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Energy Efficient Short-Packet Covert
Communications for Full-Duplex Wireless Systems

with AoI Constraint
Yangfan Xu, Bin Yang, Lei Shao, Xiuwen Sun, Shikai Shen, Haibao Chen, Bao Gui, Tarik Taleb

Abstract—This paper investigates the energy efficient short-
packet covert communications in a full-duplex wireless system
with the constraint of age of information (AoI), where a transmit-
ter covertly transmits information to a receiver operating on full-
duplex communication mode, while a warden tries to detect the
existence of this covert transmission. For supporting various se-
curity and time-sensitive applications in Internet of Things (IoT)
with energy-limited devices, we focus on critical performances
of short-packet communications in terms of energy efficiency,
covertness and timeliness. To this end, we first analyze the covert
constraint condition, AoI and covert energy efficiency (CEE)
under the finite block length codewords. We then formulate CEE
maximization as an optimization problem with the constraints of
some parameters, i.e., the covert constraint condition, freshness of
information, block length, the prior transmission probability and
transmit powers of transmitter and receiver. We obtain maximum
CEE by jointly optimizing the block-length, prior transmission
probability and transmit powers using the interior point method.
Finally, numerical results are presented to illustrate the impact
of the parameters on CEE.

Index Terms—Short-packet communication, covert energy ef-
ficiency, age of information.
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I. INTRODUCTION

Internet of Things (IoT) in upcoming sixth-generation wire-
less systems will offer communication services for billions
of machine-type devices in extensive applications, e.g., smart
transportation, smart medical care, and smart home [1–3].
Most of these applications require high system performance
like high energy efficiency, low latency and high data rate
[4, 5]. Short-packet communications can significantly enhance
system performances, which have received widespread at-
tention from both the industrial and academic communities
[6, 7]. However, due to the inherent features of broadcast and
openness of wireless channel, short-packet communications
are facing a serious security threat. The existing cryptographic
methods mainly rely on high computational complexity to
ensure data transmission security, and the corresponding high
energy consumption cannot effectively meet the security re-
quirements for a large number of energy-limited IoT devices.
As an effective supplement to the methods, covert commu-
nications aim at hiding wireless communication process to
achieve data transmission security, which have been identified
as a cutting-edge technology [8]. Thus, it is critical to study
energy-efficient short-packet communications for supporting
various security-sensitive IoT applications.

Existing works can be categorized into covert communica-
tions without and with age of information (AoI) in wireless
systems (See Related Work of Section II for details), where
AoI is a fundamental metric of freshness of information. For
the works without AoI, these works explore covert perfor-
mances in terms of covert throughput and detection error
probability in various scenarios, such as noise uncertainty
[9], channel uncertainty [10], interference uncertainty [11],
artificial noise generated through full-duplex interferes with
the monitor’s detection [12–18], two-hop relay scenario [19],
and unmanned aerial vehicle (UAV)-assisted scenario [20].
However, both timeliness and covertness of information trans-
mission are of great importance for supporting time and pri-
vacy sensitive IoT applications like military communications,
vehicle networking, and cybersecurity emergency response.
Fortunately, AoI is widely recognized as a measure of timeli-
ness, which is defined as the time duration from the beginning
of generating the data packet [21]. For the works with AoI,
the main focus is on covert performances under AoI constraint
without the assistance of jamming signals [22–26]. It is notable
that short-packet communications have been widely adopted to
ensure the timeliness of information transmission [23, 27, 28].
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TABLE I: DIFFERENCES BETWEEN OUR SCHEME AND OTHER RELATED SCHEMES

References AoI Constraint Full-duplex
Technique

Covert Energy
Efficiency

Short-Packet
Communication

Transmit Probability
Control

Block-Length
Optimization

Interior Point
Method

[22] ✓ ✓ × × ✓ × ×
[23] ✓ × × ✓ × × ×
[24] ✓ × ✓ × ✓ × ×
[25] ✓ ✓ × ✓ × ✓ ×
[26] ✓ × × × × × ×
[27] × × × ✓ × ✓ ×
[28] ✓ × × ✓ × × ×
[29] ✓ × × ✓ × ✓ ×
[30] × ✓ ✓ × × × ×
[31] × × ✓ × × × ×

Our Scheme ✓ ✓ ✓ ✓ ✓ ✓ ✓

Particularly, the work in [29] explores the short-packet covert
communications for the first time.

Energy consumption poses a fundamental challenge for
IoT devices, which are inherently constrained by limited
power resources [30, 31]. For battery-powered nodes such
as remote sensors and actuators, operational lifetime depends
critically on energy efficiency. At the same time, in mission-
critical applications including industrial automation and mil-
itary surveillance, the timeliness of information, typically
measured by AoI, is essential for effective monitoring and
decision-making. In addition, in security-sensitive scenarios,
maintaining covert communication is crucial to prevent detec-
tion or interception by adversaries. Simultaneously achieving
high energy efficiency, data timeliness, and communication
covertness remains a critical and underexplored challenge in
wireless systems. Motivated by this observation, this paper
investigates the energy efficient short-packet communications
in a full-duplex wireless system with AoI constraint. In such
a system, a receiver operating over full-duplex mode can send
artificial noise to interfere with malicious node’s detection. The
differences between our work and existing works are shown in
Table I. The main contributions of this paper are summarized
as follows.

• We consider a wireless system consisting of a trans-
mitter, a full-duplex receiver and a detector warden.
The transmitter covertly transmits short-packets to the
receiver, while warden detects the covert transmission
process. Simultaneously, the receiver sends artificial noise
to confuse warden’s detection. In this system, we derive
a closed-form expression for the average AoI, which is
used to measure information freshness.

• We then derive the covert energy efficiency (CEE) to
evaluate the system energy consumption. We also formu-
late CEE’s maximization as an optimization problem with
the constraint of the transmit powers of the transmitter
and receiver, block length, and transmission probability.
We further use the interior point method to solve the
optimization problem.

• Finally, numerical results are presented to illustrate how
system parameters affect the CEE in the wireless system.

The remaining parts of this paper are organized as follows.

Section II introduces the related work. Section III presents the
system model and detection performance. Section IV models
the AoI and CEE. Section V formulates the CEE maximization
as an optimization problem and solves it. Section VI provides
numerical results. Section VII concludes the paper.

II. RELATED WORK

1) Covert Communications without AoI: The article [9]
analyzes the minimum error detection probability of the
warden under noise uncertainty, which they use to measure
the system’s covertness. Then, they derive the approximate
outage probability under the improper Gaussian signaling
(IGS) scheme and solve the optimization problem by jointly
designing the transmit power and IGS factor. This paper [10]
investigates covert communication in an uplink non-orthogonal
multiple access (NOMA) system under channel distribution
information uncertainty. It derives the optimal power settings
for reliable user and covert user under imperfect channel dis-
tribution information. The study [11] investigates the optimal
detection performance of the adversary Willie in two extreme
cases: one with perfect Channel State Information (CSI) and
the other with only Channel Distribution Information (CDI).
The results show that the quality of CSI does not help Willie
improve his detection performance. The work in [12] proposes
in their study a covert communication scheme in which the
sender tries to hide its transmissions with the assistance of
full-duplex receivers, while the monitoring party will use
radiometers to detect such covert transmissions. This study is
the first to explore the use of full-duplex receivers to control
artificial noise for covert communication.

The work in [13] investigates a wireless communication
system that achieves channel covertness with a full-duplex
receiver under channel fading conditions. The analysis shows
that although the transmission of artificial noise can cause self-
interference, it effectively improves communication covert-
ness. The article [14] investigates delay-constrained covert
communications with the aid of a full-duplex receiver. The
paper demonstrates that transmitting artificial noise at a fixed
power does improve the performance of covert communica-
tions with delay constraints. In most covert communication
studies, the primary CSI is usually assumed to be known or
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partially known. However, covert users may find it difficult
to perform channel estimation in practical situations, or even
to obtain the CSI of the monitoring party. The work in [15]
investigates the problem of realizing covert communications
over incoherent Rayleigh fading channels, both fast fading and
slow fading scenarios. It is shown that a positive covert rate
can be achieved in both fast fading and slow fading cases.
The realization of covert communications using full-duplex
receivers is promising for many applications.

In work [16], they study the robust joint power and position
optimization problem for full-duplex receivers in the presence
of warden position uncertainty. It analyzes the effect of the
warden position uncertainty on the covert communication
performance. Then, the robust optimization technique is used
to maximize the effective covert throughput of the transceiver
by optimizing the power and position of receivers while
satisfying the sufficient covertness requirement. In paper [17],
research has been carried out in the area of covert commu-
nication systems for UAVs. By using classical probability
theory, the optimal detection threshold and the minimum
detection error probability of warden under a typical UAV
covert communication model are analyzed. Considering the
maneuverability of UAVs, the proposed optimal position de-
sign method can significantly improve the covert performance
of UAV systems. The work in [19] focuses on a two-hop
wireless relay system, where a relay operates over either full-
duplex mode or half-duplex mode. The work in [20] utilizes
a UAV as relay and indicates that the full-duplex UAV can
enhance the transmission performance and confuse the illegal
detection of the warden. The aforementioned work focuses on
enhancing communication secrecy by exploiting the artificial
noise generated by full-duplex communication. However, the
timeliness of information is also crucial. Unfortunately, these
papers did not consider the impact of information timeliness.

2) Covert Communications with AoI: Information freshness
has been relatively little studied in covert communications.
This article [22] is the first to consider the requirement of
information freshness in covert communications, and proposes
a covertness maximization problem under the constraint of
average AoI. The work in [23] first constructs a novel covert
D2D communication model, analyzes its detection perfor-
mance from the perspective of the warden, and derives the
minimum detection error probability to measure the covert
nature of the communication. Then, under the constraints
of communication covertness and information freshness, it
jointly optimizes the transmission probability of data packets
and transmission power to maximize the CEE of D2D. The
work in [24] investigates the covert information freshness
in Intelligent Reflecting Surface (IRS)-assisted multi-antenna
communication. By using channel statistics information, the
paper jointly designs the active beamforming of transmitter
and receiver, the passive beamforming of the IRS, and the
packet length of confidential packets as a non-convex opti-
mization problem. Finally, it is concluded that the optimized
packet length decreases as the quality of the covert channel
improves.

The work in [25] considers the age of channel (AoC)
change, which is the time duration of CSI close to static

Fig. 1: System model for the full-duplex wireless covert
communication system.

and is important for reliable covert communication in dy-
namic environments. Depending on the packet length or the
dynamic environment, channel changes may occur faster than
the optimal AoI. This paper [26] proposes a dynamic covert
communication scheme in time-varying channels by jointly
optimizing the AoI and AoC, a novel metric that quantifies
the duration of stable channel states. Addressing the limitation
of existing works that prioritize AoI but neglect AoC, the
scheme dynamically adjusts transmission strategies to ensure
reliable covert communication under channel dynamics. We
can observe that the aforementioned work primarily focuses on
minimizing the age of information and enhancing the system’s
covertness. We know that artificial noise generated by full-
duplex techniques can further improve the system’s covertness.
Therefore, it is worthwhile to delve into how to incorporate
full-duplex techniques to achieve a better balance between
communication timeliness and covertness.

III. SYSTEM MODEL AND DETECTION
PERFORMANCE

As shown in Fig. 1, we consider a wireless system con-
sisting of a warden WD, a transmitter TX, and a full-duplex
receiver RX. In the system, TX attempts to covertly transmit
short-packets to RX, while WD detects the very existence of
covert transmission. TX, RX, and WD operate on the same
sub-30 GHz frequency bands, such as the 2.4 GHz ISM band
and the 800 MHz narrowband IoT band. Each of TX and WD
is equipped with a single omnidirectional dipole antenna, while
RX utilizes two directional patch antennas to simultaneously
receive short-packets and transmit artificial noise (AN) to
confuse WD.

We model each channel as an independent Nakagami-m
fading channel considering discrete-time slots. This means
that the channel gains remain unchanged at each slot and



4

independently change from one slot to another. The channel
gain from TX to RX, that from TX to WD and that from RX
to WD are represented as 𝐻𝑇𝑅, 𝐻𝑇𝑊 , and 𝐻𝑅𝑊 , respectively.
The gain of the self-interference channel is represented as
𝐻𝑅𝑋𝑅𝑋. 𝐻𝑇𝑅, 𝐻𝑇𝑊 , 𝐻𝑅𝑊 , 𝐻𝑅𝑋𝑅𝑋 ∼ 𝑁𝑎𝑘𝑎𝑔𝑎𝑚𝑖(𝑚, 1), where
𝑚 is a fading parameter describing the severity of small-
scale fading. The larger 𝑚, the milder the fading. When
𝑚 = 1, the Nakagami-m fading channel degenerates into
Rayleigh channel, corresponding to typical non-line-of-sight
environments. When 𝑚 > 1, the Nakagami-m fading channel
tends to Rician channel, corresponding to environments with
a strong line-of-sight path.

At each time slot, TX covertly transmits each short-packet
containing 𝐾 nats of information with a prior transmission
probability 𝑃𝑡𝑟𝑎. We use statistical hypothesis testing to de-
termine whether TX is active to send the covert short-packet.
The alternative hypothesis 𝐻1 represents that TX is active,
while the null hypothesis 𝐻0 corresponds to the case where
TX is silent. RX’s received signal 𝑦𝑅𝑋 at each time slot is as
follows

𝑦𝑅𝑋 =
√︁
𝑃𝑇𝑋𝐻𝑇𝑅𝑥𝑇𝑋 +

√︁
𝜙𝑃𝑅𝑋𝐻𝑅𝑋𝑅𝑋𝑣𝑅𝑋 + 𝑛𝑅𝑋 . (1)

Here, 𝜙 ∈ [0, 1] denotes the self-interference cancellation
coefficient, which quantifies the degree of self-interference
mitigation achieved by various techniques. Compared with
conventional methods such as frequency isolation, polarization
isolation, and spatial isolation that rely on hardware or signal-
domain separation, our approach models their effects in a uni-
fied manner through 𝜙. Specifically, 𝜙 = 0 represents complete
cancellation of self-interference (e.g., by using frequency-
division multiplexing or antenna separation), while 𝜙 = 1
indicates no cancellation. By adjusting 𝜙, the performance
of different self-interference mitigation techniques can be
effectively represented and compared in a unified manner. The
signal transmit power of TX is denoted by 𝑃𝑇𝑋, and the AN
power of RX is denoted by 𝑃𝑅𝑋. 𝑥𝑇𝑋 denotes the signal that
TX transmits to RX. 𝑣𝑅𝑋 ∼ CN(0, 1) denotes the normalized
complex Gaussian noise signal with zero mean transmitted
by RX, which can confuse WD’s detection and cause self-
interference to RX. 𝑛𝑅𝑋 ∼ CN(0, 𝜎2

𝑅𝑋
) represents additive

white Gaussian noise (AWGN) with mean 0 and variance 𝜎2
𝑅𝑋

.
WD’s observation signal is as follows

𝐻0 : 𝑧 =
√︁
𝑃𝑅𝑋𝐻𝑅𝑊𝑣𝑅𝑋 + 𝑛𝑊𝐷 , (2)

and

𝐻1 : 𝑧 =
√︁
𝑃𝑇𝑋𝐻𝑇𝑊𝑥𝑇𝑋 +

√︁
𝑃𝑅𝑋𝐻𝑅𝑊𝑣𝑅𝑋 + 𝑛𝑊𝐷 , (3)

where 𝑧 represents received signal at WD. When 𝐻0 is true,
WD receives an interference signal of power 𝑃𝑅𝑋 from RX.
When 𝐻1 is true, WD receives a signal of power 𝑃𝑇𝑋 from
TX and an interference signal of power 𝑃𝑅𝑋 from RX. Here,
𝑛𝑊𝐷 ∼ CN(0, 𝜎2

𝑊𝐷
) represents AWGN with mean 0 and

variance 𝜎2
𝑊𝐷

.

A. Detection Performance at WD

We use 𝑃0 and 𝑃1 to denote the probability distributions
of WD’s channel observation under 𝐻0 and 𝐻1, respectively.

To determine the detection error probability at WD, we define
two types of errors in covert communications: false alarm and
miss detection. The former represents WD making a decision
favorable to 𝐻1 when 𝐻0 is true, while the latter represents
WD making a decision favorable to 𝐻0 when 𝐻1 is true.
The false alarm probability and miss detection probability are
denoted by 𝑃𝐹𝐴 and 𝑃𝑀𝐷 , respectively. Then, the detection
error probability 𝑃𝑊𝐸 at WD is determined as

𝑃𝑊𝐸 = (1 − 𝑃𝑡𝑟𝑎)𝑃𝐹𝐴 + 𝑃𝑡𝑟𝑎𝑃𝑀𝐷 , (4)

where 𝑃𝑡𝑟𝑎 is the prior transmission probability. We use a
generalized bound on the total variation distance to guarantee
the covert constraint, and then we have

𝑃𝑊𝐸 ≥ min{𝑃𝑡𝑟𝑎1 , 𝑃𝑡𝑟𝑎} − max{𝑃𝑡𝑟𝑎1 , 𝑃𝑡𝑟𝑎}𝑉 (𝑃0, 𝑃1), (5)

where 𝑃𝑡𝑟𝑎1 = 1 − 𝑃𝑡𝑟𝑎, and 𝑉 (𝑃0, 𝑃1) is the total dis-
tance between 𝑃0 and 𝑃1. Covert communications require
𝑃𝑊𝐸 ≥ min{𝑃𝑡𝑟𝑎1 , 𝑃𝑡𝑟𝑎} − 𝜖 to ensure communication covert-
ness, where 𝜖 is an arbitrarily small constant representing
the covert requirement [32]. Therefore, according to (5),
requiring max{𝑃𝑡𝑟𝑎1 , 𝑃𝑡𝑟𝑎}𝑉 (𝑃0, 𝑃1) ≤ 𝜖 also ensures covert
communications. According to the Pinsker inequality, we have

𝑉 (𝑃0, 𝑃1) ≤
√︂

1
2
𝐷 (𝑃0 | | 𝑃1). (6)

where 𝐷 (𝑃0 | | 𝑃1) is the relative entropy between 𝑃0 and 𝑃1.
Then, we can derive

𝐷 (𝑃0 | | 𝑃1) ≤
2𝜖2

max{1 − 𝑃𝑡𝑟𝑎, 𝑃𝑡𝑟𝑎}2 . (7)

The formula for the relative entropy between 𝑃0 and 𝑃1 is

𝐷 (𝑃0 | | 𝑃1) = 𝐷𝐿
∫
𝑋

𝑃0 (𝑥) ln
(
𝑃0 (𝑥)
𝑃1 (𝑥)

)
𝑑𝑥, (8)

where 𝐷𝐿 is the block length. The expression for the relative
entropy 𝐷 (𝑃0 | | 𝑃1) can be derived easily using equation (8).
Therefore, equation (7) represents our covertness requirement
throughout the paper.
𝑃0 (𝑥) and 𝑃1 (𝑥) are the densities of 𝑃0 and 𝑃1 , respec-

tively. We proceed to derive the probability density functions
𝑃0 (𝑥) and 𝑃1 (𝑥) of the signals received at WD’s end under the
scenarios where TX does not transmit and where it does, re-
spectively, according to equations (7) and (8). Assuming these
equations correspond to the cases where 𝐻0 and 𝐻1 are true,
respectively, the received signals at WD follow the Nakagami
distribution with the scale parameters of 𝑃𝑅𝑋 |𝐻𝑅𝑊 |2 + 𝜎2

𝑊𝐷

and 𝑃𝑇𝑋 |𝐻𝑇𝑊 |2 + 𝑃𝑅𝑋 |𝐻𝑅𝑊 |2 + 𝜎2
𝑊𝐷

, respectively. 𝑃0 (𝑥) is
given by

𝑃0 (𝑥)=
2𝑚𝑚𝑥2𝑚−1

Γ(𝑚)(𝑃𝑅𝑋 |𝐻𝑅𝑊 |2+𝜎2
𝑊𝐷

)𝑚
exp

(
− 𝑚𝑥2

𝑃𝑅𝑋 |𝐻𝑅𝑊 |2+𝜎2
𝑊𝐷

)
,

(9)
and 𝑃1 (𝑥) is given by the following expression

𝑃1 (𝑥) =
2𝑚𝑚𝑥2𝑚−1

Γ(𝑚)(𝑃𝑇𝑋 |𝐻𝑇𝑊 |2 + 𝑃𝑅𝑋 |𝐻𝑅𝑊 |2 + 𝜎2
𝑊𝐷

)𝑚

× exp

(
− 𝑚𝑥2

𝑃𝑇𝑋 |𝐻𝑇𝑊 |2 + 𝑃𝑅𝑋 |𝐻𝑅𝑊 |2 + 𝜎2
𝑊𝐷

)
, (10)
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Fig. 2: The relationship between age of information and time.

where Γ(𝑚) represents Gamma function. Substituting equa-
tions (9) and (10) into equation (8), we obtain

𝐷 (𝑃0 | | 𝑃1) = 𝐷𝐿𝑚(ln
(
1 + 𝑃𝑇𝑋 |𝐻𝑇𝑊 |2

𝑃𝑅𝑋 |𝐻𝑅𝑊 |2 + 𝜎2
𝑊𝐷

)
− 𝑃𝑇𝑋 |𝐻𝑇𝑊 |2

𝑃𝑇𝑋 |𝐻𝑇𝑊 |2 + 𝑃𝑅𝑋 |𝐻𝑅𝑊 |2 + 𝜎2
𝑊𝐷

)

= 𝐷𝐿𝑚(ln(1 + 𝜁) − 𝜁

𝜁 + 1
), (11)

where 𝜁 =
𝑃𝑇𝑋 |𝐻𝑇𝑊 |2

𝑃𝑅𝑋 |𝐻𝑅𝑊 |2+𝜎2
𝑊𝐷

denotes the signal-to-interference-
noise ratio (SINR) at WD. In covert communications, the
transmission power is usually small resulting in a small SINR
at WD. When 𝑥 tends to 0, ln(1 + 𝑥) ∼ 𝑥. Thus, the covert
constraint can be simplified as

𝐷𝐿𝑚𝜁
2

𝜁 + 1
≤ 2𝜖2

max{1 − 𝑃𝑡𝑟𝑎, 𝑃𝑡𝑟𝑎}2 . (12)

IV. AGE OF INFORMATION AND COVERT ENERGY
EFFICIENCY MODELING

A. Age of Information

In this system, TX encodes the generated status updates
into a short data packet and transmits the encoded short data
packet to RX. We assume that TX generates a short data
packet periodically within a time slot duration 𝑇𝑠 , and TX
transmits the short data packet with a certain probability 𝑃𝑡𝑟𝑎

to ensure covertness. Given that coding and propagation delays
are negligible in short-packet communication, we approximate
the time slot duration 𝑇𝑠 as the transmission delay 𝐷𝐿/𝐵,
where 𝐵 denotes the system bandwidth [29]. Moreover, to
ensure the timeliness of the communication, we do not con-
sider retransmission mechanisms [30]. Due to the impact of
decoding failures, RX may fail to successfully receive the data
packet. Therefore, we define the valid packet to characterize
the data packet transmitted by TX and successfully decoded

by RX. The AoI is defined as the time elapsed since the
generation of the latest valid packet. If the latest valid packet
received by RX at time 𝜏 is the 𝑘-th valid packet, generated
at time 𝑎𝑘 , then the instantaneous AoI △(𝜏) is

△(𝜏) = 𝜏 − 𝑎𝑘 . (13)

The AoI increases linearly over time and resets to the age of
the most recent valid packet whenever RX receives a new one.
As shown in Fig. 2, we consider an example of AoI evolution
over time. When TX does not send the data packet (i.e., null
packet) or when TX sends the data packet but RX fails to
decode it (i.e., error packet), the AoI rises steadily over time
until RX successfully receives a valid packet. We define the
generation time and reception time of the 𝑘-th valid packet
as 𝑎𝑘 and 𝑎

′

𝑘
, respectively. The residence time of the 𝑘-th

valid packet can be expressed as 𝑈𝑘 = 𝑎
′

𝑘
− 𝑎𝑘 , which is fixed

and equal to the original age of the valid packet at RX’s end,
i.e., 𝑈𝑘 = 𝑇𝑠 . Due to the probabilistic transmission strategy
and potential decoding failures of data packets, there may
be multiple time slots (denoted by 𝑁) between consecutive
valid packets received by RX. 𝐴𝑘 represents the time interval
between the 𝑘-th and (𝑘 − 1)-th consecutive valid packets
received by RX, i.e., 𝐴𝑘 = 𝑎

′

𝑘
− 𝑎′

𝑘−1. The average AoI is
a critical metric for assessing the freshness of data packet at
the receiving end [22]. For a time interval (0, 𝑇), the average
AoI is given by

𝐴𝑜𝐼 = lim
𝑇→∞

1
𝑇

∫ 𝑇

0
△(𝜏) 𝑑𝜏. (14)

From the above equation, the continuous-time integral∫ 𝑇
0 △(𝜏) 𝑑𝜏 in (14) represents the aggregate area under the

AoI curve, as shown in Fig. 2. To facilitate the derivation of
an analytical expression, this area is decomposed into a sum
of geometric areas 𝑆𝑘 in (15), where 𝑆𝑘 represents the shaded
area in Fig. 2 accumulated over the interval from 𝑎

′

𝑘−1 to 𝑎
′

𝑘
.

Therefore, the average AoI is the calculated as the sum of
𝑆𝑘 divided by the total time 𝑇 , resulting in reformulation of
equation (14) as (15), which is given by

𝐴𝑜𝐼 = lim
𝑇→∞

1
𝑇

𝐾 (𝑇 )∑︁
𝑘=1

𝑆𝑘 = lim
𝑇→∞

𝐾 (𝑇)
𝑇

𝐸 (𝑆). (15)

In the equation, 𝐾 (𝑇) represents the number of valid packets
received by RX during the time interval (0, 𝑇), 𝐸 (𝑆) denotes
the average value of 𝑆𝑘 during the time interval (0, 𝑇).
Additionally, lim𝑇→∞

𝐾 (𝑇)
𝑇

can be understood as the average
arrival rate of valid packet at RX. As shown in Fig. 2, the upper
half of 𝑆𝑘 is composed of an isosceles triangle. Assuming there
are 𝑁 time slots between the (𝑘−1)-th and 𝑘-th valid packets,
the first moment of 𝐴𝑘 is given by

𝐸 (𝐴𝑘) =
∞∑︁
𝑛=1

𝑛𝑇𝑠𝑃(𝑁 = 𝑛)

= 𝑃𝑡𝑟𝑎 (1 − 𝑃𝑑𝑒)𝑇𝑠
∞∑︁
𝑛=1

𝑛(1 − 𝑃𝑡𝑟𝑎 (1 − 𝑃𝑑𝑒))𝑛−1

=
𝐷𝐿

𝐵𝑃𝑡𝑟𝑎 (1 − 𝑃𝑑𝑒)
,

(16)
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where 𝑃𝑑𝑒 is the decoding error probability. Therefore, the
average arrival rate of valid packet is

lim
𝑇→∞

𝐾 (𝑇)
𝑇

=
1

𝐸 (𝐴𝑘)
=
𝐵𝑃𝑡𝑟𝑎

𝐷𝐿
(1 − 𝑃𝑑𝑒). (17)

Assuming the time interval between the (𝑙 − 1)-th and the
𝑙-th transmitted data packets is △(𝑇), then its first moment is
given by

𝐸 (△(𝑇)) = 𝐷𝐿

𝐵
𝑃𝑡𝑟𝑎

∞∑︁
𝑛=1

𝑛(1 − 𝑃𝑡𝑟𝑎)𝑛−1 =
𝐷𝐿

𝑃𝑡𝑟𝑎𝐵
. (18)

Then, its second moment is given by

𝐸 (△2 (𝑇))=
𝐷2
𝐿

𝐵2 𝑃
𝑡𝑟𝑎

∞∑︁
𝑛=1

𝑛2 (1 − 𝑃𝑡𝑟𝑎)𝑛−1=
𝐷2
𝐿

𝑃𝑡𝑟𝑎𝐵2 (
2
𝑃𝑡𝑟𝑎

−1).

(19)
From equations (16), (18), and (19), the second moment of

𝐴𝑘 can be obtained as follows

𝐸 (𝐴2
𝑘) =

∞∑︁
𝑛=1

𝐸{(△(𝑇))2 |𝑁 = 𝑛}𝑃(𝑁 = 𝑛)

=

∞∑︁
𝑛=1

𝐸{
𝑛∑︁
𝑖=1

△(𝑇)2
𝑖 +

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

△(𝑇)𝑖△(𝑇) 𝑗 }𝑃(𝑁 = 𝑛)

= (1 − 𝑃𝑑𝑒)
∞∑︁
𝑛=1

𝑀 (1 − (1 − 𝑃𝑑𝑒))𝑛−1

=
2𝐷2

𝐿

(𝑃𝑡𝑟𝑎𝐵(1 − 𝑃𝑑𝑒))2 −
𝐷2
𝐿

𝑃𝑡𝑟𝑎 (1 − 𝑃𝑑𝑒)𝐵2 .

(20)
Because △(𝑇)𝑖 and △(𝑇) 𝑗 are independently distributed, we
have 𝑀 = 𝑛𝐸 (△2 (𝑇)) + 𝑛(𝑛 − 1)𝐸 (△(𝑇))2.

As shown in Fig. 2, the area of 𝑆𝑘 is composed of an
isosceles triangle and a rectangle, so

𝐸 (𝑆) = 1
2
𝐸 (𝐴2

𝑘) + 𝑇𝑠𝐸 (𝐴𝑘). (21)

Substituting equations (16) and (20) into (21), we can obtain

𝐸 (𝑆) =
2𝐷2

𝐿
+ 𝑃𝑡𝑟𝑎𝐷2

𝐿
(1 − 𝑃𝑑𝑒)

2(𝑃𝑡𝑟𝑎𝐵(1 − 𝑃𝑑𝑒))2 . (22)

Therefore, by using equations (15), (17), and (22), we obtain

𝐴𝑜𝐼 =
𝐷𝐿

𝑃𝑡𝑟𝑎𝐵(1 − 𝑃𝑑𝑒)
+ 𝐷𝐿

2𝐵
. (23)

B. Covert Energy Efficiency

For a given coding rate 𝑅𝑏 = 𝐾/𝐷𝐿 [33], 𝑃𝑑𝑒 represents
the decoding error probability, which is given by [29, 34]

𝑃𝑑𝑒 ≈ 𝑄(
√
𝐷𝐿 (1 + 𝛾𝑏) (ln(1 + 𝛾𝑏) − 𝑅𝑏)√︁

𝛾𝑏 (2 + 𝛾𝑏)
), (24)

where 𝛾𝑏 is the SINR at RX, given by the following expression

𝛾𝑏 =
𝑃𝑇𝑋 |𝐻𝑇𝑅 |2

𝜙𝑃𝑅𝑋 |𝐻𝑅𝑋𝑅𝑋 |2 + 𝜎2
𝑅𝑋

. (25)

The Q function is given by the following expression

𝑄(𝑥) = 1
√

2𝜋

∫ ∞

𝑥

exp
(
− 𝑡

2

2

)
𝑑𝑡. (26)

Based on equations (24), (25), and (26), an approximate value
for the decoding error probability can be derived [29, 34]

𝑃𝑑𝑒 ≈



1, 𝛾𝑏 <
𝐾

𝐷𝐿
−
√
𝐾𝜋

𝐷𝐿
,

1
2
− 𝐷𝐿

2
√
𝐾𝜋

(
𝛾𝑏 −

𝐾

𝐷𝐿

)
,

𝐾

𝐷𝐿
−
√
𝐾𝜋

𝐷𝐿
≤ 𝛾𝑏

≤ 𝐾

𝐷𝐿
+
√
𝐾𝜋

𝐷𝐿
,

0, 𝛾𝑏 >
𝐾

𝐷𝐿
+
√
𝐾𝜋

𝐷𝐿
.

(27)

The effective covert rate 𝐶 can be expressed as

𝐶 = 𝑃𝑡𝑟𝑎𝐵𝑅𝑏 (1 − 𝑃𝑑𝑒), (28)

where 𝐵 denotes system bandwidth. To maximize the uti-
lization of limited energy at the transmitter, we introduce a
new metric called CEE. This metric measures the number
of covert bits that can be successfully transmitted per unit
of energy. The goal of this metric is to maximize energy
efficiency while ensuring the covertness of the communication.
The mathematical formula is as follows

𝜂𝑎 =
𝑃𝑡𝑟𝑎𝐵𝑅𝑏 (1 − 𝑃𝑑𝑒)
𝑃𝑇𝑋 + 𝑃𝑅𝑋 + 𝑃𝑐

, (29)

where 𝜂𝑎 is the CEE, 𝑃𝑐 is the circuit power consumption.

V. COVERT ENERGY EFFICIENCY MAXIMIZATION

In this section, our aim is to maintain the freshness of
information transmitted from TX to RX while ensuring com-
munication covertness, then maximize the CEE. Specifically,
we first formulate CEE maximization as a constrained op-
timization problem. Then, we use an interior point method
with the filter line search and inertia correction to solve this
optimization problem by optimizing the transmission powers
at the transmitter and receiver, prior transmission probability,
and block length.

A. Problem Formulation

Our goal is to optimize transmit power of TX and RX, block
length, and the prior transmission probability to maximize
the CEE, while satisfying covert requirements and maximum
power constraints. This can be formulated as the following
optimization problem

max
𝐷𝐿 ,𝑃𝑇𝑋 ,𝑃𝑅𝑋 ,𝑃

𝑡𝑟𝑎
𝜂𝑎,

𝑠.𝑡. 𝐷 (𝑃0 | | 𝑃1) ≤
2𝜖2

max{1 − 𝑃𝑡𝑟𝑎, 𝑃𝑡𝑟𝑎}2 , (29a)

𝐴𝑜𝐼 ≤ 𝛿, (29b)

𝐷𝑚𝑖𝑛𝐿 < 𝐷𝐿 < 𝐷
𝑚𝑎𝑥
𝐿 , (29c)

0 < 𝑃𝑇𝑋 < 𝑃𝑚𝑎𝑥𝑇𝑋 , (29d)
0 < 𝑃𝑅𝑋 < 𝑃𝑚𝑎𝑥𝑅𝑋 , (29e)
0 ≤ 𝑃𝑡𝑟𝑎 ≤ 𝑃𝑡𝑟𝑎𝑚𝑎𝑥 , (29f)

where (29a) represents the covert requirement constraint, (29b)
represents the AoI constraint, and (29c) represents the block
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length constraint. (29d) and (29e) represent the transmit power
constraints of TX and RX, respectively, and (29f) represents
the prior transmission probability constraint. Here, 𝛿 denotes
the maximum acceptable average AoI, 𝐷𝑚𝑎𝑥

𝐿
and 𝐷𝑚𝑖𝑛

𝐿
rep-

resent the maximum block length and minimum block length,
𝑃𝑚𝑎𝑥
𝑇𝑋

and 𝑃𝑚𝑎𝑥
𝑅𝑋

denote the maximum transmit power of TX
and RX, and 𝑃𝑡𝑟𝑎𝑚𝑎𝑥 denotes the maximum prior transmission
probability.

We consider the case that 0 < 𝑃𝑑𝑒 < 1, and we can obtain
the following expression of CEE 𝜂𝑎 by substituting equation
(27) into equation (29)

𝜂𝑎 =
𝑃𝑡𝑟𝑎𝐵𝐾 (𝐷𝐿𝛾𝑏

√︃
1
𝐾 𝜋

+ 1 −
√︃
𝐾
𝜋
)

2𝐷𝐿 (𝑃𝑇𝑋 + 𝑃𝑅𝑋 + 𝑃𝑐)
. (30)

When 0 < 𝑃𝑑𝑒 < 1, 𝐾−
√
𝐾 𝜋

𝛾𝑏
< 𝐷𝐿 < 𝐾+

√
𝐾 𝜋

𝛾𝑏
. We

define 𝐷𝑙𝑜𝑤
𝐿

< 𝐷𝐿 < 𝐷
𝑢𝑝

𝐿
as the intersection of 𝐷𝑚𝑖𝑛

𝐿
<

𝐷𝐿 < 𝐷𝑚𝑎𝑥
𝐿

and 𝐾−
√
𝐾 𝜋

𝛾𝑏
< 𝐷𝐿 < 𝐾+

√
𝐾 𝜋

𝛾𝑏
, where 𝐷𝑙𝑜𝑤

𝐿
=

max
(
𝐾−

√
𝐾 𝜋

𝛾𝑏
, 𝐷𝑚𝑖𝑛

𝐿

)
and 𝐷

𝑢𝑝

𝐿
= min

(
𝐾+

√
𝐾 𝜋

𝛾𝑏
, 𝐷𝑚𝑎𝑥

𝐿

)
. The

optimization problem can be rewritten as

max
𝐷𝐿 ,𝑃𝑇𝑋 ,𝑃𝑅𝑋 ,𝑃

𝑡𝑟𝑎

𝑃𝑡𝑟𝑎𝐵𝐾 (𝐷𝐿𝛾𝑏
√︃

1
𝐾 𝜋

+ 1 −
√︃
𝐾
𝜋
)

2𝐷𝐿 (𝑃𝑇𝑋 + 𝑃𝑅𝑋 + 𝑃𝑐)
,

𝑠.𝑡.
𝐷𝐿𝑚𝜁

2

𝜁 + 1
≤ 2𝜖2

max{1 − 𝑃𝑡𝑟𝑎, 𝑃𝑡𝑟𝑎}2 , (31a)

𝐴𝑜𝐼 ≤ 𝛿 (31b)

𝐷𝑙𝑜𝑤𝐿 < 𝐷𝐿 < 𝐷
𝑢𝑝

𝐿
, (31c)

0 < 𝑃𝑇𝑋 < 𝑃𝑚𝑎𝑥𝑇𝑋 , (31d)
0 < 𝑃𝑅𝑋 < 𝑃𝑚𝑎𝑥𝑅𝑋 , (31e)
0 ≤ 𝑃𝑡𝑟𝑎 ≤ 𝑃𝑡𝑟𝑎𝑚𝑎𝑥 . (31f)

The reformulated problem (31) is a non-convex problem,
which stems from variable coupling and the non-convexity of
objective function (30) with respect to 𝑃𝑅𝑋 and 𝐷𝐿 . The first-
order and second-order derivatives of the objective function
(30) with respect to 𝑃𝑅𝑋 and 𝐷𝐿 are given by

𝜕𝜂𝑎

𝜕𝑃𝑅𝑋
=

𝑁 (𝑃𝑅𝑋)
2𝐷𝐿 [𝑣 (𝑃𝑅𝑋)]2 , (32)

𝜕2𝜂𝑎

𝜕𝑃2
𝑅𝑋

=
𝑁 ′ (𝑃𝑅𝑋) 𝑣 (𝑃𝑅𝑋) − 2𝑁 (𝑃𝑅𝑋) 𝑣′ (𝑃𝑅𝑋)

(2𝐷𝐿) · [𝑣 (𝑃𝑅𝑋)]3 , (33)

𝜕𝜂𝑎

𝜕𝐷𝐿
=

𝑃𝑡𝑟𝑎𝐵𝐾

2𝐷2
𝐿
(𝑃𝑇𝑋 + 𝑃𝑅𝑋 + 𝑃𝑐)

(
√︂
𝐾

𝜋
− 1), (34)

𝜕2𝜂𝑎

𝜕𝐷2
𝐿

=
𝑃𝑡𝑟𝑎𝐵𝐾

𝐷3
𝐿
(𝑃𝑇𝑋 + 𝑃𝑅𝑋 + 𝑃𝑐)

(1 −
√︂
𝐾

𝜋
), (35)

respectively, where

𝑣 (𝑃𝑅𝑋) = (𝑃𝑇𝑋+𝑃𝑅𝑋+𝑃𝑐)
(
𝜙𝑃𝑅𝑋 |𝐻𝑅𝑋𝑅𝑋 |2+𝜎2

𝑅𝑋

)
, (36)

𝑁 (𝑃𝑅𝑋) = −𝑃tra𝐵𝐾

[
𝐷𝐿𝑃𝑇𝑋 |𝐻𝑇𝑅 |2

√︂
1
𝐾𝜋

×
(
𝜙 |𝐻𝑅𝑋𝑅𝑋 |2 (𝑃𝑇𝑋 + 2𝑃𝑅𝑋 + 𝑃𝑐) + 𝜎2

𝑅𝑋

)
+

(
𝜙𝑃𝑅𝑋 |𝐻𝑅𝑋𝑅𝑋 |2 + 𝜎2

𝑅𝑋

)2
(
1 −

√︂
𝐾

𝜋

)]
, (37)

Here, we note that when setting 1−
√︃
𝐾
𝜋
< 0, 𝜕

2𝜂𝑎
𝜕𝐷2

𝐿

< 0, which
indicates that the objective function is a concave function
of 𝐷𝐿 . Moreover, we observe that the first term inside the
brackets of 𝑁 (𝑃𝑅𝑋) is positive, the second term is negative,
and the sign of 𝑁 (𝑃𝑅𝑋) is uncertain. Consequently, the signs
of both the first and second derivatives of the objective
function with respect to 𝑃𝑅𝑋 are difficult to determine. The
overall concavity depends entirely on the relative magnitudes
of other parameters in the system. Therefore, the objective
function is neither convex nor concave with respect to 𝑃𝑅𝑋. Its
convexity changes with variations in 𝑃𝑅𝑋, resulting in inflec-
tion points on its graph. Furthermore, the optimizing variables
are mutually coupled in both the objective function and the
constraints. Based on the above analysis, the optimization
problem (31) is a non-convex problem.

B. Solution of the Optimization Problem

For this non-convex optimization problem (31), we use the
interior point method with the filter line search and inertia
correction to solve it. Inertia correction intelligently introduces
a diagonal correction term when encountering Hessian matrix
with negative eigenvalues. This term is precisely sized to
eliminate negative eigenvalues, ensuring the modified matrix
remains positive definite, leading to accurate and high-quality
search directions. Filter Line Search accepts iteration points
that sufficiently improve either the objective function value
or the constraint violation, which gives the algorithm greater
freedom to explore complex non-convex regions. This search
strategy enhances robustness, enabling the algorithm to handle
complex non-convex problems more stably and reliably.

Compared to the traditional interior point method, the
filter line search and inertia correction enable interior point
method to possess a more powerful and robust framework
for addressing challenges arising from non-convexity. Conse-
quently, this makes the algorithm more likely to converge to a
significant and high-quality local solution, avoiding premature
termination or entrapment at a poor stationary point. Moreover,
compared to exhaustive search, our proposed interior point
method can achieve similar accuracy with significantly fewer
computational iterations.

The interior point method with the filter line search and
inertia correction for covert energy efficiency maximization is
shown as Algorithm 1. The method first introduces a barrier
function to convert inequality constraints into an additional
term in the objective function, thus preventing the solution
from going out of bounds. Specifically, for the optimizing
variable vector x = [𝐷𝐿 , 𝑃𝑇𝑋, 𝑃𝑅𝑋, 𝑃𝑡𝑟𝑎]𝑇 , all constraints in
the optimization problem (31) are rewritten in standard forms
𝑔𝑖 (x),∀𝑖 ∈ {1, 2, ..., 10}, which are given by

𝑔1 (x) =
𝐷𝐿𝑚𝜁

2

𝜁 + 1
− 2𝜖2

max{1 − 𝑃𝑡𝑟𝑎, 𝑃𝑡𝑟𝑎}2 ≤ 0, (38a)

𝑔2 (x) = 𝐴𝑜𝐼 − 𝛿 ≤ 0, (38b)

𝑔3 (x) = 𝐷𝑙𝑜𝑤𝐿 − 𝐷𝐿 ≤ 0, 𝑔4 (x) = 𝐷𝐿 − 𝐷𝑢𝑝𝐿 ≤ 0, (38c)
𝑔5 (x) = −𝑃𝑇𝑋 ≤ 0, 𝑔6 (x) = 𝑃𝑇𝑋 − 𝑃𝑚𝑎𝑥𝑇𝑋 ≤ 0, (38d)
𝑔7 (x) = −𝑃𝑅𝑋 ≤ 0, 𝑔8 (x) = 𝑃𝑅𝑋 − 𝑃𝑚𝑎𝑥𝑅𝑋 ≤ 0, (38e)
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𝑔9 (x) = −𝑃𝑡𝑟𝑎 ≤ 0, 𝑔10 (x) = 𝑃𝑡𝑟𝑎 − 𝑃𝑡𝑟𝑎𝑚𝑎𝑥 ≤ 0, (38f)

where 𝑔1 (x) in (38a) corresponds to covert requirement con-
straint (31a), 𝑔2 (x) in (38b) corresponds to AoI constraint
(31b), 𝑔3 (x) and 𝑔4 (x) in (38c) correspond to block length
constraint (31c), 𝑔5 (x) and 𝑔6 (x) in (38d) correspond to
transmit power constraint of TX (31d), 𝑔7 (x) and 𝑔8 (x) in
(38e) correspond to transmit power constraint of RX (31e),
𝑔9 (x) and 𝑔10 (x) in (38f) correspond to prior transmission
probability constraint (31f). Thus, the new objective function
obtained by introducing the barrier function is given by

𝑓 (x) = −𝜂𝑎 (x) − 𝑡 ·
10∑︁
𝑖=1

ln(−𝑔𝑖 (x)), (39)

where 𝑡 > 0 is the barrier parameter. The smaller 𝑡 is, the
stronger the restriction imposed by the barrier function on the
constraint boundary, and the closer the solution approaches the
optimal solution of the original problem. When 𝑡 approaches 0,
the solution converges to the solution of the original problem.

Next, we construct the Lagrangian function by introducing
Lagrange multipliers, and further obtain the Karush-Kuhn-
Tucker (KKT) conditions. The Lagrangian function of opti-
mization problem (31) is given by

L(x, 𝜆) = −𝜂𝑎 (x) +
10∑︁
𝑖=1

𝜆𝑖𝑔𝑖 (x), (40)

where 𝜆 = [𝜆1, 𝜆2, ..., 𝜆10]𝑇 is the Lagrange multipliers
corresponding to the inequality constraints in (38), satisfying
𝜆𝑖 > 0,∀𝑖 ∈ {1, 2, . . . , 10}. The gradient conditions in the KKT
conditions involve taking the partial derivative with respect to
each variable and setting it equal to zero, which are given by

∇𝑥L(x, 𝜆) = −∇𝑥𝜂𝑎 (x) +
10∑︁
𝑖=1

𝜆𝑖 · ∇𝑥𝑔𝑖 (x) = 0, ∀𝑥 ∈ x.

(41)

Moreover, the perturbed complementary slackness conditions
with the barrier parameter 𝑡 in KKT conditions are given by

−𝜆𝑖𝑔𝑖 (x) = 𝑡, ∀𝑖 ∈ {1, 2, . . . , 10}, (42)

where 𝑡 approaches 0 as the algorithm converges, at
which point the standard complementary slackness conditions
𝜆𝑖𝑔𝑖 (x) = 0 are satisfied. By combining the gradient condi-
tion (41), complementary slackness condition (42), feasibility
condition (38), and 𝜆𝑖 > 0, we obtain the non-linear system of
equations constituting the KKT conditions. We can then fur-
ther employ numerical methods to solve the KKT conditions
to get the search direction. In each iteration, the optimizing
variables x = [𝐷𝐿 , 𝑃𝑇𝑋, 𝑃𝑅𝑋, 𝑃𝑡𝑟𝑎]𝑇 and Lagrange multipli-
ers 𝜆𝑖 are updated, and the barrier parameter 𝑡 is gradually
reduced to approach the actual constraint boundaries until the
convergence condition is met, thereby outputting the optimal
solution.

C. Algorithm Analysis

For each iteration with a given barrier parameter 𝑡, the
algorithm updates the optimization variable x𝑘+1. The set of

Algorithm 1 Interior Point Method for Covert Energy Effi-
ciency Maximization

Require: Objective function 𝑓 (x) in (39), constraint functions
𝑔𝑖 (x) in (38), initial point x0, Lagrange multipliers
𝜆𝑖 for constraints, tolerance 𝜖tol, barrier parameter 𝑡,
barrier update factor 𝑡factor.

Ensure: Optimal solution xopt, maximum covert energy effi-
ciency 𝜂max.

1: Initialize: Set iteration index 𝑘 = 0. Set x = x0, 𝜆𝑖 =

1, 𝑡 = 1, 𝜖𝑡𝑜𝑙 = 0.00001, 𝜇factor = 0.2. Initialize filter
F𝑘 = {(𝜃𝑖 (x𝑘), 𝑓 (x𝑘))}, where 𝜃𝑖 (x𝑘) = ∥𝜆𝑖𝑔𝑖 (x𝑘)∥ is
the constraint violation. Set line search backtrack factor
𝛽 ∈ (0, 1), filter margins 𝛾𝜃 , 𝛾 𝑓 .

2: for iter = 1, 2, 3... do
3: Compute gradient ∇(−𝜂𝑎 (x𝑘)) and Hessian

∇2 (−𝜂𝑎 (x𝑘)) for −𝜂𝑎 (x𝑘),
4: Compute ∇𝑔𝑖 (x𝑘) and ∇2𝑔𝑖 (x𝑘),
5: Construct the KKT system for the search direction,
6: Compute Hessian matrix

𝐻𝑘 = ∇2 (−𝜂𝑎 (x𝑘)) +
∑
𝑖 𝜆𝑖∇2𝑔𝑖 (x𝑘),

7: Compute grad = ∇(−𝜂𝑎 (x𝑘)) +
∑
𝑖 𝜆𝑖∇𝑔𝑖 (x𝑘),

8: Inertia Correction: Set correction parameter 𝜇𝑘 ,
9: while Hessian matrix 𝐻𝑘 is not positive definite do

10: Modify the Hessian matrix 𝐻𝑘 = 𝐻𝑘 + 𝜇𝑘 𝐼,
11: end while
12: Solve the KKT system to get search direction Δx𝑘 ,Δ𝜆𝑖 ,
13: Perform filter line search and determine step size 𝛼𝑘 ,
14: loop
15: Compute trial point xtrial = x𝑘 + 𝛼𝑘Δx𝑘 ,
16: Compute trial constraint violation 𝜃𝑖,trial = 𝜃𝑖 (xtrial)

and trial objective value 𝑓trial = 𝑓 (xtrial),
17: Set flag=false, where flag indicates rejection status,
18: for each (𝜃𝑖, 𝑗 , 𝑓 𝑗 ) in F𝑘 do
19: if 𝜃𝑖,trial ≥ (1−𝛾𝜃 )𝜃𝑖, 𝑗 and 𝑓trial ≥ 𝑓 𝑗 −𝛾 𝑓 then
20: flag = true, break
21: end if
22: end for
23: if not flag then
24: break loop,
25: else
26: 𝛼𝑘 = 𝛽 · 𝛼𝑘 ,
27: end if
28: end loop
29: Update variables x𝑘+1 = x𝑘 + 𝛼𝑘Δx𝑘 ,
30: Update Lagrange multipliers 𝜆𝑖 = 𝜆𝑖 + 𝛼𝑘Δ𝜆𝑖 ,
31: Update filter F𝑘+1 by adding (𝜃𝑖 (x𝑘+1), 𝑓 (x𝑘+1)),
32: Update barrier parameter 𝑡 = 𝑡factor · 𝑡, 𝑘 = 𝑘 + 1,
33: if ∥Δx𝑘 ∥ < 𝜖tol then
34: break
35: end if
36: end for
37: return xopt = x𝑘+1, 𝜂max = 𝜂𝑎 (xopt).

all optimization variables collectively forms a central path.
As the barrier parameter 𝑡 gradually decreases toward 0, the
perturbed complementary slackness conditions −𝜆𝑖𝑔𝑖 (x) = 𝑡

in (42) ultimately converge to the standard complementary
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TABLE II: SYSTEM PARAMETERS

Parameters Values

System bandwidth (𝐵) 1 MHz

Information amount in each short-packet (𝐾) 10 nats

Noise variance at RX and WD (𝜎2
𝑅𝑋
, 𝜎2

𝑊𝐷
) -174 dBm

Maximum transmit power of TX and RX (𝑃𝑚𝑎𝑥
𝑇𝑋

, 𝑃𝑚𝑎𝑥
𝑅𝑋

) 2 mW

Circuit power consumption (𝑃𝑐) 0.05 mW

Fading parameter (𝑚) 1

Minimum block length (𝐷𝑚𝑖𝑛
𝐿

) 10

Maximum block length (𝐷𝑚𝑎𝑥
𝐿

) 1000

Maximum acceptable average AoI (𝛿) 10 ms

relaxation condition 𝜆𝑖𝑔𝑖 (x) = 0. Furthermore, since the
objective function and each constraint function in (38) are
all continuously differentiable with respect to variables x, the
algorithm guarantees convergence to the solution satisfying the
KKT conditions of the original optimization problem (31).

Additionally, filter line search and inertia correction ensure
the algorithm’s global convergence. Filter line search checks
both the objective function and constraint violation to guar-
antee each iteration makes meaningful progress, preventing
the algorithm accepting points that perform worse in both
dimensions and avoiding cycles. Inertia correction guarantees
that the computed search direction Δx𝑘 is a positive descent
direction to help the algorithm escape saddle point regions,
enabling filter line search to find an acceptable step size 𝛼𝑘
and thus ensuring robustness for non-convex problem (31).
Therefore, with the filter line search and inertia correction,
the algorithm converges from any initial feasible point x0 to
the solution satisfying the KKT conditions of the original
problem. Moreover, Fig. 8 in Numerical Results demonstrates
the algorithm’s convergence.

In general, the solution obtained by the algorithm is a
reliable, high-quality approximation close to the global op-
timization. Furthermore, we compare the algorithm with ex-
haustive search in Fig. 9 of Numerical Results and find that
it achieves nearly identical performance as exhaustive search,
which demonstrates its effectiveness.

The computational complexity of the algorithm is primarily
determined by the number of iterations and the computational
cost per iteration. The computational cost per iteration mainly
stems from constructing and solving the KKT system to
obtain the search direction. The complexity per iteration is
O(𝑎1/2𝑏2 (𝑎 + 𝑏)) [35], where 𝑎 is the variable dimension and
𝑏 is the number of inequality constraints. For our optimization
problem, due to its low variable dimension and the finite
number of inequality constraints in (38), each iteration has
a constant-level computation. In this case, the overall compu-
tational complexity is primarily determined by the number of
iterations 𝑁ite and is denoted as O(𝑁ite), which indicates the
algorithm has low computational complexity.

VI. NUMERICAL RESULTS

This section provides extensive numerical results to explore
the influence of various system parameters on the CEE. The

Fig. 3: The influence of self-interference cancellation coeffi-
cient 𝜙 on the simulation results of covert energy efficiency
under different values of fading parameter 𝑚.

maximization of CEE is determined by the optimization prob-
lem formulated in Equations (29) and (30). Without loss of
generality, we set TX’s transmit power and RX’s interference
power to 0.2 and 2 mW, respectively, and the values of
parameters are set to 1 for channel gains. Unless otherwise
stated, we set the system parameters listed in Table II.

In Fig.3, we explore the impact of self-interference cancel-
lation coefficient 𝜙 and fading parameter 𝑚 on the simulation
results of CEE. From the figure, it can be observed that the
CEE decreases as the self-interference cancellation coefficient
increases. This is because the larger 𝜙 causes more severe
self-interference, which leads to the lower effective covert
rate at RX, and thus decreases CEE. Moreover, we observe
that CEE increases as the fading parameter 𝑚 increases at the
small self-interference cancellation coefficient 𝜙, and the CEE
decreases with 𝑚 when 𝜙 is large. The reason is as follows.
The larger fading parameter 𝑚 means the lower small-scale
fading degrees of self-interference channel and short-packet
communication channel from TX to RX. When 𝜙 is small,
the self-interference is weak, and CEE is mainly influenced
by the quality of short-packet communication channel. The
increase in fading parameter 𝑚 causes the lower fading degree
of short-packet communication channel, which leads to the
increase in CEE. However, with the increase in 𝜙, the self-
interference enhances, and CEE is increasingly affected by
self-interference channel. In this case, the quality of the self-
interference channel increases with 𝑚, which leads to the
higher decoding error probability, and thus CEE decreases.

In Fig. 4, we explore the impact of prior transmission
probability on CEE and maximum CEE. Fig. 4(a) summarizes
how the CEE changes with the prior transmission probability
under the settings of 𝑃𝑇𝑋 = 0.2 mW, 𝑃𝑅𝑋 = 2 mW, and
𝐷𝐿 = 200. From the figure, it can be observed that as the prior
transmission probability increases, 𝜂𝑎 increases. This can be
explained as follows. The higher prior transmission probability
indicates that TX transmits more information to RX, leading
to an increase in 𝜂𝑎. Moreover, for the same prior transmission
probability, as the self-interference cancellation coefficient 𝜙
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(a) Covert energy efficiency versus the prior transmission probability.

(b) Maximum covert energy efficiency versus the maximum prior
transmission probability.

Fig. 4: The influence of prior transmission probability on
covert energy efficiency. (a) 𝜂𝑎 vs. 𝑃𝑡𝑟𝑎. (b) maximum 𝜂𝑎
vs. 𝑃𝑡𝑟𝑎𝑚𝑎𝑥 .

decreases, the CEE increases. This is because a smaller self-
interference coefficient results in less self-interference in the
full-duplex system, thereby increasing the CEE. Fig. 4(b)
summarizes how the maximum CEE changes with the maxi-
mum prior transmission probability. From the figure, it can be
observed that as the maximum prior transmission probability
increases, 𝜂𝑎 increases and then remains constant after reach-
ing a certain value. This can be explained as follows: CEE
is an increasing function of the prior transmission probability,
and as the maximum prior transmission probability increases,
the optimal prior transmission probability equals the maximum
prior transmission probability, leading to an increase in CEE.
However, to ensure covert requirements, when the maximum
prior transmission probability further increases, the optimal
prior transmission probability remains constant. Under the
same maximum prior transmission probability, as the covert

(a) Covert energy efficiency versus the block length.

(b) Maximum covert energy efficiency versus the maximum block
length.

Fig. 5: The influence of block length on covert energy effi-
ciency. (a) 𝜂𝑎 vs. 𝐷𝐿 . (b) maximum 𝜂𝑎 vs. 𝐷𝑚𝑎𝑥

𝐿
.

constraint becomes looser, the optimal transmission power can
be larger, leading to an increase in maximum CEE.

In Fig. 5, we investigate the influence of block length on
CEE and maximum CEE. Fig. 5(a) summarizes how the CEE
changes with block length under the settings of 𝑃𝑇𝑋 = 0.2
mW, 𝑃𝑅𝑋 = 2 mW, and 𝑃𝑡𝑟𝑎 = 0.5. From the figure, it can be
observed that as the block length increases, 𝜂𝑎 also increases.
This can be explained as follows. A larger block length
reduces decoding error probability, leading to an increase in
𝜂𝑎. Furthermore, under the same block length, a smaller self-
interference cancellation coefficient 𝜙 results in a larger CEE.
This is because a smaller self-interference coefficient leads
to less self-interference in the full-duplex system, thereby
increasing the CEE. Fig. 5(b) summarizes how the maximum
CEE changes with the maximum block length. From the figure,
it can be observed that as the maximum block length increases,
𝜂𝑎 first increases and then remains constant after reaching
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(a) Covert energy efficiency versus the transmit power of TX.

(b) Maximum covert energy efficiency versus the maximum transmit
power of TX.

Fig. 6: The influence of TX’s transmit power on covert energy
efficiency. (a) 𝜂𝑎 vs. 𝑃𝑇𝑋. (b) maximum 𝜂𝑎 vs. 𝑃𝑚𝑎𝑥

𝑇𝑋
.

a certain value. This can be explained as follows: The CEE
increases with block length, and as the maximum block length
increases, the optimal block length equals the maximum block
length, leading to an increase in CEE. However, when the
block length increases to a certain value, further increases in
block length fail to meet the information age constraint. There-
fore, when the maximum block length further increases, the
optimal block length remains constant. It is worth noting that
the transmitter needs to use a larger transmission power with
a small block length to meet the information age requirement.
However, when the covert constraint is very strict, this may
lead to a decrease in covertness, thus failing to meet the covert
constraint. As a result, 𝜂𝑎 becomes a constant 0. Under the
same maximum block length, as the covert constraint becomes
looser, the optimal transmission power can increase, leading
to a higher maximum CEE.

Fig. 6 investigates the influence of transmit power of TX

(a) Covert energy efficiency versus the receiver transmission power.

(b) Maximum covert energy efficiency versus the maximum receiver
transmission power.

Fig. 7: The influence of RX’s transmit power on covert energy
efficiency. (a) 𝜂𝑎 vs. 𝑃𝑅𝑋. (b) maximum 𝜂𝑎 vs. 𝑃𝑚𝑎𝑥

𝑅𝑋
.

on CEE and maximum CEE. Fig. 6(a) summarizes how CEE
changes with transmit power of TX under the settings of
𝐷𝐿 = 200, 𝑃𝑅𝑋 = 2 mW, and 𝑃𝑡𝑟𝑎 = 0.5. From the figure, it
can be observed that as the transmit power of TX increases,
𝜂𝑎 increases. This can be explained as follows. Increasing
𝑃𝑇𝑋 significantly improves the SINR and the effective covert
rate. Although the power consumption also increases, since
the transmit power of TX is relatively smaller compared to
the sum of transmit power of RX 𝑃𝑅𝑋 and circuit power
𝑃𝑐, the gain in covert rate outweighs the cost in power
consumption, resulting in a corresponding increase in 𝜂𝑎.
Moreover, consistent with previous results, a smaller self-
interference cancellation coefficient 𝜙 leads to a higher CEE
due to reduced self-interference. Fig. 6(b) summarizes how the
maximum CEE changes with the maximum transmit power of
TX. From the figure, it can be observed that as the maximum
transmit power of TX increases, 𝜂𝑎 increases and then remains
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Fig. 8: Maximum covert energy efficiency versus iterations.

constant after reaching a certain value. This can be explained
as follows. When 𝑃𝑚𝑎𝑥

𝑇𝑋
is small, as the maximum transmit

power of TX increases, the optimal transmit power of TX
equals the maximum transmit power of TX. As a result, CEE
increases. However, when the maximum transmit power of
TX further increases to a certain threshold, the transmit power
becomes constrained by the covertness requirements to avoid
detection. To ensure covert requirements, further increasing
the power budget does not help, and the optimal transmit
power of TX remains constant, resulting in the maximum CEE
remaining unchanged. Under the same maximum transmit
power of TX, as the covert constraint becomes looser, the
optimal prior transmission probability can be larger and the
receiver transmission power can be smaller, leading to a higher
maximum CEE.

In Fig. 7, we explore the effect of the transmit power of
RX on the CEE and the maximum CEE. Fig. 7(a) summarizes
how the CEE varies with the transmit power of receiver in the
settings of 𝐷𝐿 = 200, 𝑃𝑇𝑋 = 0.2mW and 𝑃𝑡𝑟𝑎 = 0.5. From
the figure, it can be observed that 𝜂𝑎 decreases as transmit
power of RX increases. This can be explained as follows.
Increasing transmit power of RX increases the total energy
consumption and causes stronger self-interference, which de-
creases the effective covert rate. Both factors contribute to
the decrease in CEE. Moreover, a smaller self-interference
cancellation coefficient 𝜙 leads to a higher CEE due to the less
self-interference generated by the full-duplex system. Fig. 7(b)
summarizes how the maximum CEE changes with the maxi-
mum transmit power of RX. It can be observed from the figure
that as the maximum receiver transmission power increases,
𝜂𝑎 is initially zero and then remains constant after reaching
a certain value. This can be explained as follows. When the
covert constraint is relatively strict, a higher transmit power of
RX is required to meet higher covert requirements. Therefore,
when the maximum transmit power of RX is relatively low, the
receiver cannot generate sufficient artificial noise to hide the
transmission and satisfy the covert requirement, resulting in 𝜂𝑎
being zero. As the maximum transmit power of RX increases
to satisfy the covert requirement, the optimal transmit power
of RX equals the minimum necessary jamming power to

Fig. 9: Maximum covert energy efficiency versus covert re-
quirement 𝜖 with different schemes.

meet the constraint for the CEE. Therefore, further increasing
the maximum transmit power of RX does not change the
optimal receiver transmission power, resulting in 𝜂𝑎 remaining
constant. Under the same maximum transmit power of RX,
as the covert constraint becomes loose, the optimal prior
transmission probability and the optimal transmit power of
TX can be larger, while the optimal transmit power of RX
can be smaller, leading to a larger maximum CEE.

In Fig. 8, we show the convergence of our algorithm under
different covert requirement 𝜖 . It can be seen that the max-
imum CEE can converge within dozens of iterations, which
indicates the high convergence performance and low com-
plexity of the proposed algorithm. Moreover, as 𝜖 increases,
the number of iterations to reach convergence increases. This
is because the larger 𝜖 has looser covert constraints, which
expands the search range of the algorithm, resulting in the
need for more iterations.

In order to evaluate the performance of our scheme, we
employ exhaustive search and three other schemes to compare
these schemes with the proposed scheme, as shown in Fig. 9.
The first of the other three schemes is the fixed block length
scheme for the settings of 𝐷𝐿 = 200 in [24], which opti-
mizes the transmit probability and power without considering
block length. The second is the fixed transmission probability
scheme for the settings of 𝑃𝑡𝑟𝑎 = 0.4 in [36], which optimizes
the block length and transmit power, but does not consider
transmission probability. The third is the fixed transmit power
scheme for the settings of 𝑃𝑇𝑋 = 0.2 mW in [22], which
optimizes the transmission probability, but power control is
not taken into account.

From Fig. 9, it is clearly observed that the proposed scheme
can achieve similar performance to the exhaustive search while
outperforming other schemes. Although the exhaustive search
has the optimal performance on maximum CEE, its compu-
tational cost is extremely high and rises exponentially with
accuracy. For example, assuming each variable in the optimiza-
tion problem has hundreds of sampling points, the exhaustive
search would require hundreds of millions of iterations. In
contrast, the proposed scheme converges after just dozens of
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iterations from Fig. 8. Therefore, the proposed scheme has a
computational complexity significantly lower than that of the
exhaustive search, which indicates its greater effectiveness in
practical applications compared to other schemes. Moreover,
Fig. 9 shows that as 𝜖 increases, the maximum CEE increases
for the proposed, exhaustive search, fixed transmission prob-
ability, and fixed transmit power schemes. This is because
a larger 𝜖 indicates a more relaxed covert constraint, which
means that TX can use larger transmit block length and
power, resulting in an increase in the maximum CEE. For the
fixed block length scheme, the maximum CEE first increases
similarly to the proposed scheme, then remains unchanged.
This can be explained as follows. When 𝜖 is relatively low,
adjusting transmission probability and power can achieve
favorable CEE performance while satisfying information age
and covert constraint. However, when 𝜖 increases to a certain
value, the information age constraint limits the transmission
probability and power, causing the CEE to remain unchanged.
The proposed scheme is significantly better than these schemes
with fixed system parameters, indicating the necessity of joint
optimization and showing that proper system parameter setting
can enhance CEE performance.

VII. CONCLUSION

This paper explored the CEE maximization in a full-duplex
wireless system by the joint optimization of the block length,
prior transmission probability and transmit powers. Specifi-
cally, we first modeled the covert constraint condition, AoI
and CEE. Then, we formulated the CEE maximization as a
constrained optimization problem, and further solved it using
the interior point method. Numerical results show that when
the maximum transmit powers of TX and RX increase up to
a threshold, the maximum covert energy efficiency remains
unchanged. A proper setting of system parameters (e.g., block
length, prior transmission probability) can improve covert
energy efficiency performance.

In future studies, our work can be extended in the follow-
ing directions. First, the single-antenna system considered in
this paper can be extended to a multi-antenna configuration
with beamforming capabilities. By employing beamforming,
the transmitter can directionally transmit covert signals to
the intended receiver, and thus this can reduce unintended
signal leakage to the warden. Simultaneously, the receiver can
generate artificial noise to directionally jam the warden. This
approach is expected to significantly improve both the covert-
ness and energy efficiency of the system. Second, the proposed
system can be further developed into an integrated sensing and
communication scenario. By designing artificial noise in the
form of radar beams, the receiver can not only interfere with
the warden but also sense the warden’s position or activity
status. Such a design would enable more proactive and robust
covert communication strategies in dynamic environments.
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