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Abstract—Massive Machine Type Communication (mMTC)
has long been identified as a major vertical sector and enabler
of the industry 4.0 technological evolution that will seamlessly
ease the dynamics of machine-to-machine communications while
leveraging the 5G technology. To advance this concept, we have
developed and tested an mMTC network slice called Megasense.
Megasense is a complete framework that consists of multiple
software modules, which is used for collecting and analyzing
air pollution data that emanates from a massive amount of
air pollution sensors. Taking advantage of the 5G networks,
the Megasense will significantly benefit from an underlying
communication network that is traditionally elastic and can
accommodate the on-demand changes in requirements of such
a use case. As a result, deploying the sensor nodes over a
sliceable 5G system is deemed the most appropriate in satisfying
the resource requirements of such a use case scenario. In this
light, in order to verify how 5G-ready our Megasense solution
is, we deployed it over a network slice that is totally composed
of virtual resources. We have also evaluated the impact of the
network slicing platform on the Megasense in terms of bandwidth
and resource utilization. We further tested the performances of
the Megasense system and come up with different deployment
recommendations based on which the Megasense system would
function optimally.

Index Terms—Air Quality Sensing, 5G Networks, mMTC,
Sensors, NB-IoT, Network Slice.

I. INTRODUCTION

5G networks are expected to provide fundamental support
for variant vertical industry applications and open the door
to several others. In particular, 5G networks will provision
the necessary communication service as well as the resources
needed to enable the services towards powering up the dif-
ferent identified 5G network slice types. Typical examples of
network slices are ultra-reliable low latency communication
(uRLLC), enhanced/extreme mobile broadband (eMBB) and
massive machine type communication (mMTC) slices [1].
mMTC is characterized as a major enabling backbone for
smart cities applications. These applications are intended to
provide improved services in areas such as healthcare, wear-
ables and eCity/smart city, so as to impact the well-being and
living conditions of the people in a positive way. Thanks to
the capabilities of the next generation mobile technology and
the developments in the field of sensors and actuators, this

anticipated improved living condition is gradually becoming
attainable [2].

One of the pillars of smart cities is sensing, i.e., collecting
and analyzing data from a massive number of sensors that is
densely deployed in the city. 5G networks with its network
slicing enabling technology is able to support the require-
ments coming from the sensing use cases [3]. Fundamentally,
network slicing allows the provisioning of network services
from programmable virtual network functions (VNFs) that are
running over a shared physical network infrastructure with
logical isolation of the virtual resources in such a way that
guarantees a certain level of security. Moreover, network slic-
ing brings flexibility to network service deployment through
the provisioning of virtual resources that dynamically scale
on demand based on the amount of needed resources [4]. This
essential feature makes 5G network slice a perfect choice to
enable applications such as Megasense to adequately manage
the collection and analysis of data streams from a deployment
of a massive number of sensors within a city. Indeed, 5G net-
works with their network slicing features significantly supports
new services and vertical applications (known as 5G verticals
such as Megasense) in megacities [3].

Megasense is a project that is developed with the sole aim of
providing real-time massive scale air quality sensing in urban
areas by integrating a large number of air quality sensors at
the scale of for example tens of thousands or even millions
of air quality sensors [5]. Megasense enables air pollution
hotspot detection outdoors; air quality sensing indoors; and
offers creation of real-time air pollution map in urban areas [6].
To obtain real-time air quality data from local variations with
high resolution at the resolution of few meters, Megasense uses
any existing air quality infrastructure in the city such as city
air quality stations, crowd-sensing approaches, and citizens
personal air quality sensors willing to share their sensed data.
The air quality sensor deployment within Megasense also
includes NB-IoT enabled air quality sensor nodes that are
installed in the parking lot of the Kumpula campus at the
University of Helsinki (shown by red arrow) are depicted in
Figure 1. Whereas, Figure 1(a) shows the locations of the
sensor deployments. Figure 1(b) shows the parking and the
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(a) Locations of deployed air quality sensors in Helsinki. The
details of NB-IoT sensor are shown in sub-figures (b) and (c).

(b) NB-IoT enabled air quality sensor
installed in the parking of Kumpula campus

at the University of Helsinki.

(c) The electronics and sensing units of
NB-IoT based air quality sensor.

Fig. 1. Air quality sensor deployment within Megasense in Helsinki with an example of NB-IoT enabled air quality sensor.

place where a NB-IoT sensor is installed and Figure 1(c)
illustrates the electronics and sensing utilities of the air quality
sensor, capable of measuring aerosol and gas pollutants.

Among the partners of the 5G FORCE project, Aalto
University (AU) maintains the network slicing prototype, while
UH operates the Megasense air quality sensing platform,
which has been developed for the collection of air quality
measurements coming from an arbitrary number of sensors.
This paper has deployed the referred network slicing prototype
over two different cloud facilities offered by AU and UH.
While the sensor nodes are connected to the slice on the
UH cloud facility, the core of the Megasense framework,
which collects and processes the data, is deployed on the
AU cloud facility, as shown in Figure 2. In addition, to
transmit the sensor data from the UH cloud to AU cloud, the
Finnish University and Research Network (FUNET) which is a
backbone network providing Internet connections for research
organizations in Finland was used. FUNET supports sending
data files even at several gigabytes in sizes.

The Objective of our implementation and empirical evalu-
ation is to measure the impact of a growth in the number of
sensors on the performance of Megasense while running on
a network slice. This reveals the most critical requirements
coming from the sensing use case, which helps planning the
sensing infrastructure of a smart city when deployed on a
network slice. We also investigate the level of support that
an underlying network slice and its resource can provide for a
smooth operation of the Megasense platform. This determines
the amount of virtual resources that would be needed to
allocate to a network slice in ensuring an efficient operation of
the sensing platform based on the number deployed sensors.

The contribution of this work consists of three folds:
• We have designed and developed a network slice platform

that is able to run and manage multiple network slices
simultaneously that have different objectives and service
level agreements (SLAs). Different network slices run on
top of a common physical infrastructure, each of which
targets different use-cases including uRLLC, eMBB and

mMTC, respectively.
• We have developed and tested an mMTC network slice

(i.e, Megasense) that enables the sensing, measurement
and processing of the air pollution and providing an
accurate real-time air pollution map in urban areas.

• We have evaluated the impact of the network slicing
platform on the Megasense in terms of bandwidth and
resource utilization.

This paper is organized in the following fashion. Section
II reviews some related works, while Section III describes
the deployment of Megasense use case over a network slice.
In Section IV, we present the testbed and the results of
the performance evaluation. Finally, the paper concludes in
Section V.

II. RELATED WORK

A significant portion of research works investigate the
mMTC type of communication when it comes to the 5G
network support. These studies have been carried out in order
to facilitate the use of access technologies to support the
deployment and operation of a massive number of sensor
nodes and their networking. The research in [7] introduces
a multi-site mMTC test network to investigate the long-
term impact on communication quality and sensor data when
the network is deployed over either Long Range (LoRa) or
NB-IoT technology. This is essential in terms of separation
of concerns with respect to identifying possible causes of
degradation in communication quality whether from software
or hardware failures. The research discovers that while NB-IoT
presents better communication performance, measurements on
the LoRaWAN networks show higher SNRs and RSSI.

Moreover, the research in [8] aims at actualizing energy
efficiency in the deployment of NB-IoT and LoRa-equipped
sensor devices using the method of multi-radio massive
machine-type communication (MR-mMTC). Sensor devices
that are integrated with MR-mMTC capabilities experienced
an improved performance when using multiple access tech-
nologies. Another study [9] considers the energy consumption
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and channel capacity utilization by wireless sensor networks.
The study compares the efficiency of traditional base stations
(BSs) against a high altitude platform (HAP). The results
show that the energy consumption of WSN using HAPs is
more efficient than WSN using BSss. In the same manner, the
channel capacity of the WSN systems using HAPs is greater
than the WSN systems using BSs. As a result, a gain in the
performance efficiency of the sensor networks was found when
using a HAP.

The research in [10] investigates harnessing the opportuni-
ties provided by satellite communication through the use of
capillary networks, which is based on Fibre to the Cabinet
technology incorporated with terrestrial radio stations in col-
lecting data from sensor networks. This approach provisions
support for multi-service smart city ecosystem that relies on
machine-to-machine type communications. The work in [11]
studies the uplink communication coverage of mMTC deploy-
ments while considering its operation in an ultra-dense net-
work environment. This work reveals that the uplink network
performance is independent of the maximum transmission
power, which then afford the sensor devices the possibility
of a prolonged battery life. The study in [12] uses a joint
application admission control and network slicing in virtual
sensor networks to manage a shared physical WSN. The
study proposes a mathematical model to solve the problems
of application admission control and wireless sensor network
slicing resource allocation. The other study in [13] proposes a
horizontal hierarchy slicing method that is based on mathemat-
ical morphology technology to compress data in WSNs. As a
result, the method shows the effectiveness of data compression
in WSN through the slicing.

These studies aimed to facilitate the use of different access
technologies and network slicing to support the deployment
and operation of a massive number of sensor nodes. These
studies aim to investigate the communication quality [7];
actualize energy efficiency in the deployment of sensor de-
vices [8]; study the channel capacity utilization [9]; harness
the opportunities provided by satellite communication [10];
communication coverage of mMTC deployments [11]; manage
a shared WSN using joint application admission control and
network slicing [12]; and compress data in WSNs through
horizontal hierarchy slicing [13]. The studies presented in this
section have taken different progressive approaches that could
be utilized towards enabling the mMTC for dense IoT devices
deployment. These studies have made tangible contributions
towards facilitating the development of the mMTC technol-
ogy considering different perspectives towards fulfilling the
requirements of the communication type.

However, in this work, we have developed and tested an
mMTC network slice called Megasense, which is a complete
framework designed for collecting and analyzing air pollution
data that emanates from a massive amount of deployed air
pollution sensors. Megasense supports enabling ultra-dense
MTC in order to facilitate a smart city application. We
evaluated the impact of the network slicing platform on the
Megasense in terms of bandwidth and resource utilization.
We also showed the performance of Megasense when the

number of deployed sensors drastically increases within the
network slice. In addition, we consider the real dense and ultra-
dense air quality sensor deployments and show how feasible
it is to deploy such a use case over a sliceable network
infrastructure. We further provide recommendations for real
sensor deployment in smart cities. To the best of authors
knowledge, this is the first paper highlighting massive sensor
deployment using network slices, which considers a realistic
number of air quality sensors as a 5G sensing use case and
evaluates the deployment through simulations.

III. DEPLOYMENT OF MEGASENSE OVER A NETWORK
SLICE

A. Megasense System

Megasense system [6] consists of three main parts, the
Sensing System, Edge Layer and Cloud Layer as shown in
Figure 2. The Sensing system includes the sensing sources
deployed in urban areas as well as the radio communication
interfaces. The sensing sources include data received from any
type of air quality sensor devices, open street map data, city air
pollution monitoring stations, crowd-sourced data, and many
other sources. The Cloud layer offers a long-term and scalable
storage system as well as processing and analytics services.
This layer aggregates data received from different sensing
sources and stores the cleaned data. The processed data is
further used by decision makers for clean urban planning
as well as the research communities for obtaining insights
about the air pollution sources and suggesting solutions for
mitigating the pollution. The Edge layer is responsible for
reactively receiving air quality data from the deployed sensors
within Megasense as well as the external sensors owned by
third parties. The edge layer is also responsible for data pre-
processing, data cleaning and aggregating, calibrating and
providing in real-time (seconds) air quality information at the
edge using pre-trained machine learning models [14]. Both
processed and raw data is further relayed to the cloud for
long-term storage for further sensor calibration and open data
access based on request. At the edge layer, the input API is
generic and can support all types of environmental data. Then
the data is collected and stored as raw data in json format
in order to enable easy readability and post-processing and
analyses.

Megasense data management platform primarily relies on
two main software frameworks, the NGINX1 and Java Spring
Framework (JSF)2. The NGINX is used for actualizing two
main objectives, data routing and load-balancing respectively.
The data collection application is designed as both a web app
and mobile app using the JSF, which handles specification of
endpoints, automatic parsing of data, data transport security
and rate limiting. When the data are collected using the JSF,
the application gives tags each data as either for storage or
for processing. Data intended for storage are tagged as write
data (using https.../write/) while those intended for processing
and visualization are tagged as read data (using https.../read/)
using the REST API endpoints. These data are then received

1https://www.nginx.com/
2https://spring.io/projects/spring-framework
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Fig. 2. Testbed architecture: Megasense system which is deployed on a network slice and runs in an end-to-end manner between UH and AU cloud facilities.

at the core of the Megasense platform through the Input API
component where the NGINX application runs for correct
routing of the incoming data to the appropriate component.
Based on Figure 2, a write data is routed to the long-term
data storage component while a read data is routed to the
data processing unit. NGINX also does the load-balancing
functionality by distributing the requests to be handled in a
thread pool, which is dimensioned on the number of cores
available in the system.

B. Sensor Deployment

Currently, the Megasense platform supports a real deploy-
ment of more than 100 mobile air quality sensors, 20 fixed
sensors and several test sensors. The measurement accuracy
of these sensors which are tested at laboratory environments
[6] as well as through co-locations located at city air quality
monitoring stations, all operate in Helsinki, Finland [5]. The
Megasense mobile sensors which their design is shown in [6]
are portable sensor devices that can be carried by citizens.
These sensors are designed to offer more accurate information
about personal exposure to air pollutants. These sensor devices
are capable of measuring meteorological variables including
relative humidity, temperature and wind speed; particulate
matter concentrations PM2.5 and PM10, and gaseous pollutants
NO2, CO and O3. For data transmission, the sensor devices can
connect to smartphones. This allows determining the location
of the measurement and whether the sensor was used indoors
or outdoors. The test sensors also are designed so that in
addition to the particulate matters, they can measure volatile
organic compound (VOC). The test sensors are designed so
that they can be used for indoor measurements such as inside
buildings and transportation systems.

The fixed sensors which are deployed in fixed locations
at bus stops and roadsides are equipped with NB-IoT for
data transmission. These sensors capture meteorological vari-
ables, particulate matter concentrations, and various gaseous

pollutants. The NB-IoT sensors use Quectel BC95-B20 chip
based modems, where sim cards from the public network of
Elisa (one of the main network operators in Finland) are used
for NB-IoT connections. The sensors periodically send their
measurements over HTTP to Megasense data management
platform. Due to the power requirements of various sensors
and the environments in which the sensors are deployed, the
frequencies of data transmissions of the sensors are differ-
ent. Indeed, NB-IoT sensors installed in outdoor areas, Wi-
Fi based sensors are located indoors, while mobile sensors
carried by citizens which use Bluetooth to connect to the
user’s mobile phones, while users’ mobile phones transmit the
measurements to Megasense backend server through cellular
networks. However, users’ mobile phones can connect Internet
for transmitting their data whenever needed and when cellular
network is in outage or not available. In addition, smartphone
application (Android and iOS) is also needed to be installed
on users’ mobile phones. This application is responsible for
recording sensor measurements locally and transmitting them
to the Mgasense backend server for analytics. Currently,
the iOS version of the application is in private beta, while
application is publicly available on Google Play for Android
devices.

Hence, the different sensor devices, based on the location
which they are deployed and according to their sensing capa-
bilities and their access to the power resources can transmit
their measured data at different intervals. Whereas, NB-IoT
sensors send their measurements every 30 seconds; Wi-Fi
based sensors send their measurements every 60 seconds;
and the mobile sensors transmit their measurements every
30 seconds (due to their limited power sources). Moreover,
as for physical real-life implication, for example, our sensor
deployments may stimulate the development of various mobile
apps such as personal exposure apps or green path applications
presented in [6] to be used by users.
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C. Slicing Prototype

The network slice orchestration system enables the deploy-
ment and run of multiple network slices on top of the same
physical infrastructure while ensuring security and resource
isolation between the network slices. One of the network
slices runs on top of our shared physical infrastructure is
Megasense, which is an mMTC network slice. The Megasense
platform is designed for collecting, processing and analysing
data sourced from these sensors in order to offer real-time,
accurate and fine-grained information about the air quality and
enable new applications [6]. Therefore, in order to demonstrate
the performance of a massive number of air quality sensors
over network slices, we use the Megasense framework of UH
and deploy them on a Slicing framework that is developed at
AU, both in Finland. The overall architecture of Megasense
deployment over a network slice in an end-to-end manner is
shown in Figure 2.

As depicted in Figure 2, both the sensor nodes that are
deployed to sense the atmospheric air pollution and the
Megasense application designed to collect and analyse the data
are hosted on virtual resources between the cloud facilities of
UH and AU in an end-to-end way. Despite the fact that the
number of air quality sensor units are continuously increasing
within Megasense, with current deployments around hundreds
of sensors in Helsinki. Yet, this number does not translate to
a massive scale. Hence, in order to test the tolerability of the
network slicing prototype, we simulate an increasing number
of sensors in Megasense. To this end, we developed a script
that simulates an arbitrary number of sensors and executes it
from the UH end of the slicing framework.

While the script needed to simulate the deployment of
a massive number of sensor nodes, e.g., 10k, 20k or more
was deployed on virtual resources consisting of 2 CPU cores
and 2 GB memory. The resources necessary to operate the
Megasense application that is provided from the network
slicing framework was initially equipped with 4 cores of CPU
and 4 GBs of memory. Depending on the deployment need,
resources for the Megasense platform may be scaled either
vertically up/down or horizontally up/down.

We developed the script such that each sensor sends it’s
measurements over HTTP every 30 seconds. We also imple-
mented the script in Erlang and we modelled each sensor as
an independent process, i.e., an actor in the actor concurrency
model. In addition, the script uses non persistent TCP con-
nections. The choice of using TCP connections is because i)
in reality, the sensor devices which are deployed in different
places in a city do not use a shared TCP connection, and ii)
it is to avoid running out of file descriptors in the VM when
the number of simulated sensors is high.

The slicing prototype is one which consists of multiple
clusters of Infrastructure as a Service (IaaS) cloud facilities
deployed on a datacentre, wherein, there are two controller
nodes and three compute nodes each attached to of each
controller nodes. In order to enforce quality of service for
different slices, we have integrated the ONOS SDN controller
in the setup which has SDN enabled switches. This way,
the network layer 2 packet forwarding could be under the

absolute control of the SDN controller. This SDN support
brings flexibility and dynamicity to traffic steering for the
network slices.

Next, in order to determine how well the end-to-end setup
provides operational support for the smooth running of the
Megasense platform in terms of its requirements, we focus on
assessing the capabilities of a single instance of Megasense
while running on a network slice and we took note of the
slices virtual resources.

IV. SIMULATION AND RESULTS

In our study, we aim to evaluate the performance of the
Megasense platform when deployed over a network slice and
understand its tolerance when increasing the number of air
quality sensors that is connected to it. Megasense is designed
to send an acknowledgement/reply with HTTP 200 status code
when a measurement is received. The HTTP 200 status code
refers to success status response code and indicates that the
request has succeeded. In Megasense, when big number of
measurements (i.e., it is overloaded) are received, the platform
either replies i) with a different HTTP status code or ii) it does
not send a reply at all, because the upload request might have
been dropped.

To evaluate the tolerance and performance of Megasense,
we considered the following primary metrics that are needed
to determine if Megasense is being overloaded or not: i)
the difference between the number of measurements sent by
the sensors based on simulation and the number of measure-
ments for which the script receives a reply (either positive
or negative), and ii) the percentage of measurements that
is successfully collected by the Megasense platform, i.e.,
measurements for which the script has received a positive reply
(200 as HTTP status code) when operating over a network
slice.

In order to properly identify the cause of an overload
on Megasense, we investigate its resource consumption by
collecting the metrics of CPU usage, memory usage, disk
utilization and bandwidth usage. We utilize the SAR tool3

to investigate the Megasense resource consumption. In our
measurements, we simulated an increasing number of sensors
from 100, 500, 1000, 5000, 10K, all the way to 20K sensor
nodes. The measurements pertaining to each increase in the
number of sensors i.e., 100, 500 and so on, is carried out for
a total duration 10min for each test and repeated for a total
of 20 times, while taking the average values. In the following
subsections, we explain the results of our performance evalu-
ation.

A. Identifying overload

To study the overloading of Megasense, we increased the
number of sensors in our simulations. Figure 3 illustrates these
results. Whereas, Figure 3(a) shows the absolute value of
the difference between the expected number of replies from
Megasense and the average number of received replies (i.e.,

3https://linux.die.net/man/1/sar
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(a) The absolute difference between the number of expected and the
average number of received replies.

(b) The percentage of successfully received replies.

Fig. 3. Megasense performance when increasing the number of sensors.

ExpectedReceived−Replies − AverageReceived−Replies). The
number of expected replies is computed when each sensor
sends a measurement every 30 seconds (i.e., 2 replies in
1min) and a session lasts 10 minutes. For example, when
we consider 10K sensors, the expected number of replies is
10K × 2× 10 = 200K replies per test.

In Figure 3(a), we observe that the difference in magnitude
at each increase in the number of sensors is almost similar.
This result shows that the performance of Megasense is good
until the number of sensors increases to 10K. As illustrated
in Figure 3(a), the difference in magnitude between 10K and
20K sensors is much higher than others i.e., between 10K
and 5K, 5K and 1K, 1K and 500, and 500 and 100. This
result indicates that when the number of sensors exceeds 10K,
Megasense exhibit overload behaviour since it is not able to
send replies to a significant number of upload requests coming
from the sensors.

Beside the difference in the number of received replies, we
also measured the percentage of successful received replies. As
shown in Figure 3(b), a reduction happens in the percentage
of successful replies when the number of sensors increases.
This is due to the sudden and massive increase of the requests
which puts pressure on the Megasense platform.

As illustrated in the figure, the performance of Megasense
significantly deteriorates when the number of sensors exceeds
10K. The number of successful replies drastically decreases
when the number of sensors reaches 20K (a massive 10K
increase) with our current settings in the testbed. However,
with the limits that we have imposed on our testbed by
means of using a single VM, data transmission frequency (i.e.,

transmission per 30 seconds) and considering the available
resources such as CPU, memory, disk and network interface,
we can conclude that 10K sensors is an acceptable number
for Megasense that shows a high performance.

B. Resource consumption

In addition to overload of Megasense, we evaluate the
resource consumption of Megasense by means of CPU usage,
memory usage, Megasense disk utilization and the bandwidth
consumption when increasing the number of sensors. The
results of our performance evaluation are shown in Figure 4.

In principle, the CPU usage includes the user applica-
tions usage (%user) and system operations usage (%system).
Whereas, the sum of %user and %system defines the CPU
load on the system. The Megasense system is prepared to
handle a lot of incoming network connections and process
a massive amount of disk I/O operations (from the connected
sensor nodes), hence, it is natural for the system to be heavy
on CPU usage.

As depicted in Figure 4(a), when the number of sen-
sors increase up to 10K, both %user and %system usages
show slight and normal increase of a little below 20%. We
can also observe that, as expected the memory consumption
(%memused) shows a logical increase of slightly above 60%
with the increase of the number of sensors. In Figure 4(a), we
observe that the I/O waiting time (%iowait) steadily increases
with the increasing number of sensors. %iowait indicates the
percentage of time that a CPU is busy during which the system
has an outstanding disk I/O request.

The (%iowait) exhibit slightly steady increase when the
number of sensors increases from 500 to 10K. However, when
the number of sensors increased from 10k to 20k, the %iowait
almost vanished. This happens because Megasense fails to
store the sensor measurements, due to the massive increase in
the amount of upload request coming from the sensor nodes,
thereby resulting in much lower %iowait and the high rate
of unsuccessful uploads. The sudden surge in the %user also
corroborates this behavior.

When the number of sensors exceeds 10K, both CPU
and memory usage demonstrate significant increase. Since the
Megasense system deals with disk read/write and network
operations, the CPU usage is high. However, to further realize
the reason behind this increase, we investigated the logs of
Megasense and found out that the problem is sourced from the
lack of enough memory. That was reported by “the application
throws OutOfMemory exceptions”. Actually, the reason for
high CPU usage would be i) that the VM does not have swap
space, i.e., the system is forced to discard memory pages when
Megasense is approaching the memory limit, thus deteriorating
the performance; or ii) since the “OutOfMemory” exceptions
are uncaught but the system keeps running anyway.

Moreover, the results in Figure 4(b) show that the number
of write requests per second is relatively low compared to
what the disk in the VM can perform. The disk limit in VM
is shown with green line in Figure 4(b). The write request
indicates the request for storing the data disk of Megasene
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(a) The percentage consumption of different system metrics when
increasing number of sensors.

(b) The number of write requests on the disk per second.

(c) The bandwidth consumption.

Fig. 4. Megasense performance results.

system. To investigate the capabilities of the Megasense disk,
we performed tests with the fio utility4. The results show that
for each number of sensors the write requests are much below
the limit line. This proves that the disk in VM has capacity
to host big number of I/O operations. This result enables us
to conclude that disk capacity is not the factor that limits the
performance of Megasense when running on this amount of
virtual resources.

In addition, when the number of sensors increases to 20K,
the I/O operations considerably decreases. This is shown by a
dashed red line separating this result with others in Figure 4(b).
This translates to the overload situation of Megasense and it’s
inability to cope with the massive workload when the number
of sensors exceeds 10K. Figure 4(c) depicts that in Megasense,
the bandwidth consumption is not a critical concern in air
sensing use case. The reason would rely on the small data

4https://linux.die.net/man/1/fio

file sizes of sensing. Indeed, when the number of sensors
increases to 10K, the maximum utilized bandwidth reaches
to around 500KB/s in download (shown by rx). Similar to
the disk usage, when the number of sensors increases to 20K,
due to the overload situation of Megasense the bandwidth
consumption decreases compared to 10K sensors.

C. Real sensor deployment in smart cities

Our performance evaluation results showed that Megasense
when running in a VM with 4 cores and 4 GB of memory
supports around 10K sensors (S). In reality, to deploy the
sensors in smart cities, here, we consider two scenarios of
Dense network and Ultra dense network deployment. We use
parameters and values presented in [3], as presented in Table
I to roughly estimate the capabilities of the Megasense when
used for real massive sensor deployments. Based on [3], a real-
life mega-city coarse-grained sensors deployment are usually
characterized with the placement of a few dozen expensive
measurement towers for carrying out accurate and effective
air quality measurement and hundreds of other less expensive
ones.

TABLE I
BACK-OF-THE-ENVELOPE COMPUTATIONS FOR MEGASENSE

CAPABILITIES.

Considered factor Dense network Ultra dense network

Density (S/km2) 400 S/km2 10K S/km2

Coverage single VM (km2) 25 km2 1 km2

Helsinki area (213.8 km2) 9 VMs 214 VMs

As presented in Table I, the dense network scenario is
defined to have 400 sensors per km2, while the ultra-dense
network scenario has 10K sensors per km2. If we consider
Megasense which runs on a single VM similar to our exper-
iment, a single instance of Megasense is enough to cover 25
km2 in the dense network scenario and 1 km2 in the ultra
dense network scenario.

Considering the case of dense network (dense deployment
of sensors) in the city of Helsinki, which is 213.8 km2, 9
instance of Megasense (9 VMs) will be needed. While, in
the case of ultra-dense network scenario, 214 VMs is needed.
Fortunately, in both scenarios, obtaining these numbers of
VMs is fairly easy from any datacenter or any edge computing
resource [15]. As a result, even though the memory was the
main concern limiting the performance of Megasense, yet it
supports a high number of sensors when running in a VM with
4 cores and 4 GB of memory based on our system simulation
setup. Therefore, we can assume that Megasense is an efficient
platform which promotes and facilitates the way towards 5G-
enabled smart cities. Although, the system deployment and
results presented in this work has been largely motivated by
the Nokia white paper [3], which anticipates a real sensor
network deployment for a specific sensing use case (air quality
sensing system), we are satisfied with the realised results. As
a future work, we are interested in studying the impact of a
massive deployment of sensors in an extreme case considering
the 5G requirement which indicates 1M devices/km2 in a more
generic perspective of sensors deployment.
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V. CONCLUSION

In this work, we have presented the feasibility of deploying
a smart city platform application on network slices. Most
importantly, owing to the peculiarity of the sensors’ platform
communications pattern, we have shown that deploying tens
of thousands of such IoT device nodes for data collection and
analysis through the Megasense platform is very possible over
network slices. Based on our performance evaluation results, it
is observed that the system requirements of sensors platforms
such as the Megasense can be adequately achieved while
operating on network slices. Also, deploying such a system
over network slices ensures an optimal resource utilization at
every point in time throughout the operation life cycle of the
system due to the flexibility and elasticity of network slices
in resource utilization.
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M. Kulmala, P. Hui, and S. Tarkoma, “Intelligent and Scalable Air
Quality Monitoring with 5G Edge,” IEEE Internet Computing, vol. 25,
no. 2, pp. 35–44, 2021.

BIOGRAPHIES

Naser Hossein Motlagh is a Postdoctoral Researcher at the Department of
Computer Science, University of Helsinki. He received his D.Sc. in Network-
ing Technology from the School of Electrical Engineering, Aalto University,
Finland in 2018. His research interests include Internet of Things, wireless
sensor networks, smart buildings, unmanned aerial and unmanned underwater
vehicles (UAVs & AUVs). Contact him at naser.motlagh@helsinki.fi

Ibrahim Afolabi obtained his Master’s degree from the School of Electrical
Engineering, Aalto University, Finland in 2017. He is presently pursuing
his doctoral degree at the same university. His research interests include
network slicing, cloud computing, machine learning, MEC, network softwer-
ization, NFV, SDN, and dynamic network resource allocation. Contact him at
ibrahim.afolabi@aalto.fi

Matteo Pozza received the bachelor’s and master’s degrees in computer
science from the University of Padua, Italy, in 2014 and 2016, respectively,
and the Ph.D. degree from the University of Helsinki, in 2020. His research
interests include theoretical and practical problems in networked systems,
especially mobile networks. Contact him at matteo.pozza@helsinki.fi

Miloud Bagaa received his Ph.D. degree from the University of Science and
Technology, Houari Boumediene Algiers, Algeria, in 2014. He is currently
a senior researcher with the Communications and Networking Department,
Aalto University. His research interests include wireless sensor networks,
the Internet of Things, 5G wireless communication, security, and networking
modeling. Contact him at miloud.bagaa@aalto.fi

Tarik Taleb is professor at Aalto University and the University of Oulu. He
received his Ph.D. degree in information sciences from Tohoku University,
Japan in 2005, where he worked as an assistant professor. He is the founder
and director of the MOSA!C Lab (www.mosaic-lab.org). He was also a senior
researcher and 3GPP standards expert at NEC Europe Ltd., Germany. His
research interests include network function virtualization, network softwariza-
tion and software defined networking. Contact him at tarik.taleb@aalto.fi

Sasu Tarkoma is a Professor of computer science with the University of
Helsinki and Head of the Department of Computer Science. He is a visiting
professor with the 6G Flagship at the University of Oulu. He completed
his Ph.D. in Computer Science at the University of Helsinki in 2006. He
has authored four textbooks and has published over 250 scientific articles.
He holds ten granted U.S. patents. His research interests include Internet
technology, distributed systems, data analytics, and mobile and ubiquitous
computing. Contact him at sasu.tarkoma@helsinki.fi

Hannu Flinck received the M.Sc. and Lic.Tech. degrees in Computer Science
and Communication Systems from Aalto University in 1986 and 1993,
respectively. He was with the Nokia Research Center and the Technology
and Innovation Unit of Nokia Networks. Currently, he is a research manager
with Nokia Bell Labs, Espoo, Finland. His research interests include mobile
edge computing, SDN, and content delivery in mobile networks, particularly
in 5G networks. Contact him at hannu.flinck@nokia-bell-labs.com


