposed
prediction-based NSM scheme outperforms the consid-
ered baseline schemes in improving the long-term system
profit, reducing the communication overhead, and saving
transmission time.

The remainder of this paper is organized as follows. Sec-
tion II discusses the related work. Section III introduces the
system model and then formulates the problem. In Section IV,
we propose a prediction-based NSM framework. Simulation
results are provided in Section V. Finally, Section VI con-
cludes this paper.

II. RELATED WORK

Lots of researchers have investigated NSM-related tech-
niques, including slice anomaly/trigger detection and decision-
making for migration and resource allocation.

A. Anomaly and Trigger Detection

The authors in [24] addressed distributed online anomaly
detection of network slices based on the decentralized one-
class support vector machine by analyzing real-time mea-
surements of virtual nodes mapped to physical nodes and
correlation of measurements between neighbor virtual nodes.
However, this study only focused on one type of anomaly
in network slices, i.e., the anomalies of physical nodes. It
didn’t consider the degradation of service introduced by other
reasons like unreasonable resource allocation. In this regard, if
a physical node could support most of its slices normally but
allocated limited bandwidth resources to a VNF, the unsatisfied
service level agreement (SLA) of the corresponding slice
will not be able to be detected. Moreover, the anomalies in
the transmission of the RAN, transport network, and core
network, the mobility of UEs, and the dynamically changing
user demand were neither considered in this study. The authors
in [25] proposed a cognitive network and slice management
system, which adopted anomaly detection/prediction to detect
arising anomalies in the routes taken by ambulances or their
demanded QoS level. The authors considered AI-based tech-
niques to detect and predict anomalies and the cooperation
among AI models. Besides, Wang et al. proposed a transfer
learning-based hidden Markov model to detect abnormal net-
work slices affected by anomalies in shared physical nodes,
which utilized the similarity between physical nodes to speed

3

up the convergence and achieved high detection accuracy [16].
The authors in [15] investigated slice mobility trigger selection
by a DRL-based method, in which the DRL agent decides
where to migrate at each time slot and gives the trigger
when the chosen target host is not the current host. However,
these studies neglected the dynamic changes in user resource
demands, and frequent migration of slices would result in the
degradation of service continuity. Therefore, applying these
studies in real-world networks would be difficult.

B. Slice Migration and Resource Allocation

On the other hand, in [18], the authors proposed a
prediction-assisted VNF placement and link allocation frame-
work to minimize energy consumption and total cost under
the premise of meeting the network QoS. In [26], the authors
proposed an algorithm based on the belief-state partially
observable Markov decision process (MDP) to provide parti-
tions/slices with energy and computational resources. These
methods considered dynamic user requests and can avoid
wasting resources [27]. Besides, to improve resource utiliza-
tion efficiencies, decision-making strategies have been widely
studied, and some researchers also proposed game theory-
based solutions to cope with the conflicts of resource allocation
of different servers [26], [28]. Moreover, in [18], the authors
proposed an online approach to dynamically determine the
slice placement policies and decide on the VNF numbers
and resource allocation strategies. The prediction of network
demand was considered to estimate the traffic rate demand
in advance. Additionally, the authors in [29] proposed to
minimize the total latency of the computing tasks with energy
constraints by leveraging the combination of non-orthogonal
multiple access technique and edge computing. However, the
resource allocation policies were determined by centralized
heuristic or near-optimal solutions, which may face scalability
and robustness issues [30]. Moreover, distributed learning
paradigms and their cooperation with networks were not
considered in these studies.

Meanwhile, Chergui et al. proposed a statistical FL-based
framework that performed slice-level resource prediction to
minimize energy consumption, where the non-convex FL
problem was solved by a proxy-Lagrangian strategy [31]. Fur-
thermore, the authors in [17] introduced a knowledge plane-
based management and orchestration framework that invoked
a continuous model-free DRL method to minimize energy
consumption and VNF instantiation cost. However, resource
allocation and optimization of cost and energy are multi-
goal optimization problems, and interactive decision-making
in multiple network slices will conflict with each other. To
address these issues, the authors in [26], [28] proposed game
theory solutions based on distributed SDN to decide the re-
source allocation, where the resource allocation strategies can
be derived more closely at the gateway level. In [1], we pro-
posed a prediction-based intelligent slice mobility framework,
which considered future information like users’ positions and
requests to assist the decision-making in advance. This method
introduces higher system costs but also achieves much higher
system revenue. However, this work didn’t consider the slice

trigger either and tended to make decisions at each time
slot. Moreover, the resource allocation strategies can also be
optimized with future information prediction.

In recent years, DRL-based methods have played a vital role
in the decision-making field, but utilizing conventional DRL-
based schemes for NSM still faces the problem of imperfect
observation, and several studies have also considered this
problem. For instance, the authors in [19] discussed the effect
of noise on the observation of agents and tried to extract real
and complete observations from the original ones. In [20] and
[21], the authors studied the problem of unstable feedback
of agents when dealing with highly dynamic environments. In
addition, the combination of future information prediction and
DRL has also been extensively studied [32]. Specifically, the
authors investigated state prediction for agents’ pre-training
and allocating resources in advance [33], [34]. Besides, authors
in [35] and [36] studied reward prediction and proposed using
prediction to control agents’ future actions. Recently, the
authors in [22] and [23] proposed to cope with the partially
observable MDP problem by embedding the predictions to the
state space, which achieved good performances for agents in
real-time interactions with the environment. Inspired by this
concept, in our periodical NSM process, the unobservable
future system information can be predicted to embed with the
state space to achieve more stable feedback for agents.

Overall, the slice anomaly detection and resource allocation
strategies are still worth investigating, the NSM problem
is still unexplored well, especially in the periodical NSM
process modeling, prediction-based decision-making, and the
integration of distributed learning paradigms.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the system model and formu-
late the optimization problem. The main notations used in this
paper are summarized in Table I.

A. System Model

We consider a general network architecture for prediction-
based NSM in 6G networks, which consist of the ground
network, the space and air network, and the remote cloud,
as shown in Fig. 1. In the ground network, several small
base stations (BSs) and macro BSs are geographically evenly
distributed, each of which includes an ES with limited calcula-
tion/storage resources and runs a hypervisor1. Moreover, each
BS covers a cell area and serves multiple UEs including smart-
phones, laptops, IoT/IoV equipment in the ground network,
and satellites/UAVs in the space and air network. These UEs
can dynamically move across different cells and connect to
different BSs by cellular links according to their positions. To
support heterogeneous resource requests from users, multiple
network slices are built and empowered by the NFV/SDN
techniques. We assume that each ES can instantiate several
VNFs based on the deployed hypervisor. These VNFs run a
diverse range of services for users, and each VNF incorporates
an agent to adjust the allocated resources, physical host, and

1In this paper, we use BS and ES interchangeably.

4

…

Ground Network

Macro Base Station Server

Small Base Station VNF

Satellite Optical Fiber

… …

Space and

Air Network

Cloud

Hypervisor

Slice 1

Slice 2

…

UE

…

Cellular Link

OpenRAN

Decentralized

Core

Switch

Fig. 1. The considered network architecture in space-air-ground 6G systems.

connections to form different types of slices to provide users
with differentiated services. Here, we consider the RAN part is
built under the Open-RAN paradigm realized by the VNFs at
ESs with open standards and interfaces, which is witnessed to
have more advantages in maintaining the network and reducing
the cost by enhancing the flexibility and scalability of the
future 6G system [37]. Besides, the BSs are also connected
to their neighbors by BS-to-BS links and to the remote cloud
by backhaul links, these links are generally built with high-
speed optical fibers and have sufficient transmission speed.
We assume the core network is built in a cloud-native way
and realized by the VNFs deployed at the ESs to achieve
a decentralized core network. In the remote cloud swarm,
multiple servers with heterogeneous calculation and storage
resources are geographically distributed and connected to their
neighbors by switches. We regard the cloud swarm as a logic
cloud center that can dynamically adjust the number of servers
and thus has elastic resources.

When UEs’ requests cannot be met, VNFs from related
slices will partly move to new hosts and adjust resources to en-
sure service continuity, known as NSM [14]. Additionally, as
NSM triggers occur intermittently, without loss of generality,
we model the NSM process from a periodical view to mimic
this process while assuming that the NSM triggers occur in
the first time slot of each period, as shown in Fig. 2. We aim
to explore prediction-based NSM that utilizes system infor-
mation predictions, such as requested resources and moving
trajectories of UEs, to aid NSM decision-making. Specifically,
the overall NSM process is separated into the initialization,
collection, and migration phases. In the initialization phase,
ESs initialize VNFs based on serving users’ request priorities
and build network slices by grouping users of the same priority
into the same slice. After that, in the collection phase, each
ES collects and caches the serving UEs’ request resources
and users’ geographical coordinates (defined as UE cache).
We assume that user behavior data follows identical and
independent distribution, thus, the UE cache from multiple
slices can be used to train a global prediction model that
learns the behavior of all users. In the following migration
phase, during each period, the agent of each VNF observes

TABLE I
KEY MODELING PARAMETERS AND NOTATIONS.

Notation Definition
u, U Indexes and set of Users
n, N Indexes and set of ESs
Rn = ∪

i
{Rn,i} Total resources of ES n

t Time slot index
i Resource type index
Rava

n (t) = ∪
i
{Rava

n,i (t)} Available resources of ES n at time slot t

xn, yn Coordinate of ES n
xu(t), yu(t) Coordinate of user u at time slot t
Nu(t) ES serves u at time slot t
s, S Indexes and set of slices
v, Vs Indexes and set of VNFs of slice s
πv(t) Place hosts v at time slot t
Rreq

u (t) = ∪
i
{Rreq

u,i (t)} Requested resources of u at time slot t

ps, pv , pu Priority setting of s,v, and u
Rv(t) = ∪

i
{Rv,i(t)} Allocated resources of VNF v at time slot t

P Basic running price of a resource unit
COrun

v (t) The running cost of VNF v at time slot t
λi Weights of prices of resource type i
Rreq

v (t) = ∪
i
{Rreq

v,i (t)} Requested resources of VNF v at time slot t

Rust
v (t) = ∪

i
{Rust

v,i (t)} Unsatisfied resource of VNF v at time slot t

η Penalty of an unsatisfied resource unit
COust

v (t) Unsatisfied cost of VNF v at time slot t
δ Migration penalty
∆v(t) ∈ {0, 1} Indicator for measuring if v migrates
COmig

v (t) Migration cost of VNF v at time slot t
COv(t) Cost of VNF v at time slot t
Rsat

v (t) = ∪
i
{Rsat

v,i (t)} Satisfied resources of v at time slot t

lu,v(t) Latency from Nu(t) to πv(t)
lv(t) Total latency of VNF v at time slot t
Ls Latency constraint of slice s
µs Latency from a user to its connected ES in s
φs Latency between two connected Ess in s
ρs Latency from the ESs to the cloud in s
Ω(Nu(t), πv(t)) Nodes on shortest path from Nu(t) to πv(t)
ω Coefficient to measure revenue based on P
RNv(t) Revenue of VNF v at time slot t
PRv(t) Profit of VNF v at time slot t
Θv,X(t) ∈ {0, 1} Indicator measures if πv(t) equals X

the serving users’ requests and positions at the first time slot
and predicts their information for the following several time
slots based on historical user behavior and the well-trained
model. Meanwhile, the agent also observes the ESs’ available
resources at the first time slot. Based on the current system
observations and future predictions, each VNF’s agent decides
on migration destinations and resource allocations to meet
users’ demands over the entire period. After the migration,
the users dynamically change their positions and required
resources until the next period’s NSM decision-making. In
this paper, we neglect the time for decision-making, VNF
migration, and the disk resources for caching user information.

In the considered system, we denote the set of users and ESs
as U and N , the total resources of ES n ∈ N as Rn, where
Rn includes I types of resources like CPU, RAM, and disk.
Thus, Rn can be expressed as Rn = ∪

i∈{1,...,I}
Rn,i, where

Rn,i denotes the total amount of resource type i of ES n. As
the available resources of ESs will dynamically change when
allocating or scaling resources for VNFs, similarly, we denote

5

……
…

TS 1 TS 2 T

Time period

Ini aliza on Phase

NSM Decision-making

…

…

…

Collec on Phase Migra on Phase

Observe Predict

TS

… …

TS 1 TS 2 TTS

…

Time periodTime period

NSM Decision-making NSM Decision-making

Fig. 2. The illustration of periodical modeling of network slice mobility.

the available resource of ES n at time slot t as Rava
n (t) =

∪
i∈{1,...,I}

Rava
n,i (t). Considering that ESs have fixed positions

while users move dynamically over time slots, we denote the
coordinate of ES n as (xn, yn) and the coordinate of user
u ∈ U at time slot t as (xu(t), yu(t)). Assuming a user can
only connect to one ES at each time slot, we denote the ES that
user u connects to at time slot t as Nu(t). Generally, Nu(t)
should be the ES that is the closest to the user’s position [38],
which can be obtained by

Nu(t) = arg min
n∈N

{(xn − xu(t))
2 + (yn − yu(t))

2}. (1)

We denote the set of slices in the system as S. In the
initialization phase, each user is assigned to a slice and then
served by the VNFs in that slice. We assume each VNF can
only belong to one slice and denote the VNFs of slice s as
Vs, thus, we have Vs ∩ V ′

s = ∅,∀s, s′ ∈ S. For VNF v ∈ Vs,
we denote πv(t) ∈ {0, 1, . . . , |N |} to indicate the place that
hosts v at time slot t, where “0” means v is migrated to the
cloud, 1, . . . , |N | means v is hosted by the corresponding ES1.
Furthermore, to ensure service continuity, we assume that a UE
cannot switch the VNF serving it in the prediction-based NSM
scenario, and an illustrative case is shown as Fig. 3. Initially,
UE A and UE B are served by VNFs hosted on ESs dedicated
to them. As time progresses, UEs move and are served by
different ESs, causing VNFs to migrate accordingly. Under this
circumstance, UEs still should connect to their corresponding
VNFs by serving ESs for uninterrupted service. Thus, users
served by a specific VNF should remain constant over time
slots and can be denoted as Uv .

The requested resources of user u at time slot t can be de-
noted as Ru(t) = ∪

i∈{1,...,I}
Rreq

u,i (t), where Rreq
u,i (t) represents

different types of resources. Moreover, we further consider
the priority of users and denote the priority of the request
from user u as pu. The priority of a slice is based on the
users’ priorities, as well as the VNFs of the slice, thus, we
denote ps and pv as the priority of slice s and VNF v ∈ Vs,
and have ps = pv = pu,∀u ∈ Uv,∀v ∈ Vs,∀s. Running
the network slices for supporting user requests introduces cost
and the MNOs get revenue from users, which is relevant to
users’ requests and the continuity of service [39]. For instance,
while some of the users’ requests are not satisfied, they
may complain about it, which affects MNO’s maintenance.
We denote the allocated resources of VNF v at time slot

1Here, |·| denotes the number of nodes in the set.

t as Rv(t) = ∪
i∈{1,...,I}

Rv,i(t), which is determined by the

requested resources of VNFs and the available resources of
the physical host of VNF v.

When a UE tends to access the VNF that serves it, it
first connects to its nearest ES through cellular links and
then routes to the ES/cloud that hosts the corresponding
VNF by optical links. Generally, different slices can have
customized network configurations and latency settings for
wireless/wired connections by configuring separate network
channels/bandwidth [40], [41]. Thus, in slice s, we denote the
wireless communication latency for its users to connect to the
serving ES as µs, the wired communication latency between
two directly connected ESs as φs. Besides, as the latency to
access the remote cloud is generally much higher than local
connections, we consider the latency from the VNFs to the
remote cloud as a fixed value denoted as ρs. Thus, the latency
lu,v(t) for user u ∈ Uv to connect to VNF v at time slot t can
be calculated by

lu,v(t) =

{
µs + ρs, πv(t) = 0
µs + φs|Ω(Nu(t), πv(t))|, otherwise

,

∀u ∈ Uv,∀v ∈ Vs,∀s ∈ S,
(2)

where Ω(Nu(t), πv(t)) denotes the set of shortest path from
ES Nu(t) to facility πv(t). Moreover, considering the cus-
tomized latency requirements of slices, we denote the latency
constraint of slice s as Ls,∀s ∈ S and have lu,v(t) ≤ Ls,
which indicates that the access latency of each user should
meet the latency requirements of slice s. As a result, we can
derive the total latency of VNF v at time slot t for serving all
its users as lv(t) =

∑
u∈Uv

lu,v(t).

B. Problem Formulation

We denote the running price of a resource unit as P, and
the running cost of VNF v at time slot t can be calculated by

COrun
v (t) = pv

1

lv(t)
P

I∑
i=1

λiRv,i(t),∀v ∈ Vs,∀s,∀t, (3)

where λi denotes the weights for measuring the prices of
resource type i. The requested resources of VNF v at time
slot t can be the sum of the requests from its users and can
be denoted as Rreq

v (t) = ∪
i∈{1,...,I}

Rreq
v,i (t), where Rreq

v,i (t) can

be calculated by Rreq
v,i (t) =

∑
u∈Uv

Rreq
u,i (t). As the allocated

resources of VNFs are determined when performing the NSM
process and the requested resources of users change timely, the
requested resources of VNFs can be more than their allocated

6

Initialization Phase Migration Phase

…

UE A UE B

VNF A VNF B

…

UE A UE B

VNF A VNF B

Fig. 3. The illustration of user mobility and slice migration.

resources when users have spike resource requests, introducing
unsatisfied resources. We denoted the unsatisfied resources
of VNF v at time slot t as Rust

v (t) = ∪
i∈{1,...,I}

Rust
v,i (t).

Intuitively, the unsatisfied resources of type i should be 0 when
the requested resources are less than the allocated resources,
otherwise should be a difference between them, thus, we can
derive Rust

v,i (t) = max{Rreq
v,i (t)−Rv,i(t), 0}. We denote η as

the penalty of an unsatisfied resource unit, thus, the unsatisfied
cost of VNF v at time slot t can be calculated by

COust
v (t) = η

I∑
i=1

λiR
ust
v,i (t),∀v ∈ Vs,∀s,∀t. (4)

Besides, as the VNFs’ migration from one host to another
may cause user service switch and resource reconfiguration,
as well as service replacement, we denote δ as the migration
penalty to measure the cost of MNOs to perform VNF
migration; to indicate if VNF v migrates to another physical
host at time slot t, we further denote ∆v(t) ∈ {0, 1}, where
1 means VNF v migrates to another host and 0 means not.
Thus, ∆v(t) can be calculated by

∆v(t) =

{
0, πv(t) = πv(t− 1)
1, otherwise

, ∀v ∈ Vs,∀s,∀t,
(5)

thus, the migration cost of VNF v at time slot t can be
calculated by

COmig
v (t) = δ∆v(t),∀v ∈ Vs,∀s,∀t, (6)

and the cost of VNF v at time slot t can be calculated as

COv(t) = COrun
v (t)+COust

v (t)+COmig
v (t),∀v ∈ Vs,∀s,∀t.

(7)
At the same time, the revenue from the VNFs should be

measured not only based on the satisfied resources of users
but also the requests’ priorities and the latency for satisfying
the requests. Generally, the higher priority will have higher
prices from the MNOs, introducing higher revenue [1]. We
denote the satisfied resources of v at time slot t as Rsat

v (t) =
∪

i∈{1,...,I}
Rsat

v,i (t). When the requested resources are less than

the allocated resources, the satisfied resources should be the
requested resources; otherwise, the users can only be fulfilled
by the allocated resources, and the satisfied resources are then
equal to the allocated resources. Thus, for resource type i, the
satisfied resources of v at time slot t can be calculated by
Rsat

v,i (t) = min{Rreq
v,i (t), Rv,i(t)}. We denote the coefficient

to measure the revenue based on P as ω, thus, the revenue of
VNF v at time slot t can be calculated as

RNv(t) = ωpv
1

lv(t)
P

I∑
i=1

λiR
sat
v,i (t),∀v ∈ Vs,∀s,∀t. (8)

We aim to maximize the long-term profit of the MNOs,
which is affected by satisfied user requests, latencies for ser-
vice, and request priority. Denoting the profit of VNF v at time
slot t as PRv(t) calculated by PRv(t) = RNv(t)−COv(t), and
Θv,X(t) ∈ {0, 1} as an indicator for measuring if πv(t) equals
X or not, thus, the problem in this paper can be formulated
as

max
πv(t),Rv(t)

∑
t

∑
s∈S

∑
v∈Vs

PRv(t), (9a)

s.t.
∑
s∈S

∑
v∈Vs

Θv,0(t)Rv,i(t) ≤ RC
i ,∀i,∀t, (9b)∑

s∈S

∑
v∈Vs

Θv,n(t)Rv,i(t) ≤ Rn,i,∀i,∀n,∀t, (9c)

lu,v(t) ≤ Ls,∀u ∈ Uv,∀v ∈ Vs,∀s,∀t, (9d)
πv(t) ∈ {0, . . . , |N |},∆v(t) ∈ {0, 1},

∀v ∈ Vs,∀s,∀t, (9e)
Vs ∩ V ′

s = ∅,∀s, s′ ∈ S, (9f)
I∑

i=1

λi = 1. (9g)

Here, (9b) and (9c) ensure that the allocated resources of
VNFs in the physical host will not exceed the total resources
of the host; (9d) ensures that the serving latency of users in
slices meet the SLA requirements; (9e) ensures that each VNF
selects only one host for migration and has only two distinct
migration statuses at each time slot; (9f) ensures that each VNF
can only be assigned to one slice; (9g) ensures a thorough
weight setting for measuring the prices of resources.

The above-formulated problem is a Mixed Integer Linear
Programming (MILP) problem due to the integer variables
Θv,X(t),∆v(t), πv(t) and the continuous variable Rv,i(t),
which is proved to be NP-hard [42], we consider using a
DRL-based scheme integrated with the FL paradigm to solve
this problem considering: 1) Users have dynamically changing
requests and positions, conventional heuristic schemes are
hard to cope with new user requests, in contrast, DRL has
strong generalization capabilities, well-trained DRL agents can
efficiently deal with the dynamic environment; 2) In a 6G
system with massive BSs that continue to grow, the dimensions
of the problem will grow with the number of slices, heuristic
schemes in this case will spend more time searching for the
solutions, which means that it suffers a significant performance
degradation in a finite time scale.

IV. PREDICTION-BASED NETWORK SLICE MOBILITY
FRAMEWORK

7

…

…

…

Main Network Target NetworkAgent

Observed

1st TS

Copy

Replay Buffer

State Action Reward Next State

Mini

Batch

…

…

…

…

Time period 1

Migrate

Predict

LSTM

Model

Overall

Profit

…

Sensing

Process

Caching

Process

…

Collection

Phase

Migration

Phase

…2

3.1

Req
Pos

1

3 4

5

Req

Pos

Observe

3.2

Time period Time period

Predicted

TSs

Req

Pos

Req

Pos

Req

Pos

Req

Pos
Req

Pos

Req

Pos

Req

Pos
…

TS 1 TS

Req

Pos

TS 2

…Req

Pos

T

…
Req

Pos

Req

Pos
…

TS 1 TS

Req

Pos

TS 2

Req

Pos

T

…
Req

Pos

Req

Pos
…

TS 1 TS

Req

Pos

TS 2

Req

Pos

T

…

Fig. 4. The illustration of the overall framework in prediction-based slice mobility.

In this section, we introduce the framework design, elab-
orate on the model for learning users’ behaviors for future
information prediction, solve the problem using a DDQN-
based method with the predictions, and finally integrate the
training processes with the FL paradigm.

A. Overall Framework Design

In our proposed framework, during the collection phase, we
have two independent processes of each VNF, i.e., the sensing
and caching processes, as shown in Fig. 4. Specifically, the
sensing process continuously collects the requested resources
and position information of the serving users and periodically
sends the information to the caching process. After that, the
caching process caches the user information and all the VNFs
collaboratively train a global user behavior prediction model.
During each period in the following migration phase, the
VNFs observe serving users’ information and the available
resources of system facilities at the first time slot and call
the prediction model to predict the user information of the
following several time slots. Based on the observation and
prediction information, each VNF’s agent determines which
physical host to migrate and how many resources should scale
up/down. This decision-making process aims to maximize the
MNOs’ long-term profit. We transform this problem into an
MDP to solve it using the DRL-based scheme, where the state
information includes the observation of the first time slot and
predictions of the following several time slots, and the agent
of each VNF performs action as selecting the physical host for
NSM. Besides, the allocated resources are determined based
on the chosen host and user requests. After the migration, each
VNF stays with the chosen host for the overall period, and the
total profit for this period is set as the reward.

B. User Behavior Prediction

We adopt the LSTM model for user request/position predic-
tion. Specifically, as a special morph of the conventional recur-
rent neural networks (RNN), LSTM introduces the mechanism
of the gate to cope with the long-distance dependency problem
by adding internal LSTM cell loops. As a result, LSTM can
significantly reduce learning difficulty by providing long-term
memory for valuable information [43], [44].

The training process of the LSTM model is elaborated
in Algorithm 1. Specifically, we consider each period T
consists of ζ time slots and the collection phase consists of
Ψ periods for collecting user information as training data
before the agent starts the NSM decision-making. To obtain the
training data, we firstly combine the user request and position
information from the Ψ periods as a sequence, denoted as
Dcob = ∪

∀u∈U
Dcob

u , where Dcob
u can be expressed as

{Rreq
u (1), xu(1), yu(1), . . . ,Rreq

u (ζ), xu(ζ), yu(ζ)︸ ︷︷ ︸
Time period 1

, . . . ,

Rreq
u (Ψζ − ζ + 1), xu(Ψζ − ζ + 1), yu(Ψζ − ζ + 1), . . . ,

Rreq
u (Ψζ), xu(Ψζ), yu(Ψζ)}.

(10)
After that, we split the combined sequence Dcob to be
a dataset for training the LSTM model. Considering
each training sample consists of θ time slots’ user
request and position information, for each user u,
we can split Ψζ − θ training samples expressed as
Xu,1 = {Rreq

u (1), xu(1), yu(1) . . . ,Rreq
u (θ), xu(θ), yu(θ)},

Xu,2 = {Rreq
u (2), xu(2), yu(2) . . . ,Rreq

u (θ + 1), xu(θ +
1), yu(θ + 1)}, . . ., Xu,Ψζ−θ = {Rreq

u (Ψζ − θ), xu(Ψζ −
θ), yu(Ψζ − θ), . . . ,Rreq

u (Ψζ − 1), xu(Ψζ − 1), yu(Ψζ − 1)}.
Moreover, the corresponding testing samples can be
expressed as Yu,1 = {Rreq

u (θ + 1), xu(θ + 1), yu(θ + 1)},

8

Yu,2 = {Rreq
u (θ + 2), xu(θ + 2), yu(θ + 2)}, . . .,

Yu,Ψζ−θ = {Rreq
u (Ψζ), xu(Ψζ), yu(Ψζ)} (Line 1). The

training dataset and testing dataset will be sent to the model
for updating the parameters by the backward propagation
algorithm and adaptive moment estimation (Adam) optimizer
[45], [46] based on the mean squared error (MSE) loss
between the testing data and model prediction (Lines 3-6).
After the training process, we utilize the trained LSTM model
for future information inference during the migration phase,
specifically, for each period T , at the first time slot T1 we set
the historical stack as the user request and position information
of current time slot and the previous θ − 1 time slots, i.e.,
from time slot T1 − θ + 1 to T1 (Line 8). As the trained
model can only predict one time slot’s future information
and to support multiple time slots’ prediction, we update the
historical stack based on the prediction information iteratively
(Lines 10-14). We set the prediction order as χ ∈ [0, ζ − 1],
with 0 indicating no future prediction and ζ − 1 representing
prediction for the entire period. Thus, the predicted user
information with χ time slots can be obtained as Pu(T) =
{Rpre

u (T2), x
pre
u (T2), y

pre
u (T2), . . . ,Rpre

u (Tχ+1), x
pre
u (Tχ+1),

ypreu (Tχ+1)}, which will then be combined with the
observations at the first time slot T1 to determine the NSM
strategies.

C. DDQN-based NSM Decision-making

In this part, we model the decision-making process of each
VNF as an MDP, introduce the state, action, and reward
settings, and aim to maximize the value function for improving
the long-term profit of the MNOs.

1) VNF State: For each period T in the migration phase,
each VNF v observes the serving users’ request and position
information at the first time slot T1 and receives the prediction
information Pu(T). To determine where to migrate and how
many resources should be allocated, VNF v also observes the
available resources of all ESs. Thus, the state of VNF v in
period T should include the available resources of the ESs, the
serving users’ request and position information at the first time
slot T1, and the predicted user information of following χ time
slots. Moreover, considering each VNF may serve different
numbers of users, to unify the state space, we extend the state
to cover at most |U| users’ information. If the serving users
are less than |U|, we set the corresponding value in the state
space as “-1”. As each serving user’s information includes I
types of resources and 2 position coordinates for χ + 1 time
slots, the state information of v should be expressed as

Sv(T) = (∪
∀n∈N

Rava
n (T1), ∪

∀u∈Uv

{Ru(T1), xu(T1),

yu(T1),Pu(T)}, −1, . . . ,−1︸ ︷︷ ︸
(I+2)×(χ+1)×(|U|−|Uv|)

). (11)

2) VNF Action: VNF v determines where to migrate based
on the state information, and the allocated resources should be
decided based on the current and future requested resources
and the available resources of the chosen host. We denote the
action of VNF v at period T as Av(T) to represent where to
migrate, i.e., to ES 1, . . . , |N |, or to the cloud 0. Thus, we
have πv(T1) = πv(T2) = . . . = πv(Tζ) = Av(T). Moreover,

Algorithm 1: LSTM Training and Inference Algorithm

Input: ζ, Ψ, χ, θ, Dcob
u ,∀u ∈ U .

1 Initialize: Split Dcob
u ,∀u ∈ U to be training samples

and testing samples of user ∀u ∈ U , obtain
Xu,1,Xu,2, . . . , Xu,Ψζ−θ and
Yu,1,Yu,2, . . . ,Yu,Ψζ−θ.

2 for u ∈ U do
3 for Each train epoch do
4 With Xu,1,Xu,2, . . . ,Xu,Ψζ−θ, fit the LSTM

model, obtain Ŷu,1, Ŷu,2, . . . , Ŷu,Ψζ−θ.
5 Calculate the MSE loss between

Yu,1,Yu,2, . . . ,Yu,Ψζ−θ and
Ŷu,1, Ŷu,2, . . . , Ŷu,Ψζ−θ.

6 Update the parameters of LSTM by Adam
optimizer and backward propagation method.

7 for Each period T > Ψ do
8 Get historical stack sequence with length θ as

Hu(T) = {Rreq
u (T1 − θ + 1), xu(T1 − θ + 1),

yu(T1−θ+1) . . . ,Rreq
u (T1), xu(T1), yu(T1)}.

9 Set Pu(T) = ∅ to store the prediction of user
information in period T .

10 for time slot t ∈ {T2, T3, . . . , Tχ+1} do
11 Input the historical stack Hu(T) to the

LSTM to obtain the predicted information
{Rpre

u (t), xpre
u (t), ypreu (t)} of time slot t.

12 Pop out the first record of historical stack
Hu(T).

13 Update Hu(T)←
Hu(T) + {Rpre

u (t), xpre
u (t), ypreu (t)}.

14 Update Pu(T)←
Pu(T) + {Rpre

u (t), xpre
u (t), ypreu (t)}.

Output: Pu(T),∀T, ∀u ∈ U .

the allocated resources should jointly consider the requested
resources of the first time slot and the prediction of the further
time slots and should be less than the available resources of
the chosen host, thus, we have

Rv(T1) = Rv(T2) = . . . = Rv(Tζ) =

∪
i={1,2,...,I}

min{Rava
Av(T),i(T1),

Rreq
v,i (T1) +

∑Tχ+1

t=T2
Rpre

v,i (t)

1 + χ
}.

(12)
3) VNF Reward: To maximize the long-term system profit,

in each period T , we set the reward as the overall profit of the
period, we denote the reward of period T as Rv(T) and can
be derived by Rv(T) =

∑Tζ

t=T1
PRv(t). We define the NSM

decision-making policy as the mapping from the state to the
possible actions, denoted as κ, where κ(A|Sv(T)) indicates
the possibility of taking action A with state Sv(T) under the
policy κ. The VNFs aim to find an optimal policy to maximize
the long-term system profit, and the value function is given as

V (S) = E

[∞∑
Ψ

γT−1Rv(T)|Sv(Ψ) = S

]
, (13)

9

where γ is a discount factor. Based on the Bellman function
[47], the value function can be further transformed to

V (S) =
∑

A

κ(A|S)

[
R + γ

∑
S′

Pr{S′|(S,A)} · V (S′)

]
, (14)

where A is the action the VNF v takes in state S, R denotes
the received reward, and S′ represents the possible next state.
Thus, the above formulated problem can be transformed to

max V (S),
s.t. (9b), (9c), (9d), (9e), (9f), (9g).

(15)

In this paper, we use the DDQN model to train agents
to avoid possible overestimation of the conventional DQN.
Specifically, the DDQN model leverages two neural networks
(target network and main network) for action selection and
evaluation, and the Q-function can be given as

Q(Sv(T),Av(T)) = Rv(T) + γ
∑

Sv(T+1)

Pr{Sv(T + 1)|

Sv(T),Av(T)} · max
Av(T+1)

Q(Sv(T + 1),Av(T + 1)).
(16)

We adopt deep neural network (DNN) to approximate
Q(Sv(T),Av(T)) and update the parameters of DNN
by the stored experience in the replay buffer. Let
Qι(Sv(T),Av(T);β(T)) denote the DDQN model with pa-
rameters in episode ι, we have

Qι+1(Sv(T),Av(T);β(T)) =

Qι(Sv(T),Av(T);β(T)) + αι · {Rv(T) + γ ·Qι(Sv(T + 1),

arg max
Av(T+1)

Qι(Sv(T + 1), Av(T + 1);β(T)); β̂(T))−

Qι(Sv(T),Av(T);β(T))},
(17)

where αι denotes the learning rate, β(T) and β̂(T) denote
the parameters of the main network and the target network.
Thus, the main network’s loss function used for updating the
parameters by gradient descent can be expressed as

L(β(T)) =
∑

(Sv(T),Av(T))∈BT

(yι −Qι(Sv(T),Av(T);β(T)))
2,

(18)
where yι = Rv(T) + γ · Qι(Sv(T + 1), arg max

Av(T+1)

Qι(Sv(T +

1), Av(T +1);β(T)); β̂(T)). Here, Rv(T) denotes the reward
in episode ι, BT denotes a mini-batch. As a result, Algorithm 2
illustrates the proposed DDQN-based NSM process.

D. Federated Learning Framework Integration

Each VNF has to decide the NSM strategies based on the
prediction model and the DRL agent, which will be trained
using the user data collected by the ESs. However, it is not
reasonable to train the prediction model and the DRL agents
individually due to: 1) Each VNF can only collect very few
user data in each period, which will take a long time for
the ES to collect enough user data for model training; 2)
Few training data samples will unavoidably lead to model
overfitting. Moreover, uploading all the original user data

Algorithm 2: DDQN-Based NSM Algorithm
Input: N , ζ, Pu(T),∀u ∈ U .

1 Initialize: The Q-function Q(Sv(T),Av(T);β(T)) of
the target network with random β(T), the decay rate
of ϵ as ξ, the episode index ι = 1.

2 for ι ≤ Epsisode Number do
3 Get the system state Sv(T) from the environment.
4 With probability ϵ, select an action Av(T)

randomly, otherwise select
Av(T) = argmax

Av(T)

Qι(Sv(T), Av(T);β(T)).

5 VNF v migrates to the corresponding facility that
Av(T) represents with allocated resource
calculated by (12).

6 Set ∆v(T1) = 1 if Av(T) represents the current
facility else 0.

7 Set ∆v(T2) = ∆v(T3) = . . . = ∆v(Tζ) = 0.
8 Calculate Rv(T) during period T and get the

next-state Sv(T + 1).
9 Store the data (Sv(T),Av(T),Rv(T),Sv(T + 1))

in the replay buffer.
10 Randomly sample from the replay buffer.
11 Calculate the loss function L(β(T)) by (18).
12 Update β(T) to minimize L(β(T)) by gradient

descent.
13 Update ϵ← e−ι/ξ and ι← ι+ 1.
14 Update the parameters in the target network

periodically, i.e., β̂(T)← β(T) after several
episodes.

to the centralized cloud for model training will induce high
communication costs and possible user data leakage.

To cope with these problems, we consider using the FL
paradigm for model training and describe the FL process of
training the LSTM model and the DRL agents as follows. In
the collection phase, all the VNFs collect the user information,
including user requests and positions for Ψ periods. After that,
VNFs train the LSTM model locally and upload the model
parameters to the cloud for parameter aggregation, which is
generally achieved by the FedAvg method [48], and then the
aggregated new parameters will be broadcast to all VNFs. In
the migration phase, the VNFs send the parameters of local
DRL agents instead. We use τ to denote the iteration index
for model training and update. Denote each VNF v has a
dataset Dv , which can be the user information for prediction
model training or experience for NSM decision-making policy
learning. For each sample d in Dv , we denote the loss function
as ld(w). Here, ld(w) can be the MSE of the predicted user
information of user u, i.e., Ŷu,1, Ŷu,2, . . . , Ŷu,Ψζ−θ and the
real user information Yu,1,Yu,2, . . . ,Yu,Ψζ−θ in the predic-
tion model learning process, and the loss function (18) in DRL
learning process. Denote tha parameter of v as wv , we can
calculate the local loss function at VNF v by

Lv(wv) =
1

|Dv|
∑
d∈Dv

ld(w). (19)

10

Algorithm 3: Federated Network Slice Mobility
Framework Implementation Algorithm

Input: N , ζ, Pu(T),∀u ∈ U .
1 Initialize: Set the available resources of ESs as their

total resources, i.e., Rava
n (0) = Rn,∀n ∈ N .

2 for n ∈ N do
3 Get the serving users from U if Nu(0) = n,

denoted as Un(0).
4 Classify the serving users according to pu and

generate corresponding VNFs.
5 VNFs initialize local prediction model parameters.
6 for T ≤ Ψ do
7 Each VNF v collects serving users’ information

Rreq
u (t) and xu(t), yu(t),∀u ∈ Uv,∀t.

8 v updates the local model’s parameter by (21).
9 v sends local model’s parameter to the cloud.

10 Cloud aggregates the global parameter of the
LSTM model by (22) and dispatches to all VNFs.

11 VNFs initialize local DRL agent parameters.
12 for T ≥ Ψ+ 1 do
13 Each VNF v gets Sv(T), Av(T), Rv(T) and

Sv(T + 1) based on Algorithm 2.
14 v updates local agent’s parameter by (21).
15 v sends local agent’s parameter to the cloud.
16 Cloud aggregates the global parameter of DRL

agents by (22) and dispatches to all VNFs.
17 Perform Lines 7-10 after several periods.

We denote and calculate the dataset of all VNFs in the system
as D = ∪

v
Dv , the global loss function can be given by

L(w) =
1

|D|
∑
d∈D

ld(w) =
1

|D|
∑
s∈S

∑
v∈Vs

|Dv|Lv(wv). (20)

To find the optimal parameter w∗ = arg min
w

L(w), let each
VNF v computes its parameters wτ

v according to the update
rule by

wτ
v = wτ−1

v − ϱ∇Lv(w
τ−1
v), (21)

where ϱ ≤ 0 denotes the gradient step size, and the global
parameter wτ can be updated by

wτ =

∑
s∈S

∑
v∈Vs
|Dv|wτ

v

|D|
. (22)

Thus, based on the analysis above, we can integrate the
overall framework with the FL shown as Algorithm 3. In
the initialization phase, all the BSs get the serving users
by the user positions and receive users’ request information,
including users’ requested resources and priorities, and classify
the users into different groups according to their request
priorities. Based on the groups (as well as the priorities), the
BSs generate network slices and allocated resources for each
VNF of slices (Lines 2-4). Note that to avoid the resource
unavailable concern in the initialization phase, we consider
the users’ requested resources to be slight at the beginning.
Afterward, in the collection phase, the VNFs initialize the

parameters of the prediction model and collect their users’
information, including user request and user position, to train
the local model by updating the model parameters based
on (21), the local parameters are then sent to the cloud for
parameter aggregation by (22). The aggregated model will be
dispatched back to all VNFs, and this process will iterate until
it converges (Lines 6-10). In the migration phase, the VNFs
initialize the parameters of their local agents and get the state
with current observations and future predictions. Based on the
state information, the local agents give the actions under the
ϵ-greedy policy, and then VNFs migrate to the chosen host
to stay for an overall period. The total profit of this period
is set as the reward for the agent, and the next state can
be determined at the next period’s first time slot. The stored
tuples with mini-batch are utilized for local parameter update
of the DRL agents based on (21), and the parameters are then
aggregated at the cloud based on (22) (Lines 12-16). After
several periods, the local prediction model will also be updated
based on new user information data and be aggregated and
dispatched back to all VNFs (Line 17).

E. Complexity Analysis

In Algorithm 1, Line 1 takes O((Ψζ− θ)×|U|) to split the
dataset for |U| users to get Ψζ − θ sample pairs. Afterward,
Lines 3-6 take O(EF) to train the global LSTM model,
where E is the number of training epochs and O(F) is the
computation complexity for LSTM training and is related to
the number of LSTM parameters [49]. In our case, the input
and output dimensions are I + 2, indicating the considered
resource types and coordinates. Denote the number of LSTM
layers as L and each layer consists of U neurons, we have
O(F) calculated as O(LU(4LU + 5I + 13)). As calculating
the MSE loss takes O(Ψζ−θ) and updating the parameters in
each episode takes O(LU(4LU +5I +13)) similar to LSTM
training, the complexity of Algorithm 1 can be calculated as
O(|U| · ((Ψζ − θ) + 2ELU(4LU + 5I + 13)).

The computations of Algorithm 2 mainly come from
Lines 4, 12, and 13. In Line 4, when an agent adopts greedy
policy to choose the action, it needs to calculate the Q function
to obtain the action, which takes O(|Av(T)|) = O(|N |+ 1).
The complexity of calculating the loss function and updating
the parameters is related to the number of agent parameters
and the random samples from the replay buffer. Denote the
training process has E′ episodes, Nι ramdom samples, and
L′ DNN layers, each layer has U ′ neurons, the complexity of
Algorithm 2 is O(((|N |+ 1)E′ + E′L′U ′Nι)) [50].

In Algorithm 3, Lines 2-4 take O(|N ||U|) for the ESs to
obtain their users and assign them to the corresponding slices
according to their priorities. During Lines 6-10, the VNFs
collect user information, update the local parameters, and send
to the cloud in parallel, which takes O(max

v
|Uv|((Ψζ − θ) +

2ELU(4LU + 5I + 13))). Similarly, during Lines 12-16, the
VNFs update the parameters of local DRL agents and send
them to the cloud, which takes O((|N |+1)E′ +E′L′U ′Nι).
Thus, the complexity of Algorithm 3, as well as the overall
framework can be expressed as O(|N ||U|+max

v
|Uv|((Ψζ −

θ)+2ELU(4LU +5I+13))+(|N |+1)E′+E′L′U ′Nι). As

11

BS 6 BS 3 BS 1

BS 8BS 7

BS 4

BS 9

BS 0 BS 2
BS 5

UE
Position 2

Position 4

Position 1

Position 3

Position 5

Fig. 5. The demo network topology for 10 BSs and the mobility case of a user for 5 time slots.

TABLE II
BASIC SIMULATION PARAMETERS.

Parameter Value
The size of area 100× 100 M2

The ES number |N | 10
The user number of each ES 5
Unsatisfied penalty η 50
Migration penalty δ 10
Weights λi(i = 1, 2, 3) 0.4, 0.4, 0.2
Priorities 1, 2, 3
Total resources of ESs 4,8,128
Latency µs 1 - 3 ms
Latency φs 3 - 5 ms
Latency ρs 100 - 120 ms
Latency constraint Ls 30 - 150 ms
Revenue coefficient ω 150
Run price per resource unit P 100
Time slot number of each period ζ 5
Learning rate 0.001
Batch size 256
Discount factor 0.9
Memory capacity 1024
Epsilon start 0.9
Epsilon end 0.01
Epsilon decay 1000
Hidden layer number 2
Hidden layer neural number 64

the training parameters E, E′ et al. are generally constant in
simulation, when we have |N | and |U| growing large enough,
the complexity can be closely approximated to O(|N ||U|).
Compared to other baselines without distributed paradigm
integration [1], [15], the complexity of the proposed FL-based
scheme does not directly increase with the number of slices.
Considering the scalability issue in the 6G system [37], the
proposed scheme will be feasible to deploy slices in scenarios
with a relatively stable number of BSs and UEs.

V. SIMULATION RESULTS

This part presents the simulation settings, baselines, perfor-
mance metrics, and evaluation results from different perspec-
tives.

A. Settings

We consider a scenario for NSM as an area with 100×100
M2 consisting of several BSs spread geographically evenly,

each BS covers 5 UEs. The network topology of the BSs is
generated by the Networkx package in Python [51]. As a case,
we present the network topology of 10 BSs according to their
positions as shown in Fig. 5, in which the black solid lines
represent the connection relationships of the BSs. Moreover, at
each time slot t, we consider the users in the system randomly
move from their current positions to new ones and illustrate
the coordinate trajectories xu(t), yu(t) of a demo user u for 5
time slots by blue dots and red dash lines. From Fig. 5, we can
see the user firstly initializes the request at position 1 (next
to BS 6), then continuously moves to position 2 (the middle
between BSs 0 and 2), and then to position 3 located at the
edge of the scenario, position 4 that with dense BSs serving,
and finally to position 5 (next to BS 9). We consider three
types of resources for user requests, i.e., the CPU, RAM, and
disk resources, and set I = 3. Since the resources of ESs are
limited, we set the total resources of each ES as 4 CPU cores,
8 GBits RAM, and 128 GBits disk, respectively. The requested
resources for user u at time slot t ≥ 1 are randomly set from
0 to 2t CPU cores, 4t GBits RAM, and 12t disk resources,
respectively. To distinguish the users according to their request
priorities for slice generation, we set the priorities of users as
pu ∈ {1, 2, 3},∀u. To evaluate the communication overhead
and transmission time for the FL training comparison, we set
the upload speed from VNFs to the cloud uniformly as 5
Mbits/s, the download speed as 10 Mbits/s, and the aggregation
round for FL training as 10. At last, we do the simulation in
a server with two Intel Xeon Gold 6226 2.7 GHz CPUs, 376
GB of RAM, and a Tesla V100 GPU.

Moreover, to measure the customized slice settings, in slice
s, we set the wireless communication latency µs randomly
as 1 − 3 ms, the optical communication latency φs as 3 − 5
ms, and the latency to the remote cloud ρs as 100− 120 ms.
Additionally, we set the latency constraint Ls randomly from
30− 150 ms. To measure the system cost and profit from the
MNO perspective, we set the running price of a resource unit P
as 100 and the revenue coefficient to measure the revenue ω as
150. To mimic the considered periodical NSM scenario, we set
each period consisting of ζ = 5 time slots and predict 4 time
slots except the first time slot and set χ = 4. The migration
of VNFs between two time periods will introduce migration
costs, and provisioning user requests during an overall time

12

0 250 500 750 1000
Episode

5

6

7

8

9

Re
wa

rd
1e4 (a) Average Reward

LR=0.01
LR=0.001
LR=0.0001

0 250 500 750 1000
Episode

5

6

7

8

9

Re
wa

rd

1e4 (b) Average Reward

BATCH_SIZE=64
BATCH_SIZE=128
BATCH_SIZE=256

0 250 500 750 1000
Episode

5

6

7

8

9

Re
wa

rd

1e4 (c) Average Reward

GAMMA=0.9
GAMMA=0.95
GAMMA=0.99

0 250 500 750 1000
Episode

5

6

7

8

9

Re
wa

rd

1e4 (d) Average Reward

MEMORY=256
MEMORY=512
MEMORY=1024

Fig. 6. The average reward of the proposed scheme versus training episodes with different training parameters.

period will introduce unsatisfied costs. To measure these costs,
we set the migration penalty δ = 10 and the unsatisfied penalty
η = 100. Finally, we set the weights λi for measuring the
prices of the CPU, RAM, and disk resources as 0.4, 0.4,
and 0.2, respectively. As a result, we summarize the basic
simulation parameters, including the system configuration and
parameters in LSTM model training and DRL agent training
in Table II.

B. Baseline and Performance Metrics

To evaluate our proposed NSM framework, we consider the
corresponding baselines as 1) DRL-based NSM scheme with
no future information prediction (NoPre-DRL) [15], in which
the DRL method is adopted in NSM decision-making and no
further user information is provided, which means the DRL
agents can only make decisions based on the first time slot’
observation in each period; 2) Simulated annealing (SA)-based
NSM scheme with no future information prediction (NoPre-
SA), in which the SA method with 500 iterations for each
state in each episode is adopted in NSM decision-making
and no further user information is provided; 3) Reset NSM
scheme with no future information prediction (NoPre-Reset)
[1], in which the VNFs stay in the original physical host and
re-allocate the resources based on the first time slot’ user
requests during periods; 4) Random NSM scheme with no
future information prediction (NoPre-Random), in which the
VNFs randomly migrate to a physical host when performing
NSM without future prediction information. Additionally, for
the proposed prediction-based scheme, to measure how the
prediction orders affect the simulation results, we present
simulation results with different prediction orders with χ set
from 1 to 3 as baselines (Proposed, χ = 1, 2, 3); to measure
the effect from prediction deviations, we set the prediction
model with RNN to get different prediction performances as a
baseline (Proposed, RNN). Particularly, in extreme cases, to
observe the best possible performance of the prediction-based
scheme regarding predictions, we collect real users’ behavior
data after a few rounds of simulations and input the real data as
prediction information to the agents to execute the NSM again
to achieve an unbiased prediction as a baseline (Proposed,
Real); to observe the better performance of the prediction-
based scheme regarding decision-making, we run the MDP
with prediction information as a baseline, which performs
100 iterations for each state that appears in each episode to

explore the better actions of agents through exhaustive search
(Proposed, MDP). Note that these two extreme cases serve
only as benchmarks for ideal experimental comparisons. In
real-world NSM scenarios, they are hard to apply due to
unavoidable prediction bias and extensive iterations. Finally,
to demonstrate the performance of the FL training paradigm,
we compare the proposed scheme without FL to see how FL
can reduce communication overhead and transmission time
(Proposed, NoFL).

The considered performance metrics should be
related to the optimization goal, as well as the
intermediate results. Thus, we choose the average long-
term system cost

∑
t

∑
s∈S

∑
v∈Vs

COv(t)/
∑

s∈S |Vs|,
revenue

∑
t

∑
s∈S

∑
v∈Vs

RNv(t)/
∑

s∈S |Vs|, and profit∑
t

∑
s∈S

∑
v∈Vs

PRv(t)/
∑

s∈S |Vs| as the performance
metrics to evaluate the proposed scheme and baselines.
Moreover, the average long-term unsatisfied cost∑

t

∑
s∈S

∑
v∈Vs

COust
v (t)/

∑
s∈S |Vs| is also set as a

performance metric to see the different resource allocation
strategies between the considered schemes. Note that the
system profit is the final goal of optimization and the most
important indicator that the MNOs care about among all the
performance metrics.

C. Evaluation Results With Different Learning Parameters

We first illustrate the average reward of the DRL agents of
the VNFs to show the convergence performance of the pro-
posed prediction-based NSM scheme with different learning
rates, batch sizes, discount factors, and memory capacities,
as shown in Fig. 6. From Fig. 6(a), we can observe that
the average reward of the agents with the learning rate set
as 0.01 fluctuates greatly over learning episodes, while the
reward of the learning rate set as 0.001 and 0.0001 have
similar behavior and finally the reward of different learning
rates can converge to be stable near to 0.8× 105. Particularly,
when the learning rate is set as 0.01, the training of agents
will occasionally fall into a local optimum, leading to sharp
fluctuations in the later stages and rewards hovering around the
global optimum. Also, we adopt different batch sizes, discount
factors, and memory capacities for agent training, as shown
in Fig. 6(b), Fig. 6(c), and Fig. 6(d), respectively. From the
figures, we can observe that the average training reward of the
DRL agents can converge to a stable stage near 0.8×105 after
100 episodes, which suggests that the VNFs can be adapted

13

10 30 50 70 90 110
Migration Penalty δ

0

2

4

6

Un
sa

tis
fie

d
Co

st

1e3(a) Average Unsatisfied Cost

10 30 50 70 90 110
Migration Penalty δ

0

2

4

6

8

Co
st

1e3 (b) Average Cost

10 30 50 70 90 110
Migration Penalty δ

0

2

4

6

8

Re
ve

nu
e

1e4 (c) Average Revenue

10 30 50 70 90 110
Migration Penalty δ

0

2

4

6

8

Pr
of

it

1e4 (d) Average Profit
Proposed Proposed, MDP NoPre-DRL NoPre-SA NoPre-Reset NoPre-Random

Fig. 7. The unsatisfied cost, cost, revenue, and profit of prediction-based FDRL versus different migration penalties.

50 100 150 200 250 300
Unsatisfied Penalty η

0.0

0.5

1.0

1.5

2.0

Un
sa

tis
fie

d
Co

st

1e4
(a) Average Unsatisfied Cost

50 100 150 200 250 300
Unsatisfied Penalty η

0.0

0.5

1.0

1.5

2.0

Co
st

1e4 (b) Average Cost

50 100 150 200 250 300
Unsatisfied Penalty η

0

2

4

6

8

Re
ve

nu
e

1e4 (c) Average Revenue

50 100 150 200 250 300
Unsatisfied Penalty η

0

2

4

6

8

Pr
of

it

1e4 (d) Average Profit

Proposed Proposed, MDP NoPre-DRL NoPre-SA NoPre-Reset NoPre-Random

Fig. 8. The unsatisfied cost, cost, revenue, and profit of prediction-based FDRL versus different unsatisfied penalties.

to the environment efficiently and the agents can learn stable
strategies to make NSM decisions with prediction information.

D. Evaluation Results Versus Different Penalties

1) The Considered Schemes Adopt Different Migration
Penalties: We then compare the average unsatisfied cost, cost,
revenue, and profit of the considered schemes with different
migration penalties δ, as shown in Fig. 7. From Fig. 7(a)
and Fig. 7(b), we can see with the migration penalty δ
increases, the unsatisfied cost and cost remain relatively stable,
as the migration penalty will not affect the resource allocation
strategies that the unsatisfied cost depends on. The proposed
scheme and the Proposed MDP scheme have much lower
unsatisfied costs and costs compared to others, since in these
prediction-based schemes, the agents allocate resources for the
VNFs more reasonably with future user requests considered.
From Fig. 7(c) and Fig. 7(d), we can see the proposed schemes
can achieve the highest system revenue and profit, followed
by the NoPre-SA and NoPre-DRL schemes that are very
close to each other, the NoPre-Reset scheme, and the NoPre-
Random scheme. With the prediction of users’ information
provided, the proposed schemes can have more intelligent
resource allocation strategies to decide on better physical hosts
for the VNFs with users’ mobility trajectories considered.
Moreover, the No-Pre DRL scheme realizes even the same
performance compared to the NoPre-SA scheme with 500
iterations and achieves better NSM strategies than the other
non-prediction schemes. Overall, compared to the NoPre-
DRL, NoPre-SA, NoPre-Reset, and NoPre-Random schemes,

the proposed scheme with different migration penalties δ ∈
[10, 30, . . . , 110] can reduce the average unsatisfied cost by up
to 49.17%, 44.53% 51.33%, and 50.32%, reduce the average
cost by up to 37.24%, 33.05%, 37.76%, and 36.76%, improve
the average revenue by up to 40.21%, 38.27%, 49.30%, and
56.23%, and improve the average profit by up to 46.13%,
43.72%, 55.90%, and 63.38%, respectively. Moreover, in this
case (|N | = 10) with different δ, the gap in profit with the
Proposed MDP scheme is up to 18.08%.

2) The Considered Schemes Adopt Different Unsatisfied
Penalties: Besides, we illustrate the performances of the
considered schemes with different unsatisfied penalties η, as
shown in Fig. 8. From Fig. 8(a), we can observe the unsatisfied
cost of the considered schemes increases with η, and the
proposed schemes have lower unsatisfied costs than the other
schemes. With η increases, the advantages of the proposed
schemes become more obvious, since the proposed schemes
allocate more resources for the VNFs with future requested re-
sources information in the NSM process, contributing to lower
average unsatisfied cost and lower cost. From Fig. 8(c), we can
see the average revenues of the considered schemes fluctuate
on small scales since the available resources of physical ESs
are run out. In this scenario, even with higher unsatisfied penal-
ties, the VNFs cannot be allocated more resources; even if the
cloud has elastic resources, it also has higher latency, introduc-
ing lower profit. Thus, the allocated resources of VNFs remain
stable, as well as the satisfied resources, leading to relatively
stable revenue. The proposed schemes have the highest average
revenue, followed by the NoPre-SA, NoPre-DRL, NoPre-

14

10 20 30
 The ES number ||

4
5
6
7
8
9

Un
sa
tis
fie
d
Co

st

1e3
(a) Average Unsatisfied Cost

10 20 30
 The ES number ||

5

6

7

8

9

Co
st

1e3 (b) Average Cost

10 20 30
 The ES number ||

0.5

1.0

1.5

Re
ve
nu
e

1e5 (c) Average Revenue

10 20 30
 The ES number ||

0.0

0.5

1.0

1.5

Pr
of
it

1e5 (d) Average Profit

Proposed, χ=4
Proposed, χ=3

Proposed, χ=2
Proposed, χ=1

Proposed, MDP
NoPre-DRL

NoPre-SA
NoPre-Reset

NoPre-Random

Fig. 9. The performance of considered schemes versus |N | while the proposed scheme adopts different prediction orders.

10 20 30
 The ES number ||

4

5

6

7

8

9

Un
sa
tis
fie

d
Co

st

1e3
(a) Average Unsatisfied Cost

10 20 30
 The ES number ||

5

6

7

8

9

Co
st

1e3 (b) Average Cost

10 20 30
 The ES number ||

0.5

1.0

1.5

Re
ve
nu

e

1e5 (c) Average Revenue

10 20 30
 The ES number ||

0.0

0.5

1.0

1.5

Pr
of
it

1e5 (d) Average Profit

Proposed, LSTM
Proposed, RNN

Proposed, Real
Proposed, MDP

NoPre-DRL
NoPre-SA

NoPre-Reset NoPre-Random

Fig. 10. The performance of considered schemes versus |N | while the proposed scheme adopts different prediction models.

Reset, and NoPre-Random schemes. Consequently, though the
system cost increases heavily with the unsatisfied penalty η,
the system profit slightly decreases, as shown in Fig. 8(d). To
summarize, compared to the NoPre-DRL, NoPre-SA, NoPre-
Reset, and NoPre-Random schemes, the proposed scheme
with different unsatisfied penalties η ∈ [50, 100, . . . , 300] can
reduce the average unsatisfied cost by up to 48.96%, 44.14%,
50.97%, and 49.97%, reduce the average cost by up to 44.39%,
40.26% 46.29%, and 45.21%, improve the average revenue by
up to 41.08%, 39.49%, 50.23%, and 57.04%, and improve the
average profit by up to 56.95%, 53.75%, 69.81%, and 79.01%,
respectively. Moreover, in this case (|N | = 10) with different
η, the gap in profit with the Proposed MDP scheme is up to
31.11%.

E. Evaluation Results Versus Different Numbers of ESs

1) The Proposed Scheme Adopts Different Prediction Or-
ders: To figure out how the prediction order χ affects the
evaluation performance, we set the proposed scheme with
different prediction orders χ and further compare the per-
formances of the considered schemes versus different ES
numbers, as shown in Fig. 9. From Fig. 9(a) and Fig. 9(b),
we can observe that the average unsatisfied cost and cost of
the considered schemes vibrate evenly with the increase of
the ES number |N |, which suggests that the unsatisfied cost
and cost are not affected by the number of ESs, since the
number of VNFs also increase with |N |. Particularly, when
we have |N | = 25, we find the UEs have relatively fewer
requested resources compared to other scenarios, leading to

less unsatisfied cost. The Proposed MDP scheme (χ = 4)
has the lowest unsatisfied cost and system cost, followed by
the proposed scheme with χ = 4, 3, 2, the non-prediction
schemes, and the proposed scheme with χ = 1. The non-
prediction schemes have close performance to each other,
as their resource allocation strategies are based on the first
time slot’s requests, and their slight differences are the chosen
facilities for VNF migration, e.g., choosing an ES with more
available resources will contribute to lower unsatisfied cost
and cost. Particularly, the proposed scheme with χ = 1 has
the highest unsatisfied cost and cost, which indicates that
the prediction of χ = 1 provides the VNFs with a negative
effect that lets VNFs allocate much fewer resources, leading
to higher unsatisfied costs.

From Fig. 9(c) and Fig. 9(d), when |N | ∈ [5, 20], we can see
that the Propose-MDP scheme has the highest average revenue
and profit, followed by the proposed scheme with χ = 4, 3, 2,
the NoPre-SA, NoPre-DRL, NoPre-Reset schemes, the pro-
posed scheme with χ = 1, and finally the NoPre-Random
scheme. Note that the performances of the Propose-MDP
scheme and the NoPre-SA schemes significantly decrease
with N , which demonstrates that the exhaustive search-based
schemes are hard to deal with scenarios with large numbers
of BSs. The average revenue and profit decrease with |N |
since the complexity of network topology increases with
the ES number |N |, leading to higher latency between the
physical hosts of VNFs and users’ connected ESs, causing
lower average revenue/profit. When |N | = 25, since the
requested resources have a decrease, the agents have more

15

10 20 30
 The ES number ||

4

5

6

7

8

Un
sa
tis
fie
d
Co

st

1e3
(a) Average Unsatisfied Cost

10 20 30
 The ES number ||

5

6

7

8

9

Co
st

1e3 (b) Average Cost

10 20 30
 The ES number ||

0.5

1.0

1.5

Re
ve
nu
e

1e5 (c) Average Revenue

10 20 30
 The ES number ||

0.0

0.5

1.0

1.5

Pr
of
it

1e5 (d) Average Profit

Proposed, FL
Proposed, NoFL

Proposed, MDP
NoPre-DRL

NoPre-SA NoPre-Reset NoPre-Random

Fig. 11. The performance of considered schemes versus |N | while the proposed scheme adopts different training paradigms.

5 10 15 20 25 30
The ES number ||

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Co
m

m
un

ica
tio

n
Ov

er
he

ad
 (M

B)

1e2 Average Communication Overhead
Proposed, FL
NoFL

(a) Communication Overhead

5 10 15 20 25 30
The ES number ||

1

2

3

4

5

6

Tr
an
sm

iss
io
n
Ti
m
e
(s
)

1e1 Average Transmission Time
Proposed, FL
NoFL

(b) Transmission Time

Fig. 12. The communication overhead and transmission time versus |N | when the proposed scheme adopts different training paradigms.

candidate physical hosts to choose from for migration and
thus can migrate to physical hosts with lower access laten-
cies, contributing to a slight increase of revenue/profit. When
|N | ∈ [25, 30], the proposed scheme with χ = 4 has higher
revenue/profit compared to the NoPre-MDP scheme, and the
NoPre-SA scheme also falls behind the NoPre-DRL scheme.
Overall, compared to the NoPre-DRL, NoPre-SA, NoPre-
Reset, and NoPre-Random schemes, the proposed scheme with
different prediction orders χ ∈ [4, 3, . . . , 1] can reduce the
average unsatisfied cost by up to 71.15%, 64.86%, 69.81%,
and 70.96%, reduce the average cost by up to 62.97%,
56.36%, 60.26%, and 61.67%, improve the average revenue
by up to 40.90%, 55.88%, 68.53%, and 66.34%, and improve
the average profit by up to 56.29%, 70.44%, 82.37%, and
82.99%, respectively. Moreover, with |N | increases from 5
to 30, the gaps in profit with the Proposed MDP scheme are
30.05%, 18.07%, 15.76%, 16.61%, −10.97%, and −6.54%,
respectively, which demonstrate that the proposed scheme
outperforms the Propose-MDP scheme when |N | ≥ 25.

2) The Proposed Scheme Adopts Different Prediction Mod-
els: To see how different prediction models affect the NSM
performance, we also compare the performances of the consid-
ered schemes versus different |N | where the proposed scheme
adopts different prediction models, as shown in Fig. 10.
Specifically, we utilize the LSTM model and the RNN model
to predict future user information to get different prediction
performances and collect real user request data to achieve
an unbiased prediction present as the Proposed Real scheme.

From Fig. 10(a) and Fig. 10(b) we can observe the average
unsatisfied cost and cost of the considered schemes vibrate
evenly with the increase of |N |, the Propose-Real scheme
gets the lowest average unsatisfied cost and system cost
(very close to the Proposed MDP), followed by the proposed
scheme with LSTM model and RNN model. The baseline
schemes without prediction have very close performance and
all get high average unsatisfied cost and system cost com-
pared to the proposed scheme with different models. From
Fig. 10(c) and Fig. 10(d), we can see the average revenue and
profit decrease with |N |, the performance of the Proposed
MDP scheme has the highest system revenue/profit when
|N | ∈ [5, 20], and the Proposed Real scheme is much better
when |N | ∈ [25, 30] followed by the proposed scheme with
LSTM model and RNN model and non-prediction schemes. To
summarize, compared to the NoPre-DRL, NoPre-SA, NoPre-
Reset, and NoPre-Random schemes, the proposed scheme with
different prediction models adopted can reduce the average
unsatisfied cost by up to 122.11%, 113.94%, 120.37%, and
121.86%, reduce the average cost by up to 104.34%, 96.05%,
100.95%, and 102.71%, improve the average revenue by
up to 47.90%, 61.81%, 72.76%, and 70.86%, and improve
the average profit by up to 63.20%, 75.11%, 85.16%, and
85.67%, respectively. Moreover, with |N | increases from 5
to 30, the gaps in profit with the Proposed MDP scheme are
15.47%, 3.39%, −3.82%, −0.96%, −25.09%, and −21.31%,
respectively, which demonstrate that the proposed scheme with
best predictions outperforms the Propose-MDP scheme when

16

|N | ≥ 15.
3) The Proposed Scheme Adopts Different Training

Paradigms: Finally, to see how the FL paradigm affects the
NSM performance, we compare the performance of the consid-
ered schemes versus different |N | where the proposed scheme
adopts different training paradigms, as shown in Fig. 11.
Here, we utilize the centralized training paradigm to train the
LSTM and DRL models as a baseline in which all the VNFs
upload the collected user data in the collection phase and the
interactive data in the migration phase to the remote cloud for
model training. From Fig. 11(a) to Fig. 11(d) we can observe
the NSM performances of the proposed FL-based scheme and
the non-FL based scheme are very close to each other, but
according to Fig. 12(a) and Fig. 12(b) we can see the non-
FL based scheme has much higher communication overhead
and transmission time for model training, especially for the
cases with more ESs, which demonstrates that the proposed
FL-based scheme can significantly reduce the communication
overhead and transmission time for model training with the
NSM performance ensured. Particularly, in Fig. 12(b) we
notice that the transmission time of the proposed FL-based
scheme remains relatively stable when we have less than 25
ESs, since in these scenarios we find the number of users
each VNF is serving, i.e., Uv are even, contributing to lower
overall local model training time (depends on the largest local
model training time among all VNFs). Overall, the proposed
FL-based scheme can reduce the communication overhead by
up to 71.39% and save the transmission time over 3.67 times
compared to non-FL-based schemes.

VI. CONCLUSION

In this paper, we have investigated the NSM problem from
a periodical view to mimic that the VNF should be migrated
only after the NSM trigger is detected. We designed a general
system model for periodical NSM and formulated the problem
of maximizing the long-term profit of MNOs. To solve this
problem, we first model the NSM decision-making process
as an MDP and creatively propose a prediction-based FDRL
framework to solve it. The prediction of further system infor-
mation is adopted as the suppliance of the system state, and we
set the overall feedback for each period as the system reward.
By performing extensive experiments, simulation results have
demonstrated that our proposed scheme outperforms baseline
schemes in improving long-term profit and can significantly
reduce communication overhead and save transmission time.

REFERENCES

[1] H. Yu, Z. Ming, C. Wang, and T. Taleb, “Network slice mobility for 6G
networks by exploiting user and network prediction,” in Proc. IEEE
International Conference on Communications (ICC), May 2023, pp.
4905–4911.

[2] B. Ji, Y. Han, S. Liu, F. Tao, G. Zhang, Z. Fu, and C. Li, “Several
key technologies for 6G: challenges and opportunities,” IEEE Commun.
Stand. Mag., vol. 5, no. 2, pp. 44–51, June 2021.

[3] Y. Liu, Y. Deng, A. Nallanathan, and J. Yuan, “Machine learning for 6G
enhanced ultra-reliable and low-latency services,” IEEE Wirel. Commun.,
vol. 30, no. 2, pp. 48–54, Apr. 2023.

[4] T. K. Rodrigues and N. Kato, “Network slicing with centralized and dis-
tributed reinforcement learning for combined satellite/ground networks
in a 6G environment,” IEEE Wirel. Commun., vol. 29, no. 1, pp. 104–
110, Feb. 2022.

[5] K. Smida, H. Tounsi, M. Frikha, and Y.-Q. Song, “Fens: Fog-enabled
network slicing in SDN/NFV-based IoV,” Wirel. Pers. Commun., vol.
128, no. 3, pp. 2175–2202, Sept. 2023.

[6] Y. Wu, H.-N. Dai, H. Wang, Z. Xiong, and S. Guo, “A survey of
intelligent network slicing management for industrial IoT: Integrated
approaches for smart transportation, smart energy, and smart factory,”
IEEE Commun. Surv. Tutorials, vol. 24, no. 2, pp. 1175–1211, Apr.
2022.

[7] Z. Shu, T. Taleb, and J. Song, “Resource allocation modeling for
fine-granular network slicing in beyond 5G systems,” IEICE Trans.
Commun., vol. 105, no. 4, pp. 349–363, Apr. 2022.

[8] X. Tang, L. Zhao, J. Chong, Z. You, L. Zhu, H. Ren, Y. Shang, Y. Han,
and G. Li, “5G-based smart healthcare system designing and field trial
in hospitals,” IET Commun., vol. 16, no. 1, pp. 1–13, Jan. 2022.

[9] S. Karunarathna, S. Wijethilaka, P. Ranaweera, K. T. Hemachandra,
T. Samarasinghe, and M. Liyanage, “The role of network slicing and
edge computing in the metaverse realization,” IEEE Access, vol. 11, pp.
25 502–25 530, Mar. 2023.

[10] Y. Sun, S. Qin, G. Feng, L. Zhang, and M. A. Imran, “Service provi-
sioning framework for RAN slicing: user admissibility, slice association
and bandwidth allocation,” IEEE Trans. Mob. Comput., vol. 20, no. 12,
pp. 3409–3422, Dec. 2020.

[11] A. Papa, A. Jano, S. Ayvaşık, O. Ayan, H. M. Gürsu, and W. Kellerer,
“User-based quality of service aware multi-cell radio access network
slicing,” IEEE Trans. Netw. Serv. Manag., vol. 19, no. 1, pp. 756–768,
Mar. 2021.

[12] Y. B. Slimen, J. Balcerzak, A. Pagès, F. Agraz, S. Spadaro, K. Kout-
sopoulos, M. Al-Bado, T. Truong, P. G. Giardina, and G. Bernini,
“Quality of perception prediction in 5G slices for e-health services using
user-perceived QoS,” Comput. Commun., vol. 178, pp. 1–13, May 2021.

[13] S. Choudhury, S. Das, S. Paul, I. Seskar, and D. Raychaudhuri, “Intel-
ligent agent support for achieving low latency in cloud-native nextg
mobile core networks,” in Proc. ACM International Conference on
Distributed Computing and Networking (ICDCN), Jan. 2023, pp. 12–
19.

[14] R. A. Addad, T. Taleb, H. Flinck, M. Bagaa, and D. Dutra, “Network
slice mobility in next generation mobile systems: challenges and poten-
tial solutions,” IEEE Netw., vol. 34, no. 1, pp. 84–93, Jan. 2020.

[15] R. A. Addad, D. L. C. Dutra, T. Taleb, and H. Flinck, “Toward using
reinforcement learning for trigger selection in network slice mobility,”
IEEE J. Sel. Areas Commun., vol. 39, no. 7, pp. 2241–2253, July 2021.

[16] W. Wang, Q. Chen, X. He, and L. Tang, “Cooperative anomaly detec-
tion with transfer learning-based hidden Markov model in virtualized
network slicing,” IEEE Commun. Lett., vol. 23, no. 9, pp. 1534–1537,
Sept. 2019.

[17] F. Rezazadeh, H. Chergui, L. Christofi, and C. Verikoukis, “Actor-critic-
based learning for zero-touch joint resource and energy control in net-
work slicing,” in Proc. IEEE Internation Conference on Communications
(ICC), June 2021, pp. 1–6.

[18] J. Zhou, W. Zhao, and S. Chen, “Dynamic network slice scaling assisted
by prediction in 5G network,” IEEE Access, vol. 8, pp. 133 700–133 712,
July 2020.

[19] Y. Xu, J. Yu, and R. M. Buehrer, “The application of deep reinforcement
learning to distributed spectrum access in dynamic heterogeneous en-
vironments with partial observations,” IEEE Trans. Wireless Commun.,
vol. 19, no. 7, pp. 4494–4506, May 2020.

[20] A. M. Ibrahim, K.-L. A. Yau, Y.-W. Chong, and C. Wu, “Applications of
multi-agent deep reinforcement learning: Models and algorithms,” Appl.
Sci., vol. 11, no. 22, p. 10870, Nov. 2021.

[21] J. Hao, T. Yang, H. Tang, C. Bai, J. Liu, Z. Meng, P. Liu, and
Z. Wang, “Exploration in deep reinforcement learning: From single-
agent to multiagent domain,” IEEE Trans. Neural Netw. Learn. Syst.,
pp. 1–21, Jan. 2023.

[22] X. Chen, G. Han, Y. Bi, Z. Yuan, M. K. Marina, Y. Liu, and H. Zhao,
“Traffic prediction-assisted federated deep reinforcement learning for
service migration in digital twins-enabled MEC networks,” IEEE J. Sel.
Areas Commun., vol. 41, no. 10, pp. 3212–3229, Aug. 2023.

[23] J. Cai, A. Du, X. Liang, and S. Li, “Prediction-based path planning
for safe and efficient human–robot collaboration in construction via
deep reinforcement learning,” J. Comput. Civil Eng., vol. 37, no. 1,
p. 04022046, Oct. 2022.

[24] W. Wang, C. Liang, Q. Chen, L. Tang, H. Yanikomeroglu, and T. Liu,
“Distributed online anomaly detection for virtualized network slicing
environment,” IEEE Trans. Veh. Technol., vol. 71, no. 11, pp. 12 235–
12 249, July 2022.

17

[25] X. Vasilakos, N. Nikaein, D. H. Lorenz, B. Koksal, and N. Ferdosian,
“Integrated methodology to cognitive network slice management in
virtualized 5G networks,” arXiv preprint arXiv:2005.04830, May 2020.

[26] Y. Xiao and M. Krunz, “Dynamic network slicing for scalable fog com-
puting systems with energy harvesting,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 12, pp. 2640–2654, Sept. 2018.

[27] H. Halabian, “Distributed resource allocation optimization in 5G vir-
tualized networks,” IEEE J. Sel. Areas Commun., vol. 37, no. 3, pp.
627–642, Mar. 2019.

[28] S. Dawaliby, A. Bradai, and Y. Pousset, “Distributed network slicing in
large scale IoT based on coalitional multi-game theory,” IEEE Trans.
Netw. Serv. Manag., vol. 16, no. 4, pp. 1567–1580, Dec. 2019.

[29] M. A. Hossain and N. Ansari, “Energy aware latency minimization for
network slicing enabled edge computing,” IEEE Trans. Green Commun.
Netw., vol. 5, no. 4, pp. 2150–2159, Dec. 2021.

[30] Y. E. Oktian, S. Lee, H. Lee, and J. Lam, “Distributed SDN controller
system: A survey on design choice,” Comput. Netw., vol. 121, pp. 100–
111, Apr. 2017.

[31] H. Chergui, L. Blanco, L. A. Garrido, K. Ramantas, S. Kukliński,
A. Ksentini, and C. Verikoukis, “Zero-touch AI-driven distributed man-
agement for energy-efficient 6G massive network slicing,” IEEE Netw.,
vol. 35, no. 6, pp. 43–49, Nov. 2021.

[32] Z. Zhu and H. Zhao, “A survey of deep RL and IL for autonomous
driving policy learning,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 9,
pp. 14 043–14 065, Dec. 2021.

[33] J. Zeng, D. Ding, K. Kang, H. Xie, and Q. Yin, “Adaptive DRL-based
virtual machine consolidation in energy-efficient cloud data center,”
IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 11, pp. 2991–3002,
Feb. 2022.

[34] Y. Tu, H. Chen, L. Yan, and X. Zhou, “Task offloading based on LSTM
prediction and deep reinforcement learning for efficient edge computing
in IoT,” Future Internet, vol. 14, no. 2, p. 30, Jan. 2022.

[35] A. Havens, Y. Ouyang, P. Nagarajan, and Y. Fujita, “Learning latent
state spaces for planning through reward prediction,” arXiv preprint
arXiv:1912.04201, 2019.

[36] S. Q. Jalil, S. Chalup, and M. H. Rehmani, “Cognitive radio spectrum
sensing and prediction using deep reinforcement learning,” in Proc.
International Joint Conference on Neural Networks (IJCNN). IEEE,
Sept. 2021, pp. 1–8.

[37] F. Rezazadeh, L. Zanzi, F. Devoti, H. Chergui, X. Costa-Perez, and
C. Verikoukis, “On the specialization of FDRL agents for scalable and
distributed 6G RAN slicing orchestration,” IEEE Trans. Veh. Technol.,
vol. 72, no. 3, pp. 3473–3487, Oct. 2022.

[38] J. Liu, S. Zhang, H. Nishiyama, N. Kato, and J. Guo, “A stochastic
geometry analysis of D2D overlaying multi-channel downlink cellular
networks,” in Proc. IEEE Conference on Computer Communications
(INFOCOM), Aug. 2015, pp. 46–54.

[39] H. Abdah, J. P. Barraca, and R. L. Aguiar, “QoS-aware service continuity
in the virtualized edge,” IEEE Access, vol. 7, pp. 51 570–51 588, Apr.
2019.

[40] L. Zanzi, V. Sciancalepore, A. Garcia-Saavedra, H. D. Schotten, and
X. Costa-Pérez, “LACO: A latency-driven network slicing orchestration
in beyond-5G networks,” IEEE Trans. Wireless Commun., vol. 20, no. 1,
pp. 667–682, Oct. 2020.

[41] S. O. Oladejo and O. E. Falowo, “Latency-aware dynamic resource allo-
cation scheme for multi-tier 5G network: A network slicing-multitenancy
scenario,” IEEE Access, vol. 8, pp. 74 834–74 852, Apr. 2020.

[42] L. Meng, Y. Ren, B. Zhang, J.-Q. Li, H. Sang, and C. Zhang, “MILP
modeling and optimization of energy-efficient distributed flexible job
shop scheduling problem,” IEEE Access, vol. 8, pp. 191 191–191 203,
Oct. 2020.

[43] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural
networks: LSTM cells and network architectures,” Neural Comput.,
vol. 31, no. 7, pp. 1235–1270, July 2019.

[44] R. Shashidhar, S. Patilkulkarni, and S. Puneeth, “Combining audio and
visual speech recognition using LSTM and deep convolutional neural
network,” INT. J. Inf. Technol., vol. 14, no. 7, pp. 3425–3436, Dec.
2022.

[45] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, no. 6088, pp.
533–536, Oct. 1986.

[46] Z. Zhang, “Improved Adam optimizer for deep neural networks,”
in Proc. IEEE/ACM International Symposium on Quality of Service
(IWQoS), Jan. 2018, pp. 1–2.

[47] Y. Fei, Z. Yang, Y. Chen, and Z. Wang, “Exponential bellman equation
and improved regret bounds for risk-sensitive reinforcement learning,”

Advances in Neural Information Processing Systems (NIPS), vol. 34, pp.
20 436–20 446, Dec. 2021.

[48] Y. Zhou, Q. Ye, and J. Lv, “Communication-efficient federated learning
with compensated overlap-fedavg,” IEEE Trans. Parallel. Distrib. Syst.,
vol. 33, no. 1, pp. 192–205, Jan. 2021.

[49] H. Sak, A. W. Senior, and F. Beaufays, “Long short-term memory
recurrent neural network architectures for large scale acoustic modeling,”
arXiv preprint arXiv:1402.1128, 2014.

[50] X. Wang, C. Wang, X. Li, V. C. M. Leung, and T. Taleb, “Federated
deep reinforcement learning for internet of things with decentralized
cooperative edge caching,” IEEE Internet Things J., vol. 7, no. 10, pp.
9441–9455, Oct. 2020.

[51] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using networkx,” in Proc. Python in
Science Conference (SciPy), Jan. 2008, pp. 11 – 15.

Zhao Ming is currently a Ph.D. student at the Centre
for Wireless Communications (CWC), University
of Oulu, Oulu, Finland. He received the M.E. de-
gree from Chongqing University (CQU), Chongqing,
China, in 2022, and the B.S. degree from Wuhan
University of Technology (WHUT), Wuhan, China,
in 2018. His current research interests include net-
work slicing, multi-access edge computing, anomaly
detection, and AI/ML technologies and their combi-
nations.

Hao Yu received the B.E. and Ph.D. degree in
communication engineering from the Beijing Uni-
versity of Posts and Telecommunications (BUPT),
Beijing, China, in 2015 and 2020. He was also a
joint-supervised Ph.D. Student with the Politecnico
di Milano, Milano, Italy, and was a Postdoctoral
Researcher with the Center of Wireless Communi-
cations (CWC), University of Oulu, Finland. He is
currently a senior researcher at ICTFICIAL Oy, Es-
poo, Finland. His research interests include network
automation, SDN/NFV, time-sensitive networks, and

deterministic networking.

Tarik Taleb (Senior Member, IEEE) received the
B.E. degree (with distinction) in information engi-
neering and the M.Sc. and Ph.D. degrees in infor-
mation sciences from Tohoku University, Sendai,
Japan, in 2001, 2003, and 2005, respectively. He
is currently a Full Professor at Ruhr University
Bochum, Germany. He was a Professor with the
Center of Wireless Communications (CWC), Uni-
versity of Oulu, Oulu, Finland. He is the founder of
ICTFICIAL Oy, and the founder and the Director of
the MOSA!C Lab, Espoo, Finland. From October

2014 to December 2021, he was an Associate Professor with the School
of Electrical Engineering, Aalto University, Espoo, Finland. Prior to that,
he was working as a Senior Researcher and a 3GPP Standards Expert with
NEC Europe Ltd., Heidelberg, Germany. Before joining NEC and till March
2009, he worked as an Assistant Professor with the Graduate School of
Information Sciences, Tohoku University, in a lab fully funded by KDDI.
From 2005 to 2006, he was a Research Fellow with the Intelligent Cosmos
Research Institute, Sendai. He has been directly engaged in the development
and standardization of the Evolved Packet System as a member of the
3GPP System Architecture Working Group. His current research interests
include AI-based network management, architectural enhancements to mobile
core networks, network softwarization and slicing, mobile cloud networking,
SDN/NFV, software-defined security, and mobile multimedia streaming.

