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Abstract—In the context of advancing 6G, a substan-
tial paradigm shift is anticipated, highlighting comprehensive
everything-to-everything interactions characterized by numer-
ous connections and stringent adherence to Quality of Ser-
vice/Experience (QoS/E) prerequisites. The imminent challenge
stems from resource scarcity, prompting a deliberate transi-
tion to Computing-Network Convergence (CNC) as an auspi-
cious approach for joint resource orchestration. While CNC-
based mechanisms have garnered attention, their effectiveness
in realizing future services, particularly in use cases like the
Metaverse, may encounter limitations due to the continually
changing nature of users, services, and resources. Hence, this
paper presents the concept of Adaptable CNC (ACNC) as an
autonomous Machine Learning (ML)-aided framework crafted
for the joint orchestration of computing and network resources,
catering to dynamic and voluminous user requests with stringent
requirements. ACNC encompasses two primary functionalities:
state recognition and context detection. Given the intricate
nature of the user-service-resource space, the paper employs
dimension reduction to generate live, holistic, abstract system
states in a hierarchical structure. To address the challenges
posed by dynamic changes, Continual Learning (CL) is employed,
classifying the system state into contexts controlled by dedicated
ML agents, enabling them to operate efficiently. These two
functionalities are intricately linked within a closed loop overseen
by the End-to-End (E2E) orchestrator to allocate resources. The
paper introduces the components of ACNC, proposes a Metaverse
scenario to exemplify ACNC’s role in resource provisioning with
Segment Routing v6 (SRv6), outlines ACNC’s workflow, details
a numerical analysis for efficiency assessment, and concludes
with discussions on relevant challenges and potential avenues for
future research.

Index Terms—6G, Deterministic Networking, Computing-
Network Convergence (CNC), Joint Resource Allocation, Meta-
verse, Autonomous Orchestration, Dimension Reduction, Context
Detection, Continual Learning, Machine Learning, and Segment
Routing v6 (SRv6).

I. INTRODUCTION

In the foreseeable future for the 6th generation of com-
munication systems (6G), interrelations are anticipated to
enlarge beyond purely human-to-human connections to include
everything-to-everything interactions. The Metaverse, a virtual
realm of boundless possibilities, is poised for an era of rapid

and explosive expansion. In this digital universe, a diverse
multitude of both physical and digital objects will incessantly
engage, traverse, and coexist within a seamlessly intercon-
nected global network. This dynamic and immersive envi-
ronment is expected to be further amplified by the persistent
growth of connected objects, giving rise to a prolific exchange
of data and generating substantial volumes of upstream traffic.
In essence, the presence of billions of entities operating at
exceptionally high densities, along with the generation of
zettabytes of global data, is expected to be the norm of 6G
[1]. This explosive growth in demand must be acknowledged,
particularly as a substantial portion of this traffic will need to
be transmitted to computing nodes for processing before being
returned to users.

An additional aspect of the swift progress of technology
pertains to the wide spectrum of promising and innovative
services expected to materialize in the near future. One notable
example is the concept of Metaverse as a Service (MaaS),
empowering users to create, host, and manage personalized
virtual environments across various domains like healthcare,
finance, entertainment, and education. When combined with
other capabilities, such as Spatial Computing, facilitating the
convergence of physical and digital realms through Virtual,
Augmented, and Extended Realities (VR/AR/XR) [2] to create
a Digital Twin of a Person (DToP), these combined capabilities
yield hybrid services replicating an individual’s distinctive
attributes and enabling their coexistence in multiple locations,
bridging both digital and physical domains simultaneously. It
is essential to emphasize that these services necessitate strict
adherence to Quality of Service/Experience (QoS/E) standards.
The realization of these services hinges on several Key Perfor-
mance Indicators (KPIs), which include achieving millisecond-
level End-to-End (E2E) latency, an ultra-high reliability rate,
and a peak data rate in the terabit range.

The primary challenge in realizing the envisioned future
lies in addressing the substantial demands on computing
and network resources, coupled with stringent QoS/E re-
quirements, stemming from inherent resource scarcity. A
promising strategy to effectively address this challenge in-
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Fig. 1. A lakeside holographic meeting room in the Metaverse enabled by a cloud-network integrated infrastructure powered by technologies including
deterministic networking, time-sensitive networking, and intelligent medium access control, with users connected via 6G connections [3].

volves shifting from the prevailing paradigm of ”user ↔
network↔ computing” to a more integrated approach denoted
as Computing-Network Convergence (CNC), symbolized by
”user ↔ <network ⊕ computing>”. This paradigm shift has
garnered significant attention in recent years. Król et al. [4] ex-
plored this concept through Compute-First Networking (CFN),
applying Information-Centric Networking (ICN) principles
to automatically perform traffic routing on network devices
based on data object names. Two complementary approaches,
Compute-Aware Networking (CAN) [5] and Computing Power
Networking (CPN) [1], empower network devices to include
computing nodes’ capabilities and load statuses in their deci-
sions. Zhang et al. [6] proposed a comprehensive CNC archi-
tecture integrating resource allocation for both computing and
network domains. Additionally, Albalawi et al. [7] investigated
a concept similar to CNC, termed Integrated Network and
Compute Allocation (INCA).

The effectiveness of the mentioned joint-orchestration
strategies may face limitations, particularly in use cases like
the Metaverse. An extra complication is the dynamic nature
of user requirements, seamless transitions between services
in virtual realms, and frequent traversal between virtual and
physical environments. In such a dynamic ecosystem, the
live and scalable distribution of complex system states to
network devices, coupled with resource allocation decision-
making, becomes crucial. Existing approaches are unsuitable
for this task due to significant convergence times, potentially
compromising stringent QoS/E requirements amidst numerous
dynamic users and services [1], [8], [9]. This paper addresses
a gap in the existing literature by proposing a Machine Learn-
ing (ML)-based solution for the joint orchestration problem,
considering the dynamic nature of user behavior, service
characteristics, and infrastructure resources. Our proposed
solution, Adaptable CNC (ACNC), seamlessly integrates ML-
based state recognition and context detection across resources,

as well as domain and E2E orchestrators. Utilizing hierarchical
state recognition, ML-based reduction techniques efficiently
handle the complexity of extracting system states from the
vast user-service-infrastructure space for resource allocation.
Through context detection, dynamicity is handled by catego-
rizing reduced yet ubiquitous system states into predefined
contexts, enabling resource allocation agents dedicated to each
context to efficiently converge to optimal solutions over similar
states while maintaining divergence from distinct states.

The subsequent sections are organized as follows: Section
II delves into the problem at hand, elucidating the dynamic
nature of future use cases and the key role of Continual
Learning (CL) in the ACNC framework. Section III pro-
vides a comprehensive description of ACNC, including its
architecture, components, workflow, and a scenario within the
Metaverse. Performance assessment is covered in Section IV,
followed by a discussion on potential challenges and future
research directions in Section V. The paper concludes with
final remarks in Section VI.

II. FUNDAMENTALS

A. The Interwoven Cloud-Network Harmony
In the landscape of future 6G systems, a vision emerges

of integrated, decentralized computing resources spanning in-
network, edge, regional, and central nodes, interconnected by
robust networking technologies. The primary challenge for
facilitating extensive-scale services with copious data through-
put, ultra-broadband connectivity, exceptional reliability, and
minimal latency lies in the precise orchestration of these
resources. Illustrated in Fig 1 is a Metaverse scenario where
users engage in a holographic presence service, participating
in a conference room virtually located on a live lake shore.
To realize this experience, a sequence of steps is undertaken.
Initially, necessary service instances, including rendering, mo-
tion tracking, stereoscopic 3D display, and audio spatialization,
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are instantiated on available computing nodes. Subsequently,
a comprehensive dataset, encompassing video, audio, and
motion data, is meticulously captured from each user and
injected into the service instances following a predefined order
specified in the service’s function chaining map. Finally, the
resulting rendered content is transmitted to all users for display
on their respective devices, such as headsets.

Traditional resource orchestration methodologies are insuf-
ficient for organizing such integrated infrastructures to execute
such complex scenarios, as they typically operate within
individual domains, neglecting interdependencies among di-
verse domains and resources. In contrast, CNC-based ap-
proaches adopt a holistic perspective, considering the web
of interactions for optimal E2E orchestration and efficient
resource utilization. In the holographic conference scenario,
CNC-based orchestration can integrate network link status,
strategically placing service instances on computing nodes
to leverage shared links and minimize network utilization
for high-bandwidth requests. Additionally, they can mitigate
ripple effects from failures or limited functionality within one
domain on the other. For instance, in the event of congestion in
allocated network links, CNC-based approaches can reposition
service instances to open new, efficient networking opportu-
nities, maintaining strict QoS/E requirements. This adaptive
approach contrasts with conventional methods that attempt
to navigate congested links and seek alternative but merely
feasible paths to the same instance locations.

B. The Horizon of Ever-Changing Services

Despite the commendable performance of joint-
orchestration strategies, they prove inadequate in use
cases like the Metaverse, where the system experiences
constant and multidimensional fluctuations. In the virtual
conference scenario, users may physically navigate, adjusting
lighting or modifying the scene on their virtual 3D monitors,
requiring rapid adaptations in data collection and QoS/E
requirements. In another example, introducing users with
diverse language preferences may necessitate distinct service
instances for audio sampling, translation, and reconstruction.
Moreover, attendees may transition between virtual settings,
such as altering the visual platform from the lake shore to the
assembly line of their factory so that they may conduct an
in-depth analysis of processes, requiring changes in loaded
virtual environments. Dynamism is also introduced by the
underlying infrastructure network devices and computing
nodes, dispersed and operating under distinct administrations
with fluid characteristics. To effectively manage these ever-
changing situations, CNC-based approaches must swiftly
reorganize changes, often within microseconds, ensuring
seamless system operation.

C. The Wisdom of Continuous Conetx-Awareness

Efficient resource allocation in dynamic, complex systems
requires adaptive strategies that can anticipate changes and
respond appropriately in real-time. Traditional ML approaches
frequently face challenges in such environments due to their

inability to effectively manage non-stationary data. The acqui-
sition of new information can undermine previously learned
knowledge, leading to decreased performance on earlier tasks,
a phenomenon known as catastrophic forgetting. CL presents
a promising solution by enabling intelligent agents to con-
tinuously acquire new knowledge while retaining previously
learned information, ensuring accurate decision-making across
diverse system states [10]. To facilitate this, contexts are
introduced in CL, which partition various system states into
distinct categories, each representing a specific configuration
or operational condition. By organizing system states into
finite contexts with dedicated training processes, agents can
specialize in particular scenarios without interference, thereby
mitigating catastrophic forgetting and enhancing adaptability
and responsiveness. Furthermore, the modularity of this ap-
proach allows agents to be trained in parallel across different
contexts, utilizing parallel computing resources to reduce
training time. In this paper, we propose that the current context
can be defined by the existing service instances on computing
nodes. The introduction of new instances or the migration or
removal of existing ones facilitates the transition to a new
context. For example, C1 : {N1 ← I1,N2 ← I2} and
C2 :

{
N1 ← {I3, I4},N2 ← I1

}
, where Ci denotes context

i, Nj represents computing node j, and Ik indicates service
instance k.

III. ADAPTABLE COMPUTING-NETWORK CONVERGENCE

A. The Parties Involved

This paper involves three key parties. The first party, termed
the infrastructure, encompasses the integrated computing and
network resources of future 6G systems, along with their
orchestration components. We assume the infrastructure relies
on established protocols and data formats, ensures that data
exchanged between different systems are secured and accu-
rately interpreted. The second party is the service provider,
responsible for registering services within the system. These
services, illustrated by scenarios like the holographic meeting,
may involve single or multiple instances that communicate
according to a predefined sequence and data format outlined
in the service’s function chaining map specified during reg-
istration. The ultimate participant in the system is the user,
responsible for submitting requests to access registered ser-
vices. Each request requires an E2E connection, establishing
a link between the user and the relevant service instance(s).
This connection manages the transmission of data from diverse
sources (e.g., microphones, cameras, positioning sensors) to
the instances and delivers processed data, such as the live-
rendered holographic meeting scene, back to the user.

B. The Architecture of Adaptable Converged Orchestration

With the consideration of the involved parties, the core chal-
lenge involves the placement of registered service instances
onto computing nodes while simultaneously establishing E2E
paths that facilitate request connectivity and traversing the
required service instances, adhering to stringent QoS/E cri-
teria. The overarching objective is to address this challenge in
order to accommodate the systems’s dynamic nature. To meet
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Fig. 2. The Architecture of Adaptable Computing-Network Convergence (ACNC).

this, we introduce a framework named ACNC, representing
the integration of CL principles with the CNC concept, with
two primary principles: 1) optimizing infrastructure capacity
utilization through joint orchestration to maximize the number
of supported users, and 2) simplifying the complexity by defin-
ing discrete contexts, thereby enabling proactive readiness to
tackle context-specific fluctuations. The proposed framework
consists of various layers and components is depicted in Fig.
2 and defined in what follows.

1) Resources:

In the ACNC framework, each network device’s primary
function is the creation of short-term states. This involves
meticulous processing of traffic across all ports, where met-
rics like traffic characteristics, request age of information,
and QoS/E requirements are measured and collected for all
requests. The short-term resource state at time slot t is
denoted as φt

R, with a spatial dimensionality represented as
|φt

R| : U × S × R × P × MR
1. To comprehend causal

relationships between resource allocation decisions and state
transitions, short-term resource states for time slots [t−TR, t]
are aggregated to form a long-term resource state at time slot
t (φ̂t

R). Given the complexity and multidimensionality of this
state (|φ̂t

R| : |φt
R| × TR), we utilize ML techniques, including

Uniform Manifold Approximation and Projection (UMAP), a
method known for its ability to handle large datasets, to reduce
dimensions. The resulting reduced resource state is denoted

1Let U denotes the number of users, S signifies the number of active
services, R represents the quantity of requests per user and service, P
indicates the number of ports, and MR stands for the quantity of metrics
measured per request.

as rφt
R, with size S × P × ĂMR, where ĂMR represents the

size of the set representing each service over each port that
can accommodate from one indicator to all MR metrics. A
smaller set of indicators yields more concise reduced states,
simplifying state exchanges but diminishing precision in state
representations. After reduction, the device stores the reduced
resource state in the memory bank and then forwards it to the
network orchestrator. Given the reduced resource state size, the
required time and resources for this exchange are predictable.
The same operations are replicated on computing nodes, but
they construct states for each service instance implemented on
their infrastructure.

For each edge network device or Point of Arrival (PoA),
there is an additional task - the selection of service instances
for incoming requests and determining their respective net-
work paths. This task is executed in a context-aware manner,
where each PoA is equipped with an agent dedicated to a
unique context. These contexts are structured to enable a
singular agent to proficiently oversee the dynamics of the
system states associated with that context, leading to a notable
reduction in overall complexity to a more manageable scale.
The agent for each context maintains two action sets: 1) the
available service instances within that context, and 2) the avail-
able network paths from the PoA to these service instances.
When the context changes or a significant alteration occurs
in the system state, the PoA receives relevant information
about the active context and current system state in graph form
(as detailed in Section III-B3) from the network orchestrator.
Subsequently, the PoA activates the agent associated with
the active context, assigning service instances and network
paths to requests according to their chaining map within the
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Fig. 3. The process of state construction and reduction within the ACNC framework.

specified time slot. We employ a Reinforcement Learning
(RL) framework to implement this agent, wherein the system
state and request information serve as inputs. The agent takes
actions (instances and paths) to maximize a cumulative reward
signal over time (see Section III-B3). To process the input
effectively, the agent is implemented using Graph Neural Net-
works (GNNs) [11]. The GNN aggregates information from
neighboring nodes within the system state graph, allowing
the agent to incorporate both local context and global state
conditions into its decision-making process.

2) Domain Orchestrators:

The orchestration layer consists of two key components:
the network and computing orchestrators. Both orchestrators
aggregate reduced resource states from members in their
respective domains, establishing a comprehensive short-term
domain state for each time slot (φt

D). The network orchestrator
constructs a graphical representation for each service, reflect-
ing the physical network’s port-level structure. Simultaneously,
the computing orchestrator formulates an overlay map for
each service based on its service instance chain. Moreover,
the orchestrators monitor resource availability by collecting
metrics such as operational uptime, failure events, resource

utilization rates, power supply statuses, and environmental
conditions, adding them to φt

D, with the number of metrics
denoted by MD. Now, aggregating short-term domain states
for [t−TD, t] time slots, both orchestrators employ dimension
reduction ML models to create reduced domain states ( rφt

D)
and share them with the E2E orchestrator after storing them.
During this reduction, the domain state may be downsized
from S× (N ×P)2×MD×TD to S×N ×L× ĂMD

2, where
ĂMD represents the size of the domain-level service indicators
set. 1 to MD + ĂMR indicators may be included in this set,
affecting the size and precision of reduced states. The final task
involves conveying instructions from the E2E orchestrator to
underlying resources, adhering to specific standards and data
models, facilitated through the configuration functionality.

3) The E2E Orchestrator:

The primary responsibility of the E2E orchestrator is to
organize service instances and potential network paths for the
next time slot. First, it aggregates reduced states from both

2Let N denotes the number of network devices in the network domain
or the number of service instances in the computing domain, L signifies the
number of network links, and MD stands for the quantity of metrics measured
per resource.
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Fig. 4. A) A typical Metaverse use case incorporating an ACNC-enabled holographic meeting, and B) the demonstration of deterministic service provisioning
enabled by SRv6 in ACNC.

domains to form a comprehensive system state, denoted as φt
E ,

which is stored in the memory bank (depicted in Figure 3).
Since the network and computing orchestrators prepare the
bindings of service instances with their respective resources,
the E2E orchestrator concatenates these to generate a unified
service-network-computing binding for all services, providing
a system-wide view. Simultaneously, φt

E is labeled with a
context from a set of contexts of size C. To achieve this,
we first process the state using a GNN, then apply Vector
Quantization (VQ) to the GNN’s output to create embeddings
for each state, grouping similar states into the same context
based on the distance between the input state and the available
contexts [12]. Each context corresponds to a cluster of similar
states and is stored in the memory bank. Subsequently, the E2E
orchestrator optimizes the reward functions of PoAs to align
with system-level objectives—for example, selecting cheaper
allocations when the objective is minimizing cost. When the
accuracy of allocations in PoAs falls below a predetermined
threshold, the Adaptive Resonance Theory (ART) is utilized
to update the available set of contexts, which comprises two
bidirectionally connected layers: an input layer (F1) and a
recognition layer (F2) [13]. Upon presenting a state to F1,
neurons in F2 are activated based on the similarity between
the input and stored context weight vectors, potentially leading
to the generation of new contexts as necessary. The imple-
mentation of ART within the framework of VQ facilitates the
dynamic adjustment of the context set.

After preparing the system state and determining the current
context, Long Short-Term Memory (LSTM) and Gated Re-
current Unit (GRU) models are employed to predict the next

system state by analyzing historical temporal data from the
last TE system states [14]. These models incorporate recurrent
connections and maintain an internal memory, enabling them
to capture both short-term and long-term dependencies in the
data for effective future state forecasting. A check is then
performed on the predicted next state to detect any potential
infeasibilities based on the requirements of the implemented
services. Upon detecting infeasibility, the E2E orchestrator
employs a RL agent to efficiently select new computing nodes
for service instances. The agent uses GNN layers to process
the system state represented as a graph-structured data. It
is pre-trained to select a computing node for each service
instance in each specific system state, optimizing for the
system objective. Based on the selected computing nodes,
potential E2E paths from each PoA to the chosen computing
nodes are determined. The E2E orchestrator then collaborates
with the network orchestrator to inform PoAs of the updated
system state, context changes, as well as their action set,
and with the computing orchestrator to facilitate new instance
deployments.

4) The Service Orchestrator:

This layer assumes responsibility for overseeing the service
lifecycle within the ACNC framework. Its primary function
involves receiving, processing, and storing requests from ser-
vice providers, aiming to incorporate new services. These
requests should include crucial service parameters, such as
essential service instances, instance chaining maps, data mod-
els, and QoS/E requirements. The process of deploying new
service instances across the infrastructure is orchestrated by
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the resource arrangement component of the E2E orcherstrator,
which also includes the anticipated demand reported by the
service provider. Additionally, it monitors all implemented
services in an E2E fashion, maintaining a real-time, abstracted
representation of their quality for subsequent reporting to the
respective service provider. Beyond the specifics of registered
services, the memory bank houses a repository of pre-trained
agents, which play a vital role in efficient decision-making,
especially during the system’s initial phases when there is
no live data available for agent training. Furthermore, this
includes simulation tools and digital twins to assess the
system’s efficiency and determine potential adjustments.

C. Integrating ACNC with SRv6

To facilitate the transmission of packets for each request
session, the involvement of network devices along the path is
essential. One viable solution for conveying this information
is the utilization of the Segment Routing over IPv6 (SRv6)
protocol. SRv6 operates on the principles of source routing,
where the routing path is encoded within the packet header as
a sequenced set of segments or path hops. Each network device
along the list of segments, upon packet reception, removes its
associated label from the list and directs the packet toward the
network device indicated by the next label. This transmission
occurs directly in cases where the list is defined in a hop-by-
hop manner or via the shortest path if the path is divided into
segments, with one network device designated per segment.
SRv6 offers the advantage of precise traffic control without
the necessity for supplementary protocols or path signaling,
which results in a highly scalable solution.

Consider the holographic meeting scenario. As depicted in
Fig. 4-A, the raw data captured from each object i undergoes

a decomposition process into primary and auxiliary requests,
specifically encompassing the transmission of positional infor-
mation (Fm

i ) and skin textures/coloring (F s
i ). Depending on

the intended functionality, the primary requests are directed
towards high-capacity computing nodes, responsible for gen-
erating a realistic view structure. Subsequently, the outcomes
are forwarded to a low-capacity node, where they undergo
final refinement, utilizing the traffic from auxiliary requests
to reconstruct the complete scene. The final result is then
delivered to the respective users. Fig. 4-B represents the SRv6-
based routing between users U1 and U2 concerning request
Fm
1 . In accordance with the viable path options outlined in the

accessible paths table, assuming that the corresponding service
instances hosted on the core datacenter and NE4 offer optimal
selections, three feasible paths emerge. Considering the system
state, the routing agent designates P2 for Fm

1 , allowing it
to converge with the traffic from other primary requests at
the core datacenter, where it proceeds to the final polishing
stage on NE4. This selected path is then embedded in the
request packets in the form of a segmented stack. Ultimately,
the resulting output is conveyed to user U2.

D. The Workflow

The service provisioning process in ACNC, as illustrated in
Fig. 5, commences with the service provider registering a ser-
vice and its specific characteristics within the service orches-
tration layer. Subsequently, the efficient computing nodes for
implementing the instances of this service, along with potential
E2E network paths connecting PoAs to these computing nodes,
are determined by the E2E orchestrator. Instructions are then
dispatched to the computing orchestrator for the implementa-
tion of these instances on the designated computing nodes, and
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TABLE I
SIMULATION PARAMETERS.

Parameter Value
number of services 3

number of requests per time slot 300
number of links ∼ U{3V, 5V}

resource capacity bounds (network devices
and links, and computing nodes) ∼ U{250, 300} mbps

service instance capacity bound 20 mbps
energy consumptions per capacity unit ∼ U{10, 20}

energy consumptions per context change ∼ U{100, 200}
capacity requirement per request ∼ U{4, 8} mbps

bandwidth requirement per request ∼ U{2, 10} mbps
latency requirement per request ∼ U{1, 3} ms

packet size per request 1
profit per request U{5, 15}

the network orchestrator receives notifications regarding any
new context or system state, if applicable. Now, predefined
agents are loaded in the resource layer to manage the ser-
vice requests. By conveying traffic from PoAs to computing
nodes, a closed-loop process ensues, where resources, domain-
level orchestrators, and the E2E orchestrator collaborate to
construct the system state, leading to potential adjustments in
implemented instances, network paths, and rewards assigned
to PoA agents as necessary. Periodic or per-request reports are
also dispatched to the service provider, presenting the QoS/E-
related statistics of the implemented service.

IV. PERFORMANCE EVALUATION

A. Settings

In this section, we conduct an evaluation of the proposed
ACNC framework, assessing its efficacy in addressing the joint
challenge of service instance placement and assignment, along
with path selection in accordance with the communication
pattern delineated in Section III-B. The primary constraints
involve the capacity and bandwidth prerequisites of requests,
coupled with their admissible E2E latency threshold. The
objective function is to maximize the cumulative profit, for-
mulated as an ascending function of the number of fulfilled
requests, while concurrently minimizing total energy con-
sumption. This energy metric is construed as an ascending
function of the network traffic and computing tasks managed
by network devices and computing nodes, respectively. To
tackle this optimization problem, we employ a Double Deep
Q-Learning (DDQL) agent deployed on edge network devices,
leveraging linear Deep Neural Networks (DNNs) [15]. Further-
more, we extend this approach using Graph Neural Networks
(GNNs), denoted as DDQL-GNN, to explore the impact of in-
corporating graph-shaped system states (generated by the E2E
orchestrator) in the decision-making process. Our evaluation
encompasses a comparative analysis with random allocation
(RND) and optimum allocation (OPT) for a comprehensive
assessment of their respective efficiencies. RND entails the
random placement and assignment of instances and traffic
routing, while OPT represents results obtained by solving the
mixed-integer linear programming formulation of the problem
using CPLEX 12.10.
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Fig. 6. The mean energy consumption of supported requests (A) and the
total profit (B) vs. the system size. Note that the increase in system size
involves the generation of a new system graph. Specifically, resources with
high energy consumption are integrated into the graph from 10 to 13, those
with moderate energy consumption are introduced from 14 to 17, and the
remaining resources from 18 to 21 exhibit low energy consumption.

B. Results Analysis

The simulation results are illustrated in Fig. 6 for varying
system sizes, denoted by V . Each V represents the number
of network devices, each connecting a computing node to the
infrastructure. The presented results for each V and technique
represent the mean performance over 50 time slots, where each
incorporates randomly generated requests and infrastructures,
adhering to uniform parameters detailed in Table I. This
approach introduces dynamism into the simulations. In the
figure, it’s apparent that OPT serves as an upper performance
bound, while RND serves as the lower bound. Notably, when
all resources have high energy consumption rates or are fully
occupied (with N ≤ 13), RND demonstrates a similar energy
consumption pattern to DDQL-based techniques. However,
RND’s support rate is limited due to its lack of intelligence
and feasibility checks. In contrast, DDQL-GNN excels in
both scenarios, achieving near-optimal results by prioritizing
high-capacity resources with minimal energy consumption,
especially when multiple choices are available for each request
(N ≥ 13). However, DDQL exhibits less efficiency and
stability compared to DDQL-GNN, primarily due to its inferior
state decoding capability.

V. CHALLENGES & FUTURE RESEARCH DIRECTIONS

A. Model Pre-Training: Digital Twin Integration

A promising direction for future research in the ACNC
framework is the exploration of advanced pre-training method-
ologies for models and agents. Building models from scratch
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for each context can lead to suboptimal decision-making due
to the frequent changes in the data plane and the diversity of
technologies involved. Integrating digital twins emerges as a
valuable strategy. By incorporating digital twins into the pre-
training process and leveraging historical data, models can
perform effectively in real-world situations from the outset.
Key steps include identifying system components, modeling
their behavior, collecting relevant data, constructing request
and traffic trends, and replicating the system’s behavior when
all elements are integrated. A thorough investigation of these
steps is essential for generating efficient pre-trained models
within the ACNC framework.

B. Complexities in E2E ACNC Evaluation

In contrast to conventional communication systems, where
E2E performance metrics are primarily influenced by pre-
dictable networking devices and protocols, evaluating system-
wide performance in the ACNC framework poses a complex
challenge. The dynamic allocation of numerous network de-
vices and computing nodes within ACNC, coupled with the
unpredictable nature of ML-based decision-making, compli-
cates pinpointing precise sources of performance degradation.
Therefore, diverse services or users may perceive performance
variations differently. Pioneering research initiatives aiming to
establish a theoretical approach for measuring E2E perfor-
mance in scenarios with multiple ML agents introduced to
the data path will be crucial for the comprehensive utilization
of ACNC.

C. ML Efficiency: Balancing Precision and Cost

In the process of constructing system states and in all
optimization tasks of the E2E orchestrator, adjustable pa-
rameters play a crucial role in balancing precision and cost.
For instance, increasing the number of state features and
indicators, as well as the history window size, provides more
detailed state data. While this enhances the precision of ML
agents’ decisions, it necessitates increased storage for memory
banks, higher network bandwidth and longer time for vertical
data exchange, and additional computing capacity and time for
training and decision-making. Adjusting these parameters is a
prospective research avenue to maximize precision in resource
allocation while minimizing network and computing costs. Dy-
namically navigating the trade-offs between precision and cost
in ML-based decision-making represents a pivotal research
initiative with profound implications for future applications.

VI. CONCLUSION

This paper introduced the ACNC framework, comprising
service, E2E, domain, and resource building blocks. The
service orchestrator registers and monitors services for ACNC,
while the E2E orchestrator, the core of ACNC, provides
functionalities such as E2E system state construction, context
detection, reward optimization, and resource management.
This orchestrator is linked to resources through domain or-
chestrators (network and computing), which construct short-
term, long-term, and reduced domain states using received

state information and configure their resources. An analysis
of a Metaverse scenario demonstrated how ACNC, assisted
by SRv6-enabled infrastructure, can be utilized. The workflow
within ACNC was outlined, and simulations showed its supe-
rior performance compared to optimal and random strategies.
The paper concluded by discussing challenges and future
research directions related to digital twin integration, E2E
performance evaluation, and the balance between precision and
cost.
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