
Enhancing Federated Learning with Homomorphic
Encryption and Multi-Party Computation for

improved privacy
Pedro Tomás∗†, Samira Kamali Poorazad‡, Chafika Benzaı̈d‡, Luis Rosa∗, Jorge Proença∗,

Tarik Taleb§, and Luis Cordeiro∗
*{pedro.tomas, luis.rosa, jorge.proenca, cordeiro}@onesource.pt *{samira.kamalipoorazad,chafika.benzaid}@oulu.fi

*tarik.taleb@rub.de
∗ OneSource, Consultoria Informática Lda., Portugal
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Abstract—Federated Learning (FL) has demonstrated substan-
tial promise in distributed machine learning by enabling collab-
orative model training without sharing raw data. However, FL
systems still face challenges related to privacy and security. This
paper evaluates the impact of incorporating Privacy-Enhancing
Techniques (PETs) into a Federated Learning architecture con-
ceived for Network Anomaly Detection.

This work provides two-fold contributions: the impact of Ho-
momorphic Encryption and Multi-Party Computation on model
classification, considering various types of attacks, validated using
a widely known dataset, the CIC-IDS2017 dataset, and the
performance and resource analysis when compared to a classical
Federated Learning architecture (without using PETs).

The results show that using Multi-Party Computation presents
a residual increase in computational resources (from 0.998MB
to 1.417MB of RAM consumption, on average) accompanied
by a significant increase in privacy for the different agents
involved and even a slightly increased performance achieved
by the detection module. Such results offer insights into the
trade-offs between security benefits and computational overhead,
providing valuable guidelines for optimizing federated learning
systems with integrated privacy protections.

Index Terms—federated learning; anomaly detection; enhance
privacy; multi-party computation; homomorphic encryption;

I. INTRODUCTION

Google introduced Federated Learning in 2016 as an inno-
vative form of decentralised learning with a strong focus on
the client’s privacy. One of the main ideas behind this concept
is that the original data never leaves the device and is solely
used to train the Machine Learning (ML) model locally.

In an era of distributed systems, protecting such vast net-
works poses a serious challenge. Detecting security threats
and network traffic anomalies is of paramount importance to
promptly identify malicious traffic [1], [2]. The Holistic Se-
curity and Privacy Framework (HSPF) [3] is an FL-based tool
for network traffic anomaly detection to identify anomalies in
kubernetes-based scenarios.

Considering the importance of data security and privacy,
this work proposes and evaluates the addition of two Privacy
Enhancing Techniques to the HSPF: Homomorphic Encryption

(HE) and Multi-Party Computation (MPC), specifically from
resource consumption and performance points of view. The
evaluation was divided into training and testing phases: the
first focused on understanding the impact of adding HE and
MPC on resource consumption; the second aimed to assess
the impact of adding these techniques to the HSPF processes
on its ability to detect network traffic anomalies. For the
training phase, a simple scenario was created in a Kubernetes
environment where agnostic requests were generated to an
httpbin server, and the traffic was collected and the HSPF
detection module learnt the characteristics of these requests.
Next, in the testing phase, a dataset containing 60% of traffic
collected from the training phase and 40% of malicious traffic
(attacks) randomly retrieved from the CIC-IDS2017 [4] dataset
was used to evaluate the performance of the trained models.

The experimentation showed that using HE significantly in-
creased resource consumption (i.e., RAM) during the training
phase. On the other hand, the testing phase showed better
results when compared with a scenario without PETs. The
addition of MPC resulted in a slight increase in resource con-
sumption for the training and testing phases. The performance
model yielded the best results when compared to the three
other scenarios, with the best model achieving an f1-score of
56.28%.

II. RELATED WORK

Motivated by their crucial role in enhancing data privacy
and security, there has been a growing research interest in
integrating encryption-based PETs, such as HE and MPC, with
FL to protect shared model updates. This section provides an
overview of existing studies, with a particular emphasis on the
computation and accuracy degradation issues associated with
the integration of encryption-based PETs.

A. HE-based FL Systems

Authors in [5] highlight the capability of HE to maintain
model accuracy close to non-encrypted models while opti-



mising communication and computational efficiency. Using
Cheon-Kim-Kim-Song (CKKS) HE scheme with an aggre-
gated public key in their method ensures that individual model
updates remain confidential without significantly degrading
classification performance. Authors in [6] propose a method
named Paillier Federated Multi-Layer Perceptron (PFMLP).
PFMLP integrates HE with FL to secure gradient data during
transmission, while maintaining model accuracy. The opti-
mised Paillier algorithm used in PFMLP enhances training
efficiency, though the increased computational overhead due
to encryption poses a challenge, potentially slowing down the
training process. In [7], HE is combined with secure MPC to
protect data privacy during training in IoT-enabled healthcare
systems. The introduction of a dropout-tolerable mechanism
and a weighted average algorithm based on data quality
helps preserve model accuracy while reducing computation
and communication overhead. However, the complexity of
implementation and the reliance on multiple cryptographic
techniques may pose challenges in practical deployment. The
study in [8] introduces a secure FL framework that inte-
grates HE and Verifiable Computing (VC) to protect the
confidentiality and integrity of model training, particularly in
scenarios involving a small number of reliable clients, such
as cross-silo settings. While this approach maintains model
accuracy and provides strong privacy and integrity guarantees,
the increased complexity and resource demands make it less
suitable for environments with limited computational power,
especially when compared to simpler methods that do not offer
comprehensive security. The PL-FedIPEC scheme proposed
in [9] integrates HE with FL to enhance privacy and reduce
computational overhead in edge computing, utilizing an op-
timized Paillier encryption algorithm. However, the scheme
may face efficiency challenges in high communication or
frequent model update scenarios. In [10], a Buffered Federated
Learning (BFL) framework is presented for privacy-driven
anomaly detection in IIoT environments. A key goal of BFL
is to address the limitations of traditional FL methodologies,
such as the straggler effect, communication bottlenecks, and
privacy vulnerabilities. BFL achieves this by utilizing HE
to enhance privacy, and implementing an innovative client
selection strategy to balance the straggler effect and the
communication bottleneck. As a result, BFL provides a more
efficient and secure FL approach for IIoT applications than
state-of-the-art methods in terms of accuracy, convergence
speed, and privacy preservation.

HE consistently enhances privacy in FL systems across var-
ious domains. It effectively preserves model accuracy and of-
fers strong privacy guarantees. However, the trade-offs include
increased computational overhead, communication costs, and
implementation complexity [11]. These factors vary depending
on the specific application and the type of HE used, with
some methods achieving better balance between privacy and
performance than others. The choice of HE scheme ultimately
depends on the specific needs of the deployment environment,
particularly concerning resource availability and the frequency
of model updates.

B. MPC-based FL Systems

The authors in [12] propose a Partially Encrypted MPC
(PEMPC) method for FL, aimed at reducing the heavy commu-
nication and computation costs typically associated with stan-
dard MPC while preserving privacy. The proposed approach
selectively encrypts critical model parameters/gradients, focus-
ing on the first hidden layer to prevent data leakage during
model aggregation. Despite its efficiency improvements, the
method’s complexity and potential challenges in dynamic
environments with frequent updates are noteworthy. The CE-
Fed framework proposed in [13] introduces a new hierarchical
model aggregation method to tackle the high communication
cost and scalability issues in MPC-enabled FL. By grouping
clients based on geographical proximity and electing lead-
ers for model aggregation, CE-Fed reduces communication
overhead by 80 − 90% while maintaining high model ac-
curacy. Despite its merits, the proposed approach may face
implementation challenges due to its complexity. The work
in [14] proposes an augmented MPC method to enhance the
security of FL against indirect gradient leakage. The proposed
method consists in a two-round model decomposition that
ensures the central server receives only a biased version of
the model, protecting against data reconstruction. Despite
the advantage of MPC in maintaining model accuracy while
providing stronger privacy guarantees, it introduces additional
communication and computation overhead.

The reviewed methods significantly enhance FL by improv-
ing communication efficiency, reducing computation costs,
and strengthening privacy through secure MPC techniques.
Each approach balances performance with security, though
challenges like complexity and scalability persist. While these
methods offer robust privacy protections, they often introduce
trade-offs in resource consumption, highlighting the need for
further optimisation in practical implementations.

III. PROPOSED APPROACH

Fig. 1 presents the proposed approach for integrating the
PETs (i.e., Homomorphic Encryption and Multi-Party Com-
putation) within the HSPF Architecture.

Tailored to cloud-native environments based on Kubernetes,
the HSPF is composed of five major components: the HSPF
Core, the Agent, the Collector, the Dashboard and the Policy
Enforcer. Deployed as sidecars within the same pod as the
protected application, the Collector and Agent components
have distinct roles. The Collector captures inbound and out-
bound network traffic and is responsible for feature extrac-
tion, first by aggregation communications in network flows
and then by computing various related statistics. The Agent
performs network anomaly detection through inference on
the extracted features and engages in continual learning to
adapt the machine learning model to evolving network traffic
patterns. In parallel, the Agent also participates in federated
training rounds to ensure the model stays up to date with
the most recent data patterns. The Dashboard offers compre-
hensive observability into the protected cloud environment,
featuring graphical representations of components, network
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Fig. 1. HSPF components and functionalities

flows, and classification statistics. The Policy Enforcer enables
the enforcement of policies over the protected environment
using Istio Service Mesh [15] and Open Policy Agent [16].
For additional details on the baseline architecture and imple-
mentation of HSPF, please refer to [3].

A. HSPF with HE

Homomorphic Encryption (HE) has been implemented us-
ing the CKKS encryption schema [5], leveraging its compati-
bility with operations involving float numbers. Fig. 2 presents
the implementation of HE within HSPF.

The first step involves using a trusted third party to generate
a secure public-private key pair. These keys are then distributed
to all agents protecting a specific application (in the figure,
two agents protect two instances of the same application).
During the federated learning (FL) process, after completing
local training, each agent encrypts its model weights using the
public key and sends the encrypted weights to the Aggregator
(HSPF Core). The Aggregator then aggregates the encrypted
weights without decrypting them and sends the aggregated
result back to the agents. Finally, the agents decrypt the
aggregated weights using their private keys, accessing the real
values to continue FL iterations or receive the aggregated
model. This process ensures the Aggregator never accesses the
raw weights, preserving both the privacy of the model and the
original data by preventing any attempt at data reconstruction.
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Fig. 2. HE implementation within HSPF.

B. HSPF with MPC

MPC enables the secure aggregation of model weights.
Secure aggregation is a technique where data is encrypted
and aggregated locally before sharing, ensuring privacy. It
improves traditional federated learning by ensuring that the
model weights are not shared in raw format, thus preventing
potential unwanted data breaches (e.g., where the attacker
could potentially try to reconstruct the original data from the
model weights). Fig. 3 presents the implementation of MPC
within HSPF.
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Fig. 3. MPC implementation within HSPF.

Two phases were considered: the initiation and training
phases. In the initiation phase: (i) each HSPF Agent generates
Public and Private Keys using the Diffie-Hellman [17]; (ii) the
HSPF Core elaborates a dictionary containing the IDs of each
Agent and their respective public keys and then shares it with
all the HSPF Agents; (iii) after receiving the dictionary, each
agent calculates the shared secret which is used to mask their
parameters during the training phase; (iv) all agents update
their dictionary with the value of the shared secrets previously
calculated. Each agent generates the shared secret by signing
the public keys of the other Agents with its private key.

During the training phase, its Agent considers all the other



Agent IDs and shared secrets to add or subtract the value of
its shared secret (usually an integer), considering if the other
Agent IDs are greater or lower, respectively.

IV. EVALUATION METHODOLOGY

The following aspects were considered to evaluate the
impact of adding PETs into the HSPF architecture: federated
training time, RAM consumption and overall algorithm perfor-
mance. The first two were evaluated during the training phase,
whilst the second was evaluated during the testing phase. The
training and testing phases, described throughout this section,
were repeated three times: the first, where no PET has been
used; the second, where Homomorphic Encryption has been
applied; and, the third, where Multi-Party Computation was
implemented.

A. Training Phase

Fig. 4 presents the training scenario, which was prepared
in a cloud-native environment using Kubernetes [18], [19].
Three different namespaces were considered: requests, server
and hspf. The first (requests) uses a TCP random requests
client to perform HTTP requests to the HTTP server, deployed
in the second namespace (server), which was serving four
HTTP-based websites. Following the sidecar pattern, the HSPF
Agent and the HSPF Collector have been deployed next to the
TCP random requests and next to the HTTP server. The third
namespace (hspf) hosts the HSPF core components.
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Fig. 4. Training Scenario.

Throughout the ML training iteration process, 100 models
were trained, and the evaluation was later conducted with a
sub-set of 10 models, selected in equidistant form (i.e., 10,
20, 30, 40, 50, 60, 70, 80, 90, 100). For each model, the
threshold has been calculated as stated in formula 1, con-
sidering the Mean Squared Error (MSE) calculated between
the original value of each feature and the correspondent value
reconstructed by the Autoencoder. Such principle enables the
use of Autoencoders to perform network anomaly detection, by
taking into account the reconstruction error of the autoencoder,
assumed to be higher whenever compared with an unseen sam-
ple (i.e., network anomaly). Before considering the threshold

and aiming to reduce the effect of potential outliers, the up-
and-lower fence strategy was applied – as an outlier removal
approach – by considering only the MSE values that fall within
the first and third quartile of the cumulative distribution formed
by the MSE values.

t = xMSE + 3σMSE (1)

As previously stated, the focus during the training phase
was to analyse the impact of adding Homomorphic Encryp-
tion (HE) and Multi-Party Computation (MPC), considering
the FL training time and the RAM consumption. As such,
the same training scenario was used for the three evaluated
scenarios (without any PET, with HE and with MPC), with
the respective differences in the implementation level of the
HSPF components and respective communication channels.

B. Testing Phase

Fig. 5 presents the testing methodology. The models trained
and the network flows generated during the training phase were
extracted from the training environment.
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Fig. 5. Testing Methodology.

The 10 algorithms trained for each PET scenario, were later
tested with a custom dataset, which was prepared containing
a ratio of 60% of normal flows, generated during the training
phase, and 40% of attack samples, randomly extracted from
the CIC-IDS2017 dataset. For each performance evaluation,
the following metrics were registered: accuracy, precision,
recall and f1-score.

V. RESULTS

This section presents the results, separated into training and
testing phases.

A. Training Phase

The training results are divided into three categories: with-
out PETs, with HE, and finally with MPC. Each result details
the threshold, time, and RAM consumed for each model.

Table I presents a summary of the results obtained during
the training phase in the absence of PETs (baseline) in
comparison with HE and MPC methods.

The results show a decreasing tendency for the threshold
throughout the models part of the same sub-set, for the three
scenarios, which is aligned with the assumption that the MSE
value decreases over time as per the model continually evolves



TABLE I
MODEL PERFORMANCE COMPARISON BETWEEN BASELINE, HE AND MPC

METHODS.

# Threshold Time(s) RAM (MB)
Base HE MPC Base HE MPC Base HE MPC

1 0,49 0,40 0,47 2,26 5,26 5,23 1,61 174,25 3,17
2 0,09 0,08 0,07 1,97 4,64 3,39 1,18 174,36 2,46
3 0,11 0,32 0,07 2,08 5,05 2,14 1,04 174,32 1,21
4 0,19 0,06 0,08 1,93 4,60 1,38 0,65 174,37 0,90
5 0,07 0,08 0,10 2,04 4,64 1,67 1,12 174,35 1,28
6 0,08 0,06 0,07 1,15 4,70 1,30 0,85 174,38 0,92
7 0,09 0,04 0,06 1,72 5,45 1,41 0,91 174,44 0,91
8 0,04 0,06 0,06 1,28 5,86 2,18 0,89 174,49 0,95
9 0,04 0,05 0,08 1,34 5,24 1,95 0,90 174,35 1,37
10 0,06 0,05 0,07 1,22 4,88 1,61 0,73 174,25 1,01

x 0,13 0,12 0,11 1,70 5,03 2,23 0,99 174,36 1,42

throughout the different training iterations. The training time
is higher for the scenarios with HE and MPC, compared to
the one where no PET was used. The RAM consumption is
significantly higher for the scenario with HE, which may be
explained by the extra steps involved in each training iteration
when using this technique.

B. Testing Phase

Table II presents the results obtained during the testing
phase for the algorithms trained without using PETs.

TABLE II
BASELINE EVALUATION

Model Accuracy Precision Recall f1-score

1 0,6001 0,0000 0,0000 0,0000
2 0,6172 0,6159 0,5788 0,5472
3 0,6788 0,7412 0,4875 0,5419
4 0,6002 0,5592 0,0794 0,0919
5 0,4994 0,4272 0,5737 0,4727
6 0,5264 0,4465 0,5634 0,4819
7 0,5815 0,5557 0,4452 0,4642
8 0,3601 0,3446 0,6804 0,4526
9 0,3454 0,3288 0,6250 0,4273

10 0,5416 0,4823 0,5880 0,5079

x 0,5351 0,4501 0,4622 0,3988

Table III presents the results obtained during the testing
phase for the algorithms trained with the use of Homomorphic
Encryption.

For the scenario without the use of PETs, the model with
the best performance achieved an f1-score of 54.72%, while
the model with the worst performance achieved an f1-score of
0% (which occurs when the model did not identify any of the
malicious samples). Such took place for the first model of the
sub-set, and later improved for the remaining models, while
the models continued to train and adapt to the network traffic
characteristics.

Table IV presents the results obtained during the testing
phase for the algorithms trained using Multi-Party Computa-
tion.

For the scenario with the HE, the results show that the model
with the best performance achieved an f1-score of 56.96%,

TABLE III
EVALUATION WITH HE.

Model Accuracy Precision Recall f1-score

1 0,4218 0,4104 0,7155 0,5022
2 0,5829 0,5536 0,6772 0,5696
3 0,6000 0,0000 0,0000 0,0000
4 0,5198 0,4724 0,7360 0,5510
5 0,5327 0,4675 0,5581 0,4835
6 0,4732 0,3968 0,6063 0,4695
7 0,3769 0,3368 0,5903 0,4263
8 0,4531 0,3794 0,5873 0,4514
9 0,4222 0,3687 0,6153 0,4539
10 0,4944 0,4374 0,6036 0,4891

x 0,4877 0,3823 0,5690 0,4396

with an average f1-score for the 10 sub-set of models close to
44%.

TABLE IV
EVALUATION WITH MPC.

Model Accuracy Precision Recall f1-score

1 0,6239 0,2000 0,0597 0,0876
2 0,5122 0,4797 0,7647 0,5628
3 0,5259 0,4710 0,6290 0,5109
4 0,5542 0,5196 0,5181 0,4829
5 0,6229 0,6315 0,5102 0,5156
6 0,4799 0,4029 0,6007 0,4711
7 0,4691 0,3817 0,5272 0,4385
8 0,4532 0,3793 0,5864 0,4511
9 0,6091 0,5612 0,5255 0,5097
10 0,6378 0,5870 0,5297 0,5368

x 0,5488 0,4614 0,5251 0,4567

For the scenario with the MPC, the considered 10 models
achieved an average f1-score of 45.67%, with the best perfor-
mance model reaching 56.28% and the worst model achieving
8.76%.

VI. DISCUSSION

Adding Homomorphic Encryption and Multi-Party Compu-
tation to the HSPF architecture reflects into an increase in the
federated training time and RAM consumption. Despite this,
the cost of these two techniques is not the same. Using HE is
far more expensive in resource consumption when compared
to MPC, which is mainly explained by the overhead caused
by the encryption and decryption of the traffic shared between
the HSPF Agent and the HSPF aggregation mechanism.

The results attained during the testing phase revealed that
the models trained using PETs yielded better results, with the
most significant difference rounding to 5.79% (on average),
between the performance of the models trained with MPC and
those that were trained without any PET.

Given the need to improve the privacy of federated
learning approaches, such as HSPF, MPC exhibits the best
performance-cost balance, showing a slight increase in re-
source consumption during the training phase and an improved
performance during the testing phase.



VII. CONCLUSION

Federated Learning has changed the paradigm of training
ML algorithms in distributed systems. The ability to train ML
models locally, ensuring data privacy and security concerns,
has proven paramount.

Nevertheless, the standard versions of FL present some
vulnerabilities that may allow unwanted access to the model
weights, enabling malicious reconstruction of the original
clients’ data from the ML model weights shared throughout
the network. This paper reports on the application of two PETs
(MCP and HE) into the HSPF framework, a FL-based network
anomaly detection framework.

The obtained results reveal the feasibility of using PETs next
to the HSPF, both from a resource consumption point of view,
as well as from a detection module performance (with the
best module presenting 56.28% of f1-score during the testing
phase, and an average of 1.42MB of RAM consumption,
during the training phase, with the application of MPC).
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