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Abstract—Benefiting from the booming of big data and artificial intelligence (AI) technologies, data-as-a-service is gradually
transforming into knowledge-as-a-service. Extracting knowledge from massive raw data is becoming a popular paradigm to save
network resources and improve efficiency, and establishing knowledge markets is receiving increasing attention from academia and
industry. In this paper, we propose a one-stop knowledge acquisition ecosystem termed BWKA that covers the whole process from
upper-layer knowledge trading to underlying knowledge generation. In the knowledge trading process, the knowledge-as-a-service
platform (KSP) is the buyer and publishes knowledge demands to multiple local knowledge sellers (LKSs). In the knowledge generation
process, each LKS aggregates data from its sensors and then trains data into knowledge according to the KSP’s requirements. We
resort to blockchain technology and provide a series of tailored operating rules and functions to protect the truthfulness of data
gathering and the fairness of knowledge trading. In addition, we introduce incentive mechanisms to stimulate selfish and rational
entities in the BWKA ecosystem to participate in knowledge acquisition. To analyze the strategic interactions among entities
theoretically, we develop a nested hierarchical game model, where the upper-layer knowledge trading is evaluated based on the
Contract Theory, and the lower-layer knowledge generation is formulated as a two-stage Stackelberg game. By solving the nested
hierarchical game in a backward inductive way, we identify the optimal strategy for each entity in closed form. Experiments on the
Ethereum blockchain and simulation results demonstrate the practical operability and outstanding performance of the BWKA
ecosystem.

Index Terms—Knowledge acquisition ecosystem, blockchain, smart contract, incentive mechanism, hierarchical game.
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1 INTRODUCTION

W ITH the advent of the data-explosion era, tremendous
redundant data has been generated in all walks of life.

To make better use of excessive data, extracting meaningful
information from big data to improve human society services has
rapidly gained popularity in recent years [1] [2] [3]. Such a trend
has led to the emergence of many fascinating applications such as
medical diagnosing, environment monitoring, market predictions,
smart cities, and smart business/inventory product management
[4] [5] [6]. In this context, the network information service mode
has been gradually transformed from “Data-as-a-Service” into
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“Knowledge-as-a-Service”, which is regarded as a rising star in
the family of XaaS (Everything-as-a-Service) [7] [8].

Knowledge is the embodiment of data intelligence and rep-
resents the real value of data. For instance, the real-time traffic
congestion and accident information on Google Waze [9] (a
community-based GPS system) is refined from the locations, den-
sities, and trajectories gathered by mobile devices. A knowledge-
as-a-service platform (KSP) serves its users by providing them
with knowledge. For example, GasBuddy presents the knowledge
on cheap gas stations [10], Pavemint shows the information on
available parking spaces [11], and WiFi Finder provides the
knowledge on free WiFi hotspots [12]. However, due to resource
constraints, the KSP generally acquires knowledge through com-
missioned production [13], i.e., distributing knowledge acquisition
tasks to local knowledge sellers (LKSs) rather than producing
knowledge by itself directly, which leads to an urgent demand
for meticulous knowledge acquisition mechanisms.

Over the past three years, some efforts have been made to
investigate knowledge acquisition through different approaches
and perspectives, e.g., crowdsensing [14], crowdlearning [15], fed-
erated learning [16], truth discovery [17], information timeliness
analysis [18], delay management in data collection [19], and so
on. Although these works have remarkably promoted progress in
this research field, they mostly consider that the involved entities
are voluntary to participate in knowledge acquisition. However,
due to the inherent selfishness and rationality of entities, they may
be reluctant to engage in knowledge acquisition tasks unless they
are satisfactorily paid. Therefore, when designing practical knowl-
edge acquisition systems, the economic and strategic interactions
among entities need to be comprehensively addressed.
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1.1 Motivation
By now, there are some preliminary works to explore the knowl-
edge acquisition entities’ interactions by using game theory [8],
[20], contract theory [21], and auction theory [22]. They mainly
focus on the pricing problem related to knowledge sharing or
delivery through an online market, i.e., the interactions between
the KSP and LKSs, while largely neglecting the knowledge
generation process that involves the interactions between data
owners and LKSs, which leads to a lack of understanding of a
complete knowledge acquisition ecosystem. Moreover, in com-
missioned production, the operational effectiveness of completing
a task is a crucial indicator for evaluating an LKS. From the
KSP’s perspective, an efficient LKS deserves more payments.
Therefore, differentiated incentive mechanism design is a key
concern of the KSP. Recent research also reveals the vulnerability
of online knowledge/data trading markets, in which the open and
anonymous environment may stimulate participants’ misbehaviors
(e.g., abortion) for reaping unfair profits [23]. Thus, how to protect
the truthfulness of data gathering and the fairness of knowledge
trading is another critical issue to be addressed for establishing the
knowledge acquisition ecosystem.

1.2 Contributions
Motivated by the above statements, this paper proposes BWKA,
a blockchain-based wide-area knowledge acquisition ecosystem,
which contains a complete process from the underlying data
sensing, aggregating, and knowledge training, to the upper-layer
knowledge trading. In the BWKA ecosystem, the KSP publishes
knowledge generation tasks into a series of contracts with differen-
tiated requirements and prices, and uploads them on a blockchain.
Each LKS makes its independent decision to sign a customized
contract with the KSP, and then mobilizes nearby sensors to collect
data. Each sensor is a selfish and rational individual to decide
the amount of data transmitted to the LKS. To ensure efficient
data sensing as well as truthful and transparent data gathering, a
blockchain is established to record the collected data and provide
sensors with rewards. After aggregating the data, the LKS trains
the data into knowledge and sells it to the KSP. By employing
the blockchain with smart contracts, we design a novel trading
scheme that forces LKSs to disclose their operational effectiveness
honestly and prevents misbehaviors of the buyer and sellers during
the trading. For the proposed BWKA ecosystem, we also develop a
theoretically analytical framework to study the interactions among
the KSP, LKSs, and sensors to identify their optimal strategies and
utilities.

In summary, this paper makes the following contributions:
• Novel Knowledge Acquisition Ecosystem Design: To the best

of our knowledge, this is the first work to investigate a com-
plete knowledge acquisition ecosystem from a comprehensive
perspective, which includes not only underlying knowledge
generation but also upper-layer knowledge trading. We em-
ploy two types of blockchains and smart contracts, as well
as elaborately design the corresponding operating rules and
functions to achieve secure, transparent, and truthful data
gathering and reliable and fair knowledge trading. In addition,
incentive mechanisms are incorporated into the BWKA e-
cosystem to stimulate entities to participate in the knowledge
acquisition works.

• Nested Hierarchical Game Modeling: We develop a nested
hierarchical game model to characterize the behaviors of

entities involved in the BWKA ecosystem and study their
strategic interactions. This game model is composed of two
layers, where the upper-layer model formulates the interac-
tions between the KSP and LKSs in the knowledge trading
process based on the Contract Theory, and the lower-layer
model formulates the interactions between each LKS and its
nearby sensors in the knowledge generation process as a two-
stage Stackelberg game. In the Stackelberg game, the LKS in
Stage I acts as the leader to provide sensors with rewards,
while the sensors in Stage II act as the follower to play a
non-cooperative game.

• Optimal Strategy Solution: We utilize the backward induction
method to solve the hierarchical game, such that the closed-
form optimal strategies of sensors, LKSs, and the KSP are
identified respectively. In particular, we prove the existence
and uniqueness of Nash Equilibrium in the non-cooperative
game of sensors, and investigate the concavity of LKS’s utili-
ty function under the constraint of completing the knowledge
generation task. Moreover, the KSP’s contracts can satisfy the
individual rationality (IR) and incentive compatibility (IC)
properties, which ensure that the cost of each LKS is properly
compensated and each LKS truthfully reveals its operational
effectiveness, respectively.

• Experiments and Simulations: We implement the BWKA
ecosystem on Sepolia Test Network to demonstrate its practi-
cal operability. Simulation results are also presented to show
the behaviors and performance of entities in the BWKA
ecosystem. In addition, we conduct comparative experiments
to demonstrate that the proposed knowledge trading scheme
can enable the KSP to achieve higher profits than the classical
linear pricing scheme.

1.3 Paper Organization
The remainder of this paper is organized as follows. We intro-
duce related work in Section 2. Section 3 presents the BWKA
ecosystem. Section 4 develops the nested hierarchical game model.
The Stackelberg game analysis for knowledge generation and the
contract analysis for knowledge trading are presented in Section 5
and Section 6, respectively. Section 7 shows the simulation results,
followed by the conclusion and future work in Section 8.

2 RELATED WORK

With the popularization of edge intelligence, knowledge trading
has been introduced into several fields, like IoT systems [8], [24]
and the Internet of Vehicles (IoV) [16], to accelerate social in-
dustrial development and improve industrial economic benefits. In
[8], a peer-to-peer knowledge market for knowledge paid sharing
was developed to break islands of knowledge and make knowledge
tradable in edge-AI-enabled IoT. Considering energy-constrained
IoT, Lin et al. [25] proposed underlying energy-knowledge trading
mechanisms with the optimal economic incentives and power
transmission strategies by constructing a two-stage Stackelberg
game. In [16], Chai et al. developed a hierarchical blockchain
framework and a hierarchical federated learning algorithm for
knowledge sharing in IoV, which was modeled as a trading market
process by utilizing the multi-leader and multi-player game.

The open and anonymous online environment may bring
security risks during knowledge trading. To address such is-
sues, blockchain technology has been widely applied to establish
distributed trust. Li et al. [26] proposed a blockchain-enabled



3

Register

Register

RFIDGPS

ThermometerHumidity sensor

Pressure sensor

Wind speed sensor

Generate

Data Chain

 One LKS & multiple sensorsParticipants:

Knowledge Generation Process

Block i-1 Block i Block i+1

Block head

Previous hash

Transaction 

records

 One KSP & multiple LKSsParticipants:

Knowledge Trading Process

Trade Chain with smart contract

Ethereum Virtual Machine 

(EVM)

Smart contract

Code

Value

State

Block i-1

Block head

Previous hash

Transaction 

records

Block i

Block head

Previous hash

Transaction 

records

Block i+1

Block head

Previous hash

Transaction 

records

Blockchain

Block i-1

Block head

Previous hash

Transaction 

records

Block i

Block head

Previous hash

Transaction 

records

Block i+1

Block head

Previous hash

Transaction 

records

Blockchain

New block

Consensus 

algorithm

ltiple LKSs

Off-chain control

LKS 1 LKS i LKS N

Knowledge-as-a-Service 

Platform (KSP)
Local Knowledge Seller 

(LKS)
Sensing area Transaction flow

Knowledge acquisition layer Knowledge generation layer Data collection layer

Smart contract Knowledge

Data Monetary incentive

Knowledge-as-a-Service 

Platform (KSP)
Local Knowledge Seller 

(LKS)
Sensing area Transaction flow

Knowledge acquisition layer Knowledge generation layer Data collection layer

Smart contract Knowledge

Data Monetary incentive

KK

Block head

Previous hash

Transaction 

records

Block head

Previous hash

Transaction Transaction 

records

Block head

Previous hash

Transaction 

records

Block head

Previous hash

Transaction 

records

LKS

Sensing area

LKS
LKS

LKS

Sensing area

Sensing area

Sensing area

LKSLKSLKS

Sensing area

Sensing areai

Knowledge

Knowledge

Knowledge Knowledge Knowledge

Data

LKSLKSLKS

Sensing areaSensing areaSensing area

KSP

Fig. 1. Blockchain-based wide-area knowledge acquisition (BWKA) ecosystem.

secure energy trading system, in which a consortium blockchain
architecture was introduced to guarantee verifiable fairness during
energy trading. Fan et al. [27] developed a hybrid blockchain-
based resource trading system, which combines the advantages
of both public and consortium blockchains to enable credible
payment transactions between requesters and edge nodes. In [28],
a blockchain-based spectrum trading system was proposed, where
the sharding technique was adopted to design a consensus mech-
anism to prevent malicious attacks (e.g., double-spending attacks)
during spectrum trading.

Another highly related research direction is the incentive
mechanism design to facilitate knowledge trading and data collec-
tion. Specifically, Sun et al. [29] designed a personalized privacy-
preserving knowledge obtaining scheme based on the Contract
Theory, where workers protect their privacy by adding a pertur-
bation to their data, and the knowledge requester utilizes a truth
discovery mechanism to aggregate data and obtain knowledge.
From a behavioural economics perspective, Liu et al. [6] proposed
an incentive mechanism to motivate participants to collect data in
unpopulated areas for location-based crowdsensing systems. Nie et
al. [30] considered crowdsensing in social networks and designed
incentive mechanisms for profit maximization based on a multi-
leader and multi-follower Stackelberg game approach. In [31], the
authors proposed a privacy-preserving secure spectrum trading

scheme for UAV-assisted cellular networks by leveraging the
blockchain technology, where a pricing-based incentive mechanis-
m and a Stackelberg game-based spectrum blockchain framework
were developed to improve the trading environment and maximize
profits for both the primary mobile network operator and UAV
operators.

It is worth noting that this work is distinguishable from the
existing ones in the sense that we construct a complete knowledge
acquisition ecosystem from a more comprehensive perspective,
which includes not only knowledge trading but also underlying
knowledge generation. We employ two types of blockchains to
protect the truthfulness of data gathering and the reliability of
knowledge trading, respectively, and elaborately design the corre-
sponding operating rules and functions. In addition, we establish
a nested hierarchical game model to optimize the strategic inter-
actions among related entities in different processes.

3 BLOCKCHAIN-BASED WIDE-AREA KNOWLEDGE
ACQUISITION ECOSYSTEM

In this section, we first introduce the overall architecture of
the blockchain-based wide-area knowledge acquisition ecosystem,
and then elaborate on participants’ interactions involved in the
knowledge generation process and knowledge trading process,
respectively. The main notations are listed in Table 1.
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TABLE 1
Main Notations.

Notation Description

N Set of LKSs
Mi Set of sensors in the sensing area that is managed by LKS i
Vi Dataset value of LKS i
XSm Data size collected by sensor m
ψ(Vi) Knowledge value of LKS i
ηm Position weight parameter of sensor m
T Knowledge value specified by the KSP
P Price coefficient corresponds to T
θ Type vector of LKSs

UKSP Utility of KSP
ULKSi Utility of LKS i
USm Utility of sensor m
PKNO Unit knowledge earning from other markets
Ri Rewards provided by LKS i
R∗

i Optimal block rewards paid by LKS i
c Cost of collecting data per unit size

XS Strategy profile containing all the strategies of sensors in Mi

X−Sm Strategy profile excluding sensor m
ÛNC

i Utility of LKS i when it refuses {Ti, Pi}

3.1 Architecture of BWKA Ecosystem

As illustrated in Fig. 1, we propose a blockchain-based wide-
area knowledge acquisition (BWKA for short) ecosystem that
is composed of a Knowledge-as-a-Service Platform (KSP) and
N edge-AI-enabled Local Knowledge Sellers (LKSs). The KSP
and LKSs are deployed randomly in a wide area, while each
LKS is in control of one data sensing area, which contain-
s multiple types of sensors such as RFIDs, GPSs, and ther-
mometers. In the BWKA ecosystem, the KSP announces a se-
ries of knowledge acquisition task-price pairs {Task,Price}
to LKSs, where Task = {Task1, Task2, · · · , TaskN} and
Price = {Price1, P rice2, · · · , P riceN} denote the KSP’s task
vector and price vector for LKSs, respectively. Once accepting
a specific task-price pair, an LKS stimulates data collection of
sensors in the corresponding sensing area by executing some
incentive mechanism. Then, the LKS aggregates data from sensors
and employs the edge-AI to extracts knowledge (e.g., valuable
information), which is called the knowledge generation process.
Afterward, the LKS sells its knowledge to and receives monetary
rewards from the KSP according to the admitted task-price pair
and pre-agreed trading regulations, which is called the knowledge
trading process.

It is worth noting that if the gathered data or traded knowledge
is a fraud, it inevitably leads to a severe crisis of confidence in
the knowledge acquisition ecosystem. Considering the traceability,
transparency, and tamper-proof features of blockchain, we develop
a blockchain-based trusted knowledge management framework
to prevent fraudulent data sensors and knowledge providers.
Specifically, we establish two types of blockchains, i.e., N data
chains (DCs), and one trade chain (TC) with a deposit-and-refund
mechanism [23]. A DC is created in the knowledge generation
process and maintained by an LKS and its corresponding sensors
to ensure truthful data gathering, while the TC is created in the
knowledge trading process and maintained by all LKSs and the
KSP to protect the participants from dishonest trading. Next, we
introduce the DC-based knowledge generation process and TC-
based knowledge trading process in detail.
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Fig. 2. SKTC-based knowledge trading process.

3.2 Data Chain-based Knowledge Generation Process
In the knowledge generation process, the sensors in a sensing
area are the data collectors and providers, the LKS is the data
aggregator and the knowledge generator, and the DC is a dis-
tributed data-sharing ledger. Considering that it is burdensome
for sensors to execute the Proof of Work (PoW) consensus due
to their computing capability limitation, we employ the Proof
of Contribution (PoC) consensus mechanism that can fit non-
monetary blockchain systems perfectly [32]. As the infrastructure
provider of DC i, LKS i incentivizes sensors to participate in
data collection by providing block rewards to the PoC winner.
As the reaction, sensors compete with each other individually
for the block rewards by making efforts to collect data. The
PoC consensus mechanism characterizes and quantifies the actions
and performance of sensors, and the sensor with the largest
contribution wins the block rewards and gets the right to generate
a new block in DC i.

3.3 Trade Chain-based Knowledge Trading Process
We stipulate that knowledge trading in the BWKA ecosystem
is carried out over contracts, where the KSP pays rewards to
buy knowledge from LKSs. The KSP regards the operational
effectiveness for generating knowledge as the type1 of an LKS,
and due to the discrepancy of AI algorithms, training data, and
computing capabilities, the KSP identifies N different types for
LKSs. Let θ = {θ1, θ2, · · · , θN} denote the type vector of LKSs,
where θi is in ascending order, i.e., θ1 ≤ θ2 ≤ · · · θN . A larger
type LKS indicates higher operational effectiveness, which brings
greater profit to the KSP, and thus the KSP will provide this
LKS with more rewards. However, the operational effectiveness

1. In contract theory, “type” is a commonly used term to describe the
attributes or characteristics of participants, the meaning differs from the daily
usage of the word “category/type”. Throughout this paper, when “type” is
associated with LKS, it specifically refers to the operational effectiveness of
the LKS for generating knowledge. That is, an LKS corresponds to a “type”,
indicating its distinct attribute.
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is an LKS’s private information that the KSP does not know its
instantaneous situation exactly. To this end, we design a smart
knowledge trade contract (SKTC) that can determine the real
type of LKSs automatically to achieve a reliable and efficient
knowledge trading process.

Fig. 2 shows the overall process of SKTC-based knowledge
trading, and Fig. 3 presents the functions of an SKTC in detail.
In Fig. 3, “on receiving (msg) from KSP (resp., LKSs)” indicates
that the function accepts a message from the KSP (resp. LKSs),
“upon receiving () from KSP” indicates that the function accepts a
transaction from the KSP without parameters [23], msg.sender is
the Ethereum address of the transaction sender, and msg.value is
the Ethers attached to the current transaction. Then, we elaborate
on each step and the corresponding operations of the SKTC-based
knowledge trading process.

1) System Initialization: The KSP and LKSs become legitimate
entities of the TC after registering in the BWKA ecosystem.
Then, each entity obtains a unique address, public and private
keys, and a digital signature by adopting the elliptic curve digital
signature algorithm (ECDSA) [33]. Denote Kpub and Kpri the
public and private keys of KSP, respectively. Let AddrKSP and
AddrListLKS denote the address of KSP and the address list of
LKSs, respectively, ts and te denote the start time and end time of
a task, respectively. level is an integer variable to record the level
of operational effectiveness of an LKS who accepts the contract.
State is a boolean state variable, where State = 1 indicates the
contract is accepted by an LKS, while State = 0 indicates the

contract is not occupied by any LKSs. URL and SellerAddr
are string variables used to store the Uniform Resource Locator
(URL) of the knowledge and the address of a knowledge seller,
respectively. The KSP executes InitSys function to initialize ts, te,
level, State, URL, and SellerAddr.

2) Deploy Smart Contracts: The KSP calls CreateCont func-
tion to deploy N SKTCs, which stipulate that knowledge trading
follows the deposit-and-refund discipline. Thus, the KSP sets its
monetary deposits MDKSP and the LKS’s deposits MDLKS , the
type vector of LKSs θ, and the maximum tolerable task duration
tdur in advance. Meanwhile, the KSP also strategizes the task-
price pairs {Task,Price}, expecting to maximize the profit that
can be achieved. When deploying SKTC i, the KSP announces
the task-price vector {Taski, P ricei} and attaches θNPricei +
MDKSP Ethers, i.e., msg.value = θNPricei + MDKSP , to
guarantee that the funds in SKTC i are sufficient to award the
highest type (i.e., the most effective) LKS.

3) Select Optimal Contract: After observing the task-price
pairs of SKTCs, the LKS selects its optimal SKTC and then
triggers SelCont function with MDLKS Ethers attached, i.e.,
msg.value = MDLKS . Once SelCont function is triggered, the
SKTC will freeze all the assets θNPricei +MDKSP +MDLKS

and save the current LKS’s address as SellerAddr. Simultaneous-
ly, the current time will be stored in ts as the task start time.

4) Send Knowledge Message: Once accomplishing the task
according to the selected SKTC (i.e., complete the knowledge
generation process), the LKS encrypts the knowledge FILEkno

by using KSP’s public key Kpub and uploads the encrypted
knowledge Enc(Kpub, F ILEkno) to the Interplanetary File Sys-
tem (IPFS) [34], which is a peer-to-peer distributed file system.
Afterward, the LKS calls SendMsg function to transmit the IPFS
knowledge link URLkno to the SKTC. Meanwhile, the current
time is stored in te as the task end time. The level of operational ef-
fectiveness is automatically calculated as level = ⌈N(1− te−ts

tdur
)⌉.

Then, the actual type of the LKS is identified as θact = θlevel.
5) Get Knowledge Message: The KSP calls GetMsg func-

tion to obtain URLkno. It is noteworthy that, as depict-
ed in Fig. 3, the invocation condition of GetMsg function
is “Require(msg.sender = AddrKSP )”, indicating that only
the KSP is permitted to invoke GetMsg function, and conse-
quently, has access permission to the URL of the uploaded
knowledge. Then, the KSP downloads the encrypted knowl-
edge Enc(Kpub, F ILEkno) from URLkno and decrypts the
knowledge by using its private key Kpri, i.e., FILEkno =
Dec(Kpri, Enc(Kpub, F ILEkno)).

6) Confirmation: The KSP triggers ConfTrade function to con-
firm that the knowledge trading process is completed successfully.
Then, ConfTrade function refunds (θN − θact)Pricei +MDKSP

Ethers and MDLKS Ethers to AddrKSP and SellerAddr, re-
spectively, and also sends θactPricei Ethers to SellerAddr as the
rewards paid by the KSP.

3.4 Complementary Discussions

Note that fraudulent data/knowledge is not the focus of this
paper, but it could indeed occur. Introducing certain data security
measures can effectively address this issue. For instance, when
the KSP or LKS receives knowledge or data, we can leverage
the outlier detection technique [35], which allows for the assess-
ment of the quality of submitted data or knowledge, with the
results recorded on the blockchain. Meanwhile, by incorporating a
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reputation mechanism, providers of high-quality data/knowledge
would gain elevated reputations, whereas those of lower-quality
data/knowledge would experience a decrease in reputation. Due
to the inherent traceability and immutability of blockchain, sell-
ers must be mindful of their reputation, otherwise, selling da-
ta/knowledge becomes increasingly difficult. These measures can
alleviate the fraudulent data/knowledge issue to a certain extent.
In addition, for the data/knowledge already received, the truth dis-
covery technique [36] can be employed, which computes the true
values from conflicting data sources through multiple iterations,
thereby enhancing the overall quality of data and knowledge.

Regarding the encryption and decryption in Step 4 and Step
5, the most commonly used asymmetric encryption algorithm
is RSA [37]. Increasing the key length of RSA will improve
security, but the computational speed will be significantly slow-
er. The computational time will also increase with the length
of the plaintext (e.g., FILEkno), especially for the decryption
process, the time may increase exponentially. No matter what
asymmetric encryption/decryption algorithm is used, additional
overhead will be incurred in terms of computation, energy con-
sumption, storage, and latency, leading to an overall decline in
the ecosystem operational efficiency. Hence, there exist tradeoffs
between data privacy and ecosystem operational efficiency, which
deserves further dedicated study. In addition, more sophisticated
encryption mechanisms can be used to improve efficiency. For
example, hybrid encryption uses a randomly generated key to
encrypt the plaintext in a symmetric encryption manner, uses the
recipient’s public key to encrypt the randomly generated key, and
then provides the ciphertext together with the encrypted key to the
recipient. Since the computational time of symmetric encryption is
much lower than that of asymmetric encryption, and the symmetric
key that needs to be encrypted by the public key is usually short,
hybrid encryption takes into account both security and operational
efficiency. For more details about encryption/decryption mecha-
nisms and their security and efficiency, please kindly refer to [38].

In this work, we implement the blockchain using Ethereum.
As blockchain technology evolved, Ethereum emerged in 2015,
introducing a broader vision by incorporating smart contracts and
decentralized applications (DApps). Ethereum initially employed
“computing power” voting, which requires each peer to find
a nonce value, such that when hashed with additional block
parameters (e.g., a Merkle hash, the previous block hash), the
value of the hash is smaller than the current target value. When
such a nonce is found, the miner creates the block and forwards
it on the network layer to its peers. Other peers in the network
verify the new block by computing the hash of the block and
checking whether it satisfies the condition. To address scalability
concerns and reduce energy consumption, Ethereum has been
transitioned to the “stake capital” voting with Ethereum 2.0 in
2022. It leverages validators to create and validate new blocks
based on the amount of cryptocurrency they hold. For more details
about the implementation of Ethereum, please refer to [39].

4 GAME THEORY MODELING FOR BWKA E-
COSYSTEM

In the BWKA ecosystem, three distinct types of entities, i.e., sen-
sors, LKSs, and the KSP, collaborate to accomplish the knowledge
acquisition tasks together. Given all entities engaged in the BWKA
ecosystem are rational, they will interact strategically with the
objective of self-interest maximization. Game theory is a vital tool

for studying problems involving multiple participants and their in-
teractive behaviors, and note that the entire knowledge acquisition
process consists of the underlying knowledge generation process
as well as the upper-layer knowledge trading process. Therefore,
in this section, we naturally develop a nested hierarchical game
model that corresponds to the interactions between entities in
different layers, enabling us to comprehensively characterize the
entities’ strategic behaviors participating in the BWKA ecosys-
tem. The upper-layer model formulates the interactions between
the KSP and LKSs in the knowledge trading process based on
the Contract Theory, and the lower-layer model formulates the
interactions between each LKS and its sensors in the knowledge
generation process as a two-stage Stackelberg game.

4.1 Nested Hierarchical Game Model
In this paper, we consider θi the private information that the KSP
cannot acquire exactly. For ease of presentation, we introduce two
concepts below.

For the proposed BWKA ecosystem, let N , {1, · · · , N}
denote the set of LKSs, Mi , {1, · · · ,Mi} denote the set
of sensors in the sensing area that is managed by LKS i, and
M , ∪N

i=1Mi. LKS i aggregates the data from sensors into a
raw dataset and then trains it into knowledge by using edge-AI.
The quality of knowledge is intimately associated with the amount
of effective information in the raw dataset. Thus, the dataset value
Vi of LKS i is determined as

Vi = σ(Mi) ·
Mi∑
m=1

ηmXSm
, (1)

where σ(Mi) represents the percentage of effective information
included in the dataset, which is usually modeled by a SIGMOD
function [40], i.e., σ(Mi) = 1

1+e−Mi
, XSm

is the data size
collected by sensor m, and ηm is a position weight parameter
that captures the importance of sensor m’s location. Similar to
the concept introduced in [8], we identify the knowledge value
by evaluating the gap between knowledge and the raw dataset.
Following the generic economic law of “diminishing marginal
return” [41], the knowledge value function ψ(Vi) is defined as

ψ(Vi) = α ln(1 + ωVi), (2)

where α and ω are positive parameters. Eq. (2) is consistent with
the intuition that a high-value dataset can generate high-quality
knowledge.

Next, we provide an overall description of the game theory
modeling for the BWKA ecosystem. As illustrated in Fig. 4, we
formulate the intricate interactions among KSP, LKSs, and sensors
as a two-layer hierarchical game. In the upper layer, the KSP
incentivizes LKSs in different regions to gather raw data and train
knowledge by announcing the task-price pairs {Task,Price}.
For ease of description, in the following, we rewrite the task-price
pairs {Task,Price} as {T ,P }, where T = {T1, T2, · · · , TN}
is the dataset value required by the KSP for each LKS, i.e.,
the KSP stipulates the knowledge value ψ by setting Ti, and
P = {P1, P2, · · · , PN} is the price coefficient corresponds to
T . Note that the rewards to an LKS are also related to its type θ,
however, the KSP does not know the actual information of LK-
S’s type when configuring {T ,P }. The information asymmetry
between the KSP and LKSs may incur a high incentive cost to
the KSP [42]. To address this problem, the KSP adopts Contract
Theory in designing {T ,P } [43].
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Fig. 4. Nested hierarchical game modeling for the BWKA ecosystem.

In the lower layer, we model the interactions between each
LKS and the sensors in the same sensing area as a two-stage
Stackelberg game [44]. At Stage I, LKS i plays as a leader who
decides the DC’s block rewards Ri that is granted to the PoC-
wining sensor, for maximizing its utility; at Stage II, each sensor
plays as a follower who reacts to the leader’s action to strategize
its data size XSm

, for maximizing its own utility. The strategy
of LKS i is its rewards Ri, and the strategy of sensor m is its
data size XSm

. We use XS = (XS1
, XS2

, · · · , XSMi
) to denote

the strategy profile containing all the strategies of sensors in Mi,
and X−Sm

to denote the strategy profile excluding sensor m, i.e.,
XS = (XSm

,X−Sm
). Note that due to the selfishness of sensors,

at Stage II all sensors compete with each other individually for
gaining the block rewards Ri from LKS i. Thus, the competition
among sensors at Stage II can be modeled as a non-cooperative
game. In the following, we term the two-stage Stackelberg game
as the Knowledge Generation (KG) game, and the non-cooperative
game at Stage II as the Data Size Determination (DSD) game.

4.2 Utility Functions
We first determine the utility function of KSP. Note that the KSP
adopts Contract Theory in designing {T ,P }. The prerequisite
constraints implicit in Contract Theory are the necessity to satisfy
Incentive Compatibility (IC) and Individual Rationality (IR). The
IC constraint indicates that the contract designed for LKS i will
definitely be selected by LKS i, otherwise, LKS i’s own utility will
not be maximized. The IC and IR constraints will be elaborated in
Section 6. Let UKSPi

denote the utility of KSP achieved from the
task-price pair {Ti, Pi}. Under the IC constraint, UKSPi

is given
by

UKSPi
= µϕ(θi)ψ(Ti)− θiPi,

where µ is a positive constant, ϕ(θi) = 1
1−β θ

1−β
i is the KSP’s

satisfaction function w.r.t. θi [45], [46], [47], here 0 ≤ β ≤ 1,
and θiPi is the actual rewards that the KSP pays to the LKS.
The satisfaction function increases with θi and the marginal
satisfaction diminishes when θi becomes larger.

We consider that the KSP is able to learn the probability
distribution of LKSs’ type {θi, i ∈ N} from past statistics
[42], [48]. Let λi denote the prior probability of type θi, and∑N

i=1 λi = 1. Then, the utility of KSP UKSP can be formulated
as

UKSP =

N∑
i=1

λi {µϕ(θi)ψ(Ti)− θiPi} . (3)

We then define the utility function of LKS i who admits the
contract {Ti, Pi}. Consider that knowledge is a virtual commodity
with the property of reproducibility, and thus LKS i’s profit is
composed of two parts: the rewards θiPi received from the KSP,
and the monetary earning PKNO ·ψ(Vi) from other markets, where
PKNO > 0 denotes the unit knowledge earning. As for the cost,
LKS i needs to provide rewards Ri to sensors for data collection,
as well as bear a linear training cost τVi, τ > 0 [47]. Therefore,
the utility of LKS i ULKSi is given by

ULKSi = θiPi + PKNOψ(Vi)−Ri − τVi. (4)

We next determine the utility function for sensors. Note that
sensors compete for the DC’s block rewards Ri based on their
contribution to the data collection task, and the contribution is
not only proportional to the data size that a sensor can collect,
but also positively correlated with the importance of a sensor’s
location. The more important location of sensor m, i.e., a larger
ηi, the greater contribution it makes to the data collection task.
Therefore, we use ηmXSm to measure the contribution of sensor
m, and its utility USm is given by

USm =
ηmXSm∑Mi

m=1 ηmXSm

Ri − cXSm , (5)

where c > 0 denotes the cost of collecting data per unit size.

4.3 Problem Formulation

Upper layer (knowledge trading process): The KSP determines
the optimal contracts {T ,P } to maximize its utility, which is
formulated as the following optimization problem:

max
{T ,P }

UKSP =

N∑
i=1

λi {µϕ(θi)ψ(Ti)− θiPi} .

Lower layer (knowledge generation process):

• Stage I. After admitting a contract from the KSP, LKS i acts
as the leader of the KG game to decide the optimal block
rewards Ri for its utility maximization, which is formulated
as the following optimization problem:

max
Ri

ULKSi =θiPi + PKNOψ(Vi)−Ri − τVi, for ∀i ∈ N .

• Stage II. Given Ri, sensor m strategizes its data size XSm

individually in the DSD game to achieve its maximal utility,
which is formulated as the following optimization problem:

max
XSm

USm
=

ηmXSm∑Mi

m=1 ηmXSm

Ri − cXSm
, for ∀m ∈ Mi.

In what follows, we analyze the nested hierarchical game in a
backward inductive way to identify the optimal strategies for the
KSP, LKSs, and sensors. That is, we first consider that the contract
from the upper layer is given and solve the KG game in the lower
layer. Then, we substitute the solution of the lower layer into the
upper layer and design the optimal contract. Note that the KG
game in the lower layer is a two-stage Stackelberg game, we solve
the optimization problems at the two stages also in a backward
inductive manner.
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5 STACKELBERG GAME ANALYSIS FOR KNOWL-
EDGE GENERATION PROCESS

In this section, we identify the optimal strategies of LKS i and
its sensors in the KG game, under the given contract {Ti, Pi}. To
solve the KG game, we need to investigate the following questions.
Q1: For given block rewards Ri, is there a stable strategy profile

in the DSD game, such that no sensor can gain more utility
by changing its current strategy unilaterally?

Q2: If the answer of Q1 is yes, is the stable strategy profile
unique? If unique, then the sensors will certainly choose their
strategies in this stable strategy profile.

Q3: How can LKS i select the optimal rewards R∗
i to maximize

its utility?
Note that the stable strategy profile in Q1 corresponds to the

concept of Nash Equilibrium (NE) in Game Theory [49], which is
be defined as follow.

Definition 1 (Nash Equilibrium). A strategy profile Xne
S =

{Xne
S1
, Xne

S2
, · · · , Xne

SMi
} is a Nash Equilibrium of the DSD game,

if for any sensor m ∈ Mi and any strategy XSm
≥ 0 we have

USm
(Xne

Sm
,Xne

−Sm
) ≥ USm

(XSm
,Xne

−Sm
).

The existence (Q1) and uniqueness (Q2) of NE can enable
LKS i to anticipate the actions of its sensors and thus decide
the optimal value of Ri (Q3) in a backward inductive way. The
unique NE of the DSD game together with the optimal rewards
R∗ constitute the solution to the KG game.

5.1 Stage II: Collected Data Size Determination
The DSD game is a non-cooperative game, where every sen-
sor competes with each other individually for winning the
block rewards Ri. As a notational convention, let G =
{Mi, {XS} , {USm}} represent the DSD game, where Mi,
{XS}, and {USm} are the sets of players (i.e., sensors), strategy
profiles, and utility functions, respectively. In order to achieve its
maximal utility, each player will adopt its best response strategy
in the DSD game, which is defined as follows.

Definition 2 (Best Response Strategy). Given X−Sm
, a strategy

is the best response strategy of sensor m, denoted as bm(X−Sm
),

if it satisfies USm
(bm(X−Sm

),X−Sm
) ≥ USm

(XSm
,X−Sm

) for
all XSm

≥ 0.

Note that every sensor plays its best response strategy in an
NE. Therefore, the strategy profile that all sensors play in the
DSD game will converge to an NE, if it exists. Let b(XS) =
{b1(X−S1

), b2(X−S2
), · · · , bm(X−Sm

)} denote the best response
correspondence of the strategy profile XS . Then, an NE is actually
a fixed point of the best response correspondence, i.e., Xne

S =
b(XS)

ne. Before proving the existence and uniqueness of NE in
the DSD game, we provide three propositions as follows.

Proposition 1. An NE exists in the DSD game G =
{Mi, {XS} , {USm}}, if: 1) {XS} is a nonempty, compact and
convex subset of the Mi-dimensional Euclidean space RMi , and
2) USm is concave on XSm , for ∀m ∈ Mi [50, Theorem 1].

Proposition 2. Function b(XS) is standard if for any XS > 0,
the following properties are satisfied [51]:

• Positivity: b(XS) > 0.
• Monotonicity: if XS ≥ X

′

S , then b(XS) ≥ b(X
′

S).
• Scalability: if δ > 1, then δb(XS) > b(δXS).

Proposition 3. If function b(XS) is standard, then its fixed point
is unique [52, Theorem 1].

Then, we have the following theorems.

Theorem 1. The DSD game has a unique NE.

Proof: We prove the existence and uniqueness of NE
sequentially.

1) Existence: Since the strategy of sensor m is XSm
≥ 0, the

strategy space of the DSD game {XS} is a nonempty, compact,
and convex subset of the Mi-dimensional Euclidean space RMi .
Taking the first- and second-order derivatives of USm

w.r.t. XSm
,

which yields

∂USm

∂XSm

=
ηmRi∑

l∈Mi
ηlXSl

− ηm
2RiXSm

(
∑

l∈Mi
ηlXSl

)2
− c, (6)

∂2USm

∂X2
Sm

=
−2ηm

2Ri

∑
l ̸=m ηlXSl

(
∑

l∈Mi
ηlXSl

)3
< 0. (7)

We can see that USm
is continuous and differentiable on XSm

, and
the second-order derivative of USm

w.r.t. XSm
is negative. Thus,

USm
is a concave function of XSm

. In the light of Proposition 1,
there exists at least an NE in the DSD game.

2) Uniqueness: Due to the concavity of USm
, we can deter-

mine the best response strategy bm(X−Sm
) by setting the first-

order derivative of USm
w.r.t. XSm

to be 0, that is

ηmRi∑
Sl∈Mi

ηlXSl

− ηm
2RiXSm

(
∑

Sl∈Mi
ηlXSl

)2
− c = 0, (8)

⇒XSm =

√
Ri

∑
l∈Mi\{m} ηlXSl

cηm
− 1

ηm

∑
l∈Mi\{m}

ηlXSl
.

(9)

If the right-hand side of (9) is positive, it is the best response
strategy of sensor m; if not, it indicates that sensor m will not
participate in the DSD game and thus XSm = 0. Therefore, the
best response strategy of sensor m is given by Eq. (10), shown
at the bottom of this page. From (10) we can see that the best
response function of any sensor who joins the DSD game is always
positive and monotonic. Regarding the scalability, we have

δbm(X−Sm
)−bm(δX−Sm

)=(δ−
√
δ)

√
Ri

∑
l∈Mi\{m} ηlXSl

cηm
.

(11)
For ∀δ > 1 there is δ −

√
δ > 0. Thus, (11) is positive and

δbm(X−Sm
) > bm(δX−Sm

) holds. In the light of Proposition 2
and Proposition 3, b(XS) is a standard function whose fixed point
is unique, indicating that the NE in the DSD game is unique.

bm(X−Sm
) =

0, Ri ≤ c
ηm

∑
l∈Mi\{m} ηlXSl√

Ri
∑

l∈Mi\{m} ηlXSl

cηm
− 1

ηm

∑
l∈Mi\{m} ηlXSl

, otherwise
(10)
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Theorem 2. The unique NE of the DSD game is given by

Xne
Sm

= Ri · ξm, for ∀m ∈ Mi (12)

where

ξm =

1
c
(Mi − 1)

(
Mi∑
l=1

ηm
ηl

−Mi + 1

)(
Mi∑
l=1

ηm
ηl

)−2
+

,

(13)
and [z]+ denotes max {z, 0}.

Proof: Note that a sensor cannot compute its best response
strategy based on formula (10) directly since it is coupled with the
strategies of all the other sensors. Let Em =

∑
l∈Mi\{m} ηlX

ne
Sl

.
Substituting the NE {Xne

S } into Eq. (8) and performing some
algebraic transformations yield

ηmEm =
c

Ri
(Em + ηmX

ne
Sm

)2 =
c

Ri

( ∑
k∈Mi

ηkX
ne
Sk

)2

=
c

Ri
(El + ηlX

ne
Sl

)2 = ηlEl, for ∀m, l ∈ Mi. (14)

Then, we have El =
ηm

ηl
Em for ∀l ∈ Mi and obtain the following

system of equations: 

E1 = ηm

η1
Em

E2 = ηm

η2
Em

...

EMi =
ηm

ηMi
Em.

(15)

Making the summation on both sides of (15) yields

Mi∑
l=1

El =

Mi∑
l=1

ηm
ηl
Em. (16)

Since El =
∑

k∈Mi\{l} ηkX
ne
Sk

= Em + ηmX
ne
Sm

− ηlX
ne
Sl

, there
is

Mi∑
l=1

El =Mi(Em + ηmX
ne
Sm

)−
Mi∑
l=1

ηlX
ne
Sl

=Mi(Em + ηmX
ne
Sm

)− (Em + ηmX
ne
Sm

)

= (Mi − 1)(Em + ηmX
ne
Sm

) =

Mi∑
l=1

ηm
ηl
Em, (17)

and thus

Em =
(Mi − 1)ηmX

ne
Sm

Mi∑
l=1

ηm

ηl
−Mi + 1

. (18)

Substituting (18) into (9) and performing some algebraic opera-
tions, we have

Xne
Sm

=

Ri(Mi − 1)

(
Mi∑
l=1

ηm

ηl
−Mi + 1

)
c ·
(

Mi∑
l=1

ηm

ηl

)2 = Ri · ξm.
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Fig. 5. Illustration for the optimal strategy of LKS i.

5.2 Stage I: Block Rewards Determination
Based on the above analysis, LKS i can calculate the dataset value
under any given block rewards by substituting formula (12) into
(1), that is

Vi(Ri) =
Ri

∑Mi

m=1 ηmξm
1 + e−Mi

. (19)

Note that if contract {Ti, Pi} has been admitted, the dataset value
acquired by LKS i should be no less than that required by the
contract, i.e., Vi ≥ Ti, and thus the following condition needs to
be satisfied:

Ri ≥
(1 + e−Mi)Ti∑Mi

m=1 ηmξm
, RL

i , (20)

where RL
i denotes the lower bound of block rewards required for

completing the contract and it depends on Ti designed by the KSP,
i.e., Vi(RL

i ) = Ti. Substituting (2) and (19) into (4), the utility
maximization problem of LKS i can be re-formulated as:

max
Ri

ULKSi
= θiPi + αPKNO ln(1 + ω

Ri

∑Mi

m=1 ηmξm
1 + e−Mi

)

−Ri − τ
Ri

∑Mi

m=1 ηmξm
1 + e−Mi

, (21a)

s.t. Ri ≥ RL
i . (21b)

It can be easily checked from (21a) that ULKSi
is concave on

Ri. Let RG
i denote the globally optimal solution to (21a) without

constraint (21b), which can be determined as

RG
i =

αPKNO(1 + e−Mi)

τ
∑Mi

m=1 ηmξm + 1 + e−Mi

− 1 + e−Mi

ω
∑Mi

m=1 ηmξm
.

Then, the optimal solution RO
i to (21) is given by

RO
i = max

{
RL

i , R
G
i

}
.

We show in Fig. 5 the curves of Vi and ULKSi varying with
Ri. For the case RG

i ≥ RL
i in Fig. 5 (a), we have RO

i = RG
i and

Vi(R
G
i ) , V G

i > Vi(R
L
i ) = Ti, i.e., the optimized dataset value

of LKS i exceeds the dataset value stipulated by the contract. It
indicates that when the KSP designs the contract, it can request a
larger Ti (accordingly, RL

i increases) without causing more cost
for LKS i until RL

i increases to RG
i , as shown in the shadow

region Cost-free. For the case RL
i > RG

i in Fig. 5 (b), we have
RO

i = RL
i , and LKS i will bear more cost with any increment
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in RL
i , as shown in the shadow region Cost-aware. Based on the

above analysis, the KSP will always set Ti ≥ V G
i so that the Cost-

free region is not “wasted”. As a result, RL
i ≥ RG

i will hold for
any rational contract {Ti, Pi}. Let R∗

i denote the optimal block
rewards paid by LKS i to its sensors, then we have

R∗
i = RL

i =
(1 + e−Mi)Ti∑Mi

m=1 ηmξm
. (22)

6 CONTRACT ANALYSIS FOR KNOWLEDGE TRAD-
ING PROCESS

Given a contract, we have identified the optimal strategies of an
LKS and sensors in the knowledge generation process. Based on
the obtained results, in this section, we focus on the upper layer
of the nested hierarchical game to reveal how the KSP designs the
optimal contract in the knowledge trading process.

To facilitate the following analysis, we rewrite the optimal
utility of LKS i by substituting R∗

i = RL
i into (21a), which yields

U∗
LKSi

= θiPi + αPKNO ln(1 + ωTi)− τTi −
(1 + e−Mi)Ti∑Mi

m=1 ηmξm

= θiPi − (ΓiTi − PKNOψ(Ti))

, θiPi −Υi,i, (23)

where Γi =
(τ

∑Mi
m=1 ηmξm+1+e−Mi )∑Mi

m=1 ηmξm
and it can be regarded as an

auxiliary parameter that integrates the parameters related to LKS i
except for Ti. Since {θi} has been sorted in ascending order, and a
higher type LKS means that bigger datasets are collected, leading
to a larger

∑Mi

m=1 ηmξm and further a smaller Γi. Then, we have

Γ1 ≥ Γ2 ≥ · · ·ΓN . (24)

Regarding Υi,i, its first and second subscripts denote the index
related to LKS i (i.e., Γi) and the index related to the accepted
contract (i.e., Ti), respectively.

As mentioned previously, to address the problems of in-
formation asymmetry and incentive cost-saving, the KSP needs
to design differentiated contracts for different types of LKSs.
According to the Contract Theory [43], the KSP must seek its
utility maximization under the following constraints when setting
up a series of feasible contracts:

(1) Individual Rationality (IR): IR indicates that LKS i could
gain a non-negative payoff by accepting the contract. Without
loss of generality, we assume that an LKS will voluntarily
accept the contract if it is not worse off by doing so, and the
KSP can always inspire the LKS by offering an additional
small amount of benefit [53]. Then, based on (23), IR can be
expressed as

θiPi −Υi,i ≥ ÛNC
i , for ∀i ∈ N ,

where ÛNC
i is LKS i’s utility when it refuses {Ti, Pi}.

(2) Incentive Compatibility (IC): IC indicates that each type-i
LKS will achieve utility maximization if it chooses its own
contract {Ti, Pi} instead of any others [54], [55]. i.e.,

θiPi −Υi,i ≥ θiPj −Υi,j , for ∀i, j ∈ N , i ̸= j.

Therefore, the KSP’s utility maximization is reformulated as
problem P1.

P1 : max
{T ,P }

UKSP =
N∑
i=1

λi

{
µα

1− β
θ1−β
i ln(1 + ωTi)− θiPi

}
(25a)

s.t. θiPi −Υi,i ≥ ÛNC
i , ∀i ∈ N , (25b)

θiPi −Υi,i ≥ θiPj −Υi,j , ∀i, j∈N , i ̸=j, (25c)

θ1 ≤ θ2 ≤ · · · ≤ θN , (25d)

Ti ≥ V G
i , ∀i ∈ N , (25e)

Pi ≥ 0, ∀i ∈ N . (25f)

Note that P1 is a complicated non-convex optimization prob-
lem with N(N−1)

2 +3N +1 constraints. To tackle this challenging
problem, we provide the following lemmas to reduce the complex-
ity caused by the IR and IC constraints.

Lemma 1. For any contracts {Ti, Pi} and {Tj , Pj}, i, j ∈ N and
i ̸= j, we have Pi ≥ Pj and Ti ≥ Tj if and only if θi ≥ θj .

Proof: According to the IC constraints, we have

θiPi −Υi,i ≥ θiPj −Υi,j ,

θjPj −Υj,j ≥ θjPi −Υj,i,

which can be rewritten as

θi(Pi − Pj) ≥ Υi,i −Υi,j , (26)

θj(Pj − Pi) ≥ Υj,j −Υj,i. (27)

Obviously, Υi,i is a convex function of Ti and monotonically
increases with Ti when Ti ≥ V G

i . If Ti ≥ Tj , there is Υi,i ≥ Υi,j ,
and then from (26) we have Pi ≥ Pj . If Pi ≥ Pj , then from (27)
we have Υj,j ≤ Υj,i and thus Ti ≥ Tj . Therefore, Ti ≥ Tj is
equivalent to Pi ≥ Pj .

Adding both sides of (26) and (27) respectively, the following
inequality holds:

(θi − θj)(Pi − Pj) ≥ (Γi − Γj)(Ti − Tj). (28)

If θi ≥ θj , there is Γi ≤ Γj , and then from (28) we have Pi ≥ Pj

and Ti ≥ Tj . If Pi ≥ Pj and Ti ≥ Tj , since (θi−θj)(Γi−Γj) ≤ 0,
from (28) it can be derived that θi ≥ θj . Therefore, we have
θi ≥ θj ⇔ Pi ≥ Pj ⇔ Ti ≥ Tj . This completes the proof.

Lemma 2. Once the IR constraint of type-1 LKS is satisfied, the
IR constraints of other type LKSs will also hold.

Proof: According to the IC constraints, for ∀i ∈
{2, · · · , N}, there is

θiPi −Υi,i ≥ θiP1 −Υi,1. (29)

Since θ1 ≤ θ2 ≤ · · · ≤ θN and Γ1 ≥ Γ2 ≥ · · · ≥ ΓN , we have

(θiP1 −Υi,1)− (θ1P1 −Υ1,1)

=(θi − θ1)P1 + (Γ1 − Γi)T1 ≥ 0. (30)

From (29) and (30), we can obtain

θiPi −Υi,i ≥ θ1P1 −Υ1,1. (31)

It indicates that the utility of type-1 LKS is the lower bound for
that of all LKSs. Thus, once the IR constraint of type-1 LKS is
satisfied, all the IR constraints will hold.
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Lemma 3. The IC constraints can be reduced to the local down-
ward incentive compatibility (LDIC):

θiPi −Υi,i ≥ θiPi−1 −Υi,i−1, ∀i ∈ {2, · · · , N} , (32)

and the local upward incentive compatibility (LUIC):

θiPi −Υi,i ≥ θiPi+1 −Υi,i+1, ∀i ∈ {1, · · · , N − 1} . (33)

Proof: We first check the LDIC. Consider three continuous
types of LKSs, i.e., θi−1 ≤ θi ≤ θi+1, i ∈ {2, · · · , N − 1}, given
the following LDIC holds:

θi+1Pi+1 −Υi+1,i+1 ≥ θi+1Pi −Υi+1,i, (34)

θiPi −Υi,i ≥ θiPi−1 −Υi,i−1. (35)

From Lemma 1 there is

(θi+1 − θi)(Pi − Pi−1) ≥ 0

⇒θi+1(Pi − Pi−1) ≥ θi(Pi − Pi−1). (36)

Combining (35) and (36) yields

θi+1(Pi − Pi−1) ≥ Υi,i −Υi,i−1. (37)

In the light of Lemma 1, we have

Γi(Ti − Ti−1) ≥ Γi+1(Ti − Ti−1),

⇒ ΓiTi − ΓiTi−1 + Γi+1Ti−1 − Γi+1Ti ≥ 0,

⇒ − αPKNOψ(Ti) + ΓiTi + αPKNOψ(Ti−1)

− ΓiTi−1 − αPKNOψ(Ti−1) + Γi+1Ti−1

+ αPKNOψ(Ti)− Γi+1Ti ≥ 0

⇒ Υi,i −Υi,i−1 ≥ Υi+1,i −Υi+1,i−1. (38)

Combining (37) and (38) yields

θi+1Pi −Υi+1,i ≥ θi+1Pi−1 −Υi+1,i−1. (39)

From (34) and (39) there is

θi+1Pi+1 −Υi+1,i+1 ≥ θi+1Pi−1 −Υi+1,i−1. (40)

Then, we can extend (40) to prove that the LDIC holds until type-
1:

θi+1Pi+1 −Υi+1,i+1 ≥ θi+1Pi −Υi+1,i

≥ · · · ≥ θi+1P1 −Υi+1,1.
(41)

In a similar way, we can derive the LUIC. This completes the
proof.

By utilizing Lemma 1-3, we can transform problem P1 into
problem P2 as follows.

P2 : max
{T ,P }

UKSP =

N∑
i=1

λi

{
µα

1− β
θ1−β
i ln(1 + ωTi)− θiPi

}
(42a)

s.t. θ1P1 −Υ1,1 = ÛNC
1 , (42b)

θiPi −Υi,i = θiPi−1 −Υi,i−1, ∀i∈{2, · · · , N},
(42c)

θ1 ≤ θ2 ≤ · · · ≤ θN , (42d)

Ti ≥ V G
i , ∀i ∈ N , (42e)

Pi ≥ 0, ∀i ∈ N . (42f)

By calculating the sum of all the IC constraints, we can obtain

Pi =
ÛNC
1 +Υ1,1

θ1
+

i∑
k=2

Υk,k −Υk,k−1

θk
. (43)

Substituting (43) into P2, then P2 can be transformed into P3 as
follows.

P3 :max
{Ti}

UKSP =
N∑
i=1

λi

{
µα

1− β
θ1−β
i ln(1 + ωTi)−

θi(Û
NC
1 +Υ1,1)

θ1
+

i−1∑
k=2

Υk,k −Υk,k−1

θk
−Υi,i +Υi,i−1

}
(44a)

s.t. θ1 ≤ θ2 ≤ · · · ≤ θN , (44b)

Ti ≥ V G
i , ∀i ∈ N . (44c)

Taking the first- and second-order derivatives of UKSP w.r.t.
Ti, we have

∂UKSP

∂Ti
= λi(−Γi +

αωPKNO

1 + ωTi
+

ωµα
1−β θ

1−β
i

1 + ωTi
),

∂2UKSP

∂T 2
i

= −
λiαω

2(PKNO + µ
1−β θ

1−β
i )

(1 + ωTi)2
< 0.

Therefore, UKSP is concave on Ti and P3 is a convex optimiza-
tion problem. By solving the equation ∂UKSP

∂Ti
= 0, the optimal

task value T ∗
i of the contract for type-i LKS is determined as

T ∗
i = max

{
µα
1−β θ

1−β
i + αPKNO

Γi
− 1

ω
, V G

i

}
. (45)

Accordingly, the optimal price P ∗
i of the contract can be obtained

from (43).

7 SIMULATION RESULTS

In this section, we consider a BWKA ecosystem with one KSP and
10 LKSs, and each LKS governs several sensors. We implement
the SKTC-based knowledge trading on Sepolia Test Network and
present simulation results to demonstrate the performance behav-
iors of the BWKA ecosystem. The detailed simulation settings are
given in Table 2.

7.1 Implementation of SKTC-based Knowledge Trading
Environment. We implement the smart knowledge trade contract
with the Solidity programming language of Ethereum under the
compiler version 0.4.26+commit.4563c3fc, and deploy it on the
Sepolia Test Network by MetaMask, which can be found at [56].
The IPFS version is 0.4.14. Without loss of generality, we only
presents the interactions of the KSP and one LKS (a type-9 LKS)
in the implementation. Based on formulas (45) and (43), the KSP
can calculate that T9 = 7.01, P9 = 31. Due to the preciousness of
Ether, we set the unit of P to be 0.01 ETH, i.e., 10 Finney (1 ETH
=1000 Finney).

1) System Initialization: The KSP’s Ethereum address
is 0xea55434eDfC06dD8A41A7DdadcFF5f52237a64d1,
and the initial balance of this account is
4 Ethers. The LKS’s Ethereum address is
0x66DB9Eda3B1206e8377bf4faB496599f9b3f97b2, and
the initial balance is 1 Ether. As shown in Fig. 6 (a).



12

(a) (b)

Fig. 6. Account balance of KSP and LKS: (a) Initial balance; (b) Balance after knowledge trading.

TABLE 3
Smart Contract Cost and Balance of Entities.

Steps
Gas cost

(Original value)

Total gas cost

(ETH)

Total gas cost

(USD)

Balance of KSP

(ETH)

Balance of LKS 9

(ETH)
Balance of

SKTC 9 (ETH)
Theoretical Actual Theoretical Actual

Initial balance 4 1 0

Trigger CreateCont 1400694 2.8× 10−3 7.812 3.590 3.587 1 1 0.41

Trigger SelCont 90771 1.8× 10−4 0.502 3.590 3.587 0.9 0.89 0.51

Trigger SendMsg 211219 4.2× 10−4 1.171 3.590 3.587 0.9 0.89 0.51

Trigger GetMsg 0 0 0 3.590 3.587 0.9 0.89 0.51

Trigger ConfTrade 60080 1.2× 10−4 0.335 3.721 3.718 1.279 1.278 0

Ether transfer -0.279 -0.282 +0.279 +0.278 0

TABLE 2
Simulation Settings.

Types of LKSs Settings
θ1 = 0.1 η1 = 2, η2 = 3, η3 = 4

θ2 = 0.2 η1 = 1, η2 = 3, η3 = 3, η4 = 4

θ3 = 0.3 η1 = 3, η2 = 4, η3 = 9

θ4 = 0.4 η1 = 4, η2 = 5, η3 = 6

θ5 = 0.5 η1 = 5, η2 = 6, η3 = 7

θ6 = 0.6 η1 = 6, η2 = 7, η3 = 8

θ7 = 0.7 η1 = 6, η2 = 6, η3 = 8, η4 = 8

θ8 = 0.8 η1 = 8, η2 = 9, η3 = 10

θ9 = 0.9 η1 = 9, η2 = 10, η3 = 11

θ10 = 1.0 η1 = 11, η2 = 12, η3 = 13

Pre-defined parameters
µ = 10, ω = 3, c = 0.5

PKNO = 2, τ = 2, β = 0.3, α = 1

2) Deploy Smart Contracts: The KSP calls CreateCont
function to deploy SKTC 9. The KSP sets T9 = 7.01, and
P9 = 0.31ETH, θ = {0.1, 0.2, · · · , 1.0}, tdur = 1000 sec,
MDKSP = MDLKS = 0.1ETH. Therefore, the KSP needs to
attach msg.value = 0.41ETH in SKTC 9.

3) Select Optimal Contract: LKS 9 triggers SelCont function
with 0.1 Ethers attached to select SKTC 9. Meanwhile, the task
start time is recorded as ts = 1645860918.

4) Send Knowledge Message: After accomplishing
the task according to SKTC 9, LKS 9 encrypts the
knowledge FILEkno by using KSP’s public key Kpub and
uploads the encrypted knowledge Enc(Kpub, F ILEkno)

to IPFS. Then, LKS 9 transmits the knowledge link
URLkno =https://ipfs.io/ipfs/KnowledgeHashCode to SKTC
9 through SendMsg function. The task end time is recorded as
te = 1645861057 and the actual type of LKS 9 is calculated as
θact = θN−⌈N(te−ts)tdur

−1⌉+1 = θ9 = 0.9.
5) Get Knowledge Message: The KSP calls GetMsg function

to obtain URLkno =https://ipfs.io/ipfs/KnowledgeHashCode.
Then, the KSP downloads the encrypted knowledge
Enc(Kpub, F ILEkno) from URLkno and decrypts
the knowledge by using its private key Kpri, i.e.,
FILEkno = Dec(Kpri, Enc(Kpub, F ILEkno)).

6) Confirmation: After obtaining the knowledge, the KSP
triggers ConfTrade function to confirm that the knowledge trad-
ing process is completed successfully. ConfTrade function sends
(1.0−0.9)0.31+0.1 = 0.131 Ethers and 0.9×0.31+0.1 = 0.379
Ethers to the KSP and LKS 9, respectively. The balance of the KSP
and LKS 9 after knowledge trading is shown in Fig. 6 (b).

The gas cost of functions and the balance of entities during
each step in the implementation are summarized in Table 3, where
we suppose 1Gas = 2Gwei, i.e., 1Gas = 2 × 10−9 ETH [57],
and the gas cost is converted into dollars by using the exchange
rate of 1ETH ≈ 2790USD in February 2022. We can observe
that the cost for implementing most of these functions is lower
than 1USD. GetMsg function has no cost, because it is a pure
call function that does not change the state of the blockchain and
thus does not consume gas. Although CreateCont function causes
a relatively high cost, it is invoked only once by the KSP. Due to
the existence of gas cost, the actual balance of the KSP and LKS
9 is less than the corresponding theoretical balance, respectively.
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Fig. 8. Task-price pairs of contracts and utilities of LKSs under different contracts.
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Fig. 7. Balance of KSP, LKS, and smart contract.

We plot Fig. 7 to show the theoretical balance changes of the KSP,
LKS 9, and SKTC 9 on each implementation step. We can see
that through the SKTC-based knowledge trading, the balance of
the KSP is decreased by 0.279 Ethers, the balance of LKS 9 is
increased by 0.279 Ethers, and the effect of the smart knowledge
trade contract is to manage assets temporarily.

7.2 Performance Evaluation

We summarize in Fig. 8 the task-price pairs of contracts designed
by the KSP and the utilities of LKSs under different contracts.
Fig. 8(a) shows that both the task value and price value of a
contract increases with the LKS’s type θi. It indicates the optimal
strategy of KSP is to allocate more tasks to an LKS with higher
operational effectiveness and provide it with more rewards, which
corresponds to the monotonicity property of contracts proved in
Lemma 1. A very important observation from Fig. 8(b) is that only
when an LKS selects the contract designed for its own type can
it achieve the maximum utility. For example, the utility of type-4
LKS achieves the peak value when it selects the contract {T4, P4}.
It indicates that the Individual Rationality (IR) constraint and
Incentive Compatibility (IC) constraint are satisfied for our SKTC-

based knowledge trading scheme. Another careful observation
from Fig. 8(b) is that the optimal utility of an LKS becomes larger
with the increase of LKS’s type, which indicates that the cost of
an LKS for completing more knowledge generation tasks can be
well compensated with much higher rewards.

We present in Fig. 9 the utility behaviors of LKSs and KSP
under different knowledge training unit cost τ , where we set
τ ∈ {0.5, 1, 1.5, 2}. Fig. 9 shows that a higher cost can lead to
a decrease in the utilities of all LKSs and the KSP. However, by
comparing Fig. 9(a) with Fig. 9(b) carefully, we can observe that
the utility of KSP drops much more significantly than that of LKS,
i.e., the KSP is more sensitive to changes in τ . This is because
that when LKSs suffer from a high knowledge training cost, the
KSP have to provide LKSs with more monetary incentives to
compensate for their cost. In other words, it is the KSP rather
than LKSs, that takes more risk for the increase in training cost.
Another interesting observation is that the utility increment of KSP
from hiring a higher type LKS gradually diminishes as the training
cost τ grows. It indicates the benefits brought by an LKS with
high operational effectiveness are offset by the overpaid monetary
compensation.

In Fig. 10, we take type-2 LKS and sensors within its sensing
area as an example to show the strategic interactions among
them. We can observe that each sensor’s utility USm increases
monotonously with type-2 LKS’s rewards R2. This is because
the growth of R2 can raise the expected profit of sensors in its
sensing area. A sensor with a larger position weight parameter η
can obtain a higher utility because the more important sensor’s
location is, the greater contributions it makes to the knowledge
generation process, and thus the bigger benefits can be expected.
The utility of sensor with η = 1 is 0 since it quits the DSD
game and sets its strategy XSm to be 0. On the other hand, the
utility of type-2 LKS is strictly concave, and the black dashed line
represents the constraint for completing the contract, as given in
(21b). Accordingly, sensors can only pursue their maximal utilities
under the given rewards RL

2 .
We plot Fig. 11 to show the effect of an LKS’s rewards on

the optimal data size of an sensor, where we take type-2 LKS and
the sensor with η = 3 as the example, and set the unit cost for
collecting data c ∈ {0.5, 1, 1.5, 2}. From Fig. 11, we can observe
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Fig. 9. Optimal utilities of LKS and KSP under different knowledge training cost.
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Fig. 10. Utilities of type-2 LKS and its sensors under the variation of
rewards R2.

that the sensor’s optimal data size increases linearly as the rewards
R2 increases, which corresponds to the Nash Equilibrium of the
DSD game calculated by (12). Another observation from Fig. 11
is that a higher cost for collecting data will lead to a smaller data
size of the sensor. This is because the growth of c reduces the
expected benefits of sensors, which makes them less willing to
contribute more data.

7.3 Comparison Results

We take two typical schemes in trading markets for comparison
and apply them to the BWKA ecosystem, which are defined as
follows.

• Complete Information scheme [54]. With the complete infor-
mation scheme, it is assumed that the KSP knows exactly the
instantaneous type of each LKS, and thus it can reduce the
utilities of LKSs to the non-contract scenario.

• Linear Pricing scheme [55]. With the linear pricing scheme,
the KSP specifies a pre-defined price parameter for LKSs’
knowledge generation. The pre-defined price parameter is the
same for all LKSs, i.e., Price1 = Price2 · · ·PriceN .
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Fig. 11. Optimal data size of sensor under the variation of LKS’s rewards.

For ease of presentation, the SKTC-based knowledge trading
scheme for the considered BWKA ecosystem with incomplete
information is referred to as the Asymmetric Information scheme.

Fig. 12 shows the optimal utilities that can be achieved by
LKSs under different knowledge trading schemes. We can observe
that for the Asymmetric Information scheme and the Linear Pric-
ing scheme, the utilities of LKSs increase with their types (i.e.,
the operational effectiveness); while for the Complete Information
scheme, the KSP is aware of all the types of LKSs, so it can
squeeze LKSs’ utilities by designing specific contracts targeting
for every LKS. As a result, the LKS achieves the lowest utility
with the Complete Information scheme. Note that even the lowest
utility of an LKS is still higher than 0, this is because each LKS
can obtain a non-negative utility ÛNC

i when it refuses all the
contracts.

Fig. 13 shows how the optimal utility that can be achieved by
the KSP varies with the type of LKS under different knowledge
trading schemes. It can be observed that the KSP’s optimal achiev-
able utility increases with the type of LKS, which is consistent
with the intuition that the LKS with higher operational effec-
tiveness can bring greater profit to the KSP. Another interesting
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Fig. 13. Optimal utility of KSP under different knowledge trading
schemes.

observation is that the KSP’s optimal utility under the Complete
Information scheme is superior to that under the Asymmetric
Information scheme, and further superior to that under the Linear
Pricing scheme. This phenomenon is the opposite of the trend
presented in Fig. 12, indicating that the optimal achievable utility
of KSP is negatively correlated to that of LKSs.

8 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a full-fledged knowledge acquisi-
tion ecosystem BWKA, which contains a complete process from
the underlying data sensing, aggregating, and knowledge training,
to the upper-layer knowledge trading. Leveraging the emerging
blockchain technology, we have designed a secure and truthful
data aggregating scheme based on the PoC consensus mechanism,
as well as a reliable and fair knowledge trading scheme based on
smart contracts. Incentive mechanisms have also been incorpo-
rated to stimulate selfish and rational entities to participate in the
knowledge acquisition works. To identify the strategic interactions
in the BWKA ecosystem, we have developed a nested hierarchical
game model, where the upper layer is modeled by the Contract
Theory and the lower layer is modeled as a two-stage Stackelberg
game. By solving the hierarchical game in a backward inductive

way, we obtained the optimal strategies of different entities.
Experiments and simulations have been conducted to demonstrate
the practical operability and performance behaviors of the BWKA
ecosystem.

In this work, all entities involved in the BWKA ecosystem
are perfectly rational, exclusively pursuing their self-interest max-
imization. Future research will explore the concept of bounded
rationality among participants, introducing the theory of behav-
ioral economics to analyze their strategic interactions that closely
reflect real market dynamics. Also, note that in this work, the
immutability and traceability of blockchain can, to a certain
extent, deter the provision of fraudulent data and knowledge, but
the detection and response to such malicious behaviors are not
addressed. Therefore, the next step of this work will focus on
refining the detection of false data and knowledge, as well as
introducing corresponding trust and penalty mechanisms. Another
interesting direction for future work involves developing similar
knowledge acquisition ecosystems using alternative means other
than blockchain technology. By conducting comparative exper-
iments, we expect to validate the security performance gains
attributed to blockchain utilization.
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