
Dynamic Edge AI Service Management and
Adaptation via Off-Policy Meta-Reinforcement

Learning and Digital Twin
Yan Chen∗, Hao Yu∗, Qize Guo∗, Shuyuan Zhao‡, Tarik Taleb∗†

∗Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, 90570 Finland
†Ruhr University Bochum, Bochum, 44801 Germany

‡Zhejiang Lab, Hangzhou, 311121 China
{yan.chen, hao.yu, qize.guo}@oulu.fi, zhaosy@zhejianglab.com, tarik.taleb@rub.de

Abstract—Edge computing has promoted various applications
driven by artificial intelligence (AI). However, upgrading AI
models during system operation may change resource and
performance features. Then, the service management controller
(SMC) faces an unprecedented environmental condition and has
limited prior knowledge, resulting in high probabilities of policy
mismatches. With the proliferation of AI applications, it is an
urgent necessity that SMCs can adapt to different conditions to
ensure quality of service (QoS) and resource efficiency. Therefore,
this paper studies the problem of dynamic edge AI service
adaptation and formulates it as a multi-task scenario adaptation
problem. After that, we proposed an approach based on off-policy
meta-reinforcement learning and digital twin (DT) technology.
The DT system emulates a set of encountered conditions, and
a meta-policy is obtained by interacting with these DTs. The
executed policy is initialized as the meta-policy once AI models
are upgraded. Then, it adapts to new service conditions by
drawing salient information from limited transition contexts
collected from a newly encountered environmental condition.
Simulation results reveal that our approach can optimize QoS
and adapt to different service situations.

Index Terms—Artificial intelligence, Adaptive service manage-
ment, Meta-reinforcement learning, Digital twin

I. INTRODUCTION

Edge computing is taking hold in various systems, pro-
moting the implementation of applications driven by artificial
intelligence (AI) [1], [2]. However, AI models (AiMs) are still
black boxes that cannot model and predict their performance
precisely, introducing additional complexity to service man-
agement in the edge-cloud (EC) continuum. Besides, with the
development of AI technologies and data enrichment, service
providers (SPs) may upgrade their AiMs if they can benefit in
resource utilization, quality of service (QoS), or security. The
upgrade of AiMs reshapes the features of resources and QoS.
Then, from a service management perspective, the network
environment is also changed, as AiSFs are infrastructure
components. As a result, the service management controller
(SMC) faces an unprecedented environmental condition, i.e.,
it takes on the same responsibilities (e.g., task and resource
allocations) but in a different environmental condition.

Although existing works have contributed to the dynamic
task and edge service management in EC systems, most

only studied the dynamics of users’ states, e.g., mobility and
time-varying requirements. Meanwhile, reinforcement learning
(RL) and its variations have been widely exploited for dynamic
management. In traditional RL-based approaches, the SMC
aims to adapt to an unknown system through interactions. Al-
though the system is dynamic, the key features of the network
infrastructure generally remain stable, and the system state
transition follows a stable distribution, i.e., the state transition
distribution and reward function are typically fixed. However,
the upgrade of AiMs changes the resource and performance
features, reshaping the distribution of state transition and
reward functions. Then, there may be a mismatch between the
policy obtained in the previous condition and the new AiSF
condition, resulting in uninsured QoS [3], [4]. As a result,
existing RL-based approaches must retrain the policies, even
starting from scratch, introducing substantial retraining costs.

Furthermore, emerging edge intelligence technologies like
model pruning [5] can enhance flexible resource utilization by
adapting to dynamic requests and resource states. For example,
although the accuracy of a pruned AI model is reduced, it
requires fewer resources and can reduce processing latency
under the same resource conditions [1]. Then, by pruning
parameters at different scales, each AiSF can maintain a set
of AiMs with the same functionality but diverse resource and
performance features. The model with fewer parameters can be
activated to provide service once its achieved accuracy satisfies
the requirement. Besides, for a given AiM, higher accuracy
can be obtained when improving the quality of input data.
Therefore, beyond task and resource allocations, the selection
of AiMs and the quality of input data impact QoS in EC
systems supporting AI-driven applications [2].

With the popularity of AI-driven applications, it is necessary
that SMCs can be adaptive in different AiSF conditions to
maintain resource efficiency, QoS, and reliability. Therefore,
this paper first formulates the problem of joint data process-
ing method selection, AiSF placement, and model selection
in dynamic EC systems. Then, we analyze the process of
dynamic model upgrades and formulate its policy adaptive
requirement as a multi-task scenario adaptation problem. Then,
we proposed an approach by leveraging meta-reinforcement

learning (meta-RL), which enables the policy to be adaptive
in different AiSF conditions [6], [7]. Meanwhile, digital twins
(DT) are created to emulate the AiSF conditions experienced
over time. A meta-policy is obtained through interaction with
DTs’s emulation. Once a new condition is triggered, the policy
is initialized as the meta-policy. After that, the policy adapts
to the new condition by inferring salient information about it
from the collected contexts of the system transition. Simulation
results reveal that our approach can adapt to new conditions
after SPs upgrade AiMs and minimize service latency. We
summarize our main contributions as follows:

• We study adaptive AI service management in EC sys-
tems where users have time-varying requests and SPs
irregularly upgrade their AiMs. Then, we formulate the
problem of joint data compression method selection,
service placement, and AiM selection to minimize latency
while ensuring accuracy. We further analyze the adaptive
requirement after upgrading AiMs and formulate it as a
multi-task adaptation problem.

• Then, we propose an approach based on off-policy meta-
RL and DT. We use DT to emulate multiple AiSF con-
ditions for assisting in meta-policy training. In the meta
policy, a context encoder can infer the salient information
of environments, enabling the policy to be adaptive when
presented with a new condition and obtain acceptable
performance before re-training.

II. PRELIMINARY

A. System Model

As shown in Fig. 1, we consider an EC system where
smart devices (ED) U are responsible for diverse operations.
Each ED works under the guidance of a dedicated AiSF.
Edge servers (ESs) are deployed to support AiSFs, and each
ES is associated with an access point (AP) providing com-
munications. Thus, we use H to represent both APs and
ESs. In addition, a cloud server (CS) can tackle complex
responsibilities, like model training and releasing edge load.

Each time, an ED u captures necessary data and com-
presses it by one of the available data pre-processing methods
(Mu) for storage and transmission efficiency. Then, the ED
processes the task (i.e., compressed data) locally or offloads
it to the associated AP. The offloaded task is forwarded to
the corresponding AiSF (Fu) that is placed on an ES. Each
AiSF maintains multiple AiMs with the same functionality but
different QoS and resource features, i.e., Fu={f1u , · · · }. We
assume that EDs’ requests are stable in a time slot, and the
AiSF only activates one AiM to process requests.

An SMC is responsible for optimizing real-time QoS and
resource utilization by dynamically managing the placement
of AiSFs (TA, i.e., allocating each ED’s tasks to an ES),
the model selection of AiSFs (MS, i.e., determining which
AiM is activated), and the data compress method selection
of every ED (DS, e.g., selecting one available data pre-
processing method). In addition, SPs update their provided
AIMs after collecting enough data or mastering advanced

 Model Training

AI service

Parameters

AI models

Activated

AI service

Parameters

AI models

Activated

AI service

Parameters

AI models

Activated

AI models

Compressed
model

Compressed
model

Model Training
AI models

Task
offloading

Edge Server

Cloud Server

Controller

Access

Point

Intelligent

Device/Robot

Model/Parameter
 upgrade

ParametersParameters

Fig. 1. System Mode

AI technologies. The upgraded AiMs can achieve benefits
like reduced resource consumption, improved accuracy, and
reduced computation complexity. Once AiMs are upgraded,
the SMC needs adaptation to maintain performance under the
new QoS and resource features.

B. QoS Model
When a task is allocated to be processed on ES, its ser-

vice latency consists of communication and inference delays.
The communication delay of task offloading from ED u to
connected AP is

dcu(t) =
V Tu (t)(

∑|Mu|
j=1 xju,1(t)α

c
u,j) + V Ru (t)

Bu(t) log2(1 + pu(t)gu(t)/N (t))
, (1)

where t indicates time. V Tu (t) and V Ru (t) are the data sizes
of u’s tasks and results. xju,1(t)∈{0, 1} indicates if selecting
the jth data processing method of u for data compression,
and αcu,j has a fixed compression ratio. Bu(t) is the wireless
bandwidth allocated to u. |·| represents the number of elements
in a set. pu(t) is u’s wireless transmission power, and gu(t) is
the corresponding channel gain between u and the connected
AP. We employ a 5G path loss model in rural areas [8]. N (t)
is the communication noise. When the task is allocated to a
remote ES h′ that is not directly associated with the AP h that
the ED is connected to, the forwarding latency is

dfu(t) =
V Tu (t)(

∑|Mu|
j=1 xju,1(t)α

c
u,j) + V Ru (t)

Bh,h′
+ δh,h′ , (2)

where Bh,h′ and δh,h′ are separately the transmission rate and
propagation delay between AP h and AP h′. Bh,h′ = ∞ and
δh,h′ = 0 if h = h′.

The inference latency is the time spent on processing the
task from receiving a task to generating the corresponding
result, which is related to the number of required computations
and processing ability of the AiSF, i.e.,

dpu(t)=
V Tu (t)

∑|Mu|
i=1 xiu,1(t)α

c
u,i

∑|Fu|
j=1 x

j
u,2(t)ρ

j
u(t)

Pu(t)
, (3)

where xju,2(t) ∈ {0, 1} indicates if u’s AiSF activates its
AiM f ju ∈ Fu to process tasks. ρju(t) is the computing
intensity of AiM f ju regarding the number of computing
operations (e.g., FLOP) required for processing per-bit task
data. Pu(t) is the computing ability of u’s AiSF (i.e., FLOP
per second (FLOPs)) related to corresponding ES (Pfh), i.e.,

Pu(t) =
∑|H|

h=1
xhu,3(t)P

f
h, (4)

where xhu,3∈{0, 1} indicates if u’s tasks are processed by ES
h. We use x0u,3=1 to indicate u’s tasks are processed locally,
and x0u,3 = 0 otherwise. When the most lightweight model
processes u’s tasks locally with speed Pfu , there is only an
inference latency. Thus, the service latency of an ED u is

Tu(t) =

V T
u (t)

∑|Mu|
i=1 xi

u,1(t)α
c
u,iρ

1
u(t)

Pf
u

, if x0u,3 = 1,

dcu(t) + dfu(t) + dpu(t), otherwise.
(5)

In addition to latency, inference accuracy is critical for AI-
driven applications. However, modeling and interpreting AiMs
are still challenging. The accuracy of an AiM is generally
obtained in the training stages. Although the accuracy model
of an AiM is unclear, we have common sense that a better data
quality generally requires a larger data size and contributes to
higher accuracy, and a more complex model typically makes
higher accuracy and computation complexity [2], [5]. Thus,
we express the accuracy of an ED u as

Au(t)=

{∑|Fu|
j=1 x

j
u,2(t)G

j
u,2(Gu,1(xu,1), t), if x0u,3=0,

G1u,2(Gu,1(xu,1), t), otherwise,
(6)

where Gju,2(·, t) is the mapping function of AiM f ju from
the input data quality to accuracy. Without considering the
noise signal, the input data quality directly depends on the
compression scale of the original data, i.e., the selected data
pre-processing method (xu,1). We use Gu,1 to represent the
mapping from DS to data quality. Gu,1 and Gju,2 for an AiMs
are generally unable to be modeled precisely. The accuracy
should satisfy the ED’s minimum real-time requirement, i.e.,

C1: Au(t) ≥ τu(t),∀u,∀t. (7)

C. Resource consumption model

We consider two basic kinds of resources, i.e., computing
and memory resources for running AiMs and caching interme-
diate data on ES. To avoid resource competition, each AiSF
occupies a virtual core that the computing unit can provide.
The number of AiSFs instanced on each ES and the memory
capacity of each ES are both limited, i.e.,

C2:
∑|U|

u=1
xhu,3(t) ≤ Pnh,∀h,∀t, (8)

and

C3:
∑|U|

u=1
xhu,3(t)(

∑|Fu|

j=1
xju,2(t)Rju(t))≤Rh,∀h,∀t, (9)

Rju(t) is the memory required by the jth AiM of u’s AiSF
at time t to load parameters and cache intermediate data. Pnh
and Rh are separately the maximum capacities of ES h in
computing cores and memory.

III. PROBLEM FORMULATION

For AI-driven applications, the primary objective is to obtain
accurate results as quickly as possible. Therefore, we set
the object as minimizing the service latency while ensuring
accuracy by jointly optimizing DS, TA, and MS of EDs, i.e.,

P1: min
xu,1,xu,2,xu,3

1

T

T∑
t=1

∑
u∈U
Tu(t) (10)

s.t. C1,C2,C3, (11)

C4:
∑|Mu|

j=1
xju,1(t)=1,∀u∈U ,∀t, (12)

C5:
∑|Fu|

j=1
xju,2(t)=1,∀u∈U ,∀t, (13)

C6:
∑|H|

j=0
xju,3(t)=1,∀u∈U ,∀t, (14)

where C4 indicates only one data pre-processing method can
be selected. C5 constraints that only one AiM is activated at
any time slot. C6 indicates a task can only be processed locally
or by the AiSF placed on one ES. Then, the primary object
of the problem is to minimize the long-term expected service
latency of all EDs. Besides, there is a need for the agent to
adapt to different task conditions when SPs update their AiMs.

IV. META-RL-BASED APPROACH

A. Problem analysis

Once SPs upgrade AiMs, there are variations in state transi-
tion and QoS calculation since the AiSFs’ features regarding
resource and QoS are changed. For example, the upgraded
AiMs may consume fewer resources. Then, the system can
achieve a higher QoS under the same state and employed
action(s). Meanwhile, a different action can be employed to
achieve better QoS. Although the SMC undertook the same
responsibility after each upgrade of AiMs (i.e., DS, TA, and
MS of each ED), it could select different optimal actions and
achieve different QoS. After each upgrade, the system runs
under the same AiMs until the next upgrade. The resource and
QoS features after upgrading AiMs are independent of those
before. When working under fixed AiMs, the state transition
only depends on the properties of the physical network, the
deployed AiMs, and the implemented actions. Therefore, the
service management process within the duration of fixed AiMs
is a Markov decision process (MDP). However, each upgrade
of AiMs would change the distribution of state transitions.
Thus, we can describe the investigated adaptive AI service
management problem as a multi-task system where each task
condition is an MDP, i.e., different state transition and reward
functions. Besides, the investigated problem has challenges
like heterogeneity, dynamic requests, limited prior knowledge,
and time-varying state transition and reward functions.

B. Accuracy-ensured and latency-minimized user selection

The accumulated resources required by AiSFs assigned to
an ES according to a random action may exceed its resource
constraints, leading some users’ tasks to be re-forwarded to
CS. However, selecting users from a set of users to re-forward
tasks affects the sum of their QoS. After implementing DS,
TA, and MS actions, the system’s QoS depends only on
each ES’s operation. Moreover, the DS and MS actions may
result in uninsured QoS. As accuracy is critical, we employ

additional operations to ensure accuracy: (1) changing the DS
action to the one with the highest data quality if a user’s
accuracy can not be satisfied. (2) activating its most complex
AiM if the accuracy remains unsatisfactory. After that, an ES
h selects part users from allocated users Uh and re-allocate
others’ tasks to the CS with the object of minimizing the sum
of their latency while satisfying its resource constraints, i.e.,

P2:min
x′

u,2

∑
u∈Uh

xhu,2(x
h,′
u,2d

E
u+(1−x

h,′
u,2)d

C
u), s.t.,C2, C3, (15)

where xh,′u,2∈{0, 1} indicates if ES h selects u to serve. dEu and
dCu are the estimated latency when u’s tasks are processed on
the ES and CS, respectively. As each ES’s resource capacities
are fixed, P2 is a multi-dimensional knapsack problem that
can be solved by dynamic programming.

C. Framework of Meta-RL-based approach

We employ DRL to address joint optimization in DS, TA,
and MS and design the state, action, and reward as follows:

State: The features of AiMs, ESs, and communications
maintain long-term stability. Besides, some are not prior in-
formation. Therefore, we only consider the frequently changed
state of all EDs as the observation of SMC, i.e.,

st=
{
(RANu,Bu,Υu,Nu, V Tu , V Ru , τu)|u ∈ U

}
. (16)

We ignore the symbol t for simplification. RANu(t) is the
RAN to which u connects. Υu(t) is the distance between the
user and its connected RAN. We assume EDs only move on
the ground and transmit with a fixed power, i.e., pu≡20 dbm.

Action: For each ED’s task request, the action spaces
include DS, TA, and MS. Therefore, the system action is the
union of all applications’ action in every action space, i.e.,

at = {aDS
u , a

TA
u , a

MS
u |u ∈ U}, (17)

where
aDS
u = [pDS

u,m]1×|Mu|,m ∈Mu,

aTA = [pTA
u,h]1×(|H|+1), h ∈ H ∪ {0},

aMS
u = [pMS

u,f]1×|Fu|, f ∈ Fu.
(18)

p
[·]
u,i is the probability of selecting the ith candidate in the

corresponding action space, which is generated by applying
softmax and

∑
a
[·]
u = 1. Then, by selecting the maximum

probability, we can map at to {xu,1, xu,2, xu,3}. pTAu,0 is the
probability that ED u processes its tasks locally.

Reward: Following the objective defined in (10), we set the
reward after implementing action at under state observation st
as the average service latency of all users, i.e.,

rt = Eu∼U [Tu(t)] , (19)

where E[·] represents expectation.
To deal with the requirement of adaptive optimization

in different AiSF conditions, we propose a meta-RL-based
approach with the assistance of DT. As shown in Fig. 2, the
proposed framework includes two main parts, i.e., the physical
system and the DT system [9]. SMC operates a physical
policy to manage the physical system. At the beginning of
each AiSF condition, the physical policy is initialized as the

meta policy and runs to collect interaction data. After that,
the physical policy infers the salient information utilizing
these collected data and is adapted to new conditions. Finally,
SMC executes the adapted physical policy for subsequent
management. Once service providers upgrade their AiMs, a
DT of the new AiSF conditions is created in the DT system
and gradually synchronized with the physical system. Meta-
policy is trained through interaction with DTs’ emulations.

Physical System

Meta-training

 Physical
Edge-Cloud System

Model Training

AI service

Parameters

AI models

AI service

Parameters

AI models

AI service

Parameters

AI models

Parameters

AI models

Model Training

Parameters

AI models

Model
upgrade

Edge

Server

Cloud Server

Controller

Base

Station

Intelligent

End Device/Robot

Task
condition

Task
condition

Task
condition

Model upgrade Model upgrade

z

z

Meta-adaption

Digital Twin
Synchronization

 Meta replay
buffers

Context
sample

 Meta replay
buffers

Context
sample

Data
Collection Emulation

 Physical
replay buffer

 Physical
replay buffer

Initialization
Data

collection

Adaption

Digital-Twin 1 Digital-Twin 1 Digital-Twin 2 Digital-Twin 2 Digital-Twin k Digital-Twin k

Fig. 2. The framework of meta-RL-enabled dynamic AI service adaptation.

D. PEARL-based approach

As shown in Fig. 2, we employ an off-policy meta-RL
method, i.e., PEARL [7], in which we exploit the SAC in
discrete action conditions [10] to generate action and update
policy. A context encoder with parameter ϕ is introduced, i.e.,
qϕ. The input of qϕ is a set of transition contexts collected
in an environment condition k so far, i.e., ck1:N =(s,a, r, s′).
With these contexts, the encoder generates a latent context
z ∼ Z that encodes the estimated salient information about
the environment (e.g., reward and state transition functions).
Then, z is treated as an additional system state. The policy π
with parameters θ generates an action at for an observed st
with the assistance of z, i.e., πθ : (st, z)→at, and qϕ :ck→z.
Thus, the meta-policy can acquire both observed state and
inferred salient information about the environment to adapt
to different conditions. We can utilize variational inference to
estimate the latent distribution Z. Then, PEARL is aimed at
optimizing the variation lower bound [11], i.e.,

ES
[
Ez∼qϕ(z|c) [R(S, z) + βDKL(qϕ(z|c)||p(z))]

]
, (20)

where p(z) is a Gaussian prior distribution over Z. R(S, z)
can be different objectives, e.g., minimizing Bellman TD-error.
The KL divergence can alternatively be viewed as a variational
approximation of the information bottleneck between Z and c.
This bottleneck limits their mutual information to that essential
for adapting to the involved environmental conditions [7].

As DS, TA, and MS are all discrete actions, the probability
distribution of each user’s action is generated by applying
softmax after reshaping and selecting the outputs, i.e., (18).
Then, we can calculate the action entropy. A critic with
parameter ψ can improve the training stability by estimating
the state-action (Q) values, which is updated to minimize TD
errors between estimated Q-values, i.e.,

L(ψ) = ED,z∼qϕ(z|c) [Q(st, at, z)−Ψ(t)] , (21)

where D is a batch of sampled experiences. Meanwhile,
Ψ(t) = rt + (1− d)γEs′∼{S,at}V (st+1), (22)

where γ is a discount factor and 1

V (s′) :=Ea′∼πθ,z∼qϕ(z|c) [Q(s′,a′, z)−ξ log pπθ
(a′|s′)] (23)

is the modified soft state value of st. pπθ
(at|st) is the

probability of πθ selects at for st. d indicates if the system
evolves into a terminal state. When policies are fixed, each
Q(st, at, z) is a constant. Then, we can rewrite (23) as

V (st+1) = Q̂(st+1, ât+1, z)+ξH(ât+1) (24)
where ·̂ indicates that the value is generated by the target
policy. Target policies are soft-delayed updated from the corre-
sponding policy [12]. ât+1 is generated by a target actor (π̂θ̂)
according to st+1. H(ât+1) is the entropy of ât+1. As each
action is discrete and independently generated, the entropy of
a sub-action a[·]t =[pwu]|U|×|W| in an action at is

H(a
[·]
t) = −

∑|U|

u=1

∑|W|

w=1
pwu (t) log(p

w
u (t)), (25)

where |W| represents candidates’ count for each user in
this sub-action space. In multi-dimensional conditions, the
sum probabilities of all actions equal the number of action
dimensions. Thus, we can scale it to the parameter ξ.

Similarly, the policy πθ can be updated by maximizing the
estimated Q values according to sampled states, i.e.,

L(θ) = Est∼D,ãt∼πθ,
z∼qϕ(z|c)

[ξ log(πθ(ãt|st))−Q(st, ãt, z)] (26)

= Est∼D,z∼qϕ(z|c) [−ξH(ãt)−Q(st, ãt, z)] , (27)

where ãt is regenerated by the updated πθ. The ξ is trainable
and is updated during the training by optimizing

L(ξ) = Est∼D,z∼qϕ(z|c)[ξ(H(ãt) +H)], (28)

where H is a target action entropy set as the negative value
of action dimensions. In this work, users in each action space
only select one action. Thus, H = 3× |U|.

We update the context encoder with an additional KL
deviation loss while minimizing the TD-error to update the
critic (i.e., (21)), i.e.,

LKL = βDKL(qϕ(z|c)||p(z)) (29)
The procedures for training meta-policy are detailed in

Algorithm. 1. The agent adapts to different conditions based
on the inference of posterior over Z. Thus, the context encoder
is updated during meta-training by interacting with different
environmental conditions. But it is fixed during adaptation and
estimation of Z under new conditions. Besides, we employ a
twin-delayed update method to improve stability [12]. We use
a negative reward because we aim to minimize latency.

The meta-policy is copied as the physical policy when an
upgrade of AiMs is observed. Then, transition contexts are
collected and input into the context encoder. Gradually, the
generated latent context z can reveal the environment’s salient
information. After that, the πθ can generate actions that adapt
to the new condition with the assistance of z and obtain
expected performance under this condition before updating.

1Superscript [·]′ equals to subscript [·]t+1 in this paper

Algorithm 1 Meta-policy training based on PEARL
Input: Edge-cloud system, meta policy, DT system

1: for t′ = 1, 2, 3, · · · do
2: for k ∈ K do
3: Sample z ∼ qϕ(z|ck), ak,t=πθ(sk,t, z)
4: Implement ak,t to get rk,t and observe sk,t+1

5: Update replay buffer Bk and ck

6: Random select a set of DT environments, i.e., K′

7: for tepoch = 1, 2, · · · , Ttrain do
8: for k ∈ K′ do
9: Sample contexts ck and (sk,t, sk,t+1). z=qϕ(ck).

10: âk,t+1=πθ̂(sk,t+1, z), ãk,t=πθ(sk,t, z)
11: (s, a, r, â, ã, s′, z)← union of sampled data
12: ϕ = Optimizer(Ek∼K′ [L(ψi) + LKL]) |i=1,2

13: ψi = Optimizer(Ek∼K′ [L(ψi))] |i=1,2

14: if tepoch%tλ1
== 0 then

15: ξ = Optimizer(Ek∼K′ [L(ξ)])
16: if tepoch%tλ2 == 0 then
17: Q̃ = min {Qψi

(s, ã, z)} |i=1,2

18: θ =Optimizer(Ek∼K′ [L(θ)])
19: Soft update θ̂, ψ̂1, ψ̂2

V. PERFORMANCE EVALUATION

We conduct simulations based on Pytorch 2.0 and Gurobi
optimizer [13]. We deploy an EC simulation system where
features of 4 deployed ESs are set as Pfh :{60, 80, 100, 120}
GFLOPs, Rh: {24, 24, 32, 32} GB, and Pnh : {10, 24, 16, 32}.
We set each AiSF on CS running the most complex AiM
and have 400 GFLOPs processing speed. At each time, we
randomly generate states of 80 EDs according to uniform
distributions of configurations, but the accuracy requirement
follows a normal distribution, i.e., τu ∼ N(70, 52). We ran-
domly generated three groups of AiSFs. Then, the AiSFs
of the first group are randomly upgraded twice, i.e., lower
complexity, memory consumption, and higher accuracy. AiSFs
in the second group are upgraded once. Then, we use these six
environments to train meta-policy, and |K′|=2. After that, we
randomly generated another three AiSF conditions to evaluate
the updated policies. Table. I details more configurations.

TABLE I
SIMULATION CONFIGURATIONS

Parameter Value Parameter Value
Bi,j [8, 20]×10 Mbps Bu [2, 7]×8 MHz
Nu [-120, -80] dbm V T

u [1000, 1500] KB
ρu [300, 3000] FLOP Υ2d [30, 100] m
V R
u [10, 20] KB δi,j [10, 20] ms
αu [50, 100]% Ru [256, 2048] MB

Optimizer AdamW Learning rata 3e−5

λ1, λ2 10, 40 Ttrain 40
batch size 256 hidden size 700

hidden layers 5 β 0.1

We compare our proposed approach with the traditional
DRL method (i.e., SAC). We separately train SAC agents
base on only one of the test AiSFs indexed from 1 to 3

(SAC AiSF) [1], [14]. Besides, we trained the SAC agent
based on multiple AiSF conditions [3], [6], including data
collected from DTs (SAC DTs, i.e., same as our approach)
and the three test AiSF conditions (SAC T M). We employ
early-stopping technology to tackle the problem of overfitting.

0 1 2 3 4 5 6
Training Episode 1e4

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

Av
er

ag
e

sy
st

em
 la

te
nc

y
(m

s)

1e4
Test AiSFs: 1

Early StoppingEarly Stopping

SAC_AiSFs:1
SAC_AiSFs:2
SAC_AiSFs:3
SAC_T_M
SAC_DTs
Proposed

0 1 2 3 4 5 6
Training Episode 1e4

Test AiSFs: 2
SAC_AiSFs:1
SAC_AiSFs:2
SAC_AiSFs:3
SAC_T_M
SAC_DTs
Proposed

0 1 2 3 4 5 6
Training Episode 1e4

Test AiSFs: 3
SAC_AiSFs:1
SAC_AiSFs:2
SAC_AiSFs:3
SAC_T_M
SAC_DTs
Proposed

Fig. 3. Average system latency comparison in different testing environments

Fig. 3 displays the average system service latency in three
testing AiSF conditions over the training process. We can find
that SAC agents trained under a set of specific AiSFs can only
converge to suboptimal performance after long-term training.
However, they achieve significantly higher latency in other
conditions than the agents trained in corresponding conditions,
which indicates a policy mismatch occurred. When training in
DTs, the agents converge faster since they collect more data
and can update parameters more times. Besides, we can find
that the proposed approach can adapt to different conditions
of AiSFs and minimize service latency before a re-training,
although the conditions have never been encountered before.
However, the latency achieved by SAC agent training based on
DTs is slightly higher than that training in the corresponding
conditions because the SAC agent has no adaptation ability.
Besides, when training from interactions with DTs, the perfor-
mance of SAC is unstable as it is easily overfitted to the AiSFs
of DTs rather than test AiSFs. Moreover, the convergence of
achieved performance is more stable than others. The meta-
RL policies can infer latent context information about the
environment, improving exploration and making contexts well
adapted to these environmental conditions.

VI. CONCLUSION

This work studied adaptive edge AI service management in
EC systems. We formulated the problem of minimizing service
latency while ensuring inference accuracy through joint data
processing method selection, task allocation, and AI model
selection. Considering the requirement of adaptation under
different AiSF features, an approach based on off-policy meta-
RL and DT is proposed. The meta-policy runs with a context
encoder that enables it to infer salient information about
AiSF conditions from collected system transition trajectories.
Meanwhile, DTs of different AiSF conditions are leveraged
to provide emulations and data for the training, making the
meta-policy able to learn some adaptive knowledge from
diverse experiences and utilize the acquired skills to adapt to
unencountered conditions and enhance exploration. Simulation
results reveal that the proposed meta-RL-based approach out-
performs the traditional DRL-based methods. It can adapt to
new AiSF conditions and obtain acceptable performance prior
to further parameter updates.

ACKNOWLEDGMENT

This work is partially supported by the European Union’s
Horizon 2020 Research and Innovation Program through the
aerOS project under Grant No. 101069732; the Business
Finland 6Bridge 6Core project under Grant No. 8410/31/2022;
the European Union’s HE research and innovation program
HORIZON-JUSNS-2022 under the 6GSandbox project (Grant
No. 101096328); the National Key Research and Development
Program of China under Grant No. 2021YFB2900200; and
the Research Council of Finland 6G Flagship Programme
under Grant No. 346208. This research was also conducted
at ICTFICIAL Oy. The paper reflects only the authors’ views,
and the European Commission bears no responsibility for any
utilization of the information contained herein.

REFERENCES

[1] C. Deng, X. Fang, and X. Wang, “UAV-Enabled Mobile-Edge Com-
puting for AI Applications: Joint Model Decision, Resource Allocation,
and Trajectory Optimization,” IEEE Internet of Things Journal, vol. 10,
no. 7, pp. 5662–5675, Apr. 2023.

[2] Y. Shi, C. Yi, B. Chen, C. Yang, K. Zhu, and J. Cai, “Joint Online
Optimization of Data Sampling Rate and Preprocessing Mode for
Edge–Cloud Collaboration-Enabled Industrial IoT,” IEEE Internet of
Things Journal, vol. 9, no. 17, pp. 16 402–16 417, Sep. 2022.

[3] G. Qu, H. Wu, R. Li, and P. Jiao, “Dmro: A deep meta reinforcement
learning-based task offloading framework for edge-cloud computing,”
IEEE Transactions on Network and Service Management, vol. 18, no. 3,
pp. 3448–3459, 2021.

[4] Y. Yuan, G. Zheng, K.-K. Wong, and K. B. Letaief, “Meta-
Reinforcement Learning Based Resource Allocation for Dynamic V2X
Communications,” IEEE Transactions on Vehicular Technology, vol. 70,
no. 9, pp. 8964–8977, Sep. 2021.

[5] B. Fang, X. Zeng, and M. Zhang, “NestDNN: Resource-Aware Multi-
Tenant On-Device Deep Learning for Continuous Mobile Vision,” in
Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking, Oct. 2018, pp. 115–127.

[6] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, “Fast
adaptive task offloading in edge computing based on meta reinforcement
learning,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 1, pp. 242–253, 2021.

[7] K. Rakelly, A. Zhou, D. Quillen, C. Finn, and S. Levine, “Efficient
Off-Policy Meta-Reinforcement Learning via Probabilistic Context Vari-
ables,” in Proceedings of the 36th International Conference on Machine
Learning (PMLR), Long Beach, USA, Jun. 2019, pp. 5331–5340.

[8] ETSI, “Lte;5g; study on channel model for frequency spectrum above 6
ghz (3gpp tr 38.900 version 14.2.0 release 14),” European Telecommu-
nications Standards Institute,3rd Generation Partnership Project (3GPP),
Technical Report (TR) 138 900, 06 2017, version 14.2.0.

[9] P. Almasan, M. Ferriol-Galmés, J. Paillisse, J. Suárez-Varela, D. Perino,
D. López, A. A. P. Perales, P. Harvey, L. Ciavaglia, L. Wong, V. Ram,
S. Xiao, X. Shi, X. Cheng, A. Cabellos-Aparicio, and P. Barlet-Ros,
“Network digital twin: Context, enabling technologies, and opportuni-
ties,” IEEE Communications Magazine, vol. 60, no. 11, pp. 22–27, 2022.

[10] P. Christodoulou, “Soft actor-critic for discrete action settings,” 2019.
[Online]. Available: https://arxiv.org/abs/1910.07207

[11] A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, “Deep variational
information bottleneck,” in International Conference on Learning Rep-
resentations ICLR’17, Toulon, France, 2017.

[12] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function ap-
proximation error in actor-critic methods,” in Proceedings of the 35th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80. PMLR,
10–15 Jul 2018, pp. 1587–1596.

[13] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: https://www.gurobi.com

[14] W. Wu, P. Yang, W. Zhang, C. Zhou, and X. Shen, “Accuracy-
Guaranteed Collaborative DNN Inference in Industrial IoT via Deep
Reinforcement Learning,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 7, pp. 4988–4998, Jul. 2021.

