
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Dynamic Task Allocation and Service Migration in
Edge-Cloud IoT System based on Deep

Reinforcement Learning
Yan Chen, Yanjing Sun, Member, IEEE, Chenyang Wang, Member, IEEE, Tarik Taleb, Senior Member, IEEE

Abstract—Edge computing extends the ability of cloud com-
puting to the network edge to support diverse resource-sensitive
and performance-sensitive IoT applications. However, due to
the limited capacity of edge servers (ESs) and the dynamic
computing requirements, the system needs to dynamically update
the task allocation policy according to real-time system states.
Service migration is essential to ensure service continuity when
implementing dynamic task allocation. Therefore, this paper
investigates the long-term dynamic task allocation and service
migration (DTASM) problem in edge-cloud IoT systems where
users’ computing requirements and mobility change over time.
The DTASM problem is formulated to achieve the long-term
performance of minimizing the load forwarded to the cloud
while fulfilling the seamless migration constraint and the latency
constraint at each time of implementing the DTASM decision.
First, the DTASM problem is divided into two sub-problems:
the user selection problem on each ES and the system task
allocation problem. Then, the DTASM problem is formulated
as a Markov Decision Process (MDP) and an approach based
on deep reinforcement learning (DRL) is proposed. To tackle
the challenge of vast discrete action spaces for DTASM task
allocation in the system with a mass of IoT users, a training
architecture based on the twin-delayed deep deterministic policy
gradient (DDPG) is employed. Meanwhile, each action is divided
into a differentiable action for policy training and one mapped
action for implementation in the IoT system. Simulation results
demonstrate that the proposed DRL-based approach obtains
the long-term optimal system performance compared to other
benchmarks while satisfying seamless service migration.

Index Terms—Edge computing, dynamic task allocation, seam-
less service migration, Internet of Things, deep reinforcement
learning, and deep deterministic policy gradient.

I. INTRODUCTION

EDGE computing (EC) can support both performance-
sensitive and computing-sensitive IoT applications by

This work is partially supported by the Fundamental Research Funds
for the Central Universities (No. 2020ZDPY0304), the Chinese Government
Scholarship (NO. 202006420096) awarded by China Scholarship Council,the
European Union’s Horizon 2020 Research and Innovation Program under the
MonB5G Project under Grant No. 871780, the Academy of Finland 6Genesis
project under Grant No. 318927 and IDEA-MILL with grant number 335936.
(Corresponding author: Yanjing Sun)

Yan Chen and Yanjing Sun are with the School of Information and Control
Engineering, China University of Mining and Technology, Xuzhou, Jiangsu,
221116 China e-mail: (chyan@cumt.edu.cn, yjsun@cumt.edu.cn).

Chenyang Wang is with College of Intelligence and Computing, Tianjin
University, Tianjin, 300072 China (e-mail: chenyangwang@tju.edu.cn)

Tarik Taleb is with the Center of Wireless Communications, University
of Oulu, Oulu, 90570 Finland, and the Department of Computer and In-
formation Security, Sejong University, Seoul, 05006 South Korea (e-mail:
tarik.taleb@oulu.fi)

Manuscript received September 28, 2021; revised January 24, 2022.

providing powerful computing capacity and deploying neces-
sary edge service functions (SF) on edge servers (ES)s in the
proximity of IoT users, making it one of the key technologies
to extend current cloud-based systems to support various future
IoT scenarios [1], [2]. Moreover, EC is becoming essential
to support the much-needed service-aware and intelligent
management of networks and services in the upcoming mobile
communication systems (e.g., B5G and 6G) [3]. However,
ESs are generally resource-constrained due to the limitations
of working environments like space and power supply. Thus,
nearby ESs can cooperate to enhance the capacity of edge
systems, and provide performance-guaranteed EC services for
various IoT applications [4]–[7].

Intelligent applications in future IoT systems are generally
both resource-sensitive and performance-sensitive (i.e., these
applications have strict performance requirements, and their
execution consumes large amounts of resources), making their
quality of service (QoS) sensitive to the allocated resources
and the distance to the ESs on which their tasks are pro-
cessed [8], [9]. In IoT systems, the computing requirements
of IoT users are usually change dynamically due to mobility
and time-varying working conditions. For example, a higher
communication delay results when a user moves to another
Radio Access Network (RAN) node far away from the original
ES processing its computing tasks. Both the communication
delay and the computing delay increase when the computing
load (e.g., computing tasks) increases. As a result, the QoS
of users may decrease if the system follows a stationary task
allocation policy. Therefore, to ensure the QoS of users and
maintain resource utilization, it is necessary to orchestrate
the task allocation policy dynamically according to real-time
system states in such an edge-cloud system with heterogeneous
resource capacities and dynamic computing requirements.

The task processing of edge IoT applications requires com-
puting capacity and relies on the support of the underlying
environments and state contexts maintained by the hosting
operating system (OS) and service functions (SF) [10]–[12].
Therefore, in the edge-cloud system that requires dynamic
task allocation, a user’s state context should be migrated apart
from switching task traffic from the current server to the target
server when the task processing is reallocated. The migration
of the user-dependent state context is known as service migra-
tion, i.e., resuming service for the user on the target ES with
the migrated context. Although dynamic task allocation and
service migration (DTASM) can accommodate users’ dynamic
computing requirements and mobility to maintain stable and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

reliable QoS, overheads are also definitely introduced when
implementing DTASM operations, e.g., the service downtime
during which users’ EC service is interrupted, the transmission
cost, and the service migration management cost. Besides,
executing more service migrations would generally result in
higher overheads. Overheads introduced by service migration
can be dramatically reduced by only executing the necessary
number of service migrations. Service continuity (i.e., ensur-
ing a contracted service downtime) is vital for IoT applica-
tions [13], [14], especially in IoT scenarios with strict reliabil-
ity demands, e.g., Industrial IoTs. Service migration for each
user in those systems must not result in a service downtime
that exceeds a pre-contracted threshold as severe accidents
may result otherwise. Therefore, providing seamless service
migration is essential for the EC service controller when
generating new task allocation and implementing DTASM.

Based on the above backgrounds, this paper investigates the
DTASM problem in an edge-cloud IoT system with dynamic
computing requirements and user mobility. Unlike existing
works, we investigate DTASM in an edge-cloud system with
large numbers of IoT users and also comprehensively consider
the seamless service migration constraint and the service
latency constraint. Moreover, a deep reinforcement learning
(DRL) approach based on a twin-delayed deep deterministic
policy gradient (DDPG) is proposed to address the difficult
DTASM problem under limited prior knowledge and the
challenge of vast discrete action space. The main contributions
of this paper are summarized as follows.

� We investigate the DTASM problem in a heterogeneous
edge-cloud IoT system requiring dynamic task allocation
and in which seamless service migration is critical to
ensure service continuity. As the system EC service
performance only depends on real-time system state
and implemented policy, the long-term DTASM problem
is formulated as optimizing the task allocation policy,
which can minimize the load forwarded to the cloud
server under any observed system state while satisfying
constraints including seamless migration, service latency,
and computing capacity.

� We first decompose the problem into user selection and
task allocation sub-problems. Then, we formulate the
DTASM problem as a Markov Decision Process (MDP)
and propose a DRL-based approach since it can learn
to adapt to systems without prior knowledge. To handle
the enormous DTASM action space challenges in real
IoT systems with numerous IoT users, we employ a
twin-delayed DDPG architecture to train the agent. To
exploit the DDPG method in the DTASM problem with
discrete action space, we split a task allocation action into
a differentiable action for agent training and a mapped
action for implementation.

� Extensive simulations are conducted to evaluate the pro-
posed DRL-based DTASM approach. The performance
is evaluated in terms of the load forwarded to the cloud,
service downtime, the number of migrated users, and the
number of migration-failed users. We also investigate the
convergence of the DRL-based algorithm over different

discount factors. The impact of the number of IoT users
and seamless migration constraints are also studied. Sim-
ulation results demonstrate that our DRL-based algorithm
can maintain a stable QoS for implementing DTASM and
performs significantly better than other benchmarks.

The rest of this paper is organized as follows. Related works
are discussed in Section II. Section III details the system
model and formulates the DTASM problem. The proposed
DRL-based DTASM approach is illustrated in Section IV.
Simulations are conducted and the results are discussed in
Section V. This paper concludes in Section VI.

II. RELATED WORKS

The collaborative task allocation problem in the EC com-
munity has been explored in different studies, and some recent
works consider the service migration problem.

A. Collaborative task allocation

Collaborative task allocation in edge-cloud systems has
been explored with keywords like task offloading, server
selection, and service placement, which indicates allocating
the computing tasks of each user to an appropriate ES in the
system. Meanwhile, a cloud server is generally deployed to
process overloaded tasks offloaded from the edge system [15].

Some previous works have studied one-shot operations
based on traditional approaches like convex optimization and
heuristic algorithms to obtain optimal or near-optimal per-
formance for a studied stable system. In [16], a joint task
offloading and resource allocation problem was investigated.
The NP-hard optimization problem was addressed separately
by a designed heuristic task offloading algorithm and a re-
source allocation solution based on convex and quasi-convex
optimization. The joint task offloading decision and resource
allocation was formulated as a mixed-integer nonlinear pro-
gramming problem to minimize the energy consumption of
users, and algorithms based on genetic algorithm and particle
swarm optimization are proposed in [17], [18]. In [19], a
collaborative task offloading scheme based on game theory
was proposed for an edge-cloud system with a hybrid fiber-
wireless network to minimize the energy consumption of
mobile devices. In [20], based on game theory, a collaborative
computation offloading and resource allocation optimization
algorithm was designed to maximize the designed utility of
system latency and cost.

Recent works have also studied dynamic task allocation
algorithms, and deep reinforcement learning and its varia-
tions are usually employed in these works to deal with this
challenging problem. An optimal ES selection problem in the
system with heterogeneous RANs and ESs was studied in [8]
to minimize the system service latency, which was formulated
as an MDP and addressed by a value iteration algorithm. A
DQN-based edge service placement algorithm was proposed to
minimize the long-term average response time of all users [21].
A DRL-based task offloading algorithm was proposed [22], in
which the dynamic load in the edge network was considered,
and a double-Q network method was employed to obtain a
policy that can minimize the long-term cost.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

However, state contexts packaged with user-specific infor-
mation and the real-time states of tasks are necessary for task
processing. For a long-term running edge-cloud IoT system,
dynamic task allocation is coupled with the service migration
that synchronizes users’ state contexts to maintain service
continuity. Moreover, the service manager cannot ignore the
service migration procedure in edge-cloud systems since it
significantly impacts the overall QoS.

B. Service migration
Some previous works have studied the service migration

from the view of a single user to ensure its QoS. In [23], author
proposed a QoS-aware active edge service migration method,
which enables the service migration to be actively performed
by one user based on MDP incorporated with network and
server state. In [9], a single-user system was considered and a
DQN-based service migration algorithm was designed to make
the service migration strategies. The work of [24] introduced
a service migration method for one user based on DQN to
maximize the designed reward. In their work, the state is the
real-time distance from the user to the ES which processes
its tasks, and the reward is the difference between a constant
maximum achievable QoS and migration cost. The authors
of [25] proposed a user-centric service migration algorithm
in which a mobile user made migration decisions based
on its own QoS requirement. The algorithm was designed
to minimize the total delay of all computing tasks and to
satisfy the total energy consumption constraint of the user
by considering its real-time distances to all ESs. However,
IoT systems generally support multiple users simultaneously.
Thus, the migration of a user may interfere with the users on
the target ES.

In [26], a service migration and resource allocation al-
gorithm based on the relaxation-and-rounding approach was
proposed to maximize the weighted reward between system
offloading rate and migration cost. However, they considered
a constant migration cost for each user. Furthermore, the
dynamic nature of the system state and necessary environment
dependency of edge applications were not considered. Besides,
the computing capacity of an ES is defined as the number of
users it can support rather than the actual computing capacity
(e.g., CPU cycles) that is heterogeneous among users and
changes dynamically over time. In [27], the author proposed
a two-phase dynamic service placement algorithm based on
matching and game theory and aiming to minimize the sum
of communication, computing latency, and migration cost.
In [28], [29], dynamic edge service migration algorithms were
proposed based on MDP, in which the service migration is
based on the real-time location of users to minimize the
long-term discounted migration cost. However, the dynamic
computing load in real multi-user IoT systems has not been
investigated in the above works.

Similarly, deep Q-learning-based service migration ap-
proaches were proposed to maximize the weighted sum reward
of load capacity and service migration cost [30], [31]. The
algorithm selects the optimal action with the maximum Q-
value from all candidates at each time. However, such ap-
proaches can only be used in systems with few users since

estimating and comparing Q-values of all candidate actions
is difficult in systems with a alrge number of IoT users. A
dynamic service placement and service migration problem
was investigated in [32]. The author assumed the computing
capacity allocation among IoT users to be homogeneous,
and the migration constraint was set as long-term energy
consumption in their work. Then, the problem of seeking
long-term average system service latency was transformed
into a Lyapunov optimization problem. Different from their
work, we consider the dynamic capacity requirements based
on heterogeneous QoS requirements of users and consider the
seamless migration constraint.

Different from the above works, we investigate the DTASM
problem in an edge-cloud IoT system with a mass of IoT
users. Besides, we comprehensively take the heterogeneous
and dynamic computing requirements and user mobility into
consideration. Meanwhile, the seamless service migration con-
straint at each time of implementing DTASM is considered as
well. In addition, an approach based on twin-delayed DDPG
method is proposed to address the enormous discrete action
space challenge that is hardly addressed by traditional DQN-
based methods.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

As shown in Fig. 1, we consider an edge-cloud collaborative
IoT system, where a set of RAN nodes can support communi-
cations of a set of IoT users U = f1; 2; � � � ; Ug in the system.
Meanwhile, each RAN node (i.e., base station) is associated
with an ES that can support the task processing of kinds of
intelligent IoT applications F=f1; 2; � � � ; Fg installed on IoT
users. We use H= f1; 2; � � � ; Hg to represent the set of ESs
and RAN nodes. We assume that each IoT user can only be
installed with one application, and the type of the application
is one included in F . Those IoT users running multiple
applications in the real world can be virtualized into multiple
users executing one application. Besides, a cloud server C is
deployed to manage the whole IoT system, and application
tasks that cannot be satisfied in the edge network are forwarded
to the cloud server for processing. For simplification, we use
H0 = H [C to represent all servers in the system.

Generally, every IoT user is connected to one RAN node
at any time, and its tasks are offloaded to the access point
of the RAN via the communication link established between
them (D2R). Then, its tasks are further forwarded from its
currently connected RAN to one ES for processing. The tasks
and results are transmitted via the communication link between
related RANs (R2R) when a user’s tasks are allocated to
be processed by another ES that is not directly associated
with the RAN to which the user is currently connected. To
satisfy the requirement of isolation and easy management
of the running environment of the performance-sensitive and
resource-sensitive IoT applications [33], a three-layer service
architecture is considered. On every ES, a host operating
system (OS) is running to provide the base support environ-
ment for task processing of various applications allocated to
it. On top of the OS, service functions (SF) are activated

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 1: An edge-cloud IoT system requiring dynamic task allocation and service migration.

to satisfy different applications' dedicated tasks processing
requirements. Meanwhile, each SF maintains stateless contexts
not relevant to a particular user, such as generic databases and
codes. Each SF can only provide service for the users who
perform the corresponding type of application. When a user is
allocated to one SF activated on one ES for task processing,
the SF will create a dedicated running service instance (SI) for
the user to satisfy the isolation requirement. Besides, each SI
maintains the stateful context encapsulated with user-speci�c
information, such as the real-time running status and private
context that is needed in the future.

B. Dynamic task allocation and service migration

When a user's computing task is reallocated to be pro-
cessed on a different ES, the necessary stateless and stateful
contexts should be ready on the target ES before resuming
its task processing. Service migration of the user indicates
synchronizing its related contexts from the source server to
the target ES before resuming its task processing on the
destination ES, which introduces considerable migration costs
like service interruption, network congestion. However, the
stateless context can be pre-stored on the disk of each ES and
activated on demand because the disk resources of the server
are usually suf�cient nowadays [12], [34]. Then, only stateful
contexts maintained by SIs need to be synchronized during
service migrations (as shown in Fig. 1), which can signi�cantly
reduce service migration costs and is more suitable to support
edge applications [35]. As shown in Fig. 2, a service migration
performs the following procedures in general [10]. First,
suspending the current running SI and packaging the real-
time state context. Then, the state context is transmitted to the

target ES via the R2R link. At last, the destination ES restores
the service instance from its checkpoint after the activation of
the required SF and provides service in the following time.
Meanwhile, the task traf�c is switched to the target server.

Fig. 2: Necessary procedures of edge service migration.

At each timet, every user of�oads its tasks to the cor-
responding SI instanced on a nearby ES via current asso-
ciated RAN according to current task allocation result. For
8u 2 U, we use a row vector of binary indicatorsxu (t) =h
x1

u (t); x2
u (t); � � � ; x jH 0j

u (t)
i

to represent its task allocation,

where xh
u (t) = 1 indicates the task ofu is allocated to be

processed by its SI placed on serverh at timet andxh
u (t) = 0 ,

otherwise. Meanwhile, thexu (t) should satisfy

C1 :
X

h2H 0

xh
u (t) = 1 ; 8u 2 U; 8t = 1 ; � � � ; + 1 ; (1)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

which indicates that each user must be allocated to only one
server to process its tasks.

The task reallocation and service migration can be triggered
when the controller detects any signi�cant QoS degradation
or new requirement of IoT users [23], which is beyond the
focus of this paper. We set the system state to be updated at
each decision step, and the corresponding policy is generated
according to the state. We uset+1 to represent the next step
of the current time slott when the system updates the task
allocation policy. For any useru, the current location of its SI
can be represented by

Xu (t) = arg max
h

xu (t); h 2 H 0: (2)

Then,jXu (t +1) �X u (t)j > 0 indicatesu is allocated to another
server, and its SI is migrated from the source serverXu (t) to
the target serverXu (t +1) . Otherwise, its SI continues to work
on the current server to process its tasks without migration.

C. QoS model and implementation of DTASM

By comparing the current task allocation policy and the
newly generated task allocation policy, the system can deter-
mine whether the SI of a user needs to be migrated or not. For
a user whose service will be migrated, according to Fig. 2,
the service downtime of the user starts from when its SI is
suspended on the source server till when its SI gets resumed
on the target server, which is determined by four parts. The
service suspending time depends on the state context volume
and allocated processing capacity by the corresponding SF.
Meanwhile, it depends on the processing intensity of corre-
sponding operations, i.e., the processing capacity required by
processing per bit state context. The environment preparation
(i.e., preparation of dependent SF) time depends on whether
the SF has been activated on the target ES, the volume
of the stateless context, and the application type (i.e., the
required processing capacity and the processing intensity).
The state context synchronization time depends on the data
volume of the state context and the bandwidth between the
source server and the target server. It is worth noting that
the environment preparation can be executed in parallel with
state context synchronization. Last, the factors determining
the service resuming time are similar to those in�uencing the
service suspending time but may require different processing
intensity. Therefore, the service downtime (dsd

u (t)) of a useru
at timet is signi�cantly affected by the selection of the target
server, and can be written as

dsd
u (t) = ds

u (t) + max f dsy
u (t); dsf

u (t)g + dr
u (t); (3)

whereds
u (t) is the time cost for suspending the SI ofu at time

t, dsy
u (t) is the time for synchronizing state context from the

source server to the target ES,dsf
u (t) is the time for preparing

the environment of SF required by the migrated SI ofu, and
dr

u (t) represents the time for resuming the SI on the target ES.
We assume the task traf�c can be switched as soon as the SI
is resumed on the target ES.

The functionalities like the checkpoint can be used for
suspending and resuming SIs [11], [36], [37]. We assume
that the functionality is embedded in every SF and with �xed

processing ability. Meanwhile, we employ a generally-used
task processing model [5], [25], [38] since suspending and
resuming the SI of a user are also a kind of task processing.
The time for suspending and resuming a SI depends on the data
volume of the state context, processing intensity requirements,
and the corresponding available processing ability. Thus, the
SI suspending time ofu can be expressed as

ds
u (t) =

V m
u (t)� s

u

� u PSF
u

; (4)

and the SI resuming time can be written as

dr
u (t) =

V m
u (t)� r

u

� u PSF
u

; (5)

whereV m
u is the volume (i.e., data size in terms of bits) of the

state context,PSF
u is the maximum computing capacity of the

SF required byu, and � u is the ratio of computing capacity
allocated to the checkpoint functionality embedded in the SF.
� s

u and� r
u are the corresponding processing intensities required

by suspending and resuming the SI ofu (i.e., the computing
capacity in terms of CPU cycles required by processing per
bit state context). In this paper, we set thatPSF

u , � u , � s
u , and

� r
u depend on the type of application performed byu, i.e., the

values of these parameters are homogeneous for the same kind
of applications.

The time for synchronizing state context is the communi-
cation latency including the transmission latency decided by
the data volume and the bandwidth between the source server
and the target ES as well as the propagation latency from the
source server to the target server [5], [25], [32], [38], i.e.,

dsy
u (t) =

V m
u (t)

BX u (t) ;X u (t +1)
+ � X u (t) ;X u (t +1) ; (6)

whereBX u (t) ;X u (t +1) and � X u (t) ;X u (t +1) represent the band-
width and the propagation latency between the RAN node
Xu (t) and the RAN nodeXu (t + 1) , respectively.

The time for preparing the environment of SF required by
u is considered under two conditions. If the required SF has
already been activated on the target server, there is no need
to start a new SF, and the environment preparation time is
negligible. Otherwise, the target ES activates a new SF and
adapts it to support the migrated SIs. For the sake of simplicity,
we assume the SF preparation time for each kind of application
is constant, and SFs are noti�ed to be activated from the start
of the context synchronization by short noti�cation frames.

The edge service controller should consider service down-
time when making a new task allocation policy according
to the current system state to maintain service continuity. In
other words, the controller should try as much as possible to
ensure that the service downtime of each user, during a service
migration, is less than a pre-contracted seamless migration
constraint value. We set the value as� in this paper, then
the service downtime of each user should not be greater than
� whenever its service is migrated to another server, i.e.,

C2 :dsd
u (t) � �; 8u 2 U; 8t = 1 ; � � � ; + 1 : (7)

To avoid re-allocation and ensure QoS for all users, the
central cloud server can provide assistance to serve migration-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

failed users whose service downtime constraints cannot be
satis�ed while implementing a DTASM process. Besides, the
services of users whose task processing breaks any constraint
(e.g., latency, resource) are also re-forwarded to the cloud
server, which will be discussed later in this section. After
receiving the state context from the source ES, the target
ES can obtain the migration time and resource require-
ment and determine whether a user's service should be re-
forwarded. Therefore, there are two synchronization steps for
re-forwarded users, i.e., from the source ES to the target ES
and then to the cloud server. The tasks and SI of these users
are re-forwarded and migrated to the cloud server via links
between each RAN node and the cloud server. We set the cloud
server always to activate all kinds of SFs and have enough
computing capacity to suspend and resume the SIs of users
quickly. The service downtime of a user re-forwarded from
the target ES to the cloud server can be expressed as

dsd
u (t) = ds

u (t) + dsy 1
u (t) + dsy 2

u (t); (8)

wheredsy 1
u (t) is the state context synchronization time from

the source server to the target ES when implementing the
DTASM, and dsy 2

u (t) is the state context synchronization
time from the target ES to the cloud server. We assume the
suspending and resuming of SI performed on the cloud server
consumes negligible time. Supposing that the task of a user is
currently being processed on the cloud server, however, the SI
of the user needs to be re-forwarded from the target ES to the
cloud caused by breaking the latency or resource constraint
when implementing a new task allocation policy (which will
be discussed later). In this case (i.e., a user's task is currently
being processed on the cloud server and is re-allocated to the
cloud server after executing a new DTASM action), we set
the service downtime of the user as 0. The reason is that the
cloud server possesses suf�cient computing capacity and can
maintain task processing until starting the service migration
process. Then, the user whose task is currently processed on
the cloud server and is re-allocated to the cloud server after
DTASM operation does not need to stop its service.

In addition to the seamless service migration constraint, the
QoS of EC services is the primary object pursued by edge-
cloud systems. In this paper, we consider service latency as
the QoS requirement. The total EC service latency of a user
includes communication latency and computing latency. We
useyu (t) 2 H to indicate the physical location ofu at time
t, i.e., the RAN node to whichu is currently connected. The
communication latency ofu can be expressed as [25]

dc
u (t) =

V t
u (t) + V r

u (t)
Byu (t) ;X u (t)

+ 2 � yu (t) ;X u (t) ; (9)

whereV t
u (t) andV r

u (t) represent the volume (i.e., data size in
terms of bits) of computing tasks and results ofu at time
t. � yu (t) ;X u (t) represent the propagation between the RAN
node yu (t) and the RAN nodeXu (t). We assume that the
RAN nodes can always provide ultra-reliable low latency
communications within RAN with advanced communication
technologies. Thus, the communication latency from a user to
the associated RAN is ignored in this paper.

We employ a widely-used edge computing model whereby
the computing latency depends on the computing capacity
requirement and the allocated computing capacity [25], i.e.,

dp
u (t) =

� u (t)V t
u (t)

P c
u (t)

; (10)

where� u (t) is the computing intensity required by processing
tasks from useru at time t, i.e., the computing capacity in
terms of the CPU cycles required for processing (per bit) its
computing task.P c

u (t) is the computing capacity in terms of
CPU cycles allocated tou.

To provide guaranteed QoS, the service latency of anyu
should not exceed its pre-de�ned constraint (� u), i.e.,

C3 :dc
u (t) + dp

u (t) � � u ; 8u 2 U; 8t = 1 ; � � � ; + 1 : (11)

As the capacity of each ES is limited, we set the computing
capacity allocation in this paper according to the minimum
requirement of satisfying the EC service latency constraint.
Therefore, according to (9), (10) and (11), the minimum
computing capacity required byu under a given task allocation
policy is

P rc
u (t) =

� u (t)V t
u (t)

� u � dc
u (t)

: (12)

Under these settings, there are still several cases that the
latency constraint cannot be satis�ed. First, a user's tasks are
allocated to be processed by an ES far away from the RAN
that the user is connected to, resulting in the communication
latency exceeding the latency constraint. Second, the commu-
nication latency does not exceed the service latency constraint
but is extremely high, resulting in a huge amount of capacity
requirement that exceeds the ES's maximum equipped com-
puting capacity. Last, the total computing capacity required by
all users allocated to an ES exceeds the maximum capacity of
the ES, which makes some of these users cannot be satis�ed.
Thus, the computing capacity allocation on an ESh must meet
the constraint of its maximum capacity (Ph), i.e.,

C4 :
X

u2U

xh
u P c

u (t) � P h ; 8h 2 H : (13)

For simpli�cation, we assume that the capacity for running SFs
has been pre-reserved on every ES, and we only consider the
capacity allocated to SIs. To maintain QoS, we set the tasks
of users whose task processing breaks its latency constraint
or required computing capacity cannot be satis�ed to be re-
forwarded to the cloud as the computing capacity of the cloud
server is generally suf�cient.

D. Problem formulation

Although the cloud server can process tasks of users that
cannot be satis�ed by ESs when implementing DTASM, the
cloud server usually supports various applications in the whole
system. Its capacity also has an upper bound in real systems.
Besides, the link from edge to cloud always receives enormous
amounts of data generated by ubiquitous IoT devices and
vertical systems. Thus, forwarding too much load to the cloud
server may lead to congestion on the cloud and the links to
the cloud, decreasing system performance. In addition, the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

fundamental objective of the edge service controller is to fully
utilize the deployed EC system to provide guaranteed QoS for
IoT users and release the load of the cloud.

Therefore, in this paper, we set the primary objective of
the DTASM problem in a dynamic edge-cloud system as
minimizing the long-term expected load forwarded to the cloud
server by optimizing task allocation decisions, i.e.,

P1 : min
x

lim
T !1

1
T

TX

t =0

X

u2U

x
jH 0j
u (t)(V t

u (t) + V r
u (t))

subject to: C1 ; C2 ; C3 ; C4 :

(14)

The notations de�ned till now in this paper are listed in Table I.

TABLE I: List of de�ned notations

Symbol De�nition
U Set of IoT users
F Set of application kinds
H Set of RAN and edge servers
H 0 Set of servers including cloud server

B i;j Bandwidth between RANi and RANj
� i;j Propagation delay between RANi and RANj
Fu Kind of application performed byu

xu (t) Vector that indicates the task allocation ofu
xh

u (t) Binary indicator represents ifu is allocated toh
Xu (t) The Server on which SI ofu is instanced
yu (t) RAN to which useru is connected at timet
V m

u (t) Volume of state context of user at timet
dsd

u (t) Service migration downtime ofu at time t
ds

u (t) SI suspending time ofu at time t
dsy

u Context synchronization time ofu at time t
dsf

u Time for preparing SF foru at time t
dr

u (t) Time for resuming SI ofu at time t
PSF

u Computing capacity of the SF required byu
� u Ratio of computing capacity allocated to check-

point function by the SF required byu
� s

u Intensity of suspending SI ofu (CPU cycles/bit)
� r

u Intensity of resuming SI ofu (CPU cycles/bit)
� Seamless service migration constraint

V t
u (t) Task volume of useru at time t

V r
u (t) Result volume of useru at time t

dc
u (t) Communication latency ofu at time t

dp
u (t) Computing latency ofu at time t

� u (t) Task computing intensity ofu at time t
� u Edge computing service latency constraint ofu
P c

u Computing capacity allocated tou at time t
P rc

u (t) Computing capacity required byu at time t
Ph Maximum computing capacity of ESh

IV. DRL- BASED DTASM APPROACH

This section illustrates our proposed DRL-based dynamic
task allocation and service migration approach, including the
design of the training of DTASM model and the user selection
on each ES when implementing DTASM.

A. User selection on an edge server

It can be seen from problemP1 that the �nal task allocation
result determines the load forwarded to the cloud. However,
considering the objective of our work and the system settings,
each user's task is set not to be actively allocated to the cloud
server. In other words, the DTASM algorithm performed by the
edge service controller always selects a target ES rather than
the cloud server for each IoT user to process their computing
tasks. Moreover, users' tasks are re-allocated to the cloud
passively only when breaking any constraint. Once the task
allocation policy is determined, the minimum load to the
cloud can be achieved by minimizing the load from every
ES to the cloud. Thus, in addition to users whose service
migration breaks constraints or whose required computing
capacity exceeds the maximum computing capacity of the ES,
there are still multiple users allocated to one ES. Moreover,
the computing capacity required by each of these users is less
than the capacity of the ES. Nevertheless, the sum of their
capacity requirement exceeds the maximum capacity of the
ES. Then, the ES has to decide which users are re-allocated
to the cloud server.

Based on the above analysis and the objective of minimizing
the load forwarded to the cloud server, we can formulate the
following sub-problem on any ESh when implementing a
DTASM operation at timet.

P2 : min
X

u2U h

(1 � � h
u (t))(V t

u (t) + V r
u (t))

subject to:
X

u2U h

� h
u P rc

u (t) � P h ;
(15)

where Uh represents the set of IoT users whose tasks are
allocated to ESh according to the task allocation policy being
implemented and the required computing capacity less than the
available capacity ofh. We use the binary indicator� h

u (t) to
represent the user selection decision that� h

u (t) = 1 represents
the situation whenu is selected by the ES to be served and
� h

u (t) = 0 meansu is rejected byh and its tasks are reallocated
to the cloud server for processing. The constraint indicates
that the sum of computing capacity required by those selected
users must not exceed the maximum computing capacity of the
ES. We can �nd thatP2 can be reformulated as a knapsack
problem that maximizes the sum load of selected users, i.e.,

P3 : max
X

u2U h

� h
u (t)(V t

u (t) + V r
u (t))

subject to:
X

u2U h

� h
u P rc

u (t) � P h :
(16)

Then, the optimal user selection result based on problemP3
can be obtained by methods like dynamic programming [39].

B. DRL-based framework

Although the optimal user selection policy can be obtained
above, the dif�culty of problemP1 is still dramatically
increased when considering the system dynamics and hetero-
geneity. Therefore, we leverage DRL in our approach as it
has the advantage of adapting to an unknown system without
requiring prior global knowledge that may be inaccessible in

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

some actual systems [40], such as the attributes of underlay
communication networks, the heterogeneous resource capacity
constraints, and independent user selection methods of ESs
introduced above. Besides, DRL agent can update its policy
from real-time interactions with the environment, enabling it
to adapt to the ever-changing services in IoT systems [3].

For an edge-cloud IoT system with dynamic system states,
the objective of the edge service controller is to maintain
a long-term QoS guarantee and performance optimization
by providing dynamic management, i.e., task allocation and
service migration in this paper. Meanwhile, the system state
transition at each timet depends only on the real-time state and
the task allocation policy employed in the current state. Thus,
the DTASM process is an MDP. Then, DRL can be employed
to train an intelligent DTASM agent, which can be installed on
the edge service controller to generate task allocation action
for any observed system state. The IoT system executes the
task allocation action generated by the DRL agent following
the DTASM process, and a reward is fed back to the agent
after implementation. Meanwhile, the system moves on to
the next state. The agent updates its policy by utilizing these
experienced states, actions, and rewards. The state, action, and
reward used in this paper are de�ned as follows.

State: The system state at any timet is represented by
an array constructed by the real-time state of IoT users,
including the volume of computing task and result, the size
of state context, computing intensity, real-time location, the
application kind, and current SI location of each user, i.e.,

st = [V t
u (t); V r

u (t); V m
u (t); � u (t); yu (t); Fu ; Xu (t)] jUj� 7:

(17)

Action: An array is used to indicate the generated task
allocation action for a given statest , i.e.,

at = [ai;j]jUj�jHj : (18)

Then, the system implements DTASM according toat based
on the current real-time system state, and a �nal task allocation
policy x t = [xh

u (t)] jUj�jH 0j is obtained after the implementa-
tion of DTASM operations.

Reward: We design the total load forwarded to the cloud
under �nal policy x t as the rewardr t of implementing the
actionat . Since we aimed to minimize the load forwarded to
the cloud server, a negative reward value is employed, i.e.,

r t = �
X

u2U

x
jH 0j
u (t)(V t

u (t) + V r
u (t)) : (19)

The candidate task allocation action of an IoT user includes
all ESs in the system. Thus, the action space size of a task
allocation policy is immense (e.g.,8200 candidate actions for
an IoT system with 8 ESs and 200 users). Thus, value-based
reinforcement learning (RL) algorithms (e.g., Q-learning) are
not usable in such a problem with a vast discrete action
space. The reason is that value-based algorithms generally
select the optimal action by comparing state-action values of
all candidate actions, which is challenging, even impossible.
Policy-based RL algorithms are more ef�cient in problems
with continuous or large state and action space.

C. DTASM algorithm based on twin-delayed DDPG

The policy-based DRL methods update the agent based
on policy gradient method, which mainly includes stochastic
policy gradient and deterministic policy gradient [41]. The
stochastic policy gradient methods select actions based on
probability distributions of actions and update policy parame-
ters based on the probability of selected actions [42]. However,
the probability of selecting any action is likely to be extremely
small in problems with vast discrete action space unless the
policy tends to be deterministic since the action probability
is usually estimated by chain rule, which may result in
an unstable training process. Deterministic policy gradient
algorithms can directly generate actions and update parameters
based on state-action value [43]. Moreover, a deterministic
policy generates determined action for a given state, making
it more reliable and more suitable for systems with strict
requirements on reliability and QoS. Thus, this paper employs
the deep deterministic policy gradient method.

In DRL, a policy � can generate an action for any given
state, i.e.,� : S ! A . Given any random initial statest , the
expected return of taking an actionat following the policy �
is de�ned as the state-action value (Q-value), which is usually
estimated by deep neural networks in complex problems [40].

Q� (st ; at) = EfS ;� g[Rt jst ; at]; (20)

whereRt is the expected sum of rewards and usually employs
a discounted format with a discount factor 2 [0; 1), i.e.,

Rt =
1X

i = t

 i � t r (si ; ai): (21)

Then, according to Bellman equation, (20) can be rewritten as

Q� (st ; at) = r (st ; at) + Es�S [V (st +1 ; �)]; (22)

where V (st +1 ; �), known as the state value function, is the
expectation of state-action values following policy� , i.e.,

V (st +1 ; �) = Ea t +1 � � [Q� (st +1 ; at +1)]: (23)

Thus, the objective of DRL is to learn an optimal policy� �

that can maximize the expected sum of long-term rewards from
any random initial system state, i.e.,

� � = arg max
�

X

t

E(st ;a t) [r (st ; at)]: (24)

Under a deterministic policy, the state-action value only
depends on the state transition feature of the environment.
And for a considered edge-cloud system that maintains relative
stability during the implementation of DTASM, the state
transition after executing an action is also determined. Thus,
we can use Q-value to represent the state-value of a given
state under a deterministic policy. Assuming we use a policy
network� parameterized by� , a Q-function with parameters
to estimate the Q-value of any given state-action pair (st ; at),
the parameters of the Q-network during training can be then
updated by minimizing the Bellman residual loss [42], i.e.,

L Q ()= E (st ;a t) �D [(Q (st ; at) � (r (st ; at)

+ Q (st +1 ; � (st +1)))) 2]:
(25)

