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Abstract—Satisfying users’ requests based on the service level
agreements of network slices is one of the most basic and vital
topics of network slicing in 6G networks, and anomaly detection
is regarded as a key technique for locating the abnormal status
of slices. However, current studies on slice anomaly detection
mostly focused on real-time monitoring of slices and ignored
the prediction of potential anomalies. Generally, when anomalies
trigger, it is hard for slices to adjust the resources in time due
to resource competition among physical/virtual nodes. Besides,
the resource provisioning strategies can also be optimized when
slices are running normally, which is seldom considered when
performing slice anomaly detection. To cope with these challenges,
in this paper, we are motivated to locate the potential slice
anomalies and optimize the resource allocation strategies in a
holistic view by learning users’ historical behaviors. Specifically,
we design a general network architecture, model the process
of slice resource provisioning, and formulate the problem as
maximizing the long-term system net promoter score (NPS). To
solve this problem, we propose a framework to locate the potential
slice anomalies and decide the resource allocation strategies simul-
taneously by predicting the users’ future requests and positions.
As a result, simulation results demonstrate that our proposed
scheme outperforms other baselines in improving the long-term
system NPS and reducing the average latency of users.

I. INTRODUCTION

Network slicing, enabled by the network functions virtualiza-
tion and software-defined networking technologies, is regarded
as a key technology for supporting heterogeneous user requests
in the 5G era by separating the networks into specific logical
sub-networks and isolating the users in different scenarios
including the Internet of things/vehicles, smart healthcare, and
smart city [1], [2]. In future 6G systems, much stricter net-
work requirements like increased data rates, enhanced network
capacities, ultra-low latency preferences, and more connected
devices make it necessary to dig deeper in this field [3].

Satisfying users’ requests to ensure service level agreements
(SLAs) of network slices is one of the most important top-
ics among the research visions of network slicing. However,
constructing on top of physical networks and serving multiple
users also brings significant challenges for the management and
orchestration of network slices. On the one hand, the topology
and resource management of network slices can be complex,
as they not only depend on a multilayered physical network
and edge servers (ESs) with limited resources, but can also be
dynamically adjusted (e.g., slice splitting, merging, and scaling)
[4]–[8]. On the other hand, slice users are always characterized

by high mobility and dynamical requests, satisfying users’ re-
quests with the committed SLAs in a real-time manner requires
the slices to dynamically perceive users’ requests and adjust the
resource provisioning strategies. To cope with these challenges,
performing anomaly detection in network slices is regarded
as a key solution [9], [10]. By monitoring the running status
of physical/virtual nodes, the connectivities of physical/virtual
links, and the latencies of different service function chains in
the sub-slices level and slice level, slice anomaly detection can
improve the users’ quality of service/experience (QoS/QoE) by
ensuring users’ specific requests for resources, service latencies,
computing capacities, and content availabilities.

Many researchers have studied network slice anomaly de-
tection in recent years, which can be elaborated as two-fold.
In [10], Wang et al. proposed a distributed online anomaly
detection method based on a decentralized one-class support
vector machine by analyzing real-time data of virtual nodes
mapped to physical nodes. The correlations of data between
neighbor virtual nodes were adopted to detect the anomalies
in physical links. In [11], the authors proposed an online
unsupervised learning-driven slicing anomaly detection method
to achieve intelligent maintenance of slices. However, these
studies ignored the prediction of potential anomalies in network
slices, when anomalies trigger, it is generally hard to adjust
the resources in time due to resource competition among
physical/virtual nodes, which will unavoidably lead to service
degradation of users. On the other hand, in [12], the authors
designed a cognitive network slice management system that
utilizes anomaly detection to detect the anomalies that occur in
the ambulance routes with the required QoS level considered.
Moreover, prediction-based methods were also utilized to assist
anomaly detection. The researchers in [9] proposed a transfer
learning-based framework to detect the anomalies in shared
physical nodes in network slices. Even though these studies can
detect/predict the anomalies that affect the SLAs of slices, they
also ignore the optimization of resource provisioning strategies
when locating the anomalies. Note that when the slices run
normally with users’ requested resources satisfied, the users’
QoE is associated with the latencies of provided resources and
can be further optimized for better QoE performances.

To cope with these issues, in this paper, we are motivated
to investigate the anomaly prediction and resource allocation
of network slices by learning users’ historical behaviors to
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Fig. 1. The considered resource provisioning network architecture in 6G
systems.

locate the potential threats of network slices and improve users’
QoE. Specifically, we design a general network architecture,
model the resource provisioning process with users’ requested
resources and preferred latencies considered, and formulate the
problem as maximizing the long-term system net promoter
score (NPS). To solve this problem, we propose a resource
provisioning-oriented slice anomaly prediction and resource
allocation framework that learns users’ historical behaviors to
locate the potential anomalies and allocate resources for users
according to their requests. Finally, based on the simulation
results, we demonstrate that the proposed framework can sig-
nificantly improve the long-term system NPS and reduce the
average latency of users compared to other baseline schemes.
To summarize, the contributions of this paper are as follows:

• We investigate the anomaly prediction and resource al-
location of slice resource provisioning, design a general
network architecture, and formulate the problem as maxi-
mizing the long-term system NPS to improve users’ QoE.

• To solve this problem, we propose an anomaly prediction
and resource allocation framework that learns users’ his-
torical behaviors to detect potential anomalies and decide
the resource allocation strategies.

• Simulation results demonstrate that our proposed scheme
outperforms other baselines in improving the long-term
system NPS and reducing the average latency of users.

The remainder of this paper is organized as follows. Sect. II
introduces the network architecture and system model and for-
mulates the problem. In Sect. III, we propose a deep learning-
based anomaly prediction and resource allocation framework.
Simulation results are provided in Sect. IV. Finally, Sect. V
concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the considered network
architecture for user request provisioning, model the whole
process, and finally formulate the problem.

A. Network Architecture

We illustrate a general network topology for supporting
heterogeneous user requests in 6G networks as shown in Fig. 1.
Specifically, in the considered networks, there exist lots of base
stations (BSs) geographically evenly distributed and connect
to their neighbor BSs through optical links, and multiple user
equipments (UEs) like smartphones and vehicles connect to
the BSs via wireless links. Each BS is equipped with a small
ES that has limited resources, e.g., CPU cores, RAM, or
disk resources, and the UEs with high mobility characteristics
can dynamically move to different places and timely change
their requested resources with specific latency preferences. We
assume that the users have specific requirements of latency
for different types of resources, e.g., users may prefer a large
amount of disk resources with high latency for storage or RAM
resources with low latency for running multiple services.

To support these requests from users, different network
slices are then initialized based on the characteristics of the
requests, e.g., the slices that serve users who request lots of
resources with high latency preferences tend to allocate more
resources and low bandwidth and vice versa. These slices are
generally built with virtual network functions (VNFs) that are
connected partially via virtual links, where each VNF has
limited resources and can only be hosted by one ES. After
the initialization, the users dynamically move and change their
requested resources and latencies, and the slices decide the
resource provisioning strategies to satisfy the users’ requests.
Once the users’ requests cannot be satisfied, the slices then
occur anomalies and adjust the topologies, the allocated re-
sources, and even the hosts of the VNFs to form new slices
for resource provisioning. Note that the adjustment of slices
can lead to users’ QoE degradation and to ensure the resource
provisioning of slices, in this paper, we try to predict the
anomalies of network slices and decide the resource allocation
strategies when no anomaly occurs to improve the QoE of users.

B. System Model

We denote the ESs and users in the system as N and U ,
respectively, the geographic coordinator of ES n ∈ N can be
denoted as Xn, Yn. Moreover, as the users dynamically move
to different places, we denote the position of user u at time slot
t as Xu(t), Yu(t). We consider there are I types of requested
resources from the users like CPU, RAM, disk et al., and denote
the total amount of resource type i of ES n as Ri

n. Particularly,
considering each user has a specific required latency of each
resource type, we denote the requested amount of resource type
i from user u at time slot t as Ri

u(t), the requested latency as
Li
u(t), respectively. To support heterogeneous user-requested

resources, the ESs initialize network slices for different groups
of users according to their required resources/latency levels1,
the set of slices is denoted as S. Moreover, we denote the set
of users served by s as Us, the set of VNFs of s as Vs, and
the total amount of resource type i of VNF v ∈ Vs as Ri

v .

1In this paper, we focus on anomaly prediction and resource allocation of
network slices and neglect the details for slice initialization.



When user u ∈ Us dynamically moves across different
places, to access the resources from the slice s that serves it,
the slice can allocate resources from one or multiple VNFs
for the user. We denote the allocated amount of resource type
i from v ∈ Vs for user u at time slot t as Ri

u,v(t), and the
access latency is denoted as liu,v(t). Intuitively, if the access
latency liu,v(t) cannot satisfy the request latency from the user,
we can have Ri

u,v(t) = 0. To calculate liu,v(t), for any v ∈ Vs,
we denote the ES host of v as hv ∈ N . To access resource i
from VNF v, user u should first connect to the nearest VNF
of the slice s through wireless links to achieve low wireless
communication latency, after that, through the virtual links of
s can user u connect to VNF v. We denote the nearest VNF to
user u at time slot t as Vu(t), where Vu(t) can be obtained by

Vu(t) = arg min
v∈Vs

{(Xhv −Xu(t))
2 + (Yhv − Yu(t))

2}. (1)

Moreover, we consider that different slices have different
latency performances of their virtual links to support different
preferences of latency of users, which can be realized by
allocating better network channels to support latency-sensitive
services based on the physical links [13], [14]. We denote the
latency for user u ∈ Us to access the nearest VNF in slice s as
Ps, the latency between each of two directly connected VNFs
as ηs,∀s ∈ S, thus, liu,v(t) can be calculated by

liu,v(t) = Ps + ηs|Ω(Vu(t), v)|,∀u ∈ Us,∀v ∈ Vs,∀s,∀i,∀t,
(2)

where |Ω(Vu(t), v)| denotes the number of VNFs on the
shortest path between Vu(t) and v in the topology of slice s.

C. Problem Formulation
We aim to improve the QoE of users by predicting the

potential anomalies and optimizing the resource provisioning
strategies of slices when no anomaly occurs, to this end, we
define ∆s(t) ∈ {0, 1} to indicate the alarm status of slice s at
time slot t, where “1” indicates alarm and “0” indicates not.
Thus, ∆s(t) can be calculated by

∆s(t) =

 0,
∑
v∈Vs

Ri
u,v(t) ≥ Ri

u(t), l
i
u,v(t) ≤ Li

u(t);

1, otherwise;
∀u ∈ Us,∀v ∈ Vs,∀s ∈ S,∀i,∀t.

(3)

When a slice runs normally and does not occur alarm, the
QoE of the users should be related to the allocated resources
from the slice and the corresponding latencies of resources
provided. Otherwise, if the slice occurs anomaly, the slice has
to adjust the VNFs and will affect the QoE of users. To measure
the QoE of users, we define the NPS of user u at time slot t
as NPSu(t). Moreover, for each time slot and resource type i,
we denote the user satisfaction of a resource unit as αi > 0
when the user requests are satisfied by slices, and the user cost
as γi < 0 when the slices occur alarm. Thus, the NPS of user
u at time slot t can be calculated as

NPSu(t) =
1

I

I∑
i=1

{(1−∆s(t)) α
i
∑
v∈Vs

Ri
u,v(t)

liu,v(t)

+ ∆s(t) γi Ri
u(t)},∀u ∈ Us,∀t.

(4)

We aim to maximize the long-term system NPS which is the
sum of all the users in the system, denoting indicator variable
as Π(·) ∈ {0, 1} where “1” means “·” holds and “0” means
not, thus, the problem can be formulated as

max
∆s(t),Ri

u,v(t)

∑
t

∑
u∈U

NPSu(t), (5a)∑
u∈U

Ri
u,v(t) ≤ Ri

v,∀v ∈ Vs,∀i,∀t, (5b)∑
s∈S

∑
v∈Vs

Π(hv = n)Ri
v ≤ Ri

n,∀n ∈ N ,∀i, (5c)

Us ∩ Us′ = ∅,∀s, s′ ∈ S, (5d)
∆s(t) ∈ {0, 1},∀s ∈ S,∀t. (5e)

Here, constrain (5b) ensures that the allocated resources for all
serving users of VNF v cannot be more than the total resources
of the VNF; constrain (5c) indicates the total resources of
hosted VNFs of ES n cannot exceed the resource of the ES;
constrain (5d) ensures one user can only request one slice for
resource provisioning.

Remark. From the formulated problem we can see that when
the slices run normally, the NPSs of users depend on the
allocated resources and latencies, while the former is satisfied
and equal to the requested resources; otherwise, when the
slices occur anomalies, the NPSs of users equal to the cost
of their unsatisfied resources and the slices have to adjust the
VNFs until they can satisfy the users’ requests. According to
our previous research [15], adjusting network slices based on
the prediction of future information in advance can introduce
lower user latencies. Thus, based on these considerations, we
propose to predict the anomalies of the slices based on the
user behaviors, which will be utilized to improve the long-
term system NPS in two directions as: 1) When the slices are
predicted to occur anomalies, the slices can adjust the VNFs
in advance to achieve much lower latencies and thus higher
normally running NPS afterward; 2) Otherwise, the slices will
adjust the resource allocation strategies to reduce the resource
provisioning latency.

III. SLICE ANOMALY PREDICTION AND RESOURCE
ALLOCATION FRAMEWORK

In this part, we first introduce the process for learning users’
behavior to get the future prediction of users’ requests and
positions. After that, we propose an anomaly prediction and
resource allocation algorithm.

A. User Behavior Prediction

To learn the users’ behaviors, we first collect the users’
historical data including the requested resources, latencies,
and positions of users for several time slots. Without loss of
generality, we assume that all the users’ behavior data in the
considered system are independent and identically distributed.
After the collection process, we use the long short-term memory
(LSTM) model for user behavior learning and then further
predict users’ requests and positions. Particularly, in addition



Algorithm 1 User Behaviour Prediction Algorithm
1: Input: φ, σ, ϕ, U .
2: Initialize: The historical dataset of user u as Dhis

u = ∅.
3: for u ∈ U do
4: for t = {1, . . . , φ} do
5: Dhis

u ← Dhis
u + {Xu(t), Yu(t),∪I

i=1{Ri
u(t), L

i
u(t)}.

6: end for
7: Get the training samples Xu,1, . . . ,Xu,φ−σ and testing samples

Yu,1, . . . ,Yu,φ−σ according to (6) and (7), respectively.
8: for Each train epoch do
9: With Xu,1, . . . ,Xu,φ−σ , fit the LSTM model, get the output

as Ŷu,1, . . . , Ŷu,φ−σ .
10: Calculate the MSE loss between Ŷu,1, . . . , Ŷu,φ−σ and

Yu,1, . . . ,Yu,φ−σ .
11: Update the parameters of LSTM by Adam optimizer and

backward propagation method.
12: end for
13: end for
14: for u ∈ U do
15: for t > φ do
16: Get the historical stack sequence with length σ as Hu(t) =

{Xu,t−σ+1, Xu,t−σ+2, . . . , Xu,t}.
17: Input the historical stack Hu(t) to the well-trained LSTM

model to obtain the prediction Pu(t+ 1).
18: end for
19: end for
20: Output: Pu(t+ 1), ∀t > φ,∀u ∈ U .

to the external recurrent neural network loops, the LSTM
model introduces the concept of gates and adds internal cell
loops to solve the long-distance dependency issue, thus, it can
significantly reduce learning difficulty by providing long-term
memory for valuable information. We elaborate the learning and
prediction process as Algorithm 1. Specifically, for each user
u ∈ U we consider collecting φ time slots’ historical behavior
data for model training, which can be expressed as Dhis

u =
{Xu(1), Yu(1),∪I

i=1{Ri
u(1), L

i
u(1)}, . . . , Xu(φ), Yu(φ),∪I

i=1

{Ri
u(φ), L

i
u(φ)}} (Lines 4-6). Afterward, the historical dataset

of user u can be split into training and testing data samples
(Line 7). Denote each training sample consists of σ time slots’
user data, based on Dhis

u , the φ − σ training samples can be
expressed by

Xu,1 = {Xu(1), Yu(1),∪I
i=1{Ri

u(1), L
i
u(1)}, . . . ,

Xu(σ), Yu(σ),∪I
i=1{Ri

u(σ), L
i
u(σ)}},

. . . ,

Xu,φ−σ = {Xu(φ− σ), Yu(φ− σ),∪I
i=1{Ri

u(φ− σ),

Li
u(φ− σ)}, . . . , Xu(φ− 1), Yu(φ− 1),

∪I
i=1 {Ri

u(φ− 1), Li
u(φ− 1)}},

(6)

and the corresponding testing samples can be expressed as

Yu,1 = {Xu(σ + 1), Yu(σ + 1),∪I
i=1{Ri

u(σ + 1),

Li
u(σ + 1)}},

. . . ,

Yu,φ−σ = {Xu(φ), Yu(φ),∪I
i=1{Ri

u(φ), L
i
u(φ)}}.

(7)

The training samples and testing samples then will be sent to
the LSTM model for updating the parameters by the backward

Algorithm 2 Anomaly Prediction and Resource Allocation
Algorithm

1: Input: I , U , Pu(t+ 1), ∀t > φ, S.
2: Initialize: The future anomaly flag of slice s as ∆̂s(t+ 1) = 0,

Ri
u,v(t+1) = 0, the remaining resource of VNF v as Ri,rem

v (t+

1) = Ri
v , the unsatisfied resource Ri,ust

u (t+ 1) = R̂i
u(t+ 1). .

3: for s ∈ S do
4: for i = 1, . . . , I do
5: Sort the user list according to users’ requested amount of

resource type i R̂i
u(t + 1) with a descending order, get

the sorted user list U ′
s, where the first user has the highest

R̂i
u(t+ 1).

6: for u ∈ U ′
s do

7: Calculate latencies from the user to all the VNFs Vs ac-
cording to (2), denoted as Li

u,s(t+1) = ∪
v∈Vs

l̂iu,v(t+1).

8: if min{Li
u,s(t+ 1)} > L̂i

u(t+ 1) then
9: ∆̂s(t+ 1) = 1.

10: else
11: Filter the VNFs to get those with l̂iu,v(t+1) ≤ L̂i

u(t+
1) and sort according to the latency with a descending
order, denote the new VNFs as Vi

u(t+ 1).
12: for v ∈ Vi

u(t+ 1) do
13: Ri

u,v(t+1)← min{Ri,ust
u (t+1), Ri,rem

v (t+1)}.
14: Ri,rem

v (t+ 1)← Ri,rem
v (t+ 1)−Ri

u,v(t+ 1)
15: Ri,ust

u (t+ 1)← Ri,ust
u (t+ 1)−Ri

u,v(t+ 1).
16: if Ri,ust

u (t+ 1) = 0 then
17: Break.
18: end if
19: end for
20: if Ri,ust

u (t+ 1) ! = 0 then
21: ∆̂s(t+ 1) = 1.
22: end if
23: end if
24: end for
25: end for
26: end for
27: Output: ∆̂s(t+ 1), Ri

u,v(t+ 1).

propagation algorithm based on the MSE loss between the
testing data and model prediction (Lines 8-11). When the
model is well-trained, in the following time slots t > φ,
we utilize the model for future user position and requests
prediction (Lines 16-17). As a result, the output of the algorithm
Pu(t + 1),∀t > φ includes the future prediction of the
user’s position information and requested resources/ latencies,
expressed as

Pu(t+ 1) ={X̂u(t+ 1), Ŷu(t+ 1),∪I
i=1{R̂i

u(t+ 1),

L̂i
u(t+ 1)}}.

(8)

Thus, based on the prediction of users’ information Pu(t+1),
we can locate the potential anomalies and decide the resource
allocation strategies of slices.

B. Slice Anomaly Prediction and Resource Allocation

After obtaining the prediction information Pu(t+1), at time
slot t we can predict if there will be potential slice anomalies
at time slot t+1. If the resource provisioning cannot satisfy the
users’ requests, the slices trigger an anomaly alarm at time slot
t and the slices tend to adjust the VNFs in advance; otherwise,



the slices optimize the resource allocation strategies of VNFs to
improve the system NPS, the detailed process of slice anomaly
prediction and resource allocation is described as Algorithm 2.

Specifically, at each time slot t > φ we calculate if users’
future requests can be satisfied or not with the prediction
information of time slot t + 1. To this end, we initialize the
remaining resource of VNF v as the total amount of resources
Ri

v,∀v ∈ Vs,∀i, the unsatisfied resources of user u as the
predicted requested resources R̂i

u(t+1),∀u (Line 2). After that,
we first order the users by their predicted requested amount of
resource type i R̂i

u(t + 1),∀u ∈ Us with a descending order
and try dispatching the resources for users in turn (Line 5).
Afterwards, for each user u in the sorted user list U ′

s, we
calculate the future latencies from user u to the all the VNFs
v ∈ Vs based on the predicted position information to get
∪

v∈Vs

l̂iu,v(t + 1) (Line 7). Once all the VNFs cannot support

the preferred latencies from the user u, i.e., l̂iu,v(t + 1) >

L̂i
u(t+1),∀v ∈ Vs, the slice s predicts an alarm as there exist at

least one user’s requested resources cannot be satisfied (Lines 8-
10). Otherwise, we filter the VNFs that satisfy the preferred
latency and search from the highest latency in turn to calculate
the possible allocation of resources based on the remaining
resources of the VNFs and the requested resources from users,
until the user’s requested resources get fulfilled (Lines 11-15).
If all the VNFs cannot meet the requested resources, the slice
should occur an alarm for the potential anomaly which indicates
that under the most extreme case, at least one user’s requests
cannot be satisfied by the slice, and the slice s should be an
abnormal slice at time slot t+ 1.

IV. SIMULATION RESULTS

In this part, we introduce the simulation setting and present
the evaluation results to demonstrate the performance of our
proposed framework.

A. Setup

To evaluate the proposed framework, we consider there exists
50 UEs dynamically move across a square with 100× 100 M2

and 10 BSs are geographically evenly distributed. The UEs
request three types of resources, i.e., CPU, RAM, and disk, and
we have I = 3. The total resources of the 10 ESs are uniformly
set as 8 CPU cores, 32 Gbits RAM, and 256 GBits disk. To
mimic the dynamically changing user requests and positions,
at the beginning of the simulation, we consider the users
randomly requested resource intervals of CPU, RAM, and disk
as [0.01, 2], [0.01, 4], and [0.01, 8], respectively; the requested
latencies of UEs randomly ranges from 10 ms to 50 ms, and the
positions of UEs are set as Xu(t) ∈ [0, 100], Yu(t) ∈ [0, 100].
Based on the requests from the users, the network slices are
initialized according to different types of resources and consist
of several VNFs hosted by different ESs. We use the networkx
module of Python to generate the topologies of ESs and the
slices. Considering the slices have different latency preferences,
we set the radio access latency from the UEs to the nearest
VNF of the slices randomly from 1 ms to 3 ms, and the
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considered schemes versus |N |.
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Fig. 3. The long-term system NPS and the average latency of users of the
considered schemes versus |U|.

latency between each two connected VNFs from 3 to 5 ms [13],
[16]. After the initialization, the users periodically change their
requested resources, latencies, as well as positions based on
their previous time slot’s behavior. The user satisfaction value
αi and user cost γi is set as 10 and −20, respectively.

B. Baseline and Performance Metrics

To evaluate the performances of the proposed scheme, we
compare our proposed scheme with baselines as: 1) Greedy
resource provisioning scheme, in which the slices search for
the VNFs with the most available resources in turn and try
to satisfy the requested resources with preferred latencies; 2)
Convex resource provisioning scheme, where the slices allocate
the requested resources with a convex optimization method [17]
for users from all VNFs that can provide preferred latencies by
linear programming; 3) Random resource provisioning scheme,
where the slices allocate the requested resources randomly for
users from all VNFs with preferred latencies. Different from
these schemes, we not only use the prediction of users’ requests
to decide the resource provisioning strategy in advance but also
simultaneously consider satisfying the requested resource and
reducing the service latency to improve users’ QoE. As a result,
the performance indicators in this paper include the long-term
system NPS and the average latency of users over time slots.

C. Evaluation Results

We first compare the long-term system NPS of the considered
schemes versus different numbers of ESs, as shown in Fig. 2.
Specifically, from Fig. 2(a) we can observe the system NPS of
the considered schemes gradually increases with the numbers of
ESs, while the proposed scheme and the random scheme have
relatively stable tendencies. The system NPS of all considered
schemes are lower than 0 since most slices have abnormal users



whose requested resources/latencies cannot be satisfied. When
the number of ESs equals 20 and 25, we find the requests
from UEs have high latency requirements and the slices have
fewer candidate VNFs that can satisfy the requested latencies
than other cases, leading to worse resource provisioning, much
more abnormal slices, and finally lower system NPS. The
proposed scheme with users’ behavior prediction can achieve
higher system NPS compared to other baselines thanks to the
lower user latencies and more reasonable resource provisioning
strategy. From Fig. 2(b) we can see the system latency of
the proposed scheme, convex scheme, and greedy scheme
gradually decrease with the numbers of ESs in most cases,
while the random scheme keeps stable, which is because when
we have more ESs, the UEs can have more candidate VNFs for
satisfying their requests and thus can achieve lower latencies.
Overall, the proposed scheme can significantly improve the
long-term system NPS and reduce the average latency of users
compared to other baseline schemes for all ESs.

Further, with different numbers of UEs, we compare the
long-term system NPS and the average latency of users of the
considered schemes as shown in Fig. 3. From Fig. 3(a) we can
see the system NPS decreases with the number of UEs, while
the proposed scheme has a stable tendency. The convex and
greedy schemes have very close behaviors to each other and
the two curves nearly overlap. When we have more UEs, the
competition among UEs tends to exacerbate since the available
resources of VNFs are limited and more UEs cannot get the
requested resources, resulting in the increase of abnormal slices
and finally lower long-term system NPS. From Fig. 3(b) we can
see the average latency of users increases with the number of
UEs, while the proposed scheme has the lowest average latency,
followed by the greedy scheme, the convex scheme, and the
random scheme. As a result, the proposed scheme outperforms
the considered schemes in improving the long-term system NPS
and reducing the average latency of users for all UEs.

V. CONCLUSION

In this paper, we have investigated the resource provisioning
of network slices and focused on improving the QoE of users
by detecting the potential anomalies of slices based on the
historical behaviors of users. We have modeled the whole
process for slice resource provisioning and formulated the
problem as maximizing the long-term system NPS. To solve the
problem, we have designed a framework that learns the users’
behavior for slice anomaly prediction and resource allocation.
Finally, simulation results have demonstrated that our proposed
scheme outperforms the considered baselines in improving the
long-term NPS and reducing the average latency of users.
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