
1

Exploring Collaborative Diffusion Model Inferring
for AIGC-enabled Edge Services

Weijia Feng, Ruojia Zhang, Yichen Zhu, Chenyang Wang*, Chuan Sun, Member, IEEE,
Xiaoqiang Zhu, Member, IEEE, Xiang Li, and Tarik Taleb, Senior Member, IEEE

Abstract—With the advancements in AI-generated content
(AIGC) technologies and edge cloud networks, the demand for
AIGC services is increasing. The diffusion model stands out for
its ability to generate images from text. However, its high compu-
tational requirements challenge user devices, leading to ongoing
efforts to improve inferring speed while preserving image quality.
In this study, we propose a novel edge-user collaborative inferring
framework. By capitalizing on collaboration among the devices
in edge and user, the proposed framework optimizes the service
delay, network resource consumption, and user device computing
resource consumption of the user’s AIGC service, and improves
the user’s QoE. To demonstrate the efficiency of our proposed
framework, we conduct comparative experiments and ablation
experiments on a variety of datasets. Experimental results show
that the proposed framework achieves better-generated image
quality and reduces a large number of computing resources and
network consumption, improving user QoE.

Index Terms—Edge computing, task offloading, knowledge
distillation, Artificial Intelligence Generated Content

I. INTRODUCTION

The increasing demand for high-quality content has ren-
dered traditional input-output models inadequate for contem-

This study was funded by the NSFC (Grant No. 61602345, 62002263);
National Key Research and Development (Grant No. 2019YFB2101900);
Application Foundation and Advanced Technology Research Project of Tianjin
(Grant No. 15JCQNJC01400); TianKai Higher Education Innovation Park
Enterprise R&D Special Project (Grant No. 23YFZXYC00046); the Science
and Technology Research Program of Chongqing Municipal Education Com-
mission (Grant No. KJQN202400526). This work was also conducted at
ICTFICIAL Oy, Finland; and supported in part by the EU’s HE research
and innovation program HORIZON-JUSNS-2023 under the 6G-Path project
(Grant No. 101139172) and by the AerOS project funded by the EU’s
Horizon Europe, the EU’s key funding program for research and innovation
under Grant No. 101069732. The paper reflects only the authors’ views, and
the European Commission bears no responsibility for any utilization of the
information contained herein.

W. Feng, R. Zhang, Y. Zhu, and X. Li are with the School of
Computer and Information Engineering, Tianjin Normal University, Tian-
jin, China (e-mail: weijiafeng@tjnu.edu.cn, zrj20001127@163.com, zhuyii-
ichen@163.com, yylixiang@tjnu.edu.cn).

C. Wang is with the College of Computer Science and Software Engi-
neering, Shenzhen University; and the Guangdong Laboratory of Artificial
Intelligence and Digital Economy, Shenzhen 518000, China.

C. Sun is with the College of Computing and Data Science, Nanyang
Technological University, 50 Nanyang Avenue, 639798, Singapore (e-mail:
chuan.sun@ntu.edu.sg).

X. Zhu is with the School of Software Engineering, Beijing Jiaotong Uni-
versity, Beijing 100044, China; and also with the Beijing Key Laboratory of
Security and Privacy in Intelligent Transportation, Beijing Jiaotong University,
Beijing 100044, China (e-mail: xqzhu@bjtu.edu.cn).

T. Taleb is with the Faculty of Electrical Engineering and Information
Technology, Ruhr University Bochum, Bochum, 44780, Germany (e-mail:
tarik.taleb@rub.de).

*Chenyang Wang is the corresponding author (e-mail: chenyang-
wang@ieee.org).

Fig. 1. Overview of Edge-cloud Collaborative AIGC service

porary users. To address this shortcoming, researchers increas-
ingly utilize artificial intelligence to fulfill user requirements
more effectively [1]–[3]. Originally developed to address the
challenges of data intelligence within the digital economy,
Artificial Intelligence-Generated Content (AIGC) presents an
innovative approach to content creation and manipulation [4].
AIGC utilizes AI algorithms to automatically generate, mod-
ify, and enhance diverse data in novel ways. Its impressive
performance has driven widespread adoption across diverse
fields, including natural language generation (NLG) and image
generation. Notable applications exemplifying these capabili-
ties include ChatGPT [5] and Stable Diffusion [6].

AIGC is reshaping conventional production workflows, yet
significant computational and network constraints limit its
deployment on mobile devices. Large AIGC models, such
as Stable Diffusion V1.5, require high-performance GPUs
and substantial memory, far exceeding the capabilities of
typical mobile devices [7]. Additionally, the extensive data
traffic involved in AIGC model inference and training strains
wireless networks, leading to congestion and unpredictable
latencies that conventional network management techniques
are ill-equipped to handle [8], [9]. These limitations restrict
AIGC accessibility and necessitate alternative computational
frameworks that reduce both resource demand and network
load. To address these barriers, researchers are increasingly
looking toward Edge Computing (EC) as a solution, offering

2

a distributed approach to computation that brings processing
closer to data sources and alleviates network burden [10]–[12].

Unlike traditional cloud computing, which relies on central-
ized resources, EC offers localized processing, thus reducing
latency and enhancing efficiency in resource-constrained envi-
ronments [13]–[15]. Recent works demonstrate this potential:
Wang et al. [16] proposed a joint optimization algorithm for
6G mobile edge networks, which efficiently offloads com-
puting tasks and dynamically adjusts the diffusion steps of
diffusion-based AIGC models. Likewise, Wang et al. [17]
investigated the integration of EC with artificial intelligence-
generated image content (AIGIC) to reduce terminal device
loads and enhance processing efficiency.

This paper addresses the high computational demands and
load challenges associated with edge servers by introducing an
innovative Edge-User Collaborative Inference (EUCI) frame-
work, as shown in Fig. 2. This proposed EUCI partitions
the inference process of the diffusion model between users
and edge servers, allowing for distributed and efficient com-
putation, and operates across three layers: a central cloud,
edge servers, and users. The central cloud aggregates and
fine-tunes models from edge servers and periodically updates
cached models to maintain performance. Edge servers host
AIGC models (e.g., SD-V1.5) to provide localized content
generation services, while users send requests to retrieve
generated content. The main contributions of this paper are
listed as follows:

• Edge-User Collaborative Inferring Framework: We
propose a collaborative framework, namely EUCI, that
effectively addresses the resource limitations of user
devices. By distributing inference tasks between users and
edge servers, this approach enables high-quality image
generation even under constrained network conditions,
providing a robust and efficient method for AIGC on
edge-enabled devices.

• Reduction in Cloud Server Load and Network En-
ergy Consumption: Traditional diffusion model infer-
ence typically depends on intensive cloud-to-user com-
munications, significantly burdening cloud resources. The
proposed EUCI offloads part of the inference computation
to edge servers and users, substantially reducing the re-
liance on cloud resources and decreasing network energy
consumption.

• Enhanced Performance and Resource Efficiency:
Comprehensive evaluations of the proposed EUCI against
state-of-the-art approaches demonstrate its effectiveness
across multiple datasets. Through extensive ablation stud-
ies, we show that our framework achieves competitive or
superior image quality, as measured by SSI and PSNR,
and outperforms existing methods regarding inference
speed and resource efficiency.

The remainder of this article is organized as follows: Section
II reviews the preliminaries of diffusion-based AIGC models
for distributed feasibility. Section III introduces the system
model for distributed inference. Section IV formulates the
optimization problem, and Section V details our proposed
framework. Experimental results are discussed in Section VI,

with conclusions in Section VII.

II. PRELIMINARIES ON DIFFUSION-BASED AIGC

A. Development of Diffusion Model

Diffusion models (DMs), also widely known as diffusion
probability models, are a class of Markov chain generative
models trained via variational inference [18]. These models
are designed to learn a process of gradually adding noise to
data, a process known as diffusion, which is then reversed for
sample generation. The concept of DMs has its roots in earlier
works such as score-based generative models (SGM) [19]
and diffusion probabilistic models (DPM) [20], which laid
the foundation for the more advanced denoising diffusion
probabilistic models (DDPM). The denoising diffusion prob-
abilistic model (DDPM) marked a significant milestone in
generative modeling. It introduced a parameterized Markov
chain that generates images from noise through a series
of denoising steps during inference. The training involves
learning to reverse the noise addition process, which is added
to natural images in each step [21]. This approach has sparked
considerable interest and development in the field of generative
models [22].

Incorporating guidance into diffusion-based image synthesis
is crucial to improving the quality and relevance of generated
images. Earlier studies have shown that labels can improve the
quality of image synthesis in generative adversarial models
(GANs) [21], [23]. As a core model in the field of image
generation [24], diffusion models combine this principle to
develop conditional and guided diffusion models to exploit
additional information such as category labels or text to
achieve better synthesis.

One of the pioneering frameworks based on diffusion
models is GLIDE [25], which operates directly in high-
dimensional pixel space. GLIDE adopts a classifier-free guid-
ance mechanism to replace class labels with text to regulate
sample generation. Compared with previous methods such as
DALL-E, this method performs well in fidelity and human
evaluation. Concurrent with pixel space methods, there has
been significant progress in frameworks that operate in the
latent space. Stable Diffusion is a notable example, which uses
a variational autoencoder (VAE) to compress images into a
low-dimensional space before applying the diffusion model.
This approach effectively reduces complexity and preserves
details in the generated images.

B. Workflow of Diffusion-based AIGC

In this section, we use Stable Diffusion (SD) to demonstrate
the diffusion-based AIGC model:

a) The user’s prompt is processed to create a text embed-
ding. Stable Diffusion uses a tokenizer and a text encoder,
typically CLIP [26], to transform the input text into a
machine-readable embedding representation.

b) Latent Noise Image Generation: A random noise image
is generated within the latent space. The same noise
image can be reproduced for identical seed values by
configuring the seed for the random number generator.

3

Fig. 2. Illustration of Edge-User Collaborative Diffusion-based AIGC Framework

This initial noise image contains only random noise
without any coherent structure.

c) Noise Prediction Application: The noise predictor, a
neural network, processes the latent noisy image and the
text embedding to estimate the amount of noise that needs
to be removed in the next step.

d) Refinement of Latent Noise Image: The initial noise im-
age is refined by subtracting the predicted noise, with the
Unet model in Stable Diffusion facilitating this denoising
step.

e) Iterative Enhancement and Final Image Generation: Steps
(b) through (d) are repeated to improve image quality
progressively. Once sufficient refinement is achieved,
the Variational Autoencoder (VAE) decoder transforms
the refined latent representation back into pixel space,
generating the final image output.

C. Knowledge Distillation and Distributed Inferring of DMs

Tian et al. [27] proposed a novel edge-cloud collaborative
framework that integrates large cloud models with small edge
models. This framework was designed to establish a dis-
tributed training architecture and a task-oriented deployment
scheme, enabling the efficient provision of local Generative
AI (GenAI) services. Yan et al. [28] proposed an edge-
cloud collaborative inferring framework named Hybrid SD,
which allocated inference tasks between large models hosted
in the cloud and smaller models deployed on edge devices,
facilitating collaborative inference between the edge and cloud
environments. Chen et al. [8] proposed an innovative 6G
native AI framework, which achieved a smarter task experi-
ence through cloud-edge-end collaboration, and discussed the
challenges of implementing this framework and future research
directions. Huang et al. [29] proposed a framework called
”Collaborative Diffusion”, which achieves multimodal face
generation and editing through the collaboration of multiple
pre-trained unimodal diffusion models without retraining. All-
mendinger et al. [30] proposed a new distributed collaborative

diffusion model approach, named CollaFuse, which aims to
address some challenges in generative artificial intelligence
(GenAI), especially in terms of data availability, computa-
tional requirements, and privacy. Du et al. [31] discussed
that the integration of artificial intelligence-generated content
(AIGC) services within wireless edge networks represented a
significant advancement. They addressed the critical need for
dynamic AIGC service provider (ASP) selection schemes.

In the field of exploring diffusion model distillation, Luh-
man et al. proposed a method that compresses multi-step
denoising processes into single steps through knowledge distil-
lation techniques [32], significantly improving sampling speed
and making it closer to single-step generative models such as
GANs and VAEs. Salimans and Ho et al. [33] used a progres-
sive distillation method to distill a trained deterministic diffu-
sion sampler (such as DDIM) into a new model that reduces
the required sampling steps by half while maintaining sample
quality. Sauer et al. introduced a novel training method called
Adversarial Diffusion Distillation (ADD) in their study [34].
By combining adversarial loss and score distillation loss, the
ADD method not only improves image fidelity under low-step
sampling conditions but also significantly outperforms existing
few-step methods in single-step sampling.

In this paper, our goal is to show how our work is dis-
tinguished from existing AIGC service frameworks through
unique contributions and innovations. The main difference
between the proposed framework and the previous studies
is the distributed processing of computational tasks, which
reduces the reliance on the central cloud by distributing tasks
between user devices and edge servers, thereby reducing
latency and improving service quality.

III. SYSTEM MODEL

A. Network Architecture

As shown in Fig. 2, the proposed framework of Edge-User
collaborative inferring involves several users, denoted as N =

4

Fig. 3. Workflow of Edge-User Diffusion Model Collaborative Inferring

{n|1, 2, · · · ,N}, who are randomly distributed across the net-
work. Each user is equipped with a performance-constrained
GPU, capable of Cn floating-point operations per second
(FLOPS) and an energy consumption of Pn. To be specific,
several base stations (BSs), denoted as B = {b|1, 2, · · · ,B},
are evenly distributed across the network. Each BS is equipped
with an edge server (ES) that contains a high-performance
GPU with Cb FLOPS, an energy consumption of Pb, and
limited storage resources Sb ∈ R+. It is important to note
that Cb is significantly larger than Cn, which results in Pb

being substantially higher than Pn. Additionally, we assume
that cloud C maintains a model library within the network,
which contains Mm

C ,m ∈ {m|1, 2, . . . ,M} popular Stable
Diffusion (SD) models. The size of each SD model is denoted
as κm ∈ R+. At the same time, we assume that each edge
server caches a subset of the models stored on the cloud server,
denoted as Mb

E , b ∈ B.

We assume that each base station (BS) is connected to cloud
center C via backhaul links, facilitated by network devices
such as switches, wireless controllers, and gateways, all of
which possess high computational capabilities. Additionally,
the system’s user equipment (UE) is classified into two cate-
gories: indoor UEs and outdoor UEs, based on their respective
service locations. The indoor user equipment (UEs) consists
of smart home devices (e.g., laptops, PCs) and Internet of
Things (IoT) devices, while the outdoor UEs include mobile
devices and Internet of Vehicles (IoV). We assume that indoor
UEs are connected to routers with a power supply, enabling
access to remote cloud centers via network devices and wired
links. Outdoor UEs, on the other hand, connect to base
stations (BSs) through cellular links and are subject to battery
life constraints. Finally, we assume that cloud center C has

sufficient computational resources.

The model training process is shown in the Cloud Distil-
lation Procedure in Fig. 2. Firstly, the shared dataset Dn is
processed by a diffusion model Ml through steps 1⃝ and 2⃝
to generate a new training dataset D′

n and send it to edge
server b. After receiving D′

n from the users, edge server b
performs steps 3⃝ and 4⃝, training the cached model Mb

E and
combining the trained model with the user-generated training
dataset D′

n and upload to cloud center C. After receiving the
training models uploaded by each edge server, cloud center
C performs step 5⃝ to update the cached models MC and
store them in the cloud. The purpose of doing so is to ensure
that the model benefits from the collective knowledge of edge
servers and users while protecting data privacy. In step 6⃝,
the cloud center C will return the trained model MC to edge
server b to meet the user’s AIGC service requirements.

The model inferring process is shown on the right side of
Fig. 2. Firstly, in step 1⃝, user n sends a model request Ureq

and a text prompt Uprt to edge server b. Then the edge server
b performs step 2⃝ to check if the model requested by user
n has been cached. If edge server b has already cached the
requested model, then edge server b performs step 3⃝ to send
the Unet and Noise scheduler components in the requested
model to user n. After receiving the Unet and Noise scheduler
components, user n performs small inference steps t in step
6⃝ to obtain an intermediate latent noise image Xt. Afterward,

the user performs step 7⃝ to upload the intermediate latent
noise image Xt to edge server b, which conducts the remaining
inference steps T − t to obtain the final generated image Ig .
Suppose edge server b does not have the model. In that case,
it performs step 4⃝ to send the model request Ureq to cloud
center C, and then cloud center C performs step 5⃝ to transfer

5

the model to edge server b, which will continue to perform the
above steps.

B. Task Computation Model

In the energy consumption calculation framework of our
system, task P is deployed to both user n and edge server b,
denoted as aP = {auserP , aedgeP }, where auserP , aedgeP ∈ {0, 1}.
These values indicate the proportion of inference steps per-
formed on user n and edge server b respectively, in total in-
ference steps T . The indicator function directly affects service
latency and our system’s energy consumption. It is subject to
constraints based on the specific deployment location, whether
on the user, the edge server, or the cloud, influencing the
overall performance of our system.

auserP + aedgeP = 1,∀P ∈ P. (1)

We consider the overall energy consumption of GPUs in our
proposed framework, which is calculated by multiplying the
running time of the GPUs on both edge server b and user n by
their respective energy consumption rates and then summing
the results. Regarding the FLOPs generated by users and edge
servers during inferring, we calculate the total FLOPs by
adding the FLOPs generated by the Unet model, text encoder,
and VAE components. Since the inferring process does not
change SX , these fixed values are denoted as FU , Fte, and
Fvae, respectively. Therefore, we derive the formula for our
system model task consumption as follows:

TCn,b =
(FU + Fte + Fvae)t

Cn
∗ Pn+

(FU + Fte + Fvae)(T − t)

Cb
∗ Pb,

(2)

where TCn,b represents the total energy consumption of
GPUs, t = auserP ∗ T , and T − t = aedgeP ∗ T . When user
n performs the image generation task independently, t equals
T . Conversely, if edge server b handles the image generation
task alone, t equals 0.

C. Service Delay Model

In our proposed framework, the transmission process in-
volves models, requests, text, latent noisy images, and gener-
ated images. We assume that the size of the Unet model is
SUnet and the size of the noise scheduler is SNS . It should
be noted that compared to SSD and SU , the size of user
requests Ureq and text prompts Uprt can be ignored, so they
are not included in the total transmission time. In addition, we
define the physical channel distance between user n and edge
server b as LU,B , and the actual channel distance between
edge server b and cloud center C as LB,C . In addition, the
size X is set to a fixed value SX , and the network bandwidth
is set to W . Finally, we define the image size obtained through
collaborative inference as SI . Therefore, we can conclude that

the transmission delay of our system model is as follows:

TLn,b =
W ∗ (SUnet + SX + SNS)

LU,B
+

W ∗ κm

LB,C
+

W ∗ SI

LU,B

=
W ∗ (SUnet + SX + SI + SNS)

LU,B
+

W ∗ κm

LB,C
,

(3)
where TLn,b represents the sevice delay of our system model.
SX refers to the text condition input transmitted by edge server
b to user n during Unet transmission, and latent noise image
Xt is sent to edge server b by user n after inferring step t.
Note that when edge server b does not need to request the
model from cloud center C, κm is 0.

In practical application scenarios, service latency is not only
limited to file transfer latency and transmission latency but also
includes the time required for content generation. Therefore,
on the basis of file transmission delay and transmission delay,
our service delay should also include the time required for
the image to be generated by user n and edge server b. The
complete service delay formula is as follows:

TLn,b =TLn,b +
(FU + Fte + Fvae)t

Cn

+
(FU + Fte + Fvae)(T − t)

Cb
.

(4)

D. Knowledge Distillation Model

Assume that each user possesses a unique dataset Dn,
n ∈ {n|1, 2, · · · , N}, and these datasets are processed through
a diffusion model to generate a corresponding new dataset
D

′

n, n ∈ {n|1, 2, · · · , N}. Images in D
′

n are similar but not
identical to images in the original dataset Dn. Edge server
b receives dataset D

′

n and constructs a new training dataset
Db

E = {D′

n|n ∈ N}. Subsequently, edge server b uses the
new dataset Db

E to fine-tune diffusion model Mb
E cached

in edge server b. After model Mb
E is fine-tuned or trained,

cloud center C collects training dataset Db
E from each edge

server and combines them to form a new cloud center training
dataset DC . Upon obtaining a new training dataset DC , model
Mm

C cached in cloud center C is trained using a federated
knowledge distillation method for diffusion models.

We define the loss of federated knowledge distillation at
cloud center C as comprising two components: One com-
ponent is the loss Ltask of model Mm

C during training on
dataset DC . The second loss, Ldistill, represents the difference
between the images generated by model Mm

C and edge server
cached model Mb

E on dataset DC . The formulas for the two
types of losses are as follows:

Ltask = Et,X0,ϵ[||ϵ− ϵθ(Xt, t)||2], (5)

Ldistill =

B∑
b=1

λbEt,ϵ′ [c(t)d(x̂C(Xt, t), x̂d(x̂C,t; t)], (6)

where Eq.(6) holds
∑B

b=1 λb = 1.
In Eq. (5), x0 represents the original image in dataset DC ,

Xt denotes latent noise image during the forward diffusion
process, and ϵθ(Xt, t) represents the noise predicted by the
model, which is the noise the model aims to learn. In Eq.

6

TABLE I
KEY NOTATIONS

Notation Meaning
T Number of inference iterations of the framework
t User inferring iterations
FU Floating point operations performed by Unet
Fte Floating-point operations for text processing
Fvae Floating-point operations for VAE converted images
Cn The FLOPS of the user’s GPU
Cb The FLOPS of the edge server’s GPU
Pn Energy consumption of user’s GPU
Pb Energy consumption of edge server’s GPU
SX The size of the latent noise image X
SU The size of Unet model
SNS The size of noise scheduler
SI The size of generated iamge

LU,B Distance between the user and the edge server
LB,C Distance between the edge server and the cloud
W Network bandwidth
κm The size of the mth diffusion model
Ig The generated image

Ltask The task loss of Mm
C

Ldistill The distillation loss of Mm
C

Quser The user’s QoE
Iquality The quality of generated image Ig

λ The weight parameter of Ldistill

(6), λb represents the weight of each edge server model,
and c(t) is a weight function that adjusts the weights of
different steps based on the noise level t, d represents a
similarity function, such as the structural similarity index
(SSI) calculation function, ϵ and ϵ

′
denote standard Gaussian

distributions with a mean of 0 and a variance of 1. Common
weight functions include Score Stochastic Differential Equa-
tions (Score SDEs) [35], among others. The primary objective
of the distillation loss Ldistill is to use the output of the teacher
model as the target, guiding the student model to generate
outputs that closely match those of the teacher model. In
summary, the loss function can be defined as follows:

L = (1− γ)Ltask + γLdistill

= (1− γ)Et,X0,ϵ[||ϵ− ϵθ(Xt, t)||2]+

γ

B∑
b=1

λbEt,ϵ′ [c(t)d(x̂C , x̂d(x̂C,t; t)],

(7)

where γ is the specific gravity parameter of the distillation
loss, and the model Mm

C in cloud center C is updated by
performing a reverse gradient operation on loss L.

IV. PROBLEM FORMULATION

In this paper, our goal is to minimize service latency TLn,b

and energy consumption TCn,b of the user’s text-to-image
tasks while maximizing the quality of the final image gener-
ated, thereby enhancing the overall user Quality of Experience
(QoE).

A. User’s QoE for Text-to-Image Task
Quality of Experience (QoE) metrics play a key role in

evaluating AIGC performance [36]. QoE measures user satis-
faction with generated content, taking into account factors such

as visual quality, relevance, and usefulness. In this article, we
consider service latency TLn,b and task energy consumption
TCn,b as key factors for measuring the user’s QoE. The task of
the text-to-image is to generate an image that aligns with the
user’s input text. Three indicators, MSE, SSI, and PSNR, are
introduced to evaluate the quality of generated image Ig . These
indicators comprehensively assess the generative requirements
of users by evaluating each generated image across all three
metrics. We define the user’s QoE as Quser, i.e.,

Quser = w1 · Iquality − w2 · TL− w3 · TC, (8)

where w1 + w2 + w3 = 1. In Eq. (8), Iquality represents the
quality of the generated image Ig , defined as a combination
of MSE, SSI, and PSNR. The weight coefficients w1, w2, and
w3 are used to adjust the relative importance of each indicator.
Therefore, the image quality Iquality is denoted as:

Iquality = ϕ · IPSNR + φ · ISSI − (1− ϕ− φ) · IMSE ,
(9)

where ϕ + φ < 1. IMSE , ISSI , and IPSNR represent the
MSE, SSI, and PSNR of generated image Ig respectively.
These indicators’ weight parameters are ϕ and φ. Therefore,
the objective of the optimization problem in our framework
can be summarized as follows:

max
O,P,Q

Quser =w1 · (ϕ · IPSNR + φ · ISSI

− (1− ϕ− φ) · IMSE)

− w2 · TLn,b − w3 · TCn,b,

(10)

where w1 + w2 + w3 = 1, ϕ+ φ < 1, and denote O,P,Q as
Iquality, TC and TL, represently.

B. Federated Knowledge Distillation Process

We consider a federated knowledge distillation method in
our model training phase, which involves updating the student
model by measuring the differences between the generated im-
ages of the student and teacher models MC . In our diffusion-
based AIGC service framework, the goal is to train cloud
model MC through federated knowledge distillation using an
end-to-end cloud network structure, which adapts to changing
user needs while maximizing user’s QoE. The training process
aims to continuously reduce the distillation loss L between
the cloud models and edge models. At the same time, the
objective of maximizing QoE focuses on minimizing service
latency TLn,b and system energy consumption TCn,b, while
improving image generation quality Iquality, i.e.,

argmin
Mm

C

L = argmin
Mm

C

(Ltask + γLdistill),

s.t. max
O,P,Q

Quser,

TLn,b ≤ TLmax,∀(n.b) ∈ (N ,B),
TCn,b ≤ TCmax,∀(n.b) ∈ (N ,B).

(11)

The optimization problem is subject to the following con-
straints: service latency constraint, TLn,b ≤ TLmax,∀(n, b) ∈
(N ,B), ensures that the latency between user n and edge
server b does not exceed a maximum value. Previous re-
search shows that deploying diffusion-based AIGC services

7

on user n results in high latency due to limited computa-
tional resources. The energy consumption constraint, TCn,b ≤
TCmax,∀(n, b) ∈ (N ,B), ensures that the total energy
consumption of users and edge servers does not exceed a
maximum value. Earlier studies indicate that edge servers,
despite having high instantaneous energy consumption, in-
cur the highest total energy consumption, TCedge, setting
TCmax = TCedge.

V. EDGE-USER COLLABORATIVE DIFFUSION-BASED
AIGC MODEL

A. Edge-User Collaborative Diffusion Model Inferring

To enhance user QoE and improve the quality of generated
images, we propose an Edge-User Diffusion Model Collabo-
rative Inferring framework. The framework consists of three
phases: (1) the local user request phase, (2) the collaborative
edge-user inference phase, and (3) the image generation and
transmission phase.

1) Overview of Our Framework: In our framework, cloud
center C caches diffusion models that cater to various user
needs. We define the total number of inference steps as T ,
with t representing the inference steps for user n and T − t
representing the inference steps for edge server b.

• Local user request phase: At the start of the task, user
n sends a diffusion model request Ureq to edge server b.
Edge server b first checks whether the requested diffusion
model is cached. If the model is cached, edge server
b sends the Unet model and noise scheduler from the
diffusion model to user n while receiving text prompt
Uprt from user n. If the model is not cached, edge
server b forwards Ureq to cloud center C, which then
sends the diffusion model to edge server b. Edge server
b subsequently caches the model for future use.

• Edge-user collaborative inference phase: In the user
request phase, edge server b receives textual prompt Uprt

sent by user n. Upon receiving Uprt, edge server b
generates an initial latent noise image Xr containing the
text information through step b). After receiving the Unet
model, the noise scheduler, and Xr, user n iterates steps
c) and d) for several iterations corresponding to the user-
side inference steps t to obtain the latent noise image Xt.
User n then sends the latent noise image Xt to edge server
b, which continues to iterate steps c) and d) based on Xt

to obtain the final latent noise image XT . The number of
iterations performed by edge server b is T − t.

• Image generation and transmission stage: After ob-
taining the final latent noise image XT , which is collab-
oratively inferred by user n and edge server b, the VAE
model on edge server b receives XT as input to generate
the final image Ig . Subsequently, edge server b transmits
Ig to user n, thereby completing the task.

Alg. 1 outlines our edge-user collaborative inferring frame-
work for executing a diffusion model to generate images that
match text prompts. In our framework, edge servers and users
share the inference task to optimize the computational load and
improve the quality of service. Edge server b is responsible for
processing the text prompt and generating the initial noisy

Algorithm 1 Edge-User Collaborative Diffusion Model Infer-
ring

1: Initialize: Cloud diffusion model Mm
C ; Edge Stable Dif-

fusion models Mb
E ; Collaborative inference steps T ;

Current inferring step i = 0.
2: Output: The generated image Ig .
3: At Edge Server b:
4: Receive model requests Ureq and text prompts Uprt.
5: if i=0 then

Generate text vector ztext and initial noisy image Xr

by (12) and (13).
6: end if
7: Send ztext and Xr to user n.
8: if i=t then

Receive the initial noisy image Xt.
9: end if

10: for i = t+ 1 to T do
Generate the final noise-free image XT by (15).

11: end for
12: Convert XT to generate image Ig through Uvae in (16).
13: At User n:
14: Send model request Ureq and text prompt Uprt.
15: if i=0 then

Receive UUnet, Uscheduler, Xr, and ztext sent by edge
server b.

16: end if
17: for i = 0 to t do

Generate noisy image Xt at step t by (14).
18: end for
19: Send Xt to edge server b.

image, then user n performs some of the inference steps.
Finally, the edge server completes the remaining steps and
generates the final image.

B. Edge-User Collaborative Inferring

The Edge User Collaborative Inferring Framework we pro-
posed is shown in Fig. 3. In our inference process, we define
a fixed inference step T , which represents the total number
of inference steps performed by both edge server b and user
n. In our proposed framework, we define t as the number
of inference steps performed by user n, resulting in the edge
server performing T−t inference steps. At the beginning of the
task, user n first sends model request Ureq for model Umodel

and text prompt Uprt to edge server b. After receiving Ureq

from user n, edge server b first checks whether the model
Umodel requested by user n is cached on the server. If the
model is already cached, edge serverb sends the Unet model
UUnet and the noise scheduler Uscheduler to user n. If Umodel

is not cached, edge server b sends model request Ureq to cloud
center C for retrieval. Upon receiving Ureq , cloud center C
sends the complete model Umodel to edge server b for caching,
after which the communication process between edge server
b and user n is repeated.

When the model transmission process is complete, edge
server b first utilizes the text encoder Uencoder to process Uprt,

8

generating a fixed vector representation of Uprt as follows:

ztext = Uencoder(Uprt), (12)

where ztext represents the fixed vector representation of Uprt.
Next, a random noise image is generated for the reverse
denoising process. The strategy for generating this random
noise image is as follows:

Xr ∼ G(0, I), (13)

where G(0, I) represents a Gaussian distribution (normal dis-
tribution) with a mean of 0, and I denotes the covariance
matrix (identity matrix). Note that I does not refer to the
generated image Ig . Xr represents a completely noisy image
generated through random sampling, and the reverse inferring
process is performed gradually on this Xr.

Edge server b transmits the text matrix ztext and the initial
random noise Xr to user n. As shown in User Inferring in
Fig. 3, upon receiving these, user n uses the ztext and Xr

provided by edge server b to perform the reverse inference
process. In this step, user n infers the initial noisy image Xr.
Meanwhile, when edge server b performs reverse inferring, it
utilizes noisy image Xt obtained by user n after t inference
steps. Although the inference processes of user n and edge
server b are not directly related, they follow a Markov chain
to ensure consistency in the inferring processes.The formula
for user n to perform reverse inferring on the initial noisy
image Xr is as follows:

Xi =

√
αi

αr
Xr +

√
1− αi

αr
ϵi(Xi, i, ztext), i ∈ (0, t), (14)

where Xt is the noisy image obtained by user n during
inference step t, and αt is a predefined attenuation coefficient
determined by the noise scheduler, which assists the model in
understanding the amount of noise to be removed at each step
and restoring a clearer image from the current noisy image.
αr represents the initial attenuation coefficient, which is set to
a value approximately equal to 0 to facilitate the generation
of a completely noisy image, and ϵt(Xt, t, ztext) denotes the
predicted noise of Umodel at the current time step, and the
noise image at this time step is obtained by subtracting Xi.

User n sends Xt to edge server b to continue the remaining
T−t steps of inferring. Similar to the inference process of user
n, edge server b also performs reverse inferring by subtracting
the noise predicted by the model at each time step. In contrast,
the initial noise image for edge server b is the noise image
Xt obtained from the inference performed by user n. By
combining it with the text vectors stored on edge server b,
the system maintains semantic consistency in the user’s text
generation task, ensuring that the edge server remains aligned
with the user prompt throughout the inference process. The
formula for inferring the final noisy image XT by the edge
server b is as follows:

Xi′ =

√
αi′

αt
Xt +

√
1− αT

αt
ϵi′(Xi′ , i

′, ztext), i
′ ∈ (t, T).

(15)
After obtaining the final noisy image XT , the model inputs
XT to VAE Uvae to convert it into pixel space, generating the

final image:
I = Uvae(XT). (16)

C. Time and space complexity analysis

The time complexity of our proposed EUCI framework is
mainly determined by the iterative inference steps on user n
and edge server b. Specifically, user n performs t inference
steps. The time complexity of each iteration is O(FU), where
FU represents the number of FLOPs of Unet model in a single
iteration; edge server b performs T − t iterations, and its
time complexity is O((T − t)FU). It also includes the time
complexity of text encoding, initial noisy image generation,
and final image generation, where text encoding and initial
noisy image involve a fixed number of operations, so their time
complexity can be considered to be at a constant level, that
is, O(1). The final image generation involves converting the
final noisy image into an image in pixel space through VAE. Its
time complexity depends on the complexity of the VAE model,
which can be considered to be O(Fvae), where Fvae represents
the number of FLOPs required for VAE conversion. Therefore,
the total time complexity is O(tFU + (T − t)FU + Fvae).

The space complexity of our framework is primarily deter-
mined by the storage requirements for the text vector, initial
noisy image, intermediate noisy images from the iteration
process, and the final generated image. If the space complexity
of each image is O(SX), the total space complexity depends
on the number of images that need to be stored. Considering
that both the user device and the edge server need to store at
least one noisy image, the space complexity is at least O(SX).
In addition, there are some intermediate variables involved
in the algorithm, such as predicted noise, which are usually
proportional to the image size, so the space complexity is also
O(SX).

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section presents the numerical results and discusses
our proposed collaborative edge-user AIGC framework. The
discussion is organized into two parts: the implementation of
the simulation environment and the performance analysis.

A. Experimental Settings

Our experimental settings include several mainstream stable
diffusion models for cloud caching, such as SDXL, SD-V1.5,
and SD2.1. The SD-V1.5 model is pre-cached in the edge
server. In our experiment, the user is simulated as an iPhone
14 Pro Max, while the edge server is equipped with an
Nvidia 4090 (24G) GPU. Both the user and the edge server
are deployed in a 4G network environment, with the user
sending model requests and text prompts to the edge server.
The user, edge server, and cloud center generate the content
collaboratively.

We conduct two types of experiments: comparative experi-
ments and ablation experiments. The comparative experiment
evaluates our framework against existing frameworks in terms
of MSE, PSNR, and SSI during image generation. The ablation
experiment compares the service latency and computational

9

Fig. 4. Visualization of the generated images. We used prompts from the diffusiondb2m first 5k canny and laion-coco aesthetic datasets respectively and
compared them with the corresponding prompt images in the datasets. For the sake of simplicity, some prompts have been omitted in this section. Although
smaller models have slightly reduced semantic details compared to models such as SD-v1.4, our framework is better able to maintain consistency between
images and semantics.

resource consumption between our framework and configura-
tions where tasks are handled separately by the user or edge
server.

Baselines: To demonstrate the superiority of our proposed
framework, we compare it with several diffusion-based models
in terms of image quality. Specifically, we evaluate the quality
of generated images using three metrics: MSE, PSNR, and
SSI. We select two baseline diffusion models and one collab-
orative inferring framework as the control group. The baseline
models include Stable Diffusion v1.4 from Ommer Lab and
Stable Diffusion v1.5 from RunwayML. For the collaborative
inferring approach, we use the CDDAA framework, proposed
by Du et al. [31]. The chosen diffusion model in our collab-
orative inferring framework is SD v1.5. For the datasets, we
select the diffusiondb2m first 5k canny [37] and the Laion-
coco aesthetic datasets [38] Both datasets are designed for

text-to-image modeling, with diffusiondb2m first 5k canny
containing 5,000 text-image pairs, and the Laion-coco aes-
thetic dataset comprising 600 million high-quality descriptive
captions generated for publicly available images from the web.

Configurations: In our experiment, the FLOPS of user
n is set to a maximum of 17 TFLOPS, while the FLOPS
of GPU in edge server b could reach 1321 TFLOPS. At
these FLOP levels, the user’s energy consumption can reach
4.76W, while the energy consumption of the 4090 (24GB) can
reach 450W. Practical application research indicates that the
GPU utilization rate in existing diffusion models for inference
can reach 95% or even 100%. Based on this, we set the
parameters for the user n and edge server b in the experimental
environment as described above.

In our simulation environment, user n, edge server b, and
cloud center C operate in a 4G network, resulting in a network

10

Fig. 5. Visualization of generated images of ablation experiments.

bandwidth range between the user, edge server, and cloud
center, meaning that the theoretical maximum download speed
can reach 125 Mbps. Additionally, we simulate the physical
distances between user n, edge server b, and cloud center C,
which impacts the transmission time of models and images.
The distance between the user and the edge server is set to
5 kilometers, denoted as LU,B , while the distance between
the edge server and the base station is set to 50 kilometers,
denoted as LB,C .

Key Performance Indicators (KPI): In terms of key
performance indicators, we measure the quality of image
generation using MSE, SSI, and PSNR. MSE (Mean Squared
Error) quantifies the difference between the predicted and true
values for each pixel in an image. A lower MSE value indicates
that the generated image is closer to the real image [39]. SSI
(Structural Similarity Index) assesses the similarity between
two images, with higher values indicating greater similar-
ity [40]. PSNR (Peak Signal-to-Noise Ratio) is a widely used
metric for evaluating image quality, particularly in terms of
the differences between the generated and original images.
Expressed in decibels (dB), a higher PSNR value indicates
better image quality and a smaller difference from the original
image [41]. In the ablation, we also introduce service latency
and device consumption to further demonstrate the superiority
of our framework compared to scenarios where tasks are

handled independently by either the user or the edge server.

B. Performance of Different Baselines

Fig. 4 presents four different image generation models
(CDAA, SD-V1.5, SD-V1.4, and our proposed framework),
each generating images based on the same text description
and comparing them with real images. Each row corresponds
to a model, and each column represents a distinct scene
description, including “GPU mecha controlled by telepathic
hackers”, “Sunflower fields under a blue sky and white
clouds”, “Coastline and green hills”, “Black characters walk-
ing in time bubbles”, and “Observation point perspective of the
Sydney skyline.”. All the prompts mentioned above are real
prompts from the selected dataset. This comparison highlights
differences in image generation quality, detail representation,
and style across the models.

1) MSE results: Fig. 6(a) presents the experimental re-
sults comparing the mean square error (MSE) of different
algorithms across five images. As shown in Fig. 6(a), the
MSE values for our algorithm are lower than those of the
comparison algorithms for most images, further demonstrating
the effectiveness and superiority of our method. In partic-
ular, for Image 1, Image 2, and Image 5, our algorithm
performs similarly to CDAA but significantly outperforms all
other algorithms on Image 4. These results suggest that our

11

Image-1 Image-2 Image-3 Image-4 Image-5
2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

M
SE

 V
al

ue

Generated Image

 CDDAA
 SD-v1.5
 SD-v1.4
 Ours

(a) MSE

Image-1 Image-2 Image-3 Image-4 Image-5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Generated Image

SS
I

V
al

ue

 CDDAA
 SD-v1.5
 SD-v1.4
 Ours

(b) SSI

Image-1 Image-2 Image-3 Image-4 Image-5
5

6

7

8

9

10

11

12

13

PS
N

R
 V

al
ue

Generated Image

 CDDAA
 SD-v1.5
 SD-v1.4
 Ours

(c) PSNR

Fig. 6. Visualization of image quality generated by different baselines

Image-1 Image-2 Image-3 Image-4 Image-5
2000

3000

4000

5000

6000

7000

8000

9000

M
SE

 V
al

ue

Generated Image

 User Only
 Edge Only
 Ours

(a) MSE

Image-1 Image-2 Image-3 Image-4 Image-5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

SS
I

V
al

ue

Generated Image

 User Only
 Edge Only
 Ours

(b) SSI

Image-1 Image-2 Image-3 Image-4 Image-5
5

6

7

8

9

10

11

12

P
SN

R
 V

al
ue

Generated Image

 User Only
 Edge Only
 Ours

(c) PSNR

Fig. 7. Visualization of image quality generated by different ablation studies

12

framework can consistently maintain low prediction errors
across different images and scenes, showcasing its strong
generalization ability.

2) SSI results: From Fig. 6(b), we compare our algorithm
with three other algorithms: CDAA, Stable Diffusion V1.5,
and Stable Diffusion V1.4. For most images, the SSI values
of our algorithm are higher than or comparable to those of the
other algorithms, further demonstrating the effectiveness and
superiority of our method. Notably, for Image 1, Image 4, and
Image 5, our algorithm performs similarly to CDAA, while
significantly outperforming all other algorithms on Image 3.
These results suggest that our framework can consistently
maintain high image quality across various images and scenes,
demonstrating its strong generalization ability.

3) PSNR results: Fig. 6(c) presents the experimental re-
sults comparing the peak signal-to-noise ratio (PSNR) of dif-
ferent algorithms on five images. From Fig. 6(c), it is evident
that, for most images, the PSNR values of our algorithm
are either higher than or comparable to those of the other
algorithms, further validating the effectiveness and superiority
of our method. Notably, for Image 1, Image 2, and Image 5,
our algorithm performs similarly to CDAA, while significantly
outperforming all other algorithms on Image 3.

The observed results can be attributed to the unique de-
sign of our algorithmic framework, which allocates complex
inference tasks to edge servers, while user n handles rela-
tively simpler operations. This distributed computing strategy
effectively reduces overall computational errors, leading to
improved performance in the MSE metric.

C. Performance of Different Ablation Studies

Fig. 5 compares the AIGC generation performance under
different configurations (user-only, edge-only, and user-edge
collaboration). The results indicate that the user-edge collab-
orative framework outperforms the single-end configurations
regarding color reproduction, detail preservation, and style
matching, with the generated images more closely resembling
the original. Across various generation tasks, the collabora-
tive framework consistently demonstrates high-quality perfor-
mance, validating the advantages of this approach in enhancing
the quality of diffusion-based AIGC services.

1) MSE results: Fig. 7(a) shows the comparison results
of the mean squared error (MSE) under different deployment
strategies in the ablation experiment. The experiment compares
the performance of deploying inference on user n (User
Only), solely on edge servers (Edge Only), and our distributed
inferring framework (Our Work) across four images. In most
cases, the MSE values of our framework are lower than those
of the two single deployment strategies, further demonstrating
the effectiveness and superiority of our approach. Notably,
in Image 2, our framework performs similarly to the Edge
Only strategy, but in Image 3, it outperforms the other two
strategies by a significant margin. These results indicate that
our framework maintains low prediction errors across various
images and scenes, showcasing its strong generalization ability
and efficiency.

2) SSI results: Fig. 7(b) presents the comparison results of
the Structural Similarity Index (SSI) across different deploy-
ment strategies in the ablation experiment. On most images,
the SSI values of our algorithm are higher than those of the
two single-deployment strategies, further demonstrating the
effectiveness and superiority of our method. Notably, in Image
1, our framework performs similarly to the User Only strategy,
but in Image 3, it outperforms the other two strategies signifi-
cantly. These results indicate that our framework can maintain
high image quality across diverse images and scenes while
demonstrating strong generalization ability and efficiency.

3) PSNR results: Fig. 7(c) shows the comparison results
of the Peak Signal-to-Noise Ratio (PSNR) under different
deployment strategies in the ablation experiment. In most
cases, the PSNR values of our algorithm are higher than those
of the two single-deployment strategies, further demonstrating
the effectiveness and superiority of our method. Notably, in
Image4, our framework significantly outperforms the other two
strategies.

4) Service Delay and Device Energy Consumption: Since
the resolution of the generated image is fixed at 512x512,
and the total number of inference steps is also fixed at 110,
the time required for image generation is essentially the same
across the three methods. Therefore, it suffices to observe the
performance of these three methods for the generation of a
single image.

As shown in Fig. 8(a), when generating the same image, the
energy consumption is highest when the edge server performs
the process alone, reaching approximately 1.58W. Our method
consumes the least energy, using less than 0.7W. The energy
consumption when the user performs the process alone is
second, at around 1.3W. Fig. 8(b) illustrates the time required
to generate an image using the three methods. It is evident that
the time required when the user performs the process alone
is the longest, exceeding the time needed by the edge server
alone by nearly 20 times, and is 10 times longer than when
our method is used.

The observed results can be attributed to the fact that, in
general, the computing resources of user n are significantly
lower than those of the edge server. In this study, based on the
assumed GPU computing power, the computational capacity
of edge server b is many times greater than that of user n.
This discrepancy causes the image generation time on user n
to be much longer than when either of the other two methods
is used. While it is theoretically true that the user alone takes
much longer to generate the image compared to our method
and the edge server alone, the energy consumption of user n
is also significantly higher than that of the other two methods.
However, due to the substantial energy consumption associated
with the high computational capacity of edge server b, its
energy consumption can match or even exceed that of user
n in a short time. Although our method is not the fastest in
terms of time, we have measured the tradeoff between time
and energy consumption, achieving the goal of minimizing
energy consumption without significantly increasing the task
completion time.

13

User Only Edge Only Ours
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Generated Image

TC
 (

W
)

(a) Energy Consumption

User Only Edge Only Ours
0

100

200

300

400

500

600

700

800

900

1000

Generated Image

TL
 (

se
co

nd
)

(b) Service Delay

Fig. 8. Visualization of energy consumption and service delay by different
ablation studies

VII. CONCLUSION

In this study, we proposed a novel edge user collaborative
inferring framework named EUCI for optimizing diffusion
model-based artificial intelligence-generated content (AIGC)
services. Our framework effectively balances the computa-
tional load by distributing computational tasks between user
devices and edge servers, reduces the need for high communi-
cation bandwidth, and maintains image generation quality in a
constrained network environment. Although our study mainly
focuses on the performance optimization of the framework, we
recognize the importance of user privacy protection in AIGC
services, which is an issue that cannot be ignored.

In AIGC services, user-generated content and personal data
may be processed and stored in edge computing environments.
This involves the potential risk of leakage of sensitive informa-
tion, especially when data is transmitted between user devices,
edge servers, and cloud. To enhance the privacy protection
capabilities of our framework, future work can explore the
integration of advanced privacy protection techniques such as

differential privacy and homomorphic encryption to ensure
the security and privacy of user data without sacrificing user
experience.

In summary, although this paper mainly focuses on improv-
ing the performance and efficiency of AIGC services, we also
realize the importance of privacy protection and suggest that
future research can further explore how to enhance user pri-
vacy protection while maintaining service quality. We believe
that by combining the latest privacy protection technologies
and privacy-aware design, we can build an AIGC service
framework that is both efficient and secure, providing users
with a better service experience.

REFERENCES

[1] C. Wang, H. Yu, X. Li, F. Ma, X. Wang, T. Taleb, and V. C. M. Leung,
“Dependency-aware microservice deployment for edge computing: A
deep reinforcement learning approach with network representation,”
IEEE Transactions on Mobile Computing, vol. 23, no. 12, pp. 14 737–
14 753, 2024.

[2] J. Wang, Y. Sun, and W. T. Ushio, “Mission-aware UAV deployment
for post-disaster scenarios: A worst-case SAC-based approach,” IEEE
Transactions on Vehicular Technology, vol. 73, no. 2, pp. 2712–2727,
2024.

[3] Y. Chen, Y. Sun, C. Wang, and T. Taleb, “Dynamic task allocation and
service migration in edge-cloud iot system based on deep reinforcement
learning,” IEEE Internet of Things Journal, vol. 9, no. 18, pp. 16 742–
16 757, 2022.

[4] Y. Cao, S. Li, Y. Liu, Z. Yan, Y. Dai, P. S. Yu, and L. Sun, “A
comprehensive survey of ai-generated content (aigc): A history of
generative ai from gan to chatgpt,” arXiv preprint arXiv:2303.04226,
2023.

[5] Y. Wang, Y. Pan, M. Yan, Z. Su, and T. H. Luan, “A survey on chatgpt:
Ai-generated contents, challenges, and solutions,” IEEE Open Journal
of the Computer Society, 2023.

[6] Y. Yi, Z. Zhang, L. T. Yang, X. Deng, L. Yi, and X. Wang, “Social inter-
action and information diffusion in social internet of things: Dynamics,
cloud-edge, traceability,” IEEE Internet of things Journal, vol. 8, no. 4,
pp. 2177–2192, 2020.

[7] Y. Liu, H. Du, D. Niyato, J. Kang, Z. Xiong, C. Miao, A. Ja-
malipour et al., “Blockchain-empowered lifecycle management for ai-
generated content (aigc) products in edge networks,” arXiv preprint
arXiv:2303.02836, 2023.

[8] X. Chen, Z. Guo, X. Wang, H. H. Yang, C. Feng, J. Su, S. Zheng, and
T. Q. Quek, “Foundation model based native ai framework in 6g with
cloud-edge-end collaboration,” arXiv preprint arXiv:2310.17471, 2023.

[9] Y. Liang, P. Yang, Y. He, and F. Lyu, “Resource-efficient genera-
tive ai model deployment in mobile edge networks,” arXiv preprint
arXiv:2409.05303, 2024.

[10] X. Wang, C. Wang, X. Li, V. C. Leung, and T. Taleb, “Federated
deep reinforcement learning for internet of things with decentralized
cooperative edge caching,” IEEE Internet of Things Journal, vol. 7,
no. 10, pp. 9441–9455, 2020.

[11] C. Sun, X. Li, C. Wang, Q. He, X. Wang, and V. C. Leung, “Hierarchical
deep reinforcement learning for joint service caching and computation
offloading in mobile edge-cloud computing,” IEEE Transactions on
Services Computing, 2024.

[12] C. Wang, R. Li, W. Li, C. Qiu, and X. Wang, “Simedgeintel: A
open-source simulation platform for resource management in edge
intelligence,” Journal of Systems Architecture, vol. 115, p. 102016, 2021.

[13] K. Cao, Y. Liu, G. Meng, and Q. Sun, “An overview on edge computing
research,” IEEE access, vol. 8, pp. 85 714–85 728, 2020.

[14] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[15] C. Wang, R. Li, X. Wang, T. Taleb, S. Guo, Y. Sun, and V. C. M.
Leung, “Heterogeneous edge caching based on actor-critic learning with
attention mechanism aiding,” IEEE Transactions on Network Science
and Engineering, vol. 10, no. 6, pp. 3409–3420, 2023.

[16] Y. Wang, C. Liu, and J. Zhao, “Offloading and quality control for ai
generated content services in edge computing networks,” arXiv preprint
arXiv:2312.06203, 2023.

14

[17] S. Wang, Y. Deng, L. Hu, and N. Cao, “Edge-computing-assisted
intelligent processing of ai-generated image content,” Journal of Real-
Time Image Processing, vol. 21, no. 2, p. 39, 2024.

[18] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
Advances in neural information processing systems, vol. 33, pp. 6840–
6851, 2020.

[19] Y. Song and S. Ermon, “Generative modeling by estimating gradients
of the data distribution,” Advances in neural information processing
systems, vol. 32, 2019.

[20] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli,
“Deep unsupervised learning using nonequilibrium thermodynamics,”
in International conference on machine learning. PMLR, 2015, pp.
2256–2265.

[21] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image
synthesis,” Advances in neural information processing systems, vol. 34,
pp. 8780–8794, 2021.

[22] C. Zhang, C. Zhang, M. Zhang, and I. S. Kweon, “Text-to-
image diffusion models in generative ai: A survey,” arXiv preprint
arXiv:2303.07909, 2023.

[23] J. Ho and T. Salimans, “Classifier-free diffusion guidance,” arXiv
preprint arXiv:2207.12598, 2022.

[24] D. Linsley, A. Karkada Ashok, L. N. Govindarajan, R. Liu, and T. Serre,
“Stable and expressive recurrent vision models,” Advances in Neural
Information Processing Systems, vol. 33, pp. 10 456–10 467, 2020.

[25] A. Q. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. Mcgrew,
I. Sutskever, and M. Chen, “Glide: Towards photorealistic image gen-
eration and editing with text-guided diffusion models,” in International
Conference on Machine Learning. PMLR, 2022, pp. 16 784–16 804.

[26] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable
visual models from natural language supervision,” in International
conference on machine learning. PMLR, 2021, pp. 8748–8763.

[27] Y. Tian, Z. Zhang, Y. Yang, Z. Chen, Z. Yang, R. Jin, T. Q. Quek, and
K.-K. Wong, “An edge-cloud collaboration framework for generative
ai service provision with synergetic big cloud model and small edge
models,” arXiv preprint arXiv:2401.01666, 2024.

[28] C. Yan, S. Liu, H. Liu, X. Peng, X. Wang, F. Chen, L. Fu, and X. Mei,
“Hybrid sd: Edge-cloud collaborative inference for stable diffusion
models,” arXiv preprint arXiv:2408.06646, 2024.

[29] Z. Huang, K. C. Chan, Y. Jiang, and Z. Liu, “Collaborative diffusion
for multi-modal face generation and editing,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 6080–6090.

[30] S. Allmendinger, D. Zipperling, L. Struppek, and N. Kühl, “Collafuse:
Collaborative diffusion models,” arXiv preprint arXiv:2406.14429, 2024.

[31] H. Du, Z. Li, D. Niyato, J. Kang, Z. Xiong, D. I. Kim et al., “Enabling
ai-generated content (aigc) services in wireless edge networks,” arXiv
preprint arXiv:2301.03220, 2023.

[32] E. Luhman and T. Luhman, “Knowledge distillation in iterative
generative models for improved sampling speed,” arXiv preprint
arXiv:2101.02388, 2021.

[33] T. Salimans and J. Ho, “Progressive distillation for fast sampling of
diffusion models,” arXiv preprint arXiv:2202.00512, 2022.

[34] A. Sauer, D. Lorenz, A. Blattmann, and R. Rombach, “Adversarial
diffusion distillation,” in European Conference on Computer Vision.
Springer, 2025, pp. 87–103.

[35] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and
B. Poole, “Score-based generative modeling through stochastic differ-
ential equations,” arXiv preprint arXiv:2011.13456, 2020.

[36] M. Xu, H. Du, D. Niyato, J. Kang, Z. Xiong, S. Mao, Z. Han,
A. Jamalipour, D. I. Kim, X. Shen et al., “Unleashing the power of
edge-cloud generative ai in mobile networks: A survey of aigc services,”
IEEE Communications Surveys & Tutorials, 2024.

[37] Z. J. Wang, E. Montoya, D. Munechika, H. Yang, B. Hoover, and
D. H. Chau, “DiffusionDB: A large-scale prompt gallery dataset
for text-to-image generative models,” arXiv:2210.14896 [cs], 2022.
[Online]. Available: https://arxiv.org/abs/2210.14896

[38] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman,
M. Cherti, T. Coombes, A. Katta, C. Mullis, M. Wortsman et al., “Laion-
5b: An open large-scale dataset for training next generation image-text
models,” Advances in Neural Information Processing Systems, vol. 35,
pp. 25 278–25 294, 2022.

[39] C. Dewi, R.-C. Chen, Y.-T. Liu, and H. Yu, “Various generative adver-
sarial networks model for synthetic prohibitory sign image generation,”
Applied Sciences, vol. 11, no. 7, p. 2913, 2021.

[40] M. Elasri, O. Elharrouss, S. Al-Maadeed, and H. Tairi, “Image gener-
ation: A review,” Neural Processing Letters, vol. 54, no. 5, pp. 4609–
4646, 2022.

[41] A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in 2010
20th international conference on pattern recognition. IEEE, 2010, pp.
2366–2369.

Weijia Feng is a Vice Professor in the College of
Computer and Information Engineering, at Tianjin
Normal University. He received a Ph.D. from Tianjin
University, China 2012, and was a Joint Training
Ph.D student with the University of Oulu from
2010 to 2012. He has presided over several projects,
including the National Natural Science Foundation
of China, subtopics in National Key R&D Program
Projects, and many Enterprise R&D Projects. He
currently holds the position of Secretary General of
the Tianjin Association for Artificial Intelligence. He

is focusing on the research of Edge Computing, Edge AI, the Internet of
Things, and Machine Vision.

Ruojia Zhang obtained his Bachelor’s degree in
Electrical Electronics and Computer Science from
Guangxi University of Science and Technology in
2022 and is currently enrolled in the Software Engi-
neering master’s program at Tianjin Normal Univer-
sity, class of 2023. His current research areas are
knowledge distillation, edge computing, and edge
caching.

Yichen Zhu obtained his Bachelor’s degree in
Computer Science and Technology from Zhengzhou
Technology and Business University in 2022 and is
currently enrolled in the Software Engineering mas-
ter’s program at Tianjin Normal University, class of
2023. His research interests include edge computing
and edge caching.

Chenyang Wang (Member, IEEE) received the B.S.
and M.S. degrees in computer science and tech-
nology from Henan Normal University, Xinxiang,
China, in 2013 and 2017, respectively. He got a
PhD degree from the College of Intelligence and
Computing, Tianjin University, Tianjin, China, in
2023. He has also been a visiting PhD student
under the support of the China Scholarship Council
(CSC) at the School of Electrical Engineering, Aalto
University, Espoo, Finland in 2021. He is currently a
postdoctoral researcher at the College of Computer

Science and Software Engineering, at Shenzhen University. His current
research interests include edge computing, big data analytics, reinforcement
learning, and deep learning. He received the Best Student Paper Award of the
24th International Conference on Parallel and Distributed Systems from the
IEEE Computer Society in 2018. He also received the Best Paper Award from
the IEEE International Conference on Communications in 2021. In 2022, he
received the “IEEE ComSoc Asia-Pacific Outstanding Paper Award”.

15

Chuan Sun (Member, IEEE) received the B.S.
degree from Wuhan University of Science and Tech-
nology, Wuhan, China, in 2017, his Ph.D. degree
from the School of Big Data and Software Engi-
neering, Chongqing University, Chongqing, China,
in 2023. He is currently a research fellow in the
College of Computing and Data Science, Nanyang
Technological University, 50 Nanyang Avenue, Sin-
gapore. His current research interests include effi-
cient LLMs, federated learning, and mobile edge
computing. He has published more than 20 jour-

nal/conference papers in IEEE JSAC, TSC, TNSE, IEEE Network, and so
on.

Xiaoqiang Zhu (M’23) received the Ph.D. degree in
software engineering from Tianjin University, China,
in 2022, and the M.S. degree in computer science
from Dalian University of Technology, China, in
2018. He served as a joint Ph.D. student at ETH
Zurich, Switzerland, supported by the China Schol-
arship Council in 2021. He is currently an Assistant
Professor (Lecturer) at the School of Software Engi-
neering, Beijing Jiaotong University, China. He has
published scientific papers in international journals,
such as IEEE COMST, TMC, TNSE, etc., and served

as session chair for IEEE SmartIoT and PC member for IEEE CSCWD. He is
also the reviewer of distinguished journals, including IEEE/ACM ToN, IEEE
TMC, TWC, TNSE, IoT-J, etc. His research interests include the Internet of
Things, machine learning, and privacy protection.

Xiang Li received the B.S and M.S. degrees in Com-
puter Science and Technology by Tianjin Normal
University, China, in 2007 and 2010 respectively.
He has long been dedicated to the research of
computer networks and communications. At present,
his research interests encompass digital government
governance and technical responses.

Tarik Taleb (Senior Member, IEEE) received the
B.E. degree (with distinction) in information engi-
neering and the M.Sc. and Ph.D. degrees in infor-
mation sciences from Tohoku University, Sendai,
Japan, in 2001, 2003, and 2005, respectively. He
is currently a Professor at the Center of Wireless
Communications, at the University of Oulu, Finland.
He is the founder and the Director of the MOSA!C
Lab, Espoo, Finland. He was an Assistant Professor
with the Graduate School of Information Sciences,
Tohoku University, in a laboratory fully funded by

KDDI until 2009. He was a Senior Researcher and a 3GPP Standards Expert
with NEC Europe Ltd., Heidelberg, Germany. He was then leading the
NEC Europe Labs Team, involved with research and development projects
on carrier cloud platforms, an important vision of 4G systems. From 2005
to 2006, he was a Research Fellow with the Intelligent Cosmos Research
Institute, Sendai. He has also been directly engaged in the development
and standardization of the Evolved Packet System as a member of the
3GPP System Architecture Working Group. His current research interests
include architectural enhancements to mobile core networks (particularly
3GPP’s), network softwarization and slicing, mobile cloud networking, net-
work function virtualization, software-defined networking, mobile multimedia
streaming, intervehicular communications, and social media networking.

