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Abstract—Distributed Vehicle Sharing System (DVSS) leverages emerging technologies such as blockchain to create a secure,
transparent, and efficient platform for sharing vehicles. In such a system, both efficient matching of users with available vehicles and
optimal pricing mechanisms play crucial roles in maximizing system revenue. However, most existing schemes utilize user-to-vehicle
(two-sided) matching and pricing, which are unrealistic for DVSS due to the lack of participation of service providers. To address this
issue, we propose in this paper a novel Three-sided stable Matching with an optimal Pricing (TRIMP) scheme. First, to achieve
maximum utilities for all three parties simultaneously, we formulate the optimal policy and pricing problem as a three-stage Stackelberg
game and derive its equilibrium points accordingly. Second, relying on these solutions from the Stackelberg game, we construct a
three-sided cyclic matching for DVSS. Third, as the existence of such a matching is NP-complete, we design a specific vehicle sharing
algorithm to realize stable matching. Extensive experiments demonstrate the effectiveness of our TRIMP scheme, which optimizes the
matching process and ensures efficient resource allocation, leading to a more stable and well-functioning decentralized vehicle sharing
ecosystem.
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1 INTRODUCTION

W ITH the rapid development of blockchain and other dis-
tributed technologies, the Distributed Vehicle Sharing Sys-

tem (DVSS) becomes a cutting-edge innovation aimed at revo-
lutionizing vehicle sharing [1], [2]. By leveraging blockchain’s
inherent features, DVSS could ensure a secure, transparent, and
efficient platform, which facilitates vehicle sharing without solely
relying on one central authority. Within this platform, users, vehi-
cle owners, and multiple service providers (SPs) interact directly,
potentially using smart contracts [3], [4] to automate processes.
For instance, a user could seamlessly book a vehicle provided by
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an SP through the DVSS platform, and the smart contract would
automatically handle the reservation, payment, and even aspects
like insurance verification, ensuring a hassle-free experience for
all parties involved.

To realize such an appealing service, active user engagement
and achievement of revenue optimization are imperative [5]–
[7]. In this context, both efficient user-vehicle matching and
implementation of optimal pricing mechanisms play pivotal roles.
On the one hand, efficient user-vehicle matching facilitates the
rapid pairing of users with available vehicles. This process takes
into account variables (e.g., user location, vehicle availability, and
user preferences [8]), ensuring seamless connections. On the other
hand, the establishment of optimal pricing mechanisms entails
the utilization of dynamic pricing models that adapt to real-
time demand, traffic conditions, and user urgency. This strategy
strikes a delicate balance between user affordability and system
profitability. Therefore, by delivering impeccable user experiences
through precise matching and strategic pricing adjustments, DVSS
can simultaneously enhance user attraction and augment revenue
generation, leading to a sustainable operational system.

Today’s vehicle sharing system solely makes use of traditional
two-sided approaches to determine the user-vehicle pricing [9]–
[16] and matching [17]–[23], involving two groups of participants,
i.e., users and vehicle owners. However, such approaches are
limited to centralized vehicle sharing systems. In the DVSS, we
have to involve SPs in the new three-sided market since it has
three distinct groups of participants. However, it introduces several
challenging issues.

First, the pricing problem among SPs, vehicle owners, and
users transforms into a dynamic sequential decision-making pro-
cess [24], [25] for three parties. Each of the three parties engages
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in the sequential decision-making process, where the decisions
of one party significantly impact the options and preferences of
the others. Moreover, in the context of such a dynamic process,
it necessitates achieving maximum utilities for all three parties
simultaneously in order to optimize user attraction and revenue
generation for the DVSS.

Second, the three-sided matching mechanism collaborates with
pricing mechanisms, posing a challenge often classified as NP-
hard to solve [26]–[28]. Traditional exhaustive search methods,
which explore all possible combinations, become impractical as
the complexity grows [29], [30]. These methods often fail to
ensure timely solutions due to their intricate nature. Therefore, an
approximate algorithm is needed to provide effective and timely
solutions for addressing this problem.

Third, emphasizing the stability of three-sided matching be-
comes paramount as we aim to guarantee robust and reliable
outcomes in the dynamic and distributed environment of the
DVSS. Achieving stability is particularly challenging due to the
potential presence of incomplete information about participants in
the vehicle sharing system. In such an environment, uncertainties
related to user preferences, vehicle availability, or service provider
strategies may prevail. Designing a matching algorithm that can
operate effectively under these conditions is crucial. Traditional
stability concepts, such as the stability of marriages in the classic
stable marriage problem [31], cannot be directly used for the
unique dynamics and uncertainties of the DVSS. Therefore, it
is imperative to develop a new stable algorithm that accounts
for incomplete information, ensuring the reliability and long-term
stability of the three-sided matching process in the DVSS.

In this paper, we propose a Three-sided stable Matching with
an optimal Pricing (TRIMP) scheme, offering a comprehensive
solution to all the above challenges posed by the DVSS. Our
system takes into account interactive pricing decisions among
three participants in the DVSS, ensuring stability and efficiency
in the final three-sided matching outcomes. TRIMP is designed
to optimize user attraction, maximize revenue generation, and
navigate the dynamic sequential decision-making process inherent
in the DVSS. First, we propose a pricing mechanism based on
the three-stage Stackelberg game [24], [32] to derive an optimal
pricing strategy within the DVSS. Our mechanism effectively sim-
ulates dynamic sequential decision-making processes of vehicle
owners, SPs, and users, ultimately leading to the establishment
of a game equilibrium. Both theoretical proof and numerical
simulations are provided to prove the existence and uniqueness
of the Stackelberg equilibrium. Second, building upon the optimal
pricing mechanism, we formulate a matching model based on a
three-sided cyclic matching game [27] designed for SPs, vehicle
owners, and users within the DVSS. This model is meticulously
crafted to accommodate the interactions among three participants,
providing a comprehensive framework for pricing and matching
in the dynamics of the DVSS. Third, recognizing the inherent NP-
hardness of the matching model, we design a novel three-sided
matching algorithm capable of approximately achieving optimal
stable matching results. The algorithm’s stability is rigorously
substantiated through theoretical proofs. Especially, our algorithm
operates based on participants’ preference lists, offering a practical
advantage by alleviating the requirement for complete information
about all participants in the DVSS. This strategic approach en-
hances the algorithm’s adaptability to real-world scenarios where
information may be incomplete. Finally, through extensive com-
parative evaluations, we demonstrate that TRIMP consistently

outperforms four alternative matching schemes. It not only attains
stability but also maximizes total utilities for participants within
the DVSS, thereby highlighting its effectiveness and stability in
dynamic and distributed environments.

To the best of our knowledge, this is the first stable matching
for distributed vehicle sharing services. The main contributions
are summarized as follows:

• We propose TRIMP as a novel solution designed to effec-
tively tackle challenges for the unique three-sided market
in the DVSS environment. TRIMP comprises two essential
components: an optimal pricing mechanism and a three-sided
matching mechanism, addressing the complexities of pricing,
matching, and stability in the dynamic and distributed envi-
ronment of the DVSS.

• We formulate the pricing problem as a three-stage Stack-
elberg game. Employing a backward induction approach,
we propose an optimal pricing mechanism to achieve game
equilibrium. This equilibrium ensures that no participant can
unilaterally improve its utility by deviating from its optimal
pricing strategy.

• Building upon the optimal pricing mechanism, we model
the matching problem as a three-sided cyclic matching game
for the DVSS. To address this NP-hard problem, we design
a three-sided matching mechanism and provide theoretical
proof of its stability. Especially, our algorithm solely relies
on participants’ preference lists, eliminating the need for
complete information about all participants in the DVSS.

• To comprehensively evaluate TRIMP’s performance, we em-
ploy numerical simulations to illustrate the dynamic adjust-
ment process within the Stackelberg pricing game. These
simulations also highlight the achieved optimal stable match-
ing outcomes by TRIMP, validating its effectiveness, scala-
bility, and efficiency for distributed vehicle sharing services.

The rest of the paper is organized as follows. Section 2
provides an overview of related work. In Section 3, we intro-
duce the system model and the blockchain-based vehicle sharing
process. We propose the game modeling and problem formulation
in Section 4. The implementation details of our TRIMP scheme
are presented in Section 5, with experimental results discussed in
Section 6. At last, we conclude our work in Section 7.

2 RELATED WORK

Extensive research has been dedicated to the realm of vehicle
sharing, with primary areas of research encompassing vehicle
transaction pricing, optimal user-to-vehicle matching, resource
allocation and scheduling, and the enhancement of security in the
DVSS.

2.1 Pricing

Considering users are usually price sensitive, pricing strategy de-
sign is an important component of the vehicle sharing system and
is closely related to vehicle sharing transactions. In the research
of pricing strategies, the primary emphasis lies in maximizing
the overall utility of the system [9]–[16]. Regarding the charg-
ing and pricing strategies within the domain of shared electric
vehicles, Xie et al. [9] formulated the problem of the overall
decision of platform SP to optimize the SP’s total profit. Ren
et al. [10] accounted for users’ price sensitivity and formulated
a dynamic pricing strategy aimed at maximizing the total profit
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of SPs. Kamatani et al. [11] proposed an approach that employs
reinforcement learning to devise a dynamic pricing scheme. Their
strategy aims to tackle issues arising from unpredictable shifts
in user demand and imbalanced vehicle distribution, ultimately
optimizing vehicle utilization and boosting the overall revenue of
SP. Banerjee et al. [12] presented an approximation framework
tailored for vehicle sharing systems. Their approach provides a
unified strategy for diverse controls, including pricing and match-
ing, objective functions, and system constraints, employing natural
convex relaxations. The resulting nonasymptotic and parametric
guarantees offer practical insights for system design.

Wang et al. [13] proposed a pricing scheme based on demand
prediction for shared electric vehicles in a large-scale vehicle shar-
ing network. Their scheme identifies the optimal amalgamation
of two tiers of price adjustments, strategically incentivizing the
spatial and temporal distribution of vehicular traffic to achieve the
maximization of system profitability. For shared vehicles, Pfrom-
mer et al. [14] integrated real-time price incentives with route
decision-making in shared mobility systems. Utilizing a predictive
control approach, they periodically recalculated route directions
to balance user payment incentives and vehicle allocation costs.
Waserhole et al. [15] utilized pricing incentives to improve the
efficiency of vehicle sharing systems. They formulated a Markov
model that depicts a closed queuing network with constraints
on buffer size and time-dependent service duration. Yang et al.
[16] established a two-stage Stackelberg model, incorporating
government involvement to ascertain both subsidy rates and pric-
ing strategies. This model seeks to stimulate user engagement,
safeguard the interests of governmental entities and operators, and
ultimately attain an optimal level of overall efficiency.

The aforementioned studies primarily focused on two-sided
pricing models for vehicle sharing, a framework that may not
be applicable to the DVSS due to its unique three-participant
structure. As a result, there is a need for a specialized approach
that addresses the dynamics and challenges introduced by the
involvement of three key participants in the DVSS.

2.2 Matching

Another crucial aspect lies in the matching process within the
vehicle sharing system. Optimizing the matching algorithm be-
comes essential for ensuring efficient interactions among system
participants. Peng et al. [17] incorporated a payment system that
addresses both equity and incentives and then proposed a matching
model in ride-sharing to minimize commuters’ costs. Chau et al.
[18] designed a decentralized vehicle sharing matching mecha-
nism based on fair cost sharing, which induces the optimal stable
matching result and can achieve social optimal with minimum total
cost. Zhang et al. [19] considered the preferences of customers
towards peers in vehicle sharing and established a matching strat-
egy based on user preferences, which can improve the individual
efficiency of users while maximizing overall efficiency.

Pelzer et al. [20] presented a road network zoning-based
method for customer matching in a large and dynamic vehicle
pooling system, in order to maximize pooling potential while
managing detours within specified limits. Yatnalka et al. [21]
developed a matching model for vehicle sharing, which incor-
porates a user threshold time to pick potential matches and then
optimizes the matching process based on user features. Wang et
al. [22] formulated the matching problem for a dynamic vehicle
sharing system between drivers and customers, addressing the

challenge of incomplete information by constructing a dynamic
stable matching for vehicle sharing. Rasulkhani et al. [23] put
forward a matching model between user groups and route sets in
a network, incorporating market equilibrium pricing and yielding
stable outcomes for user groups.

Nevertheless, these efforts primarily focused on pairing avail-
able idle vehicles with users in need or matching appropriate
drivers with users requiring services, which may only be suitable
for two-sided matching scenarios.

2.3 Resource Allocation and Security

Other research issues related to vehicle sharing include resource
allocation scheduling [33]–[36] and security issues of the DVSS
[1], [37]–[39].

Fanti et al. [33] explored the fleet size issue in an electric car
sharing system by modeling it as a discrete event system within a
queueing network, where vehicle utilization was considered and an
optimization problem was formulated to maximize system revenue
through optimal fleet sizing. Nourinejad et al. [34] focused on
the alignment of tactical and operational decisions in fleet sizing
for vehicle sharing. They proposed an efficient approach by
integrating two integer programming models to plan the fleet size
based on demand and schedule relocation operations. Wang et al.
[36] tackled the rebalancing problem of one-way shared electric
vehicles by introducing a zero-one nonlinear programming model.
Their model aims to minimize the total cost while ensuring a min-
imum number of low-battery vehicles and unbalanced vehicles.

In striving for a balance between efficiency and security
in the blockchain-enabled framework, Ning et al. [1] proposed
an algorithm based on deep reinforcement learning. Their algo-
rithm selects active miners and transactions, achieving a trade-
off between latency and blockchain security. Valaštín et al. [37]
designed a decentralized peer-to-peer car-sharing application us-
ing blockchain and smart contracts, reducing system costs and
improving data transparency in DVSS. Kim et al. [38] introduced a
secure authentication scheme for DVSS. Their scheme withstands
diverse attacks such as impersonation and replay attacks, ensuring
both secure mutual authentication and privacy preservation.

3 SYSTEM MODEL AND BLOCKCHAIN-BASED VE-
HICLE SHARING PROCESS

3.1 System Model

The Decentralized Vehicle Sharing System (DVSS) is a rev-
olutionary platform designed to facilitate city vehicle sharing
services, bringing together three distinct groups of participants:
renters (or users), vehicle owners, and SPs. This innovative system
leverages blockchain technology and smart contracts to streamline
the process of vehicle reservations and ensure secure, transparent
transactions.

• Renters (or Users): These are individuals seeking short-term
vehicle rentals for their transportation needs within the city.
R = {1, 2, · · · , r, · · · , R} indicates the set of renters, with
r ∈ R being a unique renter identifier.

• Vehicle Owners: Vehicle owners are individuals who make
their vehicles available for rent through the DVSS platform
when they are not using them. We denote the set of vehicles
available for rent as V = {1, 2, · · · , v, · · · , V }, where
v ∈ V represents a unique vehicle identifier. This notation
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Fig. 1. System model and blockchain-based vehicle sharing process.

accommodates situations where “Vehicle Owners” and “Ve-
hicles” may be used interchangeably in the paper.

• SPs: The SPs or platform companies play a vital role in the
DVSS ecosystem by acting as intermediaries that facilitate
the leasing transactions between renters and vehicle owners.
They ensure a smooth process and guarantee the transactions’
legitimacy. The set of platform companies is given by M =
{1, 2, · · · ,m, · · · ,M}, where m ∈ M represents a unique
SP identifier.

3.2 Blockchain-based Vehicle Sharing Process

As shown in Fig. 1, we propose the vehicle sharing process using
blockchain’s smart contracts in the DVSS. The detailed steps are
as follows:

1) Demand and Vehicle Information: Renters may run a mo-
bile application to express their demand for vehicle rentals,
specifying their preferences for the type of vehicle, duration,
and location. Vehicle owners could also run the application to
provide information about their available vehicles, including
their availability schedules and rental terms.

2) Smart Contract Creation: Upon implementing the matching
and pricing mechanisms, a renter will discover a suitable
vehicle along with the corresponding platform SP. A smart
contract is then created on the blockchain. This smart contract
contains the terms of the rental agreement, including the
rental duration, payment details, and conditions.

3) Verification and Confirmation: The SP verifies the renter’s
information and checks the availability of the chosen vehicle.
Once verified, the SP confirms the reservation by interacting
with the smart contract.

4) Automated Execution: Upon the reservation’s start time, the
smart contract automatically executes. It locks the agreed-
upon payment amount in escrow and grants the renter access
to the vehicle using a secure digital key.

TABLE 1
Key Notations and Descriptions.

Notation Description
R,M,V The set of renters, SPs, and vehicles (w/wo owner)
r, v,m The specific renter r ∈ R, SP m ∈ M, vehicle

(w/wo owner) v ∈ V
cv The cost of the vehicle owner for sharing vehicle v
pv The reward of the vehicle owner for sharing the

vehicle v
xr
v The willingness of renter r to lease vehicle v

prv The price for renter r to lease the vehicle v
M(pv) The cost of operating a vehicle sharing service
a, b The operating cost parameters
S(xr

v) The satisfaction of renter r to the vehicle v
Q(dv ,mv) The vehicle v’s basic situation
dv , The driving mileage of vehicle v
mv The usage time of vehicle v
α The renter satisfaction coefficient
β1, β2 The weight coefficients of driving mileage and

usage time, respectively
Uv , Um, Ur The utility of vehicle owner v, SP m, and renter r
(p∗v , (p

r
v)

∗, (xr
v)

∗) The optimal reward strategy, price strategy, and
request strategy group

Zm,v Binary variable indicating whether SP m chooses
to serve vehicle v

Yv,r Binary variable indicating whether vehicle v is
rented to renter r

tr The rental time for the renter r
tv The idle time for the vehicle v
Nm The maximum number of vehicles that can be

serviced by SP m
D(m),D(v),D(r) The matched vehicles of SP m, the matched renter

of vehicle v, and the matched SP of renter r
N(G, ·) The number of partners matched by SP m, vehicle

v, or renter r
PLm, PLv , PLr The preference list of SP m, vehicle v, and renter

v
A+1(G,m) The set of all vehicles preferred by SP m over its

current matching G(m)
A+1(G, v) The set of all renters preferred by vehicle v over its

current matching G(v)
A−1(G,m) The set of all renters can be served by SP m
A−2(G,m) The set of all vehicles for which there exists a renter

r that vehicle v prefers over its current partner
G(v), and renter r can still be served by SP m

5) Vehicle Usage: The renter can access and use the reserved
vehicle during the agreed-upon rental period. The vehicle’s
usage is tracked through the smart contract.

6) End of Reservation: At the end of the rental period, the smart
contract releases the escrowed payment to the vehicle owner
and revokes the renter’s access to the vehicle.

By employing blockchain’s smart contracts, DVSS could en-
sure that reservations are secure, transparent, and tamper-proof.
Renters, vehicle owners, and SPs can engage in transactions
confidently, knowing that the terms of the rental agreement are
enforced automatically. Therefore, this model could foster a more
efficient and trustworthy ecosystem for all participants.

Design Goal: In the above system, we concentrate on the
design of pricing and matching mechanisms in the three-sided
market. First, we need to implement the pricing mechanisms
among renters, vehicle owners, and SPs. After determining the
pricing strategies, we need to achieve three-sided matching for all
the participants.
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Fig. 2. Game modeling for dynamic interactions among participants in the DVSS.

4 GAME MODELING AND PROBLEM FORMULA-
TION

4.1 Determination of Utility Functions

As illustrated in Fig. 2, we model the dynamic interactions among
renters, vehicle owners, and SPs in the DVSS framework as a
combination of a three-stage Stackelberg game (for pricing) and a
three-sided matching game (for matching). The key notations we
use in this paper are presented in Table 1.

For vehicle owners, once vehicle v has been rented out for a
day, we assume the cost of vehicle sharing, such as depreciation, to
be cv , and the reward of vehicle sharing to be pv . Consequently,
vehicle owners are inclined to offer their vehicles for rent only
when pv > cv . Let xr

v ∈ [0, 1] denote the willingness of renter
r to lease vehicle v. Then, the utility function of vehicle v for
renting to renter r can be defined as

Uv(pv, x
r
v) = (pv − cv)x

r
v. (1)

Once a lease transaction is confirmed, an SP will charge fees
for vehicle sharing service, resulting in the renter r paying a higher
price prv to rent vehicle v. Let M(pv) denote the cost of operating
a vehicle sharing service, which we consider typically consists
of both fixed and variable components. The fixed cost generally
encompasses labor and operational expenses, which we represent
with the parameter b. The variable cost includes depreciation,
insurance, and maintenance, and it is consistently proportional to
the rental reward pv with coefficient a. Then, M(pv) is expressed
as

M(pv) = a · pv + b. (2)

Regarding the determination of parameters a and b, we can collect
historical data on vehicle usage, maintenance cost, fuel consump-
tion, and other operational expenses, and then perform regression
analysis. Parameters a and b are interpreted as coefficients in a
linear regression model where the dependent variable is M(pv)
and the independent variable is pv . We can further validate the
estimates of a and b by comparing the predicted cost with the
actual observed cost, and make appropriate calibrations to improve
the accuracy of the estimates.

Based on M(pv), the utility function of SP could be defined
as follows:

Um(pv, p
r
v, x

r
v) = [(prv −M(pv)− pv)x

r
v]

+
, (3)

where [∗]+ = max{0, ∗}.
We use the satisfaction S(xr

v), to comprehensively evaluate
the benefits that renter r can obtain from renting vehicle v. In
order to capture more accurately the impacts of multiple factors
on satisfaction, we express S(xr

v) as

S(xr
v) = α ln (1 + xr

v)Q(dv,mv). (4)

Eq. (4) consists of two parts. The first term, α ln (1 + xr
v),

reflects the relationship between satisfaction and willingness. This
is a generally accepted satisfaction expression [40], where α
represents the renter’s satisfaction coefficient, and satisfaction is a
concave function of the willingness to rent the vehicle, capturing
the marginal diminishing effect of willingness on satisfaction.
The second term, Q(dv,mv) = β1

dv
+ β2

mv
, describes the basic

condition of vehicle v, which is inversely proportional to its
cumulative driving mileage dv and usage time mv . This is because
higher mileage and longer usage time suggest older age or lower
performance of the vehicle. The parameters β1 and β2 quantify
the renters’ sensitivity to the vehicle’s driving mileage and usage
time, respectively. Larger values of β1 and β2 indicate greater
concern for the vehicle’s condition, resulting in a larger impact on
satisfaction.

Note that in Eq. (4), the basic condition of a vehicle is mod-
eled depending on two parameters dv (driving mileage) and mv

(usage time). We consider these parameters as they are intuitive
indicators of vehicle wear and aging, and thus are critical factors in
determining the vehicle condition. A more comprehensive model
can integrate more factors, such as brand reputation, maintenance
history, recent repairs, external conditions, etc., to more accurately
and comprehensively evaluate the impact of vehicle condition on
renter’s satisfaction. However, incorporating more parameters to
model the basic condition of the vehicle will not affect the overall
architecture of TRIMP in this work.

According to S(xr
v), the utility function of renter r is given

by:
Ur(p

r
v, x

r
v) = [S(xr

v)− prvx
r
v]

+
. (5)

4.2 Pricing Game Modeling

According to the utility functions defined in equations (1), (3),
and (5), we model the pricing mechanism in the DVSS as a
three-stage Stackelberg game and then determine the optimal
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strategy group (p∗v, (p
r
v)

∗, (xr
v)

∗). This is because the three-
stage Stackelberg game offers advantages by allowing a leader
to make decisions before followers, enabling sequential decision-
making. This structure leverages the leader’s ability to strategically
shape the followers’ best responses, capitalizing on asymmetric
information. Additionally, the model captures dynamic decision
processes and provides insights into our scenarios where temporal
sequencing is crucial.

In our model, a vehicle owner v can adjust the quoted price
pv to affect the profit of an SP, and the SP can set a higher
renting price prv to maximize its utility. Meanwhile, a renter’s
leasing intention, based on the renting price prv , influences the
utility of the vehicle owner and SP. Therefore, in the initial
stage, the vehicle owner v acts as the first-tier leader, strategically
determining the optimal reward strategy p∗v to maximize its utility
Uv(pv, x

r
v). Once each renter has established its optimal strategy,

it ensures that the owner cannot enhance its utility by choosing
any alternative strategy pv . Similarly, the SP acts as the second-
tier leader, deciding a pricing strategy (prv)

∗ to maximize its
utility given the owner’s strategy p∗v . In the third stage, the renter
becomes the follower and customizes an optimal strategy (xr

v)
∗

under the given pricing strategy (prv)
∗.

The above pricing and request process is devoted to finding
an optimal strategy group (p∗v, (p

r
v)

∗, (xr
v)

∗) guarantees that no
participant can improve its utility by unilaterally deviating from
its optimal strategy, i.e.,

Stage I (Vehicle Owner):Uv(p
∗
v, (x

r
v)

∗) ⩾ Uv(pv, (x
r
v)

∗), (6)

Stage II (SP):Um(p
∗
v, (p

r
v)

∗, (xr
v)

∗)⩾Um(p
∗
v, p

r
v, (x

r
v)

∗), (7)

Stage III (Renter):Ur((p
r
v)

∗, (xr
v)

∗) ⩾ Ur((p
r
v)

∗, xr
v). (8)

In the context of the proposed Stackelberg game, the three
inequalities mentioned above signify the equilibrium conditions.
We formally define Stackelberg Equilibrium (SE) as follows:

Definition 1 Stackelberg Equilibrium (SE). A strategy group
(p∗v, (p

r
v)

∗, (xr
v)

∗), where pv > cv , constitutes a Stackelberg
equilibrium in the three-stage Stackelberg game if it satisfies
inequalities (6), (7), and (8) simultaneously.

4.3 Matching Problem Formulation
Building upon the optimal request strategies and pricing deter-
mined in the previous section, our objective is to maximize the
total utility in the market. We specifically concentrate on the
challenge of effectively matching vehicles, SPs, and renters in
the DVSS. On the one hand, the matching between SPs (i.e., M)
and vehicles (i.e., V) is characterized by a one-to-many matching,
where each SP can be matched with multiple vehicles. On the
other hand, the matching between vehicles (i.e., V) and renters
(i.e., R) is a one-to-one matching, where each vehicle is matched
with a single renter.

We begin by introducing some variables. Let binary variable
Zm,v indicate whether SP m chooses to serve vehicle v, and let
binary variable Yv,r indicate whether vehicle v is rented to renter
r. The detailed definitions are as follows:

Zm,v =

{
1, if SP m choose to serve vehicle v,

0, otherwise,
(9)

and

Yv,r =

{
1, if vehicle v is rented to renter r,

0, otherwise.
(10)

To evaluate the market performance, we establish performance
metrics from two perspectives: SP utility and vehicle revenue. The
utility function of SP m from vehicle v can be re-expressed as

Um(v, r) =
∑
v∈V

∑
r∈R

Zm,vYv,rUm(p∗v, (p
r
v)

∗, (xr
v)

∗). (11)

Accordingly, we re-express the vehicle revenue from the renter as

Uv(m, r) =
∑
r∈R

Yv,rUv(p
∗
v, (x

r
v)

∗). (12)

Then, we formulate the overall optimization problem in the con-
sidered DVSS as follows:

max
Z,Y

∑
v∈V

∑
r∈R

∑
m∈M

(Um(v, r) + Uv(m, r)) (13a)

s.t. Zm,v ∈ {0, 1}, (13b)

Yv,r ∈ {0, 1}, (13c)

tr ⩽ tv, ∀r ∈ R, ∀v ∈ V , (13d)∑
v∈V

Zm,v ⩽ Nm, ∀m ∈ M, (13e)∑
r∈R

Yv,r ⩽ 1, ∀v ∈ V , (13f)

where constraint (13d) ensures that the rental time tr for a renter r
should be less than or equal to the idle time tv of the vehicle v that
is matched to the renter. Nm represents the maximum number of
vehicles that can be serviced by SP m. Constraint (13e) indicates
that the number of vehicles matched by the SP cannot exceed
the maximum number of vehicles that can be serviced. Constraint
(13f) indicates that each vehicle can only be rented to one renter
at the same time, resulting in a one-to-one matching between
vehicles and renters.

Remark 1 Note that the pricing process is modeled as a three-
stage Stackelberg game, which is a sequential game where players
decide their best strategies in sequence. After the vehicle and SP
set the reward and price respectively, the best strategy and optimal
utility of the renter, who acts as the follower, will be determined.
In other words, when optimizing the utilities of the vehicle and SP,
the sequential decision-making process inherently incorporates
the optimization of the renter’s utility. Moreover, in the DVSS
matching process that is elaborated upon in the next section, once
the matching between the SP and the vehicle (i.e., two-sided) is
completed, the matching among the SP, vehicle, and renter (i.e.,
three-sided) will also be determined. It implies that optimizing the
utilities of the vehicle and SP naturally covers the optimization
of the renter’s utility. Therefore, we explicitly encompass only the
utilities of the vehicle and SP in the formulation of problem (13).

The optimization problem (13) in the DVSS is a Mixed Integer
Non-Linear Programming (MINLP) problem, a class of problems
generally known to be NP-hard to solve [26]–[28]. Finding a
solution poses a considerable challenge, particularly in the context
of large-scale vehicle sharing service networks. Exhaustive search
methods are highly complex and often fail to guarantee a solution
within an acceptable time frame [29], [30]. To this end, we develop
a Three-sided Stable Matching with an Optimal Pricing (TRIMP)
scheme, which will be elaborated upon in the next section.

5 THREE-SIDED STABLE MATCHING WITH AN OP-
TIMAL PRICING SCHEME

In this section, we present the details of our TRIMP scheme,
comprising an optimal pricing mechanism and a distributed three-
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sided stable matching mechanism based on the Three-Dimensional
Stable Marriage model. We will introduce each of them sequen-
tially.

5.1 Optimal Pricing Determination

To tackle the three-stage Stackelberg game, we deploy a backward
induction approach. We briefly explain how it works in our three-
stage Stackelberg game. The attainment of the SE needs to explore
the sub-games within each layer. First, in Stage III, we determine
the renter’s optimal request strategy (xr

v)
∗ under a specified

pricing strategy prv . Second, proceeding to Stage II, we deduce the
SP’s optimal pricing strategy (prv)

∗ when provided with a reward
strategy pv . Finally, in Stage I, we investigate the vehicle owner’s
optimal reward strategy p∗v . Additionally, it is crucial to prove that
(p∗v, (p

r
v)

∗, (xr
v)

∗) forms a unique SE, ensuring that no party has
an incentive to unilaterally deviate from their optimal decisions.

5.1.1 Analytical Framework

First, let’s delve into the analysis of Stage III, focusing on the
perspective of the renter, to ascertain the optimal request strategy
(xr

v)
∗. Lemma 1 provides a solution for this optimization process.

Lemma 1 In Stage III, given any pricing strategy prv , the optimal
strategy of the renter r (i.e., the optimal request for the vehicle v)
can be determined by

(xr
v)

∗ =

[
αQ(dv,mv)

prv
− 1

]+
. (14)

Proof: We take the first-order and second-order derivatives
of U(prv, x

r
v) with respect to xr

v , yielding

∂Ur(p
r
v, x

r
v)

∂xr
v

=
αQ(dv,mv)

1 + xr
v

− prv, (15)

∂2Ur(p
r
v, x

r
v)

∂(xr
v)

2
= −αQ(dv,mv)

(1 + xr
v)

2
< 0. (16)

We can observe that Ur(p
r
v, x

r
v) is continuous and differen-

tiable on xr
v . Moreover, the second-order derivative of Ur(p

r
v, x

r
v)

with respect to xr
v is negative. Therefore, Ur(p

r
v, x

r
v) is a concave

function of xr
v , satisfying Eq. (8). This also indicates that we

can derive the optimal strategy (xr
v)

∗ for the renter by solving
∂Ur(p

r
v,x

r
v)

∂xr
v

= 0. This completes the proof.
Second, we analyze Stage II to unveil the optimal pricing

strategy (prv)
∗ for the SP. Lemma 2 provides a solution for this

strategic determination.

Lemma 2 In Stage II, given any pricing strategy pv , the op-
timal strategy (prv)

∗ of SP can be determined by solving
∂Um(pv,p

r
v,(x

r
v)

∗)
∂pr

v
= 0, which is expressed as

(prv)
∗ =

√
αQ(dv,mv)(pv +M(pv)), (17)

where (prv)
∗ ∈ (prvmin, p

r
vmax), ensuring that Um(pv, p

r
v, x

r
v)

and Ur(p
r
v, x

r
v) remain positive, and we have

prvmax =
α ln (1 + xr

v)Q(dv,mv)

xr
v

, (18)

prvmin = M(pv) + pv. (19)

Proof: By Substituting (xr
v)

∗ into Eq. (3), we have

Um(pv, p
r
v, (x

r
v)

∗)=

[
(prv−M(pv)−pv)(

αQ(dv,mv)

prv
−1)

]
+.

To find the SE, we derive the first-order derivative of
Um(pv, p

r
v, (x

r
v)

∗) with respect to prv , which yields

∂Um(pv, p
r
v, (x

r
v)

∗)

∂prv
=

αQ(dv,mv)(M(pv) + pv)

(prv)
2

−1.

Taking the second-order derivative of Um(pv, p
r
v, (x

r
v)

∗) with
respect to prv , we have

∂2Um(pv, p
r
v, (x

r
v)

∗)

∂(prv)
2

= −2αQ(dv,mv)(pv +M(pv))

(prv)
3

< 0.

(20)

We can conclude that Um(pv, p
r
v, (x

r
v)

∗) is a concave function
of prv , satisfying Eq. (7). Therefore, the optimal value (prv)

∗ can
be obtained by solving ∂Um(pv,p

r
v,(x

r
v)

∗)
∂pr

v
= 0. This completes the

proof.
Finally, we study Stage I to determine the optimal reward

strategy p∗v of the vehicle owner. Lemma 3 provides how to obtain
the optimal pricing strategy.

Lemma 3 In Stage I, the optimal strategy p∗v of the vehicle owner
can be expressed as

p∗v = argmax
pv

Uv(pv, (x
r
v)

∗), (21a)

s.t. p∗v > cv. (21b)

Proof: Substituting Eq. (14) and Eq. (17) into Eq. (1),
the utility function of the vehicle owner Uv(pv, (x

r
v)

∗) can be
transformed into

Uv(pv, (x
r
v)

∗)=(pv−cv)(
αQ(dv,mv)√

Q(dv,mv)(pv+M(pv))
−1).

(22)
Taking the second-order derivative of Uv(pv, (x

r
v)

∗) with
respect to pv , we can obtain inequality (23), shown at the bottom
of this page. It indicates that Uv(pv, (x

r
v)

∗ is a concave function
of pv , satisfying Eq. (6). Therefore, we can derive the optimal
strategy p∗v for the vehicle owner. This completes the proof.

Hence, the following theorem is derived.

Theorem 1 The tuple (p∗v, (p
r
v)

∗, (xr
v)

∗) determined by
Lemma 1, Lemma 2, and Lemma 3 forms a unique SE in
the three-stage Stackelberg game, which represents a strategically
stable state in the DVSS framework.

∂2Uv((x
r
v)

∗, pv)

∂pv
=− 3(a+ 1)2α3Q(dv,mv)

3(c− pv)

4(αQ(dv,mv)(axr
v + b+ pv))5/2

− (a+ 1)α2Q(dv,mv)
2

(αQ(dv,mv)(apv + b+ pv))3/2

=− (a+ 1)((a+ 1)(3c+ pv) + 4b)
√
αQ(dv,mv)(aprv + b+ pv)

4(apv + b+ pv)3
< 0.

(23)
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Algorithm 1 Optimal Pricing Mechanism
Input: pv(0), p

r
v(0), x

r
v(0), a, b, α, β1, β2, dv,mv, k = 0, δ =

1, ϵ = 0.0001.
Output: p∗v, (prv)∗, (xr

v)
∗

1: while δ > ϵ do
2: The renter r adopts strategy to get a higher utility:

xr
v(k + 1) = αQ(dv,mv)

pr
v(k)

− 1,
3: After the renter adopts its strategy, the SP adjusts its pricing

strategy as:
prv(k + 1) =

√
αQ(dv,mv)(pv(k) +M(pv(k))),

4: The vehicle owner adjusts its reward strategy as:
pv(k + 1) = argmax

pv

Uv(pv(k), x
r
v(k + 1)),

5: k = k + 1,
6: δ = |xr

v(k + 1)− xr
v(k)|,

7: end while
8: return pv(k), p

r
v(k), x

r
v(k)

5.1.2 Algorithm Proposal
Based on the above analysis, we propose Algorithm 1 to obtain
the optimal strategies in the three-stage Stackelberg game.

The proposed algorithm iteratively refines the pricing mech-
anism to achieve optimal strategies for the DVSS. It begins
with an initialization phase, setting the initial values for pricing
parameters, constants, and iteration variables. The iterative process
involves strategic adjustments by the renter, SP, and vehicle owner,
aiming to maximize their respective utilities and achieve equilib-
rium. The renter’s strategy is updated based on Eq. (14), capturing
the impact of vehicle usage time and mileage. Subsequently, the
SP adjusts its pricing strategy using Eq. (17), reflecting consid-
erations of operating costs. The vehicle owner then optimizes its
reward strategy by maximizing the utility function with Eq. (21)
to align with the overall system dynamics.

The algorithm continues these iterations until the change in
the renter’s strategy falls below a predefined threshold. The output
comprises the final optimal pricing strategies (i.e., p∗v, (p

r
v)

∗), and
the renter’s optimal request strategy (i.e., (xr

v)
∗). This iterative

approach ensures that the three parties reach an SE, where no party
has an incentive to unilaterally deviate from its optimal strategy.

5.2 Three-Sided Stable Matching Game
5.2.1 Definition of TMSC
Three-sided relationships, seen in scenarios like supplier-firm-
buyer dynamics and kidney exchange problems, can be effectively
modeled in a three-dimensional framework called the Three-
Dimensional Stable Marriage problem [26], [27]. This is an
extension of the Stable Marriage (SM) model [31], where the three
types of matching agents are metaphorically represented as men,
women, and dogs, as illustrated in Fig. 2.

The Three-Dimensional Stable Marriage problem encom-
passes two models based on the nature of agents’ preference lists.
In the first model, each agent ranks pairs of other agents they
are willing to form triples with, shaping their preferences. The
second model features preference lists containing only one type of
agent. For example, men rank women in the order of preference,
women’s lists contain only dogs, and dogs rank only men. This
specific case is also known as the Three-sided Matching game
with Size and Cyclic preference list (TMSC) problem [27] [41].

In the context of the matching game G, we define the set D =
M × V × R as the collection of all possible triples. Thus, any

matching D ⊆ G represents a set of triples selected from G. To
identify stability in TMSC, we first need to introduce the concept
of a blocking triple.

Definition 2 Blocking Triple in TMSC. A triple (m, v, r) /∈ D,
but (m, v, r) ∈ G is a blocking triple if there exists such a set:

{D(m) = ∅ ∨ v ≻m D(m)}∧
{D(v) = ∅ ∨ r ≻v D(v)} ∧ {N(m, v) ⩽ Nm},

(24)

in which v ≻m D(m) indicates that SP m prefers vehicle v
to its current matched vehicle D(m). Similarly, r ≻v D(v)
represents that vehicle v prefers renter r to its current matched
D(v). N(m, v) ⩽ Nm denotes that the total matching amount of
vehicle v should not exceed the service capacity of SP m.

In our scenarios, a blocking triple in TMSC consists of an SP,
a vehicle, and a renter, where each of them has a preference to
be matched with each other as a triple, rather than staying in their
current matched partners according to the matching G. A matching
G is deemed stable when no blocking triple exists for G.

5.2.2 Model Formulation

Given the NP-hard nature of solving the optimization problem
presented in Eq. (13), we reformulate it as a TMSC model. In
the context of our DVSS scenarios, we introduce the following
assumptions: SPs rank vehicle owners only, vehicle owners rank
renters only, and renters rank SPs only in their respective orders
of preferences. Each agent is allowed to be matched with a limited
number of agents of the other types, based on their preference
rankings. In light of [27], the three-sided matching problem of
vehicle sharing is to find a matching G = (m, v, r) with the
maximum cardinality:

max |G| (25a)

s.t. N(G,m) ⩽ Nm, ∀m∈M, ∀v∈V , ∀r∈R, (25b)

N(G, v) ⩽ 1, ∀m∈M, ∀v∈V , ∀r∈R, (25c)

N(G, r) ⩽ 1, ∀m∈M, ∀v∈V , ∀r∈R, (25d)

where N(G,m), N(G, v), and N(G, r) represent the number of
partners that SP m, vehicle owner v, and renter r have in the
matching G, respectively. Expression (25a) defines the cardinality
of the matching G (i.e., the number of (m, v, r) triples in the
matching). Constraint (25b) imposes a constraint based on the
maximum service capacities Nm of SP. Constraints (25c) and
(25d) specify that each vehicle and each renter can only be
matched with one partner.

According to [8], determining the existence of a stable match-
ing in a TMSC is NP-complete. To address this challenge, we
introduce two restrictions into the preference lists of TMSC
agents, transforming the problem into the Restricted Three-sided
Matching with Size and Cyclic Preference (R-TMSC) model.

• R-1: SPs derive their preference lists for vehicles from
a master list, which includes all vehicles in strict order.
SP preference lists are then derived from this master list,
potentially including all or only a subset of the vehicles.

• R-2: Renters are indifferent towards SPs, meaning that, for
each renter, the SPs in its preference list are considered
equally preferable, forming ties.

The TMSC model satisfying the above two restrictions is
referred to as the R-TMSC model. However, it is important to note
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that even in the R-TMSC model, identifying the maximum cardi-
nality matching remains an NP-hard problem, as demonstrated in
[8].

5.2.3 Algorithm Proposal
We proceed to devise a three-sided matching algorithm for ad-
dressing the R-TMSC problem within the DVSS. Specifically,
we establish preference lists for each SP, vehicle (regardless of
owner), and renter. In tackling the cyclic preference issue, the
preference lists for each agent exclusively encompass counterparts
of a different type. Therefore, SPs’ preference lists comprise solely
of vehicles, the preference lists of vehicles contain only renters,
and the preference lists of renters are exclusively composed of
SPs. These preference lists are meticulously ordered according to
the agents’ preferences.

Based on R-1, we formulate the preference lists of SPs from
a master list that ranks vehicles based on their utility to the SPs,
taking into account Equation (11). Higher utility corresponds to a
higher preference, as it results in increased royalty income. In our
scenario, all SPs share identical preference lists, indicating that all
vehicles are equally acceptable to them. Therefore, the preference
lists of SPs can be represented as follows:

PLm(v, r) = Um(v, r), for ∀v ∈ V and ∀r ∈ R. (26)

The preference lists for vehicles are determined by ranking the
acceptable renters based on the vehicle revenue from the renter,
as indicated by Equation (12). We denote the preference lists for
vehicles as follows:

PLv(r,m) = Uv(r,m), for ∀r ∈ R and ∀m ∈ M. (27)

Based on R-2, the renters are indifferent towards the SPs,
reflecting a preference list where all SPs are ranked equally. This
can be represented as follows:

PLr(m, v) = 1, for ∀m ∈ M and ∀v ∈ V . (28)

After generating preference lists for all agents, we define the
following sets before introducing our matching algorithm.

A+1(G,m) = {v|v ≻m G(m), v ∈ PLm(v, r)}, (29)

represents the set of all vehicles preferred by SP m over its current
matching G(m).

A+1(G, v) = {r|r ≻v G(v), r ∈ PLv(r,m)}, (30)

represents the set of all renters that vehicle v prefers over its
current matching G(v).

A−1(G,m) = {r|r ∈ R,m ∈ PLr(m, v), N(G, r) ⩽ 1)},
(31)

represents the set of all renters that can still be served by SP m.

A−2(G,m) = {v|v ∈ V , A+1(G, v) ∩A−1(G,m) ̸= ∅}, (32)

indicates that for vehicle v, there is a renter r that vehicle v prefers
over its current partner G(v), and renter r can still be served by
SP m.

The proposed three-sided matching algorithm for DVSS is
outlined in Algorithm 2. To initiate the matching process, each
SP, vehicle, and renter generates its preference lists based on the
utility function. In general, an SP m is randomly selected to start,
and it chooses the first vehicle v in its preference list PLm.
Subsequently, the selected vehicle v picks the first renter in its

Algorithm 2 Three-Sided Matching Algorithm for DVSS
Input: M,V,R
Output: G

1: Construct the preference list PLm, PLv, PLr;
2: Set G = ∅, flag = 1;
3: while flag == 1 do
4: flag = 0;
5: for each m ∈ M do
6: V ′ = A+1(G,m) ∩A−2(G,m);
7: if V ′ ̸= ∅ then
8: v = Head(V ′,m);
9: R′ = A+1(G, v) ∩A−1(G,m) ;

10: r = Head(R′, v);
11: if N(G,m) == Nm then
12: Choose the worst matching for m in set

{(m,G(m),G(G(m)))};
13: G = G\worst {(m,G(m),G(G(m)))};
14: Set flag = 1;
15: end if
16: if N(G, v) == 1 then
17: G = G\{(∗, v,G(v)};
18: Set flag = 1;
19: end if
20: G = G ∪ (m, v, r);
21: end if
22: end for
23: if the unmatched vehicles ̸= ∅ then
24: if N(G,m) < Nm &N(G, r) ⩽ 1 then
25: Set flag = 1;
26: end if
27: end if
28: end while
29: return G.

preference list PLv . The indicator flag is used to control the
execution of the algorithm, while G is initially set to empty. The
algorithm then aims to search for the best triple and adds this triple
to the matching G at each iteration.

In Algorithm 2, the procedure outlined in steps 6-8 is focused
on identifying a superior vehicle v for SP m. Here, Head(X, z)
represents the element in X with the highest priority in the
preference list of z. If a better vehicle v is discovered, the
subsequent steps 9-10 are dedicated to the search for an improved
renter r for v. The algorithm then proceeds to examine the service
capacities of SP m in steps 11-15. Upon reaching the maximum
capacities (i.e., N(G,m) equals Nm), the worst matching triple
(m,G(m),G(G(m))) within G is targeted for removal. Similarly,
steps 16-19 address the evaluation and processing of the size of
vehicle v. Subsequently, the algorithm augments G with the newly
formed triple (m, v, r). Steps 23-27 are designed to ascertain if
there are still unmatched vehicles when both SPs and renters
possess the capability to match additional vehicles. This iterative
process continues until the maximum cardinality |G| is attained.

5.2.4 Proof of Stability
Algorithm 2 aims to achieve a stable matching among SPs,
vehicles, and renters in the context of DVSS. It needs to ensure
the convergence to a stable matching within a finite number of
iterations. We provide detailed proof of this claim in Theorem 2.
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Theorem 2 The three-sided matching algorithm for DVSS is
guaranteed to achieve stable matching within a finite number of
iterations.

Proof: In Algorithm 2, the while loop terminates when the
flag equals 0. Each iteration in steps 9-20 ensures that a vehicle
v is matched to a better renter in its preference list. If a matched
vehicle is deleted in step 17, a higher-priority vehicle is matched
to a better renter in step 20. Since the number of vehicles and the
number of renters in each vehicle’s preference list are limited, the
iteration will eventually terminate after a finite number of steps.

The stability of the final matching produced by Algorithm 2
is proven through contradiction. Suppose the final matching is not
stable, indicating the existence of a blocking triple. This implies
that there is an SP m for which a vehicle v in PLm prefers G(m)
over its current match, and there is a renter r in PLv preferred
by v over its current match, and r can be served by SP m. In
other words, A+1(G,m) ∩ A−2(G,m) ̸= ∅ and A+1(G, v) ∩
A−1(G,m) ̸= ∅. However, Algorithm 2 will not terminate in
such cases. Therefore, the resulting matching from Algorithm 2
achieves stability.

6 SIMULATION RESULTS

6.1 Experiment Setting
In this section, we conduct a comprehensive performance eval-
uation of TRIMP, encompassing an optimal pricing mechanism
and a three-sided matching algorithm. First, we validate the
effectiveness of our pricing mechanism by examining the optimal
strategy in a sequential decision-making scenario involving a
vehicle owner, an SP, and a renter. Then, we assess the efficacy
of our matching mechanism, which operates seamlessly across a
diverse set of SPs, vehicles, and renters.

For the pricing mechanism, we set the vehicle cost cv to be
10 as the default. For the cost coefficients associated with the SP,
we set a = 0.1 and b = 5. Additionally, we define the utility
coefficients for the renter as α = 10 and for the vehicle as dv =
0.5 and mv = 0.1. Furthermore, we specify β1 and β2 as 5
and 1, respectively. We experimentally validate that our TRIMP
archives SE within a finite number of iterations, and then examine
its performance under different parameter settings.

For the matching mechanism, we conduct simulations in a
scenario involving multiple SPs, vehicles, and renters, specifically
with M = 5, V = 150, and R = 150. The utility of SPs
from vehicles is defined within the range of [1, 10], and similarly,
the utility of renters from vehicles spans the interval [1, 10].

Furthermore, we impose a constraint on the maximum number
of vehicles that a single SP can service, limiting it to 30. To assess
the effectiveness of our TRIMP, we conduct a comparative study
against four alternative matching schemes: Random, SP-Optimal,
Vehicle-Optimal, and Normal-TSM:

• Random: This scheme randomly selects vehicles and renters
from the current SP’s matching pool, pairing them together.

• SP-Optimal: This scheme prioritizes the utility of SPs. It
allocates vehicles that maximize the SP’s utility to all SPs,
with the matched vehicles randomly selected from the pool
of renters. This approach aims to enhance the overall satis-
faction and utility of SPs within the system.

• Vehicle-Optimal: This scheme prioritizes the utility of vehi-
cles. It first selects renters who maximize the utility for all
vehicles and then randomly chooses the SP for matching.
The goal is to optimize the satisfaction and utility of vehicles
within the system.

• Normal-TSM: In this scheme, we evaluate Algorithm 2
without the Stackelberg pricing mechanism and refer to
it as ‘Normal-TSM’. This approach relies on a preference
list generated from the utility values of both the SPs and
the vehicles. Subsequently, it utilizes this preference list to
facilitate a three-sided matching process.

6.2 Evaluation Results

6.2.1 Convergence Evaluation

Fig. 3 illustrates the relationship between the utility of the vehicle
owner v and the renter’s request concerning the reward pv . The
concave curve allows us to directly derive the optimal utility for
the vehicle owner and the corresponding optimal rental request.
Additionally, it is observed that as the reward pv increases, the
renter’s request for vehicle v gradually decreases. This sensitivity
of the renter’s request to the price pv indicates that higher rewards
lead to higher maintenance costs for the SP, resulting in a higher
rental price prv and a correspondingly lower customer demand.
Furthermore, the utility of the vehicle initially increases and then
decreases with the increase of the price pv . As a result, the
vehicle v has an optimal reward strategy p∗v to maximize its utility.
Therefore, the renter decides its optimal request strategy (xr

v)
∗ to

maximize its utility after the given optimal reward strategy p∗v and
optimal pricing strategy (prv)

∗.
We investigate the convergence of TRIMP in achieving an

SE within a finite number of iterations. The solution for (xr
v)

∗

represents the equilibrium point in the Stackelberg game within
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Fig. 6. Total utility comparison under different pricing mechanisms.
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the DVSS. The convergence process of the renter’s request is
illustrated in Fig. 4. This figure clearly demonstrates a rapid
convergence of the renter’s request under the initial settings.
As the leader adjusts its pricing strategy, the renter exhibits a
preference for renting the vehicle to maximize their utility. After
approximately 9 iterations, the customer’s demand strategy begins
to stabilize.

We then analyze the solution (p∗v, (p
r
v)

∗) at the equilibrium
point, providing the vehicle owner’s optimal reward strategy and
the SP’s optimal pricing strategy. Fig. 5 illustrates the convergence
progress of the vehicle owner and SP. Similar to the convergence
of xr

v , we observe that pv and prv quickly converge to stable
values. The vehicle owner continuously adjusts its optimal reward
strategy based on the renter’s request to maximize its utility until
the strategy no longer changes. Similarly, the SP continuously
adapts its pricing strategy in response to the owner’s strategy until
it stabilizes. This ultimately leads to the formation of a stable
equilibrium strategy combination (p∗v, (p

r
v)

∗, (xr
v)

∗) in the three-
stage Stackelberg game, as depicted in Fig. 4 and Fig. 5.

6.2.2 Parameter Evaluation
The Stackelberg pricing is based on the first decision advantage of
the vehicle owner and SP in the DVSS, and the renter’s strategy in
turn affects the decision-making relationship between the utility of
the vehicle owner and SP to construct a sequential decision game
to obtain the optimal equilibrium solution of the three parties. In
scenarios where the sequential decision-making dynamics are not
considered, we adopt other three pricing mechanisms, Random,
Q-Learning [42], and Undercut [42] to compare and evaluate with
Stackelberg pricing. Among them, Random pricing refers to the
situation where the vehicles, and SPs, without knowing the rental

demand, give the self-perceived optimal pricing based on their
own utility information and the previous pricing. In Q-Learning-
based pricing, the vehicle and SP rely on a Q-table to store past
experiences and make optimal pricing decisions based on the
current action corresponding to the best Q-value in the Q-table. In
Undercut pricing, the vehicles set low prices to enhance market
competitiveness and attract more SPs. In our experiment, we
reduce the optimal unit price of the vehicle by 5%-8% to depict the
undercut unit price. To intuitively demonstrate the effectiveness of
the proposed Stackelberg pricing mechanism, we present Fig. 6
to show the total utility under varying parameters cv , a, and α,
compared with the Random, Q-Learning, and Undercut pricing
mechanisms. As observed in Fig. 6, the total utility under the
proposed Stackelberg pricing mechanism is higher than that of the
other three pricing mechanisms.

In Fig. 6(a), we illustrate the impact of the vehicle cost cv
on the total utility of the vehicle, SP, and renter in the DVSS,
while keeping other parameters constant. It is evident that as the
cost of the vehicle rental increases, the total utility under the four
pricing methods gradually decreases. This is because as the cost
of the vehicle increases, the reward pv of the vehicle owner also
increases in our TRIMP scheme. Consequently, the increase in the
rental price prv of the SP leads to a reduction in vehicle demand.
Therefore, the total utility of the system decreases marginally with
the increase in vehicle cost. The reason why the increase in cv
causes a faster decrease in total utility under Random pricing is
that there is still a certain difference between the Random pricing
strategy and the optimal strategy. Consequently, the total utility
experiences a notable reduction compared to the Stackelberg
pricing and is more affected by the increase in the vehicle cost
cv , resulting in a faster decrease in total utility.
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Fig. 10. The total utility under different matching strategies with varying
the number of SPs.

Fig. 6(b) shows the impact of the SP service cost coefficient
a on the total utility of the vehicle, SP, and renter in the DVSS
under different pricing mechanisms. It is evident that the total
utility under Stackelberg pricing decreases with the increase of a.
The observed trend can be primarily attributed to the parameter
a serving as the cost coefficient in the utility function of SP.
As a increases, the operational cost for SP rises, consequently
causing an increase in the rental price prv offered to the renter
in our TRIMP scheme. This, in turn, results in a decrease in the
renter’s demand xr

v , subsequently leading to a reduction in the
overall utility in the DVSS for the vehicle owner, SP, and renter.

Fig. 6(c) is depicted to present the influence of renter satis-
faction, represented by the parameter α, on the overall utility of
the DVSS. Contrary to the impacts of the vehicle cost and SP
cost coefficient, we can observe that as α increases, the utility
under Stackelberg pricing and Random pricing also increases.
This is attributed to the fact that, while keeping the other system
parameters constant, an escalation in α results in an improvement
in customer satisfaction with vehicles of the same price. Therefore,
there is a slight increase in the overall system utility. Additionally,
among the four pricing methods, Stackelberg pricing consistently
achieves the highest total utility, followed by Q-Learning. How-
ever, the utility under Undercut pricing is lower than that of
Random pricing. This is because, as the parameter α increases,
the renter’s utility also increases. Consequently, pricing below the
optimal level will not result in greater utility; instead, it will reduce
utility.

We vary cv from 10 to 40 and present Fig. 7 to illustrate
the evolving relationship between the vehicle reward pv and its
utility at varying costs. It is discernible that the utility of the
vehicle initially ascends and then descends with the increase of
the reward pv . Each utility curve Uv under different vehicle costs
has a maximum point, verifying the existence of its effectiveness
extreme point. The utility change trend under different costs is
basically the same. However, the greater the cost, the smaller the
utility value, which is almost consistent with the impact of vehicle
cost on the total utility of the DVSS.

For our analysis, we set pv to be 10 and then vary the
cost coefficient a. Fig. 8 is plotted to illustrate the influence
of the cost coefficient a and the SP’s pricing prv on the SP’s
utility. It is notable that the fluctuation pattern in the SP’s utility
remains essentially consistent across the different cost coefficients
a. Additionally, the SP’s utility increases first and then decreases
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Fig. 11. The utility of SPs under different matching strategies with
varying the number of SPs.

with the increase of the SP’s rental price. In each utility interval,
we observe the presence of maximum points, signifying the
existence of an optimal strategy for the SP to maximize its utility.
Meanwhile, we find that larger cost coefficients for the SP lead to
a diminished utility of SP, which is consistent with the impact of
a on the total utility. The optimal pricing strategy under optimal
utility progressively increases, aligning with the relationship we
established between the cost coefficient and the SP’s utility.

We set prv to be 40 and then vary α within the range
[8, 9, 10, 11]. Fig. 9 is illustrated to analyze the influence of
the demand and satisfaction coefficient on the utility function of
renters. It is observed that the renter’s utility initially rises and then
falls with increasing values of xr

v . In each utility curve, we could
identify maximum points, indicating that renters can determine
the optimal request strategy to maximize their utility after the
SP’s pricing strategy is established. Furthermore, a larger value of
α results in an increased value in the utility curve and a greater
optimal demand strategy. This observation is consistent with the
impact of α on the total utility. In other words, a higher value
of α corresponds to greater satisfaction and an increased optimal
request for the renter.

6.2.3 Comparative Evaluation
To evaluate the final matching performance, we vary the number of
SPs and compare our TRIMP with four other schemes. We present
the mean and variance results after 10 runs. As demonstrated in
Fig. 10, the total utility of the DVSS consistently grows across
all five schemes as more SPs join the system. This phenomenon
stems from the fact that with fewer SPs providing shared service
maintenance in the market, there exists a shortfall in satisfying the
shared services for numerous vehicles and users. Therefore, as the
number of SPs increases, the capacity to maintain shared vehicles
and satisfy user demands expands, consequently resulting in a cor-
responding rise in the total utility of the DVSS. Upon evaluating
our TRIMP mechanism and comparing it with alternative methods,
it is evident that our mechanism excels in maximizing the overall
system utility. In contrast, the Normal-TSM matching algorithm
falls due to short of the proposed pricing algorithm. The utility
achieved through the SP-Optimal and Vehicle-Optimal approaches
is nearly indistinguishable. Meanwhile, the total utility derived
from the Random method is the lowest, aligning consistently with
our initial algorithm theory.

When the number of SPs is varied from 1 to 6, we illustrate
the variation in the utility of SPs in Fig. 11. Among all matching
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Fig. 13. The balance of SP, vehicle owner, renter, and smart contract.

mechanisms, the utility of SPs under our TRIMP significantly
outperforms the others, resulting in a notably higher utility. Con-
versely, the utility growth under Random matching is the slowest.
Similar to the pattern observed in Fig. 10, it’s also evident that
the utility of SPs increases with the expansion in the number
of SPs across all five matching mechanisms. This is because the
increasing number of SPs leads to a larger pool of user services,
thereby boosting the overall utility of SPs.

In Fig. 12, we vary the number of vehicles, and observe its
impact on the overall system utility for five different matching
mechanisms. As the number of vehicles increases to 120, our
TRIMP mechanism yielding the highest utility ascends to 1398,
while the utility achieved through Random matching, which has
the lowest utility, only rises to 283. It is apparent that when the
SP’s service capacity surpasses the number of vehicles, the overall
system utility increases positively as the number of vehicles rises.
Nevertheless, even with this increase, the TRIMP mechanism is
scalable, which continues to exhibit a significant advantage over
the total system utility compared to the other four mechanisms.

We illustrate the impact of the number of vehicles on the
utility of vehicles in Fig. 13. When the SP’s service capacity
exceeds the number of vehicles, an increase in the number of
vehicles results in more vehicles being matched to both SPs and
renters. Consequently, as the number of matched vehicles rises,
the utility of vehicles also grows. Simultaneously, it is noteworthy
that the relationship between the utility of vehicles and the total
system utility remains consistent. This arises from the fact that the
relationship between the total utility of vehicles and the proportion
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Fig. 14. The total utility under different numbers of SPs with varying the
number of vehicles.
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Fig. 15. The total utility under different numbers of SPs with varying the
number of renters.

of total system utility remains essentially unchanged. Therefore,
the total utility of vehicles is directly proportional to the growth of
total system utility. Additionally, the utility relationship under the
five matching methods is still consistent with the patterns observed
in Fig. 10, Fig. 11, and Fig. 12, thus affirming the effectiveness of
our TRIMP.

To understand the impacts of varying numbers of vehicles,
renters, and SPs on the total utility of the DVSS, we conduct
simulations under different parameter settings for vehicle sharing
scenarios, and the results are summarized in Fig. 14 and Fig. 15.
As shown in both figures, under the operation of the TRIMP
mechanism, an increase in the numbers of SPs, vehicles, and
renters can result in a gradual increase in the system total utility.

Fig. 14 illustrates that the total utility continues to increase
with the rising number of vehicles, regardless of the number of
SPs. However, when the number of SPs is 2, the growth trend of
total utility slows down with the number of vehicles exceeds 100.
This is because, at this point, the number of vehicles surpasses the
maximum capacity that 2 SPs can serve, limiting the number of
shared vehicles and thus slowing utility growth. When the number
of vehicles exceeds 150, even with a fixed number of renters,
the availability of more vehicles offers renters more options for
matching, leading to a gradual increase in utility.

Similarly, Fig. 15 indicates that as the number of renters
increases, the total utility under different numbers of SPs continues
to grow. The greater the number of SPs, the higher the total
utility. However, when the number of renters is within the range
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Fig. 16. Balance variation of three parties and smart contract.

of [50, 100], the increase in total utility is less significant if the
number of SPs is within the range of [6, 8]. This is because
a smaller market size means fewer renters can be served, and
an increased number of SPs leads to higher operating costs
without a proportional increase in utility. When the number of
renters is larger, at around 150, the difference in utility becomes
more pronounced, demonstrating that a larger market with more
customers correlates with a greater total utility.

We implement the DVSS with the Solidity programming
language of Ethereum under the compiler version 0.4.26 +
commit.4563c3fc, and the IPFS version is 0.4.14. Without
loss of generality, we only present the interactions of one SP,
one renter, and one vehicle in the implementation. Based on the
convergence evaluation, the SP can calculate that prv = 200 and
pv = 178. Due to the preciousness of Ether, we set the unit of the
price to be 1 ETH, i.e., 1000 Finney. The implementation steps
are as follows.

1) System Initialization: The initial account balance for the SP,
vehicle, and renter systems are all set as 1 Ether.

2) Smart Contract Creation: The renter sets parameters, in-
cluding prv , rental time, SP address, and agreement, and sends
the transaction with prv to the smart contract. At this time, the
renter can also call the abort function, which enables canceling
the transaction and retrieving the money.

3) SP passes parameters: SP calls the Add_V ehicle−Owner
function, which can pass the owner’s address and pv . At this point,
the renter can still cancel the transaction.

4) Contract Execution: SP calls the Confirmation function,
which enables the start of the vehicle rental time. At this time, the
renter cannot cancel the transaction.

5) Confirmation: SP calls the Check_if_end function, and
if the rental period has ended, the smart contract automatically
transfers pv to the vehicle owner and the remaining funds to the
SP. If the rental period has not ended, no action is taken.

We plot Fig. 16 to show the balance variation of the SP, vehicle
owner, renter, and smart contract on each implementation step. We
can see that through the vehicle sharing transaction, the balance
of the renter is decreased by 0.2 Ethers, and the balance of the
vehicle owner and SP is increased by 0.178 Ethers and 0.022
Ethers, respectively. The effect of the smart contract is to manage
assets temporarily.

7 CONCLUSION

In this study, we proposed TRIMP, an efficient and stable matching
scheme designed for distributed vehicle services. Unlike previous
approaches that focused on two-sided matching and pricing, our
work addresses the intricacies of a distributed three-sided market
involving vehicle owners, users, and SPs. First, to maximize
utilities for all three parties involved, we put forward an optimal
pricing algorithm grounded in the Stackelberg game framework.
This algorithm establishes its equilibrium points through rigorous
theoretical proofs and comprehensive experimental validations.
Second, leveraging the optimal pricing algorithm, we intricately
formulated the matching problem as a three-sided cyclic matching
game. We then developed a matching scheme for the dynamic
and distributed DVSS environment, and its stability has been
rigorously established. Finally, extensive experiments validated
the efficacy of TRIMP, demonstrating its capability to achieve
higher overall utility in the DVSS compared to four benchmark
matching schemes: Random, SP-Optimal, Vehicle-Optimal, and
Normal-TSM. This showcases its potential to optimize pricing
strategies and ensure robust and reliable matching outcomes for
distributed vehicle sharing services. In future work, we plan to
develop new strategies to enhance the TRIMP framework by
addressing fairness concerns and ensuring that the system operates
in an equitable and balanced manner for all participants.
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