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Abstract—The explosion of the number of things connected
to the Internet gave birth to a new set of services. Customers
now are expecting next-generation networks to satisfy vertical
applications with different requirements. For instance, 5G net-
works can carry these various demands by logically dividing
the physical network into multiple slices, each slice features
specific characteristics based on the type of service. Software-
Defined Network (SDN) and Network Function Virtualization
(NFV) introduced the term ”Network Softwarization” which is
the main enabler of network slicing and 5G networks. Specifically,
SDN separates the control plane from the data plane, this
concept brings many benefits such as dynamism, flexibility, and
innovation. However, when it comes to the assurance of Quality
of Service (QoS), SDN is still behind. Not only SDN was not
optimized for real-time communications, but also SDN networks
cannot offer a deterministic End-to-End (E2E) delay. In this
paper, we study OpenFlow-based communications with a focus on
the delay. The modeling of queuing delays shows a stable linear
development of the mean waiting time under a probability of
0.2 that 10 switches generate packet in message. After that, the
increase becomes exponential and thus hard to predict.

Index Terms—SDN, Queuing delay, Delay analysis, Queuing
model, Deterministic Networking, 5G, and Beyond 5G.

I. INTRODUCTION

The number of the new Internet of Things (IoT) devices
installed is estimated to be 35 Billion by the end of 2021
[1]. Many applications will take advantage of this concept
including connected vehicles, smart homes, healthcare, and the
industrial sector. Specifically, the industry is believed to benefit
the most from IoT as it will provide cost-efficient monitoring
and optimized control. The evolution of IoT connecting peo-
ple, data, and machines as they relate to manufacturing gave
birth to the Industrial Internet of Things (IIoT). As a subset
of IoT, IIoT covers self-controlling and intelligent Machine-
to-Machine (M2M) communications. By the end of 2025,
the number of IIoT connections will jump to 36.8 Billion
compared to 17.7 back in 2020 [1]. This growth can be
explained by the higher rate of deployment due to the cost-
effectiveness of the hardware and the ease of accessibility.
Regardless of the global COVID-19 pandemic, few Asian
manufacturing hubs such as South Korea, Japan, and China
have successfully maintained the production despite a lack of
manpower. IIoT played a crucial role in filling the void by
monitoring the production process, through the use of sensors,
increasing automation, and operational efficiency.

Beyond 5G (B5G) is considered as one of the building
blocks of smart manufacturing. These future wireless commu-
nication systems will enhance efficiency, flexibility, production
speed, and diversity during the manufacturing process. The
growing investment in 5G and IIoT will contribute to the
vision of ”Factories of the future” [2]. The emerging use
cases on these factories are diverse with unique characteristics
and demands. 3rd Generation Partnership Project (3GPP) 5G
identifies three main categories to cover any vertical use
case: enhanced Mobile Broadband (eMBB), massive Machine
Type Communications (mMTC), and Ultra-Reliable and Low
Latency Communications (URLLC) [3]. To accommodate an
extended number of heterogeneous vertical services over a
single infrastructure, 5G architecture implements a key feature
called network slicing (NS). This concept divides the 5G
physical network into multiple distinct logical networks (i.e.
slices), these slices are isolated, have independent control and
management, and support connections with different require-
ments for latency, reliability, and bandwidth [4].

NS provides efficiency, cost reduction, and flexibility. The
two main enablers of this concept are Software-Defined Net-
working (SDN) and Network-Function Virtualization (NFV).
SDN is a softwarization technology that separates the control
plane from the data plane. This separation gives the controlling
entity (i.e., SDN controller) a global view of the network,
enhances flexibility, programmability, innovation, and quick
reaction to changing network conditions [5]. Despite all the
benefits of this paradigm, SDN is still far from maturity, not
only Northbound Application Programming interface (API) is
not yet standardized [6], but also SDN was not optimized
for real-time communications. Moreover, SDN is not latency-
aware and cannot guarantee a bounded End-to-End (E2E)
latency. This is mainly because of interactions between the
controller and the forwarding devices.

The contributions of this paper include: i) OpenFlow net-
work delay breakdown where we take a closer look on the
metrics that can impact the E2E delay; ii) modelling of
OpenFlow-based network components, and numerical analysis
of these models. The remaining of this paper is organized
as follows: Section II presents the related work. Section III
breaks down the network delay, specifically the variable part:
processing delay (Section III-A); and queuing delay (Section
III-B). Section IV describes the SDN network queuing model,
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the modelling covers SDN controller in Section IV-B, and
SDN switch in Section IV-A. Section V provides a numerical
analysis of the network queuing model. Finally, Section VI
concludes the paper.

II. RELATED WORK

In our previous work [7], we have proposed Software-
Defined Queuing (SDQ). This framework defines queuing
algorithms and manages the priority queues on the data
forwarding devices. This prototype is based on two main
modules. The first one orchestrates the queues based on
the incoming traffic. The second module executes the traffic
engineering tasks by finding the optimal path and balancing
the load. Despite the good overall performance, SDQ does
not predict high queuing delays. Also, the service time is
not consistent in scenarios with a high number of packets.
This work will give us a better understanding of a predictive
and deterministic E2E delay, and reach the vision of proactive
AI-based decisions on a distributed architecture to ultimately
manage multiple slices deployed on different technological
domains [8]. Other existing works proposed a queuing model
to analyze an OpenFlow–based SDN network. For instance,
in [9], the authors tried to push the model to be as realistic
as possible. The model takes into account three classes of
packets and analysis covering the packet loss probabilities and
the average packet delay transfer. Compared to our work, this
model considered only one controller and one switch.

Time-Sensitive Networking (TSN) has shown its effec-
tiveness in delivering messages with a guaranteed bounded
delay and can dynamically configure the flows [10]. However,
managing traffic schedule, bandwidth allocation, and time-
synchronization are still open problems in terms of reliability
and consistency in critical services. Li et al. [11] proposed a
network delay model, based on 802.1Qbv switch, with three
types of traffic, Best-effort (BE), Stream Reservation (SR),
and Control-Data Traffic (CDT). The Forwarding process is
managed by Gate Controller List (GCL); this entity decides
if a flow is eligible for transmission or not. In order to
optimize the resource utilization and calculate the worst-
delay by Credit-based Shaper (CBS), the authors proposed
a SDN-based network model; this solution was tested with
avionics systems as a targeted use case [11]. In this work,
SDN was utilized only for bandwidth resource allocation,
which is understandable as SDN was not optimized yet for
real-time communications. This partnership of TSN and SDN
has a lot of potential. But this solution is far from maturity:
TSN hardware is still costly and virtual TSN switches are
not reliable yet. As a result, offering a deterministic E2E
delay on an OpenFlow-based communication is still a relevant
objective. Therefore, a full understanding of delay is needed
in this type of communications.

III. NETWORK DELAY BREAKDOWN

Data transmission is known to only take place via two adja-
cent nodes. However, the path from a source to a destination
node may include several intermediate hops. The term E2E

delay refers to the summation of the delays recorded at each
hop on the way to the destination. The delay at each hop can be
subdivided into two main parts: firstly, a fixed part combining
the Transmission Delay (TD) at the sender and the Propagation
Delay (PgD) over the link; and secondly, a variable part such
as the Processing Delay (PrD) and Queuing Delay (QD) at
the sender [12].

A. Processing Delay

The overall processing delay is dependant on the hardware’s
core processing power and memory access speed. Simple
packet forwarding may take few microseconds, but complex
operations such as Virtual Private Network (VPN) establish-
ment or data encryption may add 50% to the processing delay.
The modelling of this type of delay can be quite simple in
traditional networking [13]. However, in SDN networks, data
plane devices feature low computation power. As the majority
of the heavy processing duties are handled by the controller,
the processing delay of new unrecognizable flows can go as
much as few seconds. Processing Delay (PrD) is detailed in
Fig. 1.
1) The switch extracts the header from the incoming packet
and tries to find a match on the flow table. Once the flow
packet is matched, the corresponding action will be executed.
2) If no flow entries can match the packet, the packet is sent
from the forwarding engine to switch CPU via PCIe bus [14].
This delay will be marked as (I1). At a certain point, PCI SDK
chip gets the packet and dispatches it to the OpenFlow agent
(I2). Afterwards, the agent processes the packet, generates a
packet in message and sends it to the controller via a secure
OpenFlow channel. This packet contains metadata and the first
128 bytes of the original packet, and this delay will be marked
as (I3). The period of time of all these three steps can be
classified as an inbound latency (I1-I3).
3) The SDN controller processes the packet in message and
generates flow mod and packet out messages, the delay of
this parsing is (PiP). Based on the policies configured by the
network administrator, the control messages are sent back to
the switch through a secure OpenFlow channel (O1). Next,
the agent on the switch side parses the control message, and
translates the logical commands into hardware-based instruc-
tions. It includes the addition or removal of the new flow rule
(O2). Afterwards, depending on the flow rule, PCI SDK chip
may require a rearrangement of the previous flow rules to host
the new one (O3). Finally, the rule is added or removed to the
hardware flow table (O4). The period of time since flow mod
message is released by the SDN controller, and the update of
hardware table can be classified as outbound latency (O1-O4).
The processing delay is basically the summation of both
inbound and outbound latency [14].

B. Queuing Delay

Queuing delay (QD) can be defined as the waiting time a
packet can experience. For instance, in the case of a bursty
flow or multiple incoming flows, the node may not be able
to process the packets right away. The incoming packets are
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Fig. 1: End-to-End Delay composition in an OpenFlow based network.

enqueued in a buffer. Fig. 2 illustrates an example of a First-
In-First-Out (FIFO) concept with two scenarios: (2A) with no
competition, thus the incoming packet does not experience ex-
tra queuing time, (2B), on the other side, shows two incoming
traffic flows at the same time which can increase the waiting
time.

IV. DELAY MODELLING

SDN paradigm separates the control plane from the data
plane. The communication between the planes is the main rea-
son for extra waiting time. The SDN controller communicates
with the forwarding devices through a southbound interface
(e.g., OpenFlow). This section will provide a modelling of
SDN controller and SDN switches as queuing systems. First,
the SDN switch will be modeled as an M/H2/1 queue,
whereas the controller is represented as a basic M/M/1
queue.

A. Queuing model: SDN switch

OpenFlow switch on SDN network can be represented
as a single server queue with two-phase nodes (M/H2/1).
We assume that the packet arrival process follows a Poisson
process with rate λs, where s is the switch identifier. There is

Fig. 2: Basic FIFO queuing, (A): One incoming flow, (B): Two
flows at the same time.

a probability of α that the incoming packet does not feature
any flow rule on the table (after sending a packet-in message
to the controller). Thus, the probability of finding a match on
the table is (1− α). The service time on each switch can be
represented as two-phase hyper-exponential distribution. With
probability α the packet receives service at rate µ1, while with
probability (1−α) this packet receives service at rate µ2. As
as shown in Fig. 3, the state of the system is represented by
the pair (n, i) where n is the total number of packets in the
queue, and i is the current service phase (i can be only 1 or
2).

Fig. 3: State transition diagram of an M/H2/1 queue.
To find the service time for each packet that enters the

switch, let us consider the M/H2/1 Queuing System with
the packet arrival density function described in (1) and the
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service-time density function (2)

a(t) = λe−λt (1)

d(t) = αµ1e
−µ1t + (1− α)µ2e

−µ2t (2)

The Laplace integral (transform) of Functions (1) and (2) is
shown in (3) and (4), respectively.

A∗(s) =
λ

s+ λ′
(3)

D∗(s) = α
µ1

s+ µ1
+ (1− α) µ2

s+ µ2
(4)

The spectral decomposition can be expressed as shown in (5)

A∗(−s)D∗(s)− 1 =
φ1(s)

φ2(s)
(5)

Based on the distributions (1) and (2), and considering the
conditions (3) and (4), the spectral decomposition can be
described as (6):

φ1(s)

φ2(s)
=

s
(
s2 + c1s+ c0

)
(λ− s) (µ1 + s) (µ2 + s)

=

s

[
s+

(
c1
2 −

√
c21
4 − c0

)][
s+

(
c1
2 +

√
c21
4 − c0

)]
(λ− s) (µ1 + s) (µ2 + s)

=
s (s+ r1) (s+ r2)

(λ− s) (µ1 + s) (µ2 + s)
(6)

where c0 = µ1µ2−λ [(1− α)µ1 + αµ2] and c1 = µ1+µ2−λ
are coefficients of the polynomial s2 + c1s + c0. The mean
waiting time, which is average service time the packet spends
on the switch, is:

W =
r1 + r2
r1r2

− µ1 + µ2

µ1µ2
(7)

According to Vieta’s formula, the relationship between coef-
ficients c0 and c1 and the roots r1 and r1 is:

c1 = r1 + r2 = µ1 + µ2 − λ
c0 = r1r2 = µ1µ2 − λ [(1− p)µ1 + pµ2]

(8)

From (7), (8), the expression of the waiting time is:

W =
r1 + r2
r1r2

− µ1 + µ2

µ1µ2

=
µ1 + µ2 − λ

µ1µ2 − λ [(1− α)µ1 + αµ2]
− µ1 + µ2

µ1µ2

=
λ
[
(1− α)µ2

1 + αµ2
2

]
µ1µ2 [µ1µ2 − λ [(1− α)µ1 + αµ2]]

(9)

Based on (9), and Little’s law formula, the mean number of
packet in messages on the switch is:

L = λW (10)

B. Queuing model: SDN controller

Birth-Death Processes are special continuous-time Markov
chains [15], indexed by integers, whereby the transitions are
only allowed with the closest neighbours (j + 1) or (j − 1)
for a state j > 0 and the state 1 when the system is empty
(state j = 0). SDN controller can be modelled as an M/M/1
queue, which is one of the simplest queues. The arrival
process follows a Poisson process whereas the service time is
exponentially distributed. A packet in message, entering the
controller with a rate λ, is identified with a birth, whilst the
processed packet, leaving the controller back to the switch
with a rate µ, is referred to as a death, as shown in Fig. (4).

Fig. 4: State transition diagram of an M/M/1 queue.
Multiple switches can be associated with an SDN controller.

The packets arrive at a switch i following a Poisson process. If
a match is found, the waiting time only depends on the switch
performance, otherwise, there is a probability of ρi that the
switch i generates a packet in message. The SDN controller
receives the packet in messages and processes them by order
of arrival. Let s denote the number of switches on the SDN
network affiliated to the same SDN controller. Let assume the
packet arrival rate to the switch i follows a Poisson process
with rate λi. The controller receives packet in messages from
switch i with a probability of ρi. Therefore, we have

λ =

s∑
i=1

λiρi (11)

Let N be a random variable that represents the number of
messages on the controller at a steady state. The probability
that at a steady-state the number of packets present in the
controller is n can be denoted by pn.

pn = Prob{N = n}

= ρn(1− ρ) for ρ =
λ

µ
< 1

(12)

Thus, the average number of packets in the controller at steady
state is:

L = E[N ] =
∞∑
i=0

npn =
∞∑
n=0

n(1− ρ)ρn

= (1− ρ)
∞∑
n=0

nρn = (1− ρ)ρ
∞∑
n=0

nρn−1
(13)

If we consider the controller as a stable system, the utilization
factor ρ < 1, the expression of the mean number of packets
is:

L = E[N ] = (1− ρ) ρ

(1− ρ)2
=

ρ

1− ρ
=

λ

µ− λ (14)
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Fig. 5: The interaction betweeen the two-phase system (SDN
switch) and birth–death process system (SDN controller).

Let R denote the random variable that describes the response
time of the packets inside the controller. Little’s law formula
(15) defines the relationship between E[N ] and E[R], the
mean waiting time the packets spent at the controller, as
follows:

E[R] =
1

λ
E[N ] (W =

1

λ
L)

=
1

µ− λ
=

1

µ−
∑s
i=1 λiρi

(15)

V. PERFORMANCE EVALUATION

Assuming every SDN switch is receiving the packets with
a fixed rate λ, then the packets are either sent to the output
port with a rate of µ1, i.e., a matching flow entry is found, or
the packet in is sent to the controller with a rate of µ2. The
controller then processes the packet and sends it back to the
switch with a rate of µ as shown in Fig. 5.

A. Numerical analysis: SDN switch

Fig. 6 illustrates the performance of a SDN switch, specif-
ically, the mean Waiting Time (WT) as shown in Fig. 6a,
and the mean Number of Packet in (NP) messages (Fig. 6b)
per probability α. Overall, WT and NP in the switch increase
with the probability of not finding a match. It is noticeable
that the degree of growth is more significant with higher data
rates. For instance, in low data rates (e.g., 20 and 25 Kbps),
the expansion of both parameters is linear, also the value of
the service time and the number of packets are just under 2
ms and 49 packet in, respectively, when the probability α
is close to zero. When the probability is close to 1, the peak
average reaches 7.1 ms and 142 packet in in the switch. This
case is quite rare, i.e., all the incoming packets are sent to the
controller for a decision. However, this is possible especially
during the first deployment of the network or after adding new
forwarding devices where the flow tables are empty.

On the other side, in higher data rates (e.g., 30 and 35 kbps),
WT and NP are slightly under 3 ms and 107, respectively.
Furthermore, the expansion is linear when the probability is
less than 0.2, beyond that, both parameters surge, and the

growth becomes exponential. As a result, the two parameters
reach a ceiling average of 19 ms and 660 packets when the
probability is close to 1. To conclude the switch queue anal-
ysis, the probability of not finding a match α can dictate the
average service time and the number of packet in messages.
Moreover, less amount of data entering the switch (λ) can keep
WT and NP under control. Eventually, fewer interactions with
the controller will result in lower E2E latency (i.e., proactive
forwarding).
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Fig. 6: Performance evaluation of an SDN switch based on
M/H2/1 queue.

B. Numerical analysis: SDN controller

When it comes to the SDN controller, not only the probabil-
ity of receiving the packets from a switch matters, but also the
size of the SDN network. Therefore, fewer switches associated
with the controller translates to less packet in messages to be
processed. We evaluate the SDN controller’s queue either by
fixing the number of switches at 10 (Fig. 7) or by fixing the
probability ρ at 0.05 (Fig. 8). In the case of 10 switches, the
Average Waiting Time (WT) (shown in Fig. 8a) starts from just
under 2 ms regardless of the data rate (λ) when the probability
ρ is close to zero. In low data rates, WT slowly rises with the
probability α. It reaches 3.2 and 3.8 ms for 20 and 25 kbps.
In higher data rates, the WT surges and can reach three times
as the probability gets closer to 1, i.e., 4.7 and 6.2 ms for 30
and 35 kbps. Similarly, when we fix the probability at 0.05
and we increase the number of switches (Fig. 7a), we get
similar results for a higher number of switches. This means
that both probability ρ or the NP has an impact on the number
of packet in messages sent to the controller.

Similarly to the WT, the expansion of the mean NP inside
the controller is slow in low data rates (Fig. 7b), but in high
data rates, the NP surges quickly after a probability of 0.2 and
can reach up to 142 and 216 for 30 and 35 Kbps, respectively.
To conclude this analysis, the more packet in messages the
controller has to process (i.e., reactive forwarding), the longer
the waiting times of the packets in the system. In summary,
the growth of the mean waiting time is linear to the probability
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Fig. 7: Performance evaluation of an SDN controller (M/M/1
queue) managing 10 switches.

if ρ ≤ 0.2 (Fig. 7a), and to the number of switches if sw ≤ 40
less than 40 (Fig. 8a). Therefore, we can expect a stable system
in terms of average queuing time only when the following
bounded inequality is verified:

0 ≤ ρ× sw ≤ 2 (16)
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Fig. 8: Performance evaluation of an SDN controller (M/M/1
queue) with a fixed packet in probablity of 0.05.

VI. CONCLUSION

To conclude, this paper provided a breakdown of the net-
work delay in an Open-Flow based communication network. In
order to achieve a deterministic E2E delay, the queuing and
processing delay at each hop need to be controlled. In this
paper, we provided a queuing model for SDN controller and
SDN switches. Based on the numerical analysis, the growth of
the average queuing delay in both systems (i.e., controller and

switches) is related to the probability of a switch sending a
packet in message to the controller for a decision. Moreover,
in our scenario, the average waiting time of a controller
associated to 10 switches can be linear and under control with
a probability under 0.2 of receiving a packet in message. The
same situation happens with a probability of less than 0.05 and
40 switches . Nevertheless, time-sensitive applications cannot
afford waiting for a flow rule to be installed. The controller
should be able to proactively install the flow rules before
the arrival of the packets. Our next work will focus on the
automation of this process and the prediction of the E2E delay
based on the queuing and processing delays.
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