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Abstract—Anticipation for 6G’s arrival comes with growing
concerns about increased energy consumption in computing
and networking. The expected surge in connected devices and
resource-demanding applications presents unprecedented chal-
lenges for energy resources. While sustainable resource allocation
strategies have been discussed in the past, these efforts have
primarily focused on single-domain orchestration or ignored the
unique requirements posed by 6G. To address this gap, we
investigate the joint problem of service instance placement and
assignment, path selection, and request prioritization, dubbed
PIRA. The objective function is to maximize the system’s overall
profit as a function of the number of concurrently supported
requests while simultaneously minimizing energy consumption
over an extended period of time. In addition, end-to-end latency
requirements and resource capacity constraints are considered
for computing and networking resources, where queuing theory
is utilized to estimate the Age of Information (AoI) for requests.
After formulating the problem in a non-linear fashion, we prove
its NP-hardness and propose a method, denoted ORIENT. This
method is based on the Double Dueling Deep Q-Learning (D3QL)
mechanism and leverages Graph Neural Networks (GNNs) for
state encoding. Extensive numerical simulations demonstrate that
ORIENT yields near-optimal solutions for varying system sizes
and request counts.

Index Terms—6G, Resource Allocation, Energy Consumption,
Service Placement and Assignment, Path Selection, Prioritization,
E2E Latency, Age of Information (AoI), Reinforcement Learning,
Q-Learning, and Graph Neural Networks (GNNs).

I. INTRODUCTION

The advent of the 6th generation of telecommunication
systems (6G) signifies a pivotal era marked by unparalleled
connectivity and technological advancements. With ultra-low
End-to-End (E2E) latency (less than 1 milisecond), exceeding
1 terabit per second peak data rates, and ultra-high reliabili-
ty surpassing 99.99999% [1], 6G promises to revolutionize
industries such as holographic telepresence utilizing exten-
ded reality [2], dynamic metaverse empowered by semantic
communications [3], and quantum networking [4]. However,
achieving these capabilities raises substantial energy consump-
tion concerns for both computing and networking resources.
Presently, these resources consume around 200 terawatt-hours
of electricity annually, approximately 1% of the global total
[5]. Many quality-sensitive applications may require uploading
up to 50% of data to computing facilities for processing
[6], adding even more strain to computing and networking
resources. Moreover, the projected surge in 6G-connected
devices and global data exacerbates the energy consumption
challenge, underscoring the need for sustainable solutions.

In order to realize a 6G-enabled future, it may be necessary
to create novel resource orchestration mechanisms to address
impending energy challenges. The subject has been extensi-
vely studied in the literature. Xuan et al. [7] addressed the
Service Function Chaining (SFC) problem with the objective
of minimizing energy consumption by proposing an algorithm
based on multi-agent Reinforcement Learning (RL) and a self-
adaptive division strategy. Solozabal et al. [8] investigated the
same problem and proposed a single-agent solution. Other
authors have also examined the SFC problem. By proposing
a sampling-based Markov approximation method, Pham et
al. [9] solved the problem in an effort to minimize operational
and traffic energy consumption. Santos et al. [10] developed
two policy-aware RL algorithms based on actor-critic and
proximal policy optimization to maximize availability while
minimizing energy consumption. Reducing energy consump-
tion was considered in the Service Function (SF) placement
problem as well. Sasan et al. [11] presented a heuristic
algorithm to tackle the joint problem of network slicing, path
selection, and SF placement, with the objective of maximi-
zing user acceptance while minimizing energy consumption.
Farhoudi [12] and He et al. [13] investigated a comparable
problem and proposed RL-based solutions, taking into account
the dynamic nature of service requests and overall cost consi-
derations (including operation, deployment, and transmission),
respectively.

While effective in specific contexts, the mentioned methods
may not be suitable for 6G systems. These approaches prioriti-
ze energy efficiency over maximizing device support, whereas
achieving an E2E efficient solution requires holistic manage-
ment of computing and networking resources, considering the
stringent Quality of Service (QoS) demands of 6G. Further-
more, certain studies overlook or oversimplify critical network
parameters like latency, which contradicts the intricate and
dynamic requirements of 6G systems. This paper addresses
this gap by investigating the joint problem of allocating com-
puting and networking resources (service instance placement
and assignment, path selection, and request prioritization),
termed PIRA. The objective is to optimize the system’s overall
profit (as a function of supported concurrent requests) while
minimizing energy consumption over time, accounting for
E2E latency and resource capacity constraints. The M/M/1
queuing model is employed to accurately evaluate request
latency on compute nodes and network devices. To solve this
problem, we propose ORIENT, an approach leveraging Double
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Figure 1. The system model, including network devices and distributed
compute nodes facilitating holographic telepresence services for end users.

Dueling Deep Q-Learning (D3QL) reinforced by Graph Neural
Networks (GNNs). This hybrid method effectively encodes the
system state and facilitates the identification of near-optimal
solutions.

The remainder of this paper is organized as follows. Section
II introduces the system model. PIRA is defined and formu-
lated in Section III, and ORIENT is presented in Section IV.
Finally, numerical results are illustrated in Section V, followed
by concluding remarks in Section VI.

II. SYSTEM MODEL

As shown in Fig. 1, the following is an explanation of the
two main components of the system: resources and requests.

A. Resources

The 6G system examined in this paper is an integrated
infrastructure of computing and networking resources com-
prised of N network devices and V compute nodes (radio
resources are excluded) [14]. N = {n|0 ≤ n ≤ N} is the
set of network devices, and V = {v|0 ≤ v ≤ V} denotes the
set of compute nodes. Compute nodes are connected through
network devices via P paths, the set of which is denoted by
P = {p|0 ≤ p ≤ P}, and the immediate network device of
compute node v is indicated by nv . Each path p contains a set
of links Lp ⊂ L, where L = {l : (n, n′)|n, n′ ∈ N} is the set
of all network links, and L is its size. Network devices and
compute nodes are priority-aware, i.e., K = {k|0 ≤ k ≤ K} is
regarded as the set of permissible priority levels (where lower
levels indicate higher priorities), and the resources in both
domains are virtually partitioned, isolated, and guaranteed for
each priority level k. Note that higher priorities receive a larger
share of available resources than lower priorities.

To evaluate the performance of allocated resources, we will
employ the M/M/1 queuing model for each priority level
on network devices and compute nodes assuming that this
theory’s stability requirements are met and that all queues
are independent. The service rate allocated to priority level
k on network device n is yBn,k, and those packets leaving
this queue will be forwarded through their corresponding link,
let’s call it l, allocating yBl,k bandwidth. Note that the overall
capacity of this network device and link is constrained by

xBn and xBl., respectively. Similarly, the requests of priority
level k will be served on compute node v leveraging a queue
with dedicated service rate yCv,k, and this node is equipped
with computing resources limited to a predefined capacity
threshold, dubbed xCv . In addition, the energy consumption for
transmitting bandwidth units over network device n is ĂEn, and
compute node v consumes ĂEv energy per capacity unit and
Ev energy when its state changes (from the idle mode to the
operation mode or vice versa).

B. Requests

This paper investigates the system for T time slots while a
set of Rt requests, denoted by Rt = {r|0 ≤ r ≤ Rt}, arrives
at time slot t ∈ T = {t|1 ≤ t ≤ T }. The set of all requests
is R = {Rt|1 ≤ t ≤ T }, and R represents the number of all
requests. Each request r enters the system through an edge
network device, denoted by nr and referred to as its Point of
Arrival (PoA), and orders service sr from the set of obtainable
service instances, that is I = {i|0 ≤ i ≤ I}, where instance i
provides service si. In order to successfully fulfill each request,
one instance of its target service must be replicated on one of
the compute nodes in order to receive the request, process
it, and return it to its entry point so that it can be delivered
to the end user. xCi. represents the maximum capacity of
instance i. To fulfill each user’s request, its QoS requirements
must be met, including the minimum service capacity and
network bandwidth, as well as the maximum tolerable E2E
latency, denoted by |Cr., |Br, and |Dr, respectively. Besides,
the maximum permissible packet size for request r is xHr. If
request r is successfully completed, the system will achieve
a profit, that is γr. Note that the arrival rate for each queue
is determined by a Poisson process and is assumed to be the
sum of |Cr. (for compute queues) and |Br (for network queues)
for all requests assigned to that queue, respectively.

III. PROBLEM DEFINITION

This section discusses the joint problem of instance place-
ment and assignment, request prioritization, and path selection
for integrated compute-network infrastructures to maximize
the overall profit of the system while minimizing its energy
consumption. In this section, the constraints and objective
function are formulated, followed by the problem statement
as a Mixed-Integer Non-Linear Programming (MINLP) for-
mulation and its complexity analysis.

A. Instance Orchestration Constraints

Constraints C1-C6 assign requests to instances and place
them on compute nodes while maintaining the capacity cons-
traints of instances and compute nodes. Considering that Ïtr,i
is a binary variable whose value is 1 if request r is assigned
to instance i at time slot t, C1 ensures that each request r
is assigned to no more than one instance of its service for
each time slot t. C2 defines a new binary variable, İti , which
indicates that whether instance i is activated at time slot t.
If

∑
Rt
Ïtr,i is equal to or greater than 1 (i.e., at least one

request is assigned to instance i), (
∑

Rt
Ïtr,i)/Rt will be a



small number (between 0 and 1) and
∑

Rt
Ïtr,i will be a large

number, so İti will be set to 1. Otherwise, both sides of the
equation will equal 0, causing İti to also equal 0. C3 ensures
that each activated instance is assigned to exactly one compute
node, where G̈ti,v is a binary variable indicating the compute
node of instance i at time slot t. Similar to C2, C4 defines
Ġtv as a binary variable to determine whether compute node
v should be activated at time slot t. Then, it must be assured
that assigned requests do not exceed the capacity limitations
of instances and compute nodes (C5 and C6).∑

I|si=sr
Ït
r,i ≤ 1 ∀t, r ∈ T,Rtttttttttttttttttttttttttttttttttttt (C1)

1

Rt
·
∑

Rt
Ït
r,i ≤ İt

i ≤
∑

Rt
Ït
r,i ∀t, i ∈ T, I (C2)∑

V
G̈t
i,v = İt

i ∀t, i ∈ T, I (C3)

1

I
·
∑

I
G̈t
i,v ≤ Ġt

v ≤
∑

I
G̈t
i,v ∀t, v ∈ T,V (C4)∑

Rt

|Cr · Ït
r,i ≤ xCi. ∀t, i ∈ T, I (C5)∑

I
xCi. · G̈t

i,v ≤ xCv ∀v, t ∈ V,T (C6)

B. Path Selection Constraints

Constraints C7-C9 ensure that an E2E path is selected for
each request considering the capacity constraints of network
links and the traffic pattern, where packets of each request en-
ter the network through its PoA and, after visiting its assigned
instance, are returned to the same PoA to be handed off to
the corresponding end user. C7 determines the allocated path
for each request r, ensuring that it originates and terminates
at nr and traverses the network device directly connected to
the compute node hosting the instance assigned to the request.
In this constraint, f̈ tr,p is a binary variable that represents the
assigned path of request r at time slot t. Finally, C8 and C9
maintain the maximum capacity of network links and devices.∑

P|nr&nv∈p
f̈ tr,p = Ït

r,i · G̈t
i,v ∀t, r, i, v,∈ T,R, I,V (C7)∑

Rt,P|l∈Lp

|Br · f̈ tr,p ≤ xBl. ∀t, l ∈ T,Ltttttttttttttttttttttttttt (C8)∑
Rt,P|n∈Lp

|Br · f̈ tr,p ≤ yBn. ∀t, n ∈ T,N (C9)

C. Request Prioritization Constraints∑
K
ϱ̈tr,k =

∑
I
Ït
r,i ∀t, r ∈ T,Rtttttttttttttttttttttttttttttttt (C10)∑

Rt,I
|Cr · ϱ̈tr,k · Ït

r,i · G̈t
i,v <

zCv,k ∀t, k, v ∈ T,K,V (C11)∑
Rt,P|l∈Lp

|Br · ϱ̈tr,k · f̈ tr,p < zBl,k. ∀t, k, l ∈ T,K,L (C12)∑
Rt,P|n∈Lp

|Br · ϱ̈tr,k · f̈ tr,p < {Bn,k. ∀t, k, n ∈ T,K,N (C13)

To maintain integrity, it’s crucial to prevent any overuse of
resources allocated to each priority level. Given that ϱ̈tr,k is
the priority of request r at time slot t, C10 promises that the
request’s priority is determined if an instance is assigned to
serve it. Then, C11 to C13 satisfy the capacity constraints of
priority queues on compute nodes and network resources.

D. Latency Constraints

Each packet has to wait for three sources of latency through
its request’s assigned E2E path in the system: 1) the service
latency experienced at the network devices included in the

path, 2) the transmission latency over the network links of the
path, and 3) the service latency at the assigned compute node.
Since the average latency of a packet in a M/M/1 queue is
equal to 1/(µ− λ) when the arrival rate is λ and the service
rate is µ, the average latency experienced by the packets of
request r at network device n allocated to priority level k
during time slot t can be calculated as C14. In this constraint,
the numerator will be 0 for network devices and priority levels
that have not been allocated to request r, causing D̈t

r,n,k to
equal 0. Otherwise, the numerator will be 1, and the latency
will be determined following the adopted queuing theorem
with the arrival rate of the queue set to the overall bandwidth
of requests assigned to priority level k and traversing network
device n. C15 follows the same logic to calculate the average
latency of request r allocated to priority level k at time slot
t on compute node v. C16 calculates the transmission latency
of request r over link l at time slot t, considering its priority
level and maximum packet size, if the link is part of the
path assigned to the request. Otherwise, the latency will be
0. Finally, C17 determines the Age of Information (AoI),
followed by C18, which ensures the maximum acceptable
latency requirement of requests.

D̈t
r,n,k =

∑
P|n∈Lp

ϱ̈tr,k · f̈ tr,p
zBn,k −

∑
Rt,P|n∈Lp

}Br′ · ϱ̈tr′,k · f̈ t
r′,p

∀t, r, k, n ∈
T,Rt,K,N

(C14)

D̈t
r,v,k =

∑
I ϱ̈

t
r,k · Ït

r,i · G̈t
i,v

zCv,k −
∑

Rt,I
|Cr′ · Ït

r′,i · G̈
t
i,v

∀t, r, k, v ∈
T,Rt,K,V

(C15)

D̈t
r,l,k =

xHr

yBl,k

·
∑

P|l∈Lp
ϱ̈tr,k · f̈ tr,p ∀t, r, l, k ∈ T,Rt,L,Ktttt(C16)

D̈t
r =

∑
N,K,V,L

(D̈t
r,n,k + D̈t

r,v,k + D̈t
r,l,k) ∀t, r ∈ T,Rt (C17)

D̈t
r ≤ |Dr ∀t, r ∈ T,Rt (C18)

E. Objective Function

The objective is to maximize the overall profit while mini-
mizing the energy consumption of resources, that is:∑

T,Rt
(γr ·

∑
I
Ït
r,i)− α · (

∑
N
Ën +

∑
V
Ëv), tttttttttttttttt (OF)

where
∑

I Ïtr,i is 1 if request r is supported at time slot t, α is
a small positive number, and Ëv and Ën represent, respectively,
the total energy consumption of compute node v and network
device n. Note that α must be set such that the total profit
exceeds the total amount of energy consumed. Otherwise, sup-
porting requests would result in a negative objective function
value, and the only optimal solution would be to support no
requests, making OF equal to 0. To determine Ën, where the
only source of energy consumption is transmitting requests’
data, the following equations are employed:

Ën = ĂEn ·
∑

T,Rt,P|n∈Lp

|Br · f̈ tr,pttttttttttttttttttttttttttttttttttt (1)

To calculate Ëv, it should be noted that the energy consumed
on each compute node has two primary sources: 1) the energy
consumed to service each unit of requests’ data, and 2) the
energy consumed during booting up or shutting down the
compute node. Consequently, Ëv for each v ∈ V is:



ĂEv ·
∑

T,Rt,I
|Cr · Ït

r,i · G̈t
i,v + Ev ·

∑
T|0≤t<T

Ġt
v ⊕ Ġt+1

v ttttttttt (2)

In this equation, Ïtr,i · G̈ti,v equals 1 if compute node v is
selected as the host for request r; therefore, the first part of the
equation calculates the total energy consumption of compute
node v to service its assigned requests. Assuming Ġ0v equals 0,
Ġtv⊕Ġt+1

v is equal to 1 in the second part if and only if Ġtv and
Ġt+1
v differ, representing a boot-up or shutdown for compute

node v. Then, the second part demonstrates the total energy
consumption of state transitions in compute note v within T.

F. Problem

Considering the constraints and the objective function, the
Problem of Integrated Resource Allocation (PIRA) is:

PIRA: max OF s.t. C1 - C18.tttttttttttttttttttttttttttttttttttttttttt (3)

The optimal solution involves assigning requests with stringent
latency requirements to high-priority queues and keeping those
queues as empty as possible to minimize latency. Resource
selection should aim to minimize activated resources and
consider future requests to reduce energy consumption through
fewer start-ups and shutdowns, improving energy efficiency.

G. Complexity Analysis

The problem defined in (3) is an extended version of the
Multi-Dimensional Knapsack (MDK) problem. Assume the
problem is relaxed and reformulated specifically for time slot
t as the problem of maximizing profit and minimizing energy
consumption while the only decision is to assign requests to
instances concerning only their capacity constraints. Since the
MDK problem is NP-hard and this relaxed version is an MDK
problem with at least Rt items and I knapsacks, PIRA is at
least as difficult as the MDK problem and is also NP-hard.

IV. ORIENT

This section proposes an RL-based priORIty-aware Energy-
efficieNt laTency-sensitive resource allocation approach (ORI-
ENT) to find near-optimal solutions for PIRA. Subsequently,
the learning mechanism is elaborated upon, followed by an
explanation of the agent’s design, and concluding with a
description of the algorithm.

A. Learning Mechanism

Given the continuous operation of the system defined in
this paper and the recurring necessity for consistent resource
allocation decisions at each time slot of PIRA, the adoption
of RL presents itself as a viable means to enhance decision-
making proficiency to solve it. Within the framework of RL,
an agent undergoes a process of learning by means of trial
and error at each step (here, time slot), with the primary
aim of optimizing a specific decision-making problem. The
system’s designer defines a reward function in alignment with
the objectives of the problem. By learning and following the
optimal strategy derived from this reward function, the agent
aims to maximize cumulative discounted rewards, regardless

of the initial state. Among various RL-based algorithms, Q-
Learning stands out as widely acknowledged.

In Q-Learning, every state-action pair is associated with a
numeric value referred to as the Q-value, where the agent se-
lects the action with the maximum Q-value at each step. In De-
ep Q-Learning (DQL), a Deep Neural Network (DNN) serves
as the approximator for these Q-values. In this arrangement,
the state and action are presented as inputs, and the DNN-
based Q-function encompassing all feasible actions, denoted
by Q(s, .;W), is generated as the output and systematically
updated over time according to the following equation:

Wt+1 = Wt+σ[Y t−Q(St, at;Wt)]∇Wt ·Q(St, at;Wt)tttttttt (4)

In this equation, W is the set of DNN weights, σ is a scalar
step size, St and at are the agent’s state and action at time
slot t, and Y t (also known as the target) shows the maximum
value expected to be achieved by following at at St. Y t is
the only variable that must be estimated in this equation, and
in Double DQL (DDQL), where the selection and evaluation
processes are decoupled, it can be expressed as follows:

Y t = rt+1+γ pQ(St+1, a′,Wt−), tttttttttttttttttttttttttttttttttttt (5)

where rt+1 is the earned reward at time slot t+ 1, γ ∈ [0, 1]
is a discount factor that balances the importance of immediate
and future rewards, a′ = argmaxa∈AQ(St+1, a,Wt), and A
is the set of actions. In this equation, W represents the set of
weights for the main Q and is updated in each step, whereas
W− is for the target pQ and is replaced with the weights of
the main network every t steps. In other words, pQ remains a
periodic copy of Q.

Furthermore, we augment DDQL by incorporating the du-
eling concept introduced by Wang et al. [15]. Unlike con-
ventional DDQL, which directly approximates Q-values using
DNNs, this method initially computes separate estimators for
state values (ψ) and action advantages (φ). Q-values are then
derived from these estimators, as illustrated below:

Q(St, at,Wt) = ψ(St,Wt)

(
φ(St, at,Wt)−

Φ

|A|

)
ttttttttttttt (6)

where Φ =
∑

A φ(St, a′,Wt). The primary benefit is the
ability to generalize learning across actions without modifying
the learning algorithm, which improves policy evaluation in
the presence of numerous actions with similar state values.
As a result of combining the Dueling technique and DDQL,
we can expect that the resultant D3QL agent will outperform
its predecessors. To bolster the effectiveness and resilience of
D3QL, observed transitions are archived in a memory bank
known as the experience memory. The learning process entails
randomly selecting transitions from this repository [16].

B. Agent Customization

The first step toward exploiting D3QL to solve PIRA is to
define the agent’s action space, state space, and reward.

Action Space: We define the action space as set A = {a :
(i, v, p, k)|i, v, p, k ∈ I,V,P,K}. During each time slot and
for every request, a specific action must be executed to finalize
the resource allocation pertaining to that request.



Tabelle I
SIMULATION PARAMETERS.

Parameter Value
number of priority levels 4
resource capacity bounds ∼ U{250, 300} mbps
Instance capacity bound 20 mbps

energy consumptions per capacity unit ∼ U{10, 20}
energy consumptions per state transition ∼ U{100, 200}

capacity requirement per request ∼ U{4, 8} mbps
bandwidth requirement per request ∼ U{2, 10} mbps

latency requirement per request ∼ U{1, 3} ms
packet size per request 1
profit per request (γr) U{5, 15}

State Space: For encoding the system’s state, an architecture
involving aggregation GNN layers is employed, constructing
an aggregation sequence across all compute nodes, iteratively
facilitating information exchange with neighboring nodes.
Therefore, at time slot t when request r is on the verge of
receiving service, the system state is denoted as St(r) =
{St

V(r),S
t
P(r)} and can be formally defined as:

St
V(r) =

{[
[zCt

v,k − |Cr.]K, [D̈t
r,v,k − }Dr.]K, ĂEv , Ev · (1− Ġt

v)
]
V

}
, (7)

St
P(r) =

{[[
∧Lp −}Br.

]
K, [D̈

t
r − D̈t

r,v,k − }Dr.]K, ĂEn
]
P

}
, ttttttttt (8)

where ∧Lp
= minL|n,l∈Lp

{yBtn,k, yBtl,k}. St
V(r) and St

P(r)
represent the embeddings of compute nodes and network
paths, respectively, which function as inputs for the GNN
layers. These embeddings encompass the remaining resource
capacity and the anticipated latency when request r is allocated
to them, as well as their associated energy consumption.

Reward: Since the agent is designated to maximize OF,
the reward should be engineered to reinforce the support of
high-profit requests while selecting resources with low energy
consumption. This goal is satisfied in (9), that is:

rt+1 =

{
0 otherwise

M
OF
(
St(r), at

)
−minA OF

(
St(r), a′

) r is mett (9)

where M = maxA OF
(
St(r), a′

)
− minA OF

(
St(r), a′

)
,

max /minA OF
(
St(r), a′

)
is the maximum/minimum profit

that can be achieved by allocating the available resources at
time slot t to request r without considering any constraints or
requirements, and OF

(
St(r), at

)
is the profit of the allocation

provided by the agent. If the action fails to meet the require-
ments of the request, it results in a reward of 0. Conversely,
actions that yield greater profits correspond to higher rewards.

C. ORIENT’s Algorithm

ORIENT is detailed in Algorithm 1. In this algorithm, ϵ′ and
rϵ are small positive integers that control the ϵ-greedy mecha-
nism. During each time slot t, the agent receives notifications
of new request arrivals (r), and it computes the state based on
request r requirements and the current system state. The action
is then chosen using an ϵ-greedy policy, which follows the
evaluation function of the corresponding agent with probability
(1 − ϵ) and selects a random action with probability ϵ.

Algorithm 1: ORIENT
Input: T , ϵ′, and rϵ

1 Ω← ∅, W ← 0, W− ← 0, ϵ← 1, memory ← {}
2 for each t in [0 : T ] do
3 if new request r is arrived then
4 calculate St(r) = {St

V(r),S
t
P(r)}

5 ζ ← generate a random number from [0 : 1]
6 if ζ > ϵ then
7 at = (i, v, p, k)← argmaxAQ(St, a′,Wt)
8 else
9 select a random at = (i, v, p, k) from A

10 calculate rt+1

11 if rt+1 > 0 then
12 Establish request r connection based on at

13 memory ← memory ∪ {(St, at, rt+1)}
14 choose a batch of samples from memory
15 train the agent
16 if ϵ > rϵ then
17 ϵ← ϵ− ϵ′
18 Ω← Ω ∪ {(t, r, at)}
19 return Ω

Subsequently, the reward is calculated, and if it exceeds 0,
it indicates that at is feasible and meets request r’s QoS
requirements, enabling its connection based on at allocations.
Finally, the experience memory is updated, samples are drawn
from the memory bank, and the agent undergoes training.
during the training process, ϵ decreases from 1 to rϵ. The
algorithm yields Ω as the history of allocations.

V. PERFORMANCE EVALUATION

In this section, we present numerical results based on the
system model parameters listed in Table I. Other parame-
ters can be chosen arbitrarily so long as the logic outlined
throughout the paper remains valid. To evaluate the efficiency
of ORIENT, we conduct a comparative analysis with OPT,
D3QL, and RND. OPT represents the optimal solution for
PIRA, obtained through the use of CPLEX 12.10. D3QL, on
the other hand, bears similarities to the method outlined in
Algorithm 1, but employs exclusively simple linear layers in
its DNN, without utilizing any GNNs. This approach forms the
foundation for several related studies, including A-DDPG [13]
and MDRL-SaDS [7], both of which are RL methods designed
to enhance the utility of individual requests by considering
factors such as resource cost, required bandwidth, and E2E
path latency. Lastly, RND represents a random allocation stra-
tegy, where resources are allocated to active requests without
considering any constraints.

The results are depicted in Fig. 2, where subfigures A and
B represent the average energy consumption per request and
total profit across various system sizes, with a constant of
300 active requests. Here, incrementing the system size entails
the creation of a new system graph, incorporating N + 1
network devices and V + 1 compute nodes. Particularly, from
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Figure 2. The mean energy consumption of supported requests and the total profit vs. the system size (A & B) and the number of all requests (C & D).

10 to 13, resources with a significant energy consumption are
introduced into the graph. Between 14 and 17, resources with a
moderate energy consumption are added to the graph, and the
remaining resources included from 18 to 21 are characterized
by low energy consumption. Subfigures C and D display
similar quality metrics, but for different numbers of requests,
while keeping the system size fixed at 12 with equal numbers
of resources (4) from each level of energy consumption.

Within the subfigures, it is evident that OPT serves as an
upper performance bound, while RND serves as the lower
bound. Furthermore, when all resources exhibit high energy
consumption rates or are fully occupied (with N ≤ 13 in A
and R ≥ 200 in C), RND shows a similar energy consumption
pattern to D3QL-based techniques, but its support rate is
limited due to the absence of intelligence and feasibility
checks. In contrast, ORIENT excels in both scenarios. As
demonstrated in A and B, it achieves near-optimal results
by prioritizing high-capacity resources with minimal energy
consumption, especially when multiple choices are available
for each request (N ≥ 13). Similarly, regardless of whether
all requests can be supported (C and D, with R ≤ 200), near-
optimal solutions are consistently attained. However, D3QL
exhibits less efficiency and stability compared to ORIENT,
mainly due to its inferior state decoding capability.

VI. CONCLUSION

In this paper, we examined the joint problem of service
instance placement and assignment, path selection, and request
prioritization, dubbed PIRA, with the objective of maximizing
the overall profit of the system (as a function of the number
of supported concurrent requests) while minimizing the overall
energy consumption over a continuous period of time, taking
into account E2E latency and resource capacity constraints.
This problem was formulated as a MINLP problem, its com-
plexity was analyzed, and it was demonstrated that it is an NP-
hard problem. Subsequently, a technique named ORIENT was
introduced to address the problem in a near-optimal manner,
utilizing a GNN-empowered D3QL strategy. The effectiveness
of the suggested technique was validated through numerical
results. As potential future work, our intention is to tackle the
problem in the context of dynamic environments characterized
by temporal/spatial fluctuations in requests and resources.
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