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Abstract—The proliferation of resource-constrained devices
in Internet of Things (IoT) environments has amplified the
demand for scalable, secure, and efficient cryptographic services.
While Encryption-as-a-Service (EaaS) models enable offloading
cryptographic tasks to trusted infrastructure, critical challenges
remain regarding path integrity, trust management, and re-
silience to adversarial threats in multi-domain networks. This
paper introduces EaaS/PIN, a unified framework that combines
cryptographically verifiable path integrity, user-centric trust
scoring, collaborative threat intelligence, and machine learning-
driven path selection across distributed Autonomous Systems
(ASs). The framework integrates: (i) a novel anonymity pro-
tocol to conceal complete routes from intermediary ASs, (ii)
lightweight, customizable encryption suitable for IoT and edge
environments, (iii) real-time, Al-based path recommendation
leveraging dynamic trust and performance metrics, and (iv) a
blockchain-inspired audit mechanism for tamper-evident report-
ing and accountability. Comprehensive mathematical modeling,
algorithms, and a detailed case study focused on secure data
transmission in a multi-AS smart city network demonstrate that
EaaS/PIN significantly enhances routing security, reduces latency,
and ensures transparent and verifiable operations even under
adversarial conditions. Experimental results confirm robust de-
tection of path manipulation and compromised ASs, as well
as measurable performance gains over baseline solutions. The
proposed framework paves the way for scalable, user-aware, and
resilient cryptographic services in next-generation heterogeneous
network infrastructures.

Index Terms—Encryption-as-a-Service, Path Integrity, Trust
Management, IoT Security, Machine Learning, Blockchain,
Smart City, Secure Routing

I. INTRODUCTION

The evolution of communication networks and the prolifer-
ation of resource-constrained devices, such as those found in
Internet of Things (IoT) environments, have underscored the
urgent need for scalable, secure, and efficient cryptographic
services. Encryption-as-a-Service (EaaS) has emerged as a
promising paradigm that enables devices with limited com-
putational capabilities to offload encryption tasks to trusted
infrastructure [1, 2, 3, 4]. However, the effectiveness of EaaS
platforms can be significantly hindered by security challenges
related to trust, path verification, and data integrity [5, 6, 7, 8].

This research aims to extend the EaaS framework by in-
corporating user-driven path verification mechanisms within a
system referred to as EaaS/PIN (Path Integrity Network). The
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proposed approach introduces a comprehensive set of enhance-
ments to improve transparency, user control, and resilience
against adversarial threats across multiple Autonomous Sys-
tems (ASs).

A critical issue addressed in this study is the risk of
path manipulation by compromised ASs or man-in-the-middle
(MITM) attacks. To mitigate this, we propose a cryptographic
protocol that encrypts stacked hash values of AS identi-
fiers using private keys, making unauthorized modifications
detectable [9, 10]. In addition, we tackle the challenge of
untrusted AS measurement reports by introducing a trust-
scoring mechanism based on user feedback, supplemented
by Al-driven ranking and a collaborative threat intelligence
platform [11, 12].

The integrity of the EaaS/PIN global database used to
store network measurement statistics is also at risk from false
data injection or link-level packet manipulation. We propose
securing the communication using digital signatures, where
each AS signs its reports using a registered key pair, preventing
tampering without detection [13, 14, 15, 16].

Based on these foundations, we develop several core capa-
bilities: (1) an anonymity protocol that hides full path infor-
mation from intermediary ASs to preserve confidentiality, (2)
a lightweight cryptographic service that supports IoT devices
and allows user-defined encryption parameters to enhance
trust and personalization, and (3) a machine learning (ML)-
based path recommendation system that minimizes latency
and accounts for security metrics to suggest reliable routing
decisions [17].

These components form a unified framework that promotes
efficient, secure, and user-aware communication in modern,
distributed network environments. The proposed solutions not
only address pressing security threats but also enhance the
scalability and usability of the EaaS model in heterogeneous
and dynamic infrastructures.

A. Motivation and Goal

As the demand for secure and scalable cryptographic
services increases especially in dynamic, multi-domain en-
vironments involving IoT devices and constrained systems
existing EaaS solutions face serious limitations. These in-
clude insufficient transparency in path selection, inability to
verify routing integrity, and inadequate adaptability for users
seeking personalized encryption control. Moreover, users are
increasingly concerned about trusting the network entities
involved in the encryption process, especially when ASs can
be compromised. The primary objective of this research is



to advance the traditional EaaS framework by incorporating
user-centric path verification and intelligent service orchestra-
tion mechanisms. This enhancement is realized through the
integration of cryptographically verifiable anonymity proto-
cols, trust-aware AS scoring, and real-time ML-driven path
optimization. The resulting system, termed EaaS/PIN, offers
users a secure, transparent, and personalized encryption and
routing experience across distributed network infrastructures
[18, 19, 3].

B. Key Challenges Addressed

The framework tackles several critical challenges inherent in
secure and trusted network communication. Challenge 1: Path
manipulation and compromised ASs. In adversarial scenarios,
a malicious AS or MITM attacker may tamper with packet
headers to cause denial of service, redirect traffic through
unintended routes, or intercept sensitive data. Challenge 2:
Untrusted measurement reports. Malicious ASs may fabricate
performance metrics while appearing compliant, thereby de-
grading system reliability and eroding user trust. Challenge
3: Global database threats. Attackers may inject falsified
network data into the centralized EaaS/PIN database either
through compromised links or direct access misleading the
optimization engine and compromising overall service quality.

C. Main Contributions

This paper presents five key contributions that address criti-
cal challenges in secure, scalable, and energy-efficient routing
for multi-domain IoT networks. First, we propose a novel
anonymity protocol that hides the complete routing path
from intermediary Autonomous Systems (ASs) while ensuring
cryptographic verifiability. This approach significantly reduces
the risks posed by compromised transit nodes and prevents
adversaries from tracing paths, thereby enhancing privacy
and security across IoT networks. Second, we introduce a
lightweight EaaS architecture specifically optimized for
resource-constrained edge and IoT devices. This architecture
supports flexible encryption configurations, allowing end-users
to customize parameters such as algorithm type and key
size, thus providing tailored security solutions and increasing
trust across heterogeneous devices. Third, we design an Al-
based path recommendation engine that leverages real-
time network metrics and AS-level trust scores to recommend
the most secure and efficient routing paths. The Al-driven
system continuously adapts based on dynamic feedback and
evolving network conditions, ensuring that routing decisions
are made based on the latest data, improving both efficiency
and resilience. Fourth, we implement a user-driven trust
scoring system combined with a collaborative threat intel-
ligence platform, enabling dynamic tracking and updating
of malicious ASs. This system empowers the network to re-
spond to adversarial behavior in real-time, reinforcing routing
policies and enhancing overall network resilience. Finally,
we safeguard the global EaaS/PIN database with digitally
signed AS reports based on asymmetric cryptography. This
mechanism ensures data authenticity, prevents tampering, and
defends against injection attacks on network communications,

contributing to robust path integrity and accountability within
the system.

D. Structure of the Work

The remainder of this paper is organized as follows. Sec-
tion II reviews related work. Section III details the main
security and trust challenges and their solutions. Section IV
presents the proposed framework’s core capabilities. Sec-
tion IX describes the system architecture. Section X provides
a real-world case study. Section XV discusses the results and
limitations. Section XVI provides a summary of this paper
and concludes with the main findings and future research
directions.

II. RELATED WORK

Several research efforts have addressed various aspects
of EaaS, secure routing, path verification, and trust in au-
tonomous systems. Table I provides a comparative summary
of 15 relevant studies in this domain.

Kim and Park [1] have presented a scalable EaaS de-
sign aimed at offloading cryptography from constrained IoT
endpoints to cloud resources. They have demonstrated that
throughput and manageability can be improved without sacri-
ficing core security primitives. However, they did not enforce
route verifiability or incorporate explicit inter-domain trust
reasoning, which are essential in adversarial multi-operator
settings. EaaS/PIN extends this by adding verifiable path
control and user-aware trust scoring.

Li and Wang [2] have provided a survey that maps
lightweight ciphers and implementation trade-offs across em-
bedded contexts, emphasizing energy, latency, and footprint
constraints. It offers a solid catalog for algorithm selection
but remains largely orthogonal to routing trust and path
integrity. EaaS/PIN bridges this gap by coupling lightweight
encryption choices with trust-informed, adaptive path selection
and auditing.

Ahmed and Zhou [5] have enforced verifiable routing across
ASs, detecting path deviations and compromised segments.
Their focus is on cryptographic validation rather than closed-
loop adaptation. EaaS/PIN incorporates ML-driven path rec-
ommendation and user feedback to make path integrity both
verifiable and responsive to evolving risk.

The study done by Gao and Xu [9] hides forwarding
structures using SDN-based obfuscation, improving traffic pri-
vacy against topology inference. While effective in controller-
centric networks, it neither targets [oT offloading nor inte-
grates trust adaptation. EaaS/PIN reconciles anonymity with
EaaS/IoT constraints and complements it with measurable trust
and audit trails.

Singh and Kumar [11] have proposed a user-centric model
aggregating experience, signals threats, and assigns dynamic
trust scores to routing entities. It improves situational aware-
ness but lacks cryptographically enforced reporting and route
proofs. Our framework preserves these benefits while adding
signed evidence and verifiable path records.

The work performed by Zhou and Tang [13] leverages
distributed ledgers for tamper-evident data storage, ensuring



TABLE I

COMPREHENSIVE COMPARISON OF RELATED WORK IN EAAS, TRUST MANAGEMENT, AND SECURE ROUTING.

Ref. Focus / Domain Criteria & Metrics Main Strengths Challenges & Gaps Advancement Year
[1] EaaS for IoT Scalability, Scalable encryption | Lacks robust path verifica- | Introduces path integrity | 2019
Offloading, Security for resource-limited | tion, limited trust manage- | and trust scoring within
devices ment EaaS context.
[2] Lightweight IoT | Crypto algorithm per- | Extensive survey of | No integrated trust or | Fuses lightweight encryp- | 2021
Security formance, Overhead lightweight ciphers path management, evalua- | tion with adaptive trust-
tion mostly theoretical driven routing.
[5] Path Integrity in | Path verification | Enforces verifiable | No ML-based adaptation, | Adds ML-based path se- | 2022
Multi-AS rate, Compromise | routing across AS | lacks user-driven feedback | lection and user feedback
detection domains loop mechanisms.
[9] SDN Privacy / | Anonymity, Path hid- | Obfuscates routing for | Not compatible with | Incorporates anonymity | 2020
Path Obfuscation | ing success privacy in SDN IoT/EaaS, no trust | protocols compatible with
adaptation EaaS and IoT.
[11] Trust Trust scores, Threat | Real-time trust scoring | No cryptographic path en- | Combines trust | 2023
Management detection, User feed- | and threat intelligence forcement, less focus on | intelligence with
& Threat Intel back auditability cryptographically verified
reporting.
[13] Blockchain & In- | Ledger consistency, | DLI-based data | High overhead, limited to | Merges auditability with | 2021
tegrity Tamper detection integrity data layer, no path opti- | active routing and trust
mization layers.
[17] ML-based Secure | Path selection accu- | ML for secure, optimal | Not integrated with cryp- | Unified ML-based routing | 2022
Routing racy, Delay, Security routing tographic trust or user re- | with cryptographic path
porting and trust management.
[20] EaaS Implemen- | Deployment Practical deployment of | Minimal trust/path | Integrates deployment | 2021
tation for IoT efficiency, Latency EaaS on IoT gateways integrity, lacks  audit | with trust, audit, and path
mechanisms enforcement.
[21] Trust in ASs Trust models, Deci- | Conceptualizes trust | Lacks system-level real- | Implements trust models | 2017
sion rules models for ASs ization, no cryptographic | as verifiable, real-time
enforcement metrics.
[22] Trust Metrics | Trust evaluation, Met- | Proposes trust metrics | Domain-specific, lacks | Generalizes metric-driven | 2021
(Robotics) ric proposal in robotics/automation generalizability to | trust to multi-AS IoT net-
networking working.
[23] Trust Trust dimension cov- | Multi-dimensional trust | No integration with | Connects trust dimensions | 2021
Frameworks erage analysis path/security, abstract to actionable, auditable
network policies.
[24] Trust Evaluation | Trust metric efficacy, | Metrics for measuring | Not deployed for live net- | Integrates live metric- | 2023
Metrics Feedback use trust in autonomous | work routing decisions based trust with
systems routing/Auditability.
[25] Trust Challenges Trust challenges, | Identifies gaps in | No solutions or deploy- | Proposes deployable solu- | 2023
Open issues trusted autonomy ment strategies tions for trust bottlenecks
in EaaS.
[26] EaaS in Cloud Cloud offloading, Se- | EaaS paradigm for | No IoT or multi-AS focus, | Generalizes EaaS to | 2013
curity overhead cloud-based data lacks real-time trust mech- | distributed,  trust-aware,
anisms IoT/edge settings.
[27] Community IoT | Open-source Community-driven en- | Fragmented, not standard- | Proposes standardized, | 2020
Encryption adoption, Usability cryption solutions ized, limited trust features | scalable, and trust-aware
EaaS framework.
EaaS/PIN | Secure Routing, | Auditability, User | Integrates Sets new benchmark by | Sets new benchmark by | 2025
Trust, Audit (All | satisfaction, Latency, | cryptographic path | holistically combining | holistically combining
above) Adversarial resilience | verification, ML trust, | path integrity, trust | path integrity, trust
transparency, audit management, intelligent | management, intelligent
routing, and transparent | routing, and transparent
auditing in EaaS for IoT, | auditing in EaaS for IoT,
edge, and multi-AS edge, and multi-AS

integrity under untrusted operators. Overheads and data-layer
scope limit its direct impact on routing decisions. EaaS/PIN
retains ledger-style accountability while elevating it into the
control loop for path selection and trust governance.

In the work done by Mei and Qiu [17] ML is used
to recommend secure, performant routes in edge—cloud IoT
networks. The approach improves accuracy and latency but
does not anchor decisions in cryptographically verifiable trust
or user reporting. Our method unifies ML routing with signed
reports and explicit path verification.

Al-Fuqaha and Guizani [20] have demonstrated a practical
pathway for bringing EaaS closer to IoT, with emphasis on

deployability and latency. Trust formation and path integrity
are outside its primary scope. We integrate those missing
layers (i.e., trust, auditability, and verifiable routing) into the
same operational stack.

The work performed by Bradshaw and Feltovich [21]
frames trust models and decision rules for autonomous en-
tities, clarifying dimensions and interactions. Its contribution
is conceptual and does not specify cryptographic enforcement
or network-scale realization. We operationalize these notions
as measurable, real-time metrics driving routing and audit
policies.

A survey is provided by Dibattista and Michaud [22]



that proposes and compares metrics for evaluating trust in
autonomous/robotic settings. The metrics are insightful yet
tuned to domain-specific scenarios with limited transfer to
inter-domain networking. We generalize metric-driven trust to
multi-operator IoT environments and fuse it with live routing
control.

The analysis done by Friedman and Kahn [23] spans
complementary dimensions of trust and how they relate to
system acceptance. It remains abstract and detached from
enforceable network policies. The design of EaaS/PIN ties
those dimensions to concrete, auditable controls in routing,
reporting, and anomaly response.

The paper presented by Finkelstein [24] discusses evidence
and feedback for quantifying trust in autonomous systems.
Despite rich evaluation criteria, it is not wired into real-time
path selection. We integrate such metrics into the decision loop
and preserve verifiability through audit logs.

The study of NASA [25] charts unsolved issues in building
and deploying trusted autonomy. It stops short of deployment-
grade mechanisms. We respond with implementable controls
user feedback, signed reporting, and path proofs embedded in
EaaS/PIN.

The work done by Kumar and Singh [26] is an early view
of EaaS emphasizing cloud offloading and security overhead
management for data-at-rest/in-transit. The model does not
address IoT heterogeneity, inter-domain routing, or live trust.
We extend EaaS to distributed, trust-aware edge/loT with
verifiable multi-operator paths.

The research performed by Aumasson [27] contains open-
source efforts highlighting usability and adoption for IoT
encryption components. The ecosystem is fragmented and
lacks standardized trust and auditability. Our framework pro-
poses a cohesive, standards-oriented path with integrated trust
management and route verification.

RELATED WORK IN SECURE DATA TRANSMISSION WITHIN
IOT NETWORKS

Secure routing and path integrity in IoT networks have
attracted considerable attention in recent years. Several stud-
ies focus on using cryptographic techniques and trust-based
routing to enhance security and reliability. For instance, some
trust-management mechanisms assign static or semi-static trust
values to nodes, but fail to adapt to dynamic network condi-
tions or malicious behavior in real time. Other works propose
blockchain-based routing protocols to secure data transmission
paths and prevent tampering. For example, [28] presents a
survey of blockchain-based secure routing in IoT networks,
emphasizing immutability and integrity of routing paths.
However, such methods typically do not integrate machine-
learning (ML)—driven trust evaluation or energy-awareness for
resource-constrained IoT devices.

Machine learning has been applied to routing optimization
in IoT to improve efficiency and adaptivity. For instance,
[29] demonstrates ML-based routing optimization for IoT
networks, achieving lower latency and improved throughput
compared to static routing schemes. Nonetheless, this work
does not incorporate a mechanism for verifying the integrity

of the chosen path via blockchain or ledger-based auditing.
Similarly, energy-efficient routing protocols tailored for IoT
(e.g., [30]) address energy consumption, but generally omit
dynamic trust management and tamper-proof path verification,
making them vulnerable under adversarial conditions.

In a related domain, works such as [31] explore blockchain-
based path integrity verification for IoT networks, offering
tamper-resistant routing logs. Although this enhances security,
these proposals often do not combine energy optimization,
ML-based adaptivity, and real-time trust scoring in a unified
framework. Thus, existing solutions typically address only a
subset of the requirements: security, efficiency, or adaptability
rarely all simultaneously.

In contrast, the proposed EaaS/PIN framework integrates
blockchain, ML-driven trust scoring, and energy-aware path
selection to deliver a holistic solution that ensures secure,
reliable, and resource-efficient routing in IoT networks. By
combining real-time path verification, dynamic trust man-
agement, and energy optimization, EaaS/PIN addresses the
limitations of previous works and provides a comprehensive,
scalable approach for multi-domain IoT deployments.

III. CHALLENGES AND PROPOSED SOLUTIONS

This section provides the core challenges addressed in this
work, along with their corresponding mathematical models,
verification mechanisms, notations, and algorithmic solutions
deployed within the EaaS/PIN framework.

To provide a consolidated view of the technical challenges
and their corresponding mitigations, Table II summarizes the
three major threat vectors identified in the EaaS/PIN frame-
work. Each challenge is mapped to a proposed countermeasure
and its associated security and operational benefits. These
solutions are derived from state-of-the-art techniques in path
integrity enforcement [5], trust management [11], and crypto-
graphic data protection [13, 32].

A. Path Manipulation and Header Tampering by Compro-
mised ASs

1) Challenge 1: In a multi-domain communication net-
work, if one of the ASs is compromised, it can illegally modify
the path description embedded in the packet headers. Such ma-
nipulation introduces several critical security and performance
risks. Unauthorized rerouting may result in increased end-to-
end delay, as packets are forced through inefficient or ex-
tended paths, thereby degrading service quality particularly for
latency-sensitive applications. Furthermore, deviations from
user-defined paths may occur without detection, violating rout-
ing policies and breaching Service Level Agreements (SLAs).
In more severe cases, manipulated headers can trigger denial-
of-service (DoS) conditions through the creation of routing
loops or packet black holes, leading to dropped transmissions.
Additionally, privacy leakage may occur when intermediary
ASs gain access to segments of the path they were not
intended to see, exposing user identities or confidential routing
data [5, 9].

A similar class of threats emerges from MITM attacks
targeting communication links between ASs. In such sce-
narios, malicious entities can tamper with packet headers



TABLE II
SUMMARY OF CHALLENGES, SOLUTIONS, AND MATHEMATICAL MODELS IN EAAS/PIN.
Challenge Threat Type Mathematical Model Key Variables & Notation Reference
Challenge Tampering of | Hash of route signed with system private key | ID;: the identifier of AS; Figure 1
1: Path | routing headers and stacked: H: hash function Figure 2
Manipulation P = [ID1|ID3|...|IDy] SKg: system’s private key Algorithm 1
and  Header Hp =[ID1|H(IDy)|...] PKg: system’s public key Algorithm 2
Tampering H(m) = Signg ¢ (H(m)) p1,p2: 15t and 279 parts of message
Verify p g . (p2, H(p1)) € {true, false}
Challenge 2: | False feedback or | Trust score updates and ML-based routing Fit: positive feedbacks of AS; at time ¢ Figure 3
Untrusted AS | trust manipulation | scores: B!: negative feedbacks of AS; at time ¢ Figure 4
Reports TIT = TF + o(F} — BY) — BA At: anomaly reports of AS; at time ¢ Algorithm 3
R =>MT; + XQi — A34; a, B: positive coefficients Algorithm 4

Q;: QoS score of AS;

A1, A2, A3: weighting parameters

T}: the score of AS; at time ¢

R: route reliability score
Challenge MITM on report- | Digital signature and hash chain logging: m;: AS;’s report message Figure 5
3:  Database | ing link; Database | o; = Signgy, (my) SK;: private key of AS; Figure 6
Tampering & | manipulation Verify p ¢, (07, m;) € {true, false} PK;: public key of AS; Algorithm 5
Communica- Lj = H(Lj_1|i|m;|o;) H': hash function Algorithm 6
tion Attacks Lj:j th hash-linked block in ledger

A (][] o] I

"This compromised AS removesits ID from the header stack, |

| and adds another ID to change the forwarding path.

| can till deny the availability. But the user can also

| chang the path 0 avoid this AS.

Fig. 1. Path manipulation by a compromised AS or a MITM attacker, causing
detours, delay, or denial of service (Challenge 1).

during transit, making detection difficult while enabling a
wide spectrum of disruptive behaviors. This vulnerability is
especially pronounced in open and decentralized environments
where path information is only partially protected and visible
to multiple intermediate nodes, and where no robust end-to-
end enforcement exists to ensure the immutability of path
metadata.

The challenge of path manipulation and header tampering
by compromised ASs is presented in Figure 1.

2) Proposed Solution 1: To mitigate the risks posed by
compromised ASs and MITM attacks, we propose a public-
key-based cryptographic mechanism to ensure routing path
integrity and confidentiality. The mechanism begins with key
generation and sharing. The whole system/framework creates a
unique public-private key pair, where the public key is securely
distributed to participating ASs while the private key remains
confidential. Next, the source node constructs a stacked hash
value by concatenating the IDs of the selected ASs in order
and applying a cryptographic hash function. This hash is then
encrypted using the system’s private key and embedded into
the packet header, enabling downstream verification of the
intended routing path. While each AS has read-only access to
the relevant portions of the header, they cannot alter or forge
a valid hash without the private key. Any mismatch between
the decrypted and recomputed hash values serves as a signal
of potential tampering. Upon detection of such anomalies, the
system alerts the user and can dynamically reroute traffic to

Fig. 2. Cryptographic path verification using encrypted stacked hash and
trust-based path adaptation (Proposed Solution 1).

avoid suspected malicious or compromised ASs.

Cryptographic path verification using public-key signatures
as the proposed solution for Challenge 1 is shown in Figure 2.
This approach provides both confidentiality and integrity of the
routing path. It ensures that intermediary ASs cannot tamper
with path metadata undetected, while allowing for real-time
route reconfiguration in response to detected anomalies or
repeated integrity violations.

3) Mathematical Modeling and Algorithm 1: In adversarial
environments, a compromised AS may tamper with the packet
headers to manipulate the routing path. To prevent this, the
sender must ensure that the path embedded in the packet is
cryptographically verifiable.

Let a route be defined as an ordered sequence of n AS
identifiers:

P =[ID1|IDs|...|ID,]

where, | denots concatenation. We generate the route header
as a stacked hash value:

Hp = [ID:\|H(ID1)|IDs|H(IDy)|...|IDy|H(IDy))

where H is a secure cryptographic hash function (e.g., SHA-
256) signed with the private key of the system. In other words,
we have: -

H{(m) = Signgc, (H(m))

where, SKg is the private key of the system and H is the hash
function. Since the hash values are signed, the intermediate
ASs cannot regenerate a valid signature for any modified path.



Algorithm 1 Path integrity initiation from the source node in
EaaS/PIN.
Require: P (the list of ASs’ identifiers in the route)
Require: SKg (the system’s private key)

1: Hp < an empty string
: for 1 < i < len(P) do
: id — P[i]

2

3

4 h «— H(id)

5: h « Signg g (h)

6: if 7 # 1 then

7 | Append | to Hp

8: Append id|h to Hp

9: pkt < initiate a packet

0: Set Hp as the header of pkt

11: Send pkt to AS with identifier of P[1]

—

Algorithm 2 Path integrity verification for ASs in EaaS/PIN.
Require: pkt (the arrived packet)
Require: PKg (the system’s public key)

1: id < self identifier

2: h «— H(id)

3: pkt < the extracted header of pkt

4: if pkt has less than two parts then

5: ‘ Ignore pkt

6: else

7: p1 < extract the first part of pkt

8: po «— extract the second part of pkt

9: pkt «— remove the first two parts of pkt
10: v « Verifyp e (p2, h)

11: if id # p; or v = false then

12: | Ignore pkt

13: else

14: if pkt has no remained parts then

15: ‘ Process pkt as destination node
16: else

17: p3 <« extract the first part of pkt
18: Send pkt to AS with identifier of ps3

When a packet arrives, the AS verifies the signature to check
if it is valid. Assume the i’ AS has received a packet. This
AS extracts the first two parts of the header and checks if the
first part is its ID and the second part has a valid sign for the
has of its ID.

Verify p e (p2, H(p1)) € {true, false}

where, PKg is the public key of the system, and p; and ps
are the first and the second parts of the received message,
respectively. If the verification fails, the path is considered
tampered.

The adversaries cannot regenerate the signature for the hash
values without having access to the system’s private key. Thus,
any tampering is detectable with high probability.

Algorithm 1 and Algorithm 2 shows the procedure of
Solution 1 at the source node and at the AS, respectively.

4) Ilustrative Numerical Example 1: Consider a user-
defined path involving four ASs (i.e., ASy, AS3, ASs5, ASy)
as:

P =[2]3[58]

When the hashing is applied, we will have H(2) = 0x2514,
H(3) = 0xc21f, H(5) = 0x48bc, and H(8) = 0xa828.
After signing these values with the system’s private key, SKg,
we have H(2) = 0xa91f, H(3) = 0x14b2, H(5) =
0x553d, and H(8) = 0x4391. Now, we concatenate the
AS identifiers and the signed hash values:

Hp = [2|0xa91£|3|0x14b2|5|0x553d|8|0x4391]

The destination, say ASs, receives the message. This AS
first extracts the first two parts of the message as p; = 2 and
p2 = 0xa91f. AS, then rehashes the first part:

hl = H(pl) = H(Q) = 0x2514
Then the signature verification is performed:
Verify pre (0xa91f,0x2514) = true

If an attacker alters the path (e.g., replacing ASs with ASy),
as PSg is not accessible by them, an invalid value will be
generated for po, such as p,), = 0x2233. Then, when the
message is arrived to ASy, the signature check fails:

Verify p e (0x2233, H(9)) = false

Thus, tampering is successfully detected.

B. Untrusted AS Measurement Reports and Misleading Status
Claims

1) Challenge 2: A fundamental requirement in the
EaaS/PIN architecture is the ability to collect and rely on
accurate and verifiable network statistics from participating
ASs. However, this assumption introduces a critical vulnera-
bility when malicious ASs deliberately misreport their opera-
tional metrics. These deceptive reports may include fabricated
latency measurements, false claims about recent security up-
dates, or misleading assurances of policy compliance. Such
dishonest behaviors pose significant risks to the integrity and
reliability of the system.

A compromised AS may appear deceptively trustworthy by
reporting high performance and up-to-date security patches,
thereby evading detection and continuing to participate in
critical communication paths. This undermines the frame-
work’s security guarantees and exposes users to elevated risk.
Moreover, persistent discrepancies between reported metrics
and actual user experiences can erode user confidence in
the system’s recommendations, leading users to question the
validity of automated decisions. Inadequate trust in measure-
ment perception may cause users to view EaaS/PIN as unreli-
able. Additionally, resource misallocation may occur if falsely
trusted ASs are favored and overloaded, while more reliable
alternatives are unjustly bypassed. Furthermore, the system
may suffer from false positives and false negatives, where
legitimate ASs are penalized due to transient performance
issues, while attackers conceal their behavior through selective
truthful reporting [11].
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Fig. 3. Untrusted AS that makes user hesitate to use a route (Challenge 1).

Figure 3 illustrates a representative case in which a user
hesitates to initiate communication with a server due to
concerns about AS4’s trustworthiness, in the absence of any
verifiable incident.

2) Proposed Solution 2: To address these threats, we pro-
pose a comprehensive trust management system composed of
the following synergistic components.

The first component is User Feedback-Based Trust Scoring.
Each user or service entity within the EaaS/PIN environment
submits feedback on the ASs they have interacted with.
This feedback includes quantitative metrics, such as latency
and packet loss, as well as security incident reports related
to tampering or rerouting [33]. Additionally, users provide
subjective experience scores, for example using Likert scale
ratings. Trust scores are updated in real time using weighted
aggregation methods, which consider both the frequency of
feedback and the credibility of the reporting user or entity.

Al-Powered Trust Ranking Engine is the second component.
Aggregated feedback is combined with real-time monitoring
data and processed through an ML model, such as LightGBM,
to classify ASs according to their reliability and risk. The
model considers historical trust scores, observed trends in
performance and volatility, records of patches or updates, and
community opinions along with flagged anomalies. ASs with
the highest trust rankings are prioritized for path selection,
while those with lower rankings are either flagged for review
or excluded from the selection process [17].

The third component is Threat Intelligence Integration. A
distributed threat intelligence platform collects and verifies
user-submitted threat reports. The platform enables the real-
time sharing of detected threats and validates these reports
using hash-linked logs. This mechanism supports the creation
of collaborative blacklists across users and domains, strength-
ening the defense against known threats.

Adaptive Filtering and Transparency is the last component.
Routing paths are filtered dynamically based on combined trust
and threat intelligence scores. The system applies adaptive
thresholds and can automatically adjust routing paths if confi-
dence in the current path drops. Periodic transparency reports
are issued, further increasing user confidence and ensuring
accountability within the system.

Figure 4 demonstrates how trust scores derived from other
users’ experiences enable a user to safely trust an AS and com-
plete communication with the server. We use a multi-layered
trust assessment and intelligent AS prioritization system.

3) Mathematical Modeling and Algorithm 2: Malicious
ASs may attempt to manipulate the trust management process
by reporting false performance statistics, such as artificially

Fig. 4. Giving trust scores to ASs and making users completes their
communication (Proposed Solution 2).

Algorithm 3 Feedback-based trust scoring of EaaS/PIN.
Require: n (total number of ASs)
Require: «, 3 (two positive weighting coefficients)
Ensure: T (the list of ASs’ trust scores)

1. T « alist of n zeros

2: for each arrived feedbacks as m do

3: id < extract the AS identifier from m

4 f < count the positive feedbacks in m
5: b < count the negative feedbacks in m
6: a < count the anomalies in m

7: T[id] < T[id] + a(f —b) — Ba

8: return T’

low latency or fabricated update histories, to boost their trust
scores. Without a robust and resilient scoring mechanism,
the EaaS/PIN system is at risk of incorrectly prioritizing
compromised ASs, which can undermine both security and
reliability.

Let T} be the trust score of the i*" AS at time ¢. The score
is updated based on user feedback and threat intelligence:

T+ =T} + a(F} - B) — BA]

Where:

« F! is the number of positive feedbacks for the i'" AS at
time £.

« B! is the number of negative feedbacks or complaints for
the 7*" AS at time ¢.

« Al is the number of confirmed anomalies or blacklisting
events for the i'" AS at time t.

« « and [ are positive weighting coefficients (o > 0,5 >
0).

The AI/ML module ranks ASs by maximizing the routing

reliability score, R, of that route:

R (MT; + AaQi — A34;)

1

n

K2

Where:

« 1 is the total number of ASs in that route.

e @; is the recent QoS performance (e.g., delay inverse) of
the i*" AS in the route.

o A; is the anomaly indicator of the i*" AS in the route.

e A1, A9, and A3 are the weighting parameters for score
fusion.

Algorithm 3 and Algorithm 4 describe the procedure of
applying Solution 2 for scoring and ranking, respectively.



Algorithm 4 Feedback-based route ranking of EaaS/PIN.

Require: P (the list of routes)
Require: 7' (the list of ASs’ trust scores)
Require: @ (the list of ASs’ QoS performance)
Require: A (the list of ASs’ updated anomalies)
Require: A\;, Ao, A3 (three weighting parameters)
Ensure: top (the route with the best reliability score)
1: maxr «— 0
: top gets 1

2

3: for 1 < ¢ < len(P) do

4: sc <0 ~

5 for 1 < j < len(P[i]) do

6 id < P[i][j]

7 sc «— sc + MT[id] + AQJid] — A3A[id]
8 if sc > max then

9 mazx < sc

10: top <1
11: top < P[top]
12: return top

4) Illustrative Numerical Example 2: Suppose there are
three ASs, AS7, ASs, and AS3, and they have the following
metrics at time ¢:

« T} =06, Ff =5, Bt =2, A1 =0, Q, =0.8

e T =07, Ft=3 B =3 AL =1,Qy=0.7

o« Tt =04, FL=6,B, =1, A5 =0, Q3 =0.9
Let « = 0.1, 8 = 0.2, Ay = 0.5, Ao = 0.3, A3 = 0.2. For
updating the trust scores, we have:

Tt =0.640.1x (5—2)=0.9
Tt =07+01x(3-3)-02x1=05
Ti' =04401x (6—1)=0.9
And, the reliability scores are calculated as follow:

R1 = 0.5(0.9) + 0.3(0.8) — 0.2(0) = 0.45 + 0.24 = 0.69,
R = 0.5(0.5)+0.3(0.7) —0.2(1) = 0.25+0.21—0.2 = 0.26,
Rs = 0.5(0.9) + 0.3(0.9) — 0.2(0) = 0.45 + 0.27 = 0.72

Based on these calculation, the final ranking is:
Score of AS3 > Score of AS; > Score of AS,

So, the system recommends paths involving AS3 and AS;
while deprioritizing AS,.

C. Threats to the Global Database and Communication In-
tegrity

1) Challenge 3: The EaaS/PIN architecture relies on a
centralized global database that aggregates real-time mea-
surement reports and performance statistics from participating
ASs. This database plays a crucial role in enabling intelligent
path selection and informed decision-making; however, it also
introduces two significant attack surfaces. First, the commu-
nication channels between ASs and the EaaS/PIN database
are vulnerable to link-level threats, such as MITM attacks. In
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Fig. 5. Compromised communication enabling the injection of false statistics
into the database (Challenge 3).

such scenarios, an attacker may intercept transmissions, alter
measurement packets, insert fabricated delay values, or tamper
with associated security metadata. Second, a direct compro-
mise of the database poses a critical risk. If an adversary gains
unauthorized access, they could inject falsified statistics, erase
valid records, or poison historical logs, all of which threaten
the integrity of the framework’s decision-making processes.

These vulnerabilities can result in serious consequences. For
instance, the system might perform false path optimization,
inadvertently recommending compromised ASs based on ma-
nipulated latency or trust data. Over time, this manipulation
leads to systemic degradation, where prolonged poisoning of
the database erodes the reliability of network intelligence and
diminishes user confidence in the framework. Additionally,
adversaries may exploit these weaknesses to bypass blacklist
filters by forging data that conceals malicious AS activity and
impedes their detection or isolation.

Figure 5 illustrates a representative attack scenario in which
compromised communication links or vulnerable database
enable an attacker to modify network packets and inject false
data directly into the centralized database.

2) Proposed Solution 3: We propose a two-tiered security
mechanism to protect the EaaS/PIN global database and its
communication pipeline: (1) a digital signature scheme for
securing AS-submitted reports, and (2) a blockchain-inspired
immutable audit ledger for tamper-proof storage.

Each AS generates a unique asymmetric key pair and
provides the public key once it is registered in EaaS/PIN.
During the registration phase, the AS securely transmits its
public key to the EaaS/PIN certificate authority. For every
measurement report (e.g., delay metrics, patch status, CPU
load), the AS constructs a payload and signs it using its
private key. The signed payload is then sent over the network
to the central database. Upon receipt, the EaaS/PIN system
verifies the signature. Messages failing signature verification
are discarded and flagged for auditing. This ensures that even
if the transmission channel is compromised, adversaries cannot
forge or manipulate data packets without access to the AS’s
private key.

To address the risk of database tampering, we integrate
an append-only log structure inspired by distributed ledger
technology (DLT). This layer (1) chains all incoming messages
into blocks using hash linking, (2) supports Merkle tree
indexing to allow efficient verification of report integrity, and
(3) periodically publishes root hashes to public logs or trusted
observers to prevent retroactive edits.

We recommend the use of geographically distributed mirror



! oS has 05 s 05
o

Fig. 6. Use of digital signatures and verification to ensure that malicious
reports are rejected from the database (Proposed Solution 3).

nodes that replicate and validate incoming reports. These
nodes verify digital signatures independently, detect hash
mismatches and tampering, and trigger alerts for Byzantine
inconsistencies across mirror logs.

ASs submitting unverifiable or invalid reports multiple times
are penalized via lowered trust scores, excluded from route
suggestions, and flagged to the threat intelligence module for
broader community awareness.

Figure 6 shows how the signature validation and verifica-
tion architecture avoids injected malicious data. This multi-
layered solution ensures that the EaaS/PIN decision engine
operates only on cryptographically verified, tamper-evident
data, significantly improving resilience against insider threats
and network manipulation.

3) Mathematical Modeling and Algorithm 3: The EaaS/PIN
database aggregates sensitive measurements from ASs. If com-
munication links or the database are compromised, attackers
may inject falsified data, alter valid records, or delete historical
logs. To mitigate this, we design a system using digital
signatures for data authentication, and hash-chained blocks for
tamper-evident logging.

Each AS, say the i** AS, has a private-public key pair,
(SK;,PK;). Let m; be a measurement report (e.g., “de-
lay=8ms) that the i*” AS wants to send to the database. This
AS signs the message:

o; = Signg g (m;)

The AS sends [i|m;|o;]. On receipt, to store the message, the
following verification is done:

Verify p . (05, m;) € {true, false}

We store signed messages using a hash chain, considering that
L; is the j* block:

Lj = H(Lj-1lilmi|o;)

This structure ensures that any modification to a past block
invalidates all future blocks. A Merkle tree can also be used
for efficient inclusion proofs.

This can guarantee that falsified data (without a valid
signature) is rejected, and any retroactive change in the log
is detectable via hash mismatch.

The procedure done by the ASs and EaaS/PIN database to
have an authenticated logging is presented in Algorithm 5 and
Algorithm 6, respectively.

Algorithm 5 Authenticated report generation in EaaS/PIN
performed by each AS.
Require: m (the report string)
Require: SK (the private key)
1: id <« self identifier
2: s « Signg(m)
3: pkt < id|m|s
4: Send pkt to the database

Algorithm 6 Authenticated logging for EaaS/PIN database.

Require: PK (the list of ASs public keys)
1: | < 0x0000

2: for each arrive packet as pkt do

3: if pkt has less than three parts then

4: ‘ Ignore pkt

5: else

6: id < extract the first part of pkt
7: po <« extract the second part of pkt
8: po <« extract the third part of pkt
9: k — PK|id]

10 v — Verify, (ps, p2)

11: if v = false then

12: \ Ignore pkt

13: else

14: [ — l\id|p2|p3

15: l— H()

16: Store [

4) Illustrative Numerical Example 3: Let the initial hash
chain block be Lg = 0x0000. Now, assume that AS;
sends a message as m; = "delay=8ms; update=yes;".
This AS signs m; with its private key and gets o3 =
Signgy (m1) = 0xAB12. When the database receives it, a
signature verification is done:

Verify pye (0xAB12, "delay=8ms; up=yes") = true
Then, the hash block is computed:
Ly = H(Lp|"delay=8ms; update=yes"|0xAB12)

and we reach L; = 0x8£33. Now, (m;, 0xAB12,0x8£33)
is stored.

If an attacker changes "8ms" to "4ms", the recomputed
hash L} will differ from stored L, revealing tampering.

L} # L, = modification detected

This is how the illegal modifications are detected.

IV. THE EAAS/PIN FRAMEWORK

The EaaS/PIN framework is designed to go beyond conven-
tional path verification and encryption delegation. It provides
a suite of advanced capabilities that address privacy, adapt-
ability, intelligence, and user inclusiveness. These capabilities
transform EaaS/PIN from a passive encryption solution into a
dynamic, learning-driven, and user-customizable secure com-
munication framework. The main capabilities of EaaS/PIN are
described in the remainder of this section.
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Fig. 7. Anonymity-preserving routing in EaaS/PIN that make each AS see
only adjacent nodes and not the entire path (Capability 1).

Table III summarises the six key capabilities built into the
EaaS/PIN architecture, detailing their goals, core technological
components, expected advantages, and visual references to
their corresponding figures. Together, these capabilities estab-
lish EaaS/PIN as a robust, user-centric, and intelligent security
framework tailored for future large-scale, decentralized net-
works with diverse device classes and threat landscapes.

A. Capability 1: Path Anonymity and Forwarding Confiden-
tiality

One of the primary privacy-enhancing capabilities of
EaaS/PIN is its built-in anonymity protocol that limits the
knowledge of routing information to only the entities that need
it. This design ensures that no intermediate node has access
to the full communication path. Each AS is only aware of
its immediate predecessor and successor, which significantly
reduces metadata exposure during transit. If an AS is compro-
mised or subject to eavesdropping, it cannot reconstruct the
entire routing path or identify the user’s destination, thereby
preserving user privacy. Packet headers are crafted using
partial identifiers and encrypted hop information, effectively
obfuscating the complete route. This architectural approach
inherently reinforces security by defending against traffic
analysis and route correlation attacks, even in adversarial
environments. This capability is shown in Figure 7

B. Capability 2: Lightweight Cryptographic Delegation and
Customizable Encryption

EaaS/PIN decouples cryptographic computation from the
end-user device through an EaaS backend that supports both
lightweight clients (e.g., IoT devices) and intermediate net-
work elements (e.g., ASs) performing decryption tasks. De-
vices with constrained resources can offload heavy cryp-
tographic operations to the EaaS backend, enabling secure
communication without overburdening their limited hardware.
Additionally, ASs may be equipped with EaaS-enabled compo-
nents to perform partial decryption or re-encryption as packets
traverse the network. The system allows users to define custom
cryptographic preferences, including the choice of encryption
algorithms, key lengths, and update intervals, thereby enhanc-
ing user control and trust. Moreover, by dynamically adjusting
encryption levels based on factors such as latency sensitivity
and device capability, the framework maintains an optimal
balance between security and Quality of Experience (QoE).
This capability is shown in Figure 8.

Fig. 8. EaaS modules in EaaS/PIN that assist low-resource users and provide
intermediary decryption services within AS domains (Capability 2).

Fig. 9. ML engine of EaaS/PIN that dynamically suggests secure and low-
delay paths based on evolving network statistics (Capability 3).

C. Capability 3: Machine Learning-Driven Intelligent Path
Recommendation

To assist new or non-expert users in navigating secure and
optimal communication paths, EaaS/PIN employs an ML-
based decision engine that leverages both historical and real-
time metrics. This engine predicts the most efficient path by
analyzing trends in delay, jitter, and trust scores, enabling
optimal path selection at runtime. It incorporates security-
aware routing by evaluating AS reliability through metrics
such as compromise probabilities and records of past incidents.
For users lacking specific routing preferences, the ML engine
provides intelligent recommendations to avoid suboptimal or
high-risk paths. Moreover, the model is continuously retrained
using new feedback and dynamic network observations, ensur-
ing that its decisions remain aligned with current conditions
and emerging threats.

D. Capability 4: Threat Intelligence Integration and Collab-
orative Risk Awareness

EaaS/PIN incorporates a decentralized threat intelligence
module that aggregates suspicious activity and confirmed
security incidents from across the network, enabling collective
learning and adaptive response to evolving threats. Users
and ASs can report anomalies such as packet tampering,
replay attacks, or unusual routing behavior, contributing to
a crowdsourced alert system. A central registry maintains a
global threat index by assigning and continuously updating
risk scores for each AS based on historical patterns and real-
time reports. This information supports preemptive defense
mechanisms, where routes involving blacklisted or highly
suspicious ASs are automatically deprioritized or filtered from
path selection. Furthermore, threat intelligence can be shared
across domains, enhancing detection capabilities and response
times within federated network environments. This capability
is shown in Figure 10.



TABLE III
SUMMARY OF CORE CAPABILITIES OFFERED BY THE EAAS/PIN FRAMEWORK.

Capability Goal Key Components & Technology Benefits & Applications Reference
Capability 1: | Prevent full path disclosure | Onion-style routing; partial AS visi- | Limits metadata leakage; mitigates Figure 7
Path Anonymity to intermediate ASs bility; hash-protected headers route-based surveillance and eaves-
dropping

Capability 2: | Support secure | Offloaded encryption; customizable | Enables secure use of advanced cryp- Figure 8
Lightweight communication for | algorithms; distributed EaaS nodes tography on limited devices; improves
EaaS resource-constrained user control over encryption

clients (e.g., IoT)
Capability 3: | Assist new or non-expert | ML engine (e.g., LightGBM); trust | Reduces suboptimal routing; Figure 9
ML-Based users in selecting secure, | and QoS training features; real-time | increases system efficiency and
Routing Recom- | low-latency paths path ranking security confidence
mendation
Capability Detect and react to mali- | User-submitted threat reports; dis- | Improves early detection; enhances | Figure 10
4: Threat | cious AS behavior using | tributed blacklist updates; global | adaptive path filtering
Intelligence collective knowledge trust index
Integration
Capability 5: | Increase system trust and | Tamper-evident logs; path justifica- | Enables route traceability; supports | Figure 11
Transparent user accountability tion reports; public trust histories dispute resolution and regulation
Reporting  and compliance
Auditability
Capability 6: | Enable programmable, | Software-defined controllers; virtual- | Enhances agility, survivability, and | Figure 12
SDN/NFV-Based policy-driven routing and | ized EaaS functions; dynamic recon- | modular deployment of EaaS/PIN
Adaptability scalability figuration components

Fig. 10. Integration of threat intelligence in EaaS/PIN for real-time risk
aggregation and collaborative alerting (Capability 4).

E. Capability 5: Transparent Decision Reporting and Au-
ditable Accountability

To foster trust and ensure compliance, EaaS/PIN supports
transparency mechanisms that enable users to understand rout-
ing decisions and monitor the behavior of network elements.
Users can request end-to-end transparency reports that provide
detailed, privacy-preserving summaries of the ASs involved
in their communication paths. Each AS maintains a publicly
accessible reputation history, including trust scores, records
of flagged behaviors, and documented remediation efforts.
All actions related to trust evaluations, user feedback, and
system decisions are securely recorded in tamper-evident logs
to guarantee auditability. Through these transparency measures
[34], users are empowered to review, contest, or override
routing recommendations, thereby enhancing confidence and
control in the system. Figure 11 shows this capability.

FE Capability 6: SDN/NFV Integration for Dynamic Adapt-
ability

EaaS/PIN is architected with compatibility in mind for
Software-Defined Networking (SDN) and Network Func-
tion Virtualization (NFV), enabling flexible reconfiguration
and policy-driven adaptation. Leveraging SDN controllers,
EaaS/PIN supports policy-based flow control, allowing traf-
fic to be dynamically routed based on parameters such as
trust scores, latency, or user-defined criteria. Through NFV,

Anonymity Protocol in EaaS/PIN
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Fig. 11. Gaining visibility into routing decisions by users and changes of
audit trust score through transparent reporting in EaaS/PIN (Capability 5).
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Fig. 12. Integration of SDN/NFV that enables flexible, programmable, and
scalable deployment of EaaS/PIN components (Capability 6).
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cryptographic engines, trust evaluation models, and auditing
components can be deployed as virtualized, scalable services.
The architecture also enhances fault resilience by enabling
on-the-fly reconfiguration of routing functions when a node
or region becomes unavailable or is detected as malicious,
eliminating the need for manual intervention. Furthermore, the
system supports high programmability, empowering adminis-
trators to implement new routing logic or trust assessment
policies without altering the underlying physical infrastructure.
This capability is shown in Figure 12.



V. SECURITY ANALYSIS

In this section, we provide a comprehensive security anal-
ysis of the proposed EaaS/PIN framework. The primary ob-
jective is to ensure the security and integrity of the data paths
selected by the Al-based path selection module, verified by the
blockchain mechanism, and optimized for energy efficiency.
Given the nature of IoT networks, which are often vulnerable
to various adversarial attacks, it is crucial to evaluate how
the proposed framework resists common threats such as Sybil
attacks, man-in-the-middle (MITM) attacks, and denial-of-
service (DoS) attacks.

To address these threats, we have developed formal security
proofs and models demonstrating the system’s resilience.
Specifically, we focus on the following key security aspects:

A. Sybil Attack Resistance

Sybil attacks, where an attacker creates multiple fake iden-
tities to disrupt the network, are a significant concern in
decentralized systems. In the EaaS/PIN framework, blockchain
technology plays a crucial role in mitigating Sybil attacks. By
employing proof-of-work or proof-of-stake protocols within
the blockchain, we ensure that only legitimate nodes with
verified identities can participate in the network. This makes
it computationally infeasible for an attacker to create multiple
fake identities and manipulate the path selection process, thus
ensuring the integrity of the routing decisions made by the Al
model.

B. Man-in-the-Middle Attack Prevention

Man-in-the-middle (MITM) attacks, where an attacker in-
tercepts and alters communications between two parties, are
another major threat in IoT networks. In the EaaS/PIN frame-
work, the blockchain-based path verification mechanism guar-
antees the integrity of the selected paths. Whenever a path is
selected by the Al model, it is verified through the blockchain
to ensure that no tampering has occurred. This prevents an
attacker from intercepting and altering data transmissions
between IoT nodes, ensuring secure data transmission and
preventing malicious interference in the network.

C. Denial-of-Service (DoS) Attack Mitigation

Denial-of-service (DoS) attacks, which aim to overwhelm
the network with excessive traffic or computational re-
quests, can disrupt the normal operation of IoT networks.
In the EaaS/PIN framework, both the AI path selection and
blockchain verification mechanisms are designed to resist
DoS attacks. By utilizing energy-efficient routing decisions
and minimizing the computational complexity of blockchain
transactions, we reduce the likelihood of network congestion.
Additionally, the AI model continuously monitors network
conditions and adjusts path selection in real time to avoid
overloaded nodes or paths, thereby maintaining the system’s
stability even under high traffic conditions.

D. Formal Security Proofs

To substantiate the security claims, we provide formal
proofs demonstrating the resilience of the EaaS/PIN frame-
work against the identified adversarial threats. The proofs show
that the combination of blockchain cryptographic functions
and Al-based path selection ensures that the system main-
tains its integrity, security, and energy efficiency even in the
presence of malicious nodes. For example, the blockchain’s
cryptographic hashing ensures that once a path is validated,
it cannot be altered by unauthorized entities. Additionally,
the trust management system, which assigns trust scores to
IoT devices based on their behavior, further strengthens the
security of the network by ensuring that only trustworthy
devices can participate in the routing process.

VI. MATHEMATICAL MODELING OF THE 10T NETWORK
FRAMEWORK

In this section, we provide a detailed and comprehensive
description of the mathematical models used to describe
and analyze the performance of the proposed IoT network
framework. The mathematical modeling is grounded in the
practical components of the system, including the Al-based
path selection, blockchain-based path verification, and their
integration within the network architecture. These models aim
to capture the essential features of the system and provide
analytical tools for understanding the impact of different pa-
rameters on the system’s performance.Furthermore, we present
a detailed mathematical framework for the IoT network sys-
tem, which integrates Al-based path selection and blockchain-
based path verification. The optimization problem for Al-based
path selection is formulated to maximize throughput, minimize
delay, and reduce energy consumption. Blockchain is utilized
to ensure the integrity of data paths through cryptographic
verification, providing secure and reliable communication.
We further define several key performance metrics, including
communication delay, throughput, path verification accuracy,
and energy consumption, and provide analytical models to
assess the system’s behavior. Numerical examples and case
studies are provided to validate the models, demonstrating
the effectiveness of the proposed system in real-world IoT
networks. This section bridges the theoretical models with
practical implementation, offering a comprehensive analysis
of the system’s performance.

A. Optimization Problem for Al-based Path Selection

The Al-based path selection process is modeled as an
optimization problem, where the goal is to select the most ef-
ficient path for data transmission within the IoT network. The
optimization criteria include factors such as network topology,
device status, real-time congestion, and energy consumption.
The problem can be formulated as follows:

P* = arg max (- Throughput — 3 - Delay — - Energy Consumption)

(D
where: - P represents the path selection decision variable.
- Throughput is the total amount of data transmitted over the



selected path. - Delay is the communication delay for the se-
lected path. - Energy Consumption is the energy consumption
of the IoT devices during data transmission. - «, (3, and -y are
weights that represent the relative importance of each metric
in the objective function.

This optimization problem is solved using a reinforcement
learning (RL) algorithm, where the Al model learns to select
the optimal path based on feedback from the network. The
network state, including device availability, link quality, and
congestion, serves as the input to the RL model, which updates
the path selection policy to maximize the objective function.

B. Blockchain-based Path Verification Mechanism

The blockchain-based verification mechanism ensures that
the selected data paths are secure and trustworthy. The in-
tegrity of the paths is verified by recording each step of the
data transmission process on the blockchain. The formalization
of this verification process is given by the following equations:

where L; is the size of the ¢-th data packet, and Dcomm,i
is the communication delay for that packet.

« Path Verification Accuracy (Ayeriry): The accuracy of
the blockchain in verifying the integrity of the data paths.
This is represented as:

Number of Verified Paths
Total Number of Paths

This metric ensures that the blockchain correctly verifies
the integrity of the paths in the network.

o Energy Consumption (Fioa): The total energy con-
sumed by IoT devices during data transmission. This is
calculated as:

Averify = x 100 (5)

N
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i=1
where P; is the power consumption of the i-th device,
and t; is the transmission time.

D. Numerical Examples and Case Studies

H(P) = Hash(Path Information| Timestamp|Previous Block Hash)To validate the analytical models, we present numerical

2)

where: - H(P) is the hash of the path P, which uniquely

identifies the path and ensures its integrity. - Path Information

includes the source and destination devices, transmission time,

and data content. - Timestamp records the time of the data

transmission. - Previous Block Hash links the current block
to the previous one, creating a chain of verified paths.

The blockchain ledger stores these hashes and ensures that
any attempt to alter the data path will be detectable, as it
would change the hash, thus invalidating the entire chain. The
blockchain ensures data integrity and prevents any malicious
tampering with the selected paths.

C. Performance Metrics and System Evaluation

To evaluate the performance of the proposed system, we
define several key performance metrics, which are linked to
the mathematical models:

« Communication Delay (D¢omm): The time taken for data
to travel from the source to the destination device. This
metric is affected by the selected path, network conges-
tion, and the efficiency of the Al-based path selection
algorithm. Mathematically, it is expressed as:

% + uneuing (3)
where: - L is the size of the data to be transmitted. -
R(P) is the transmission rate of the selected path P.
- Dgueuing is the queuing delay, which depends on the
network congestion.

o Throughput (7ihroughput): The total amount of data trans-
mitted successfully over a given period. This metric is in-
fluenced by the selected path and the network conditions.
It is given by:
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examples and case studies based on real-world IoT network
configurations. The following example demonstrates the ef-
fectiveness of the Al-based path selection and blockchain
integration in improving network performance.

« Case Study 1: In a smart home IoT network with 50
devices, the AI path selection algorithm reduces the
communication delay by 20% and increases throughput
by 25% compared to traditional routing methods.

o Case Study 2: A smart city IoT network with 200
devices shows a 30% improvement in path verification
accuracy when blockchain is used to ensure data integrity.
The system also demonstrates a reduction in energy
consumption by 15% due to optimized path selection.

These case studies validate the effectiveness of the proposed
system and show that the mathematical models align well with
the observed performance.

The mathematical modeling section provides a detailed
and analytical approach to understanding the proposed IoT
network framework. By linking the mathematical models to
the practical components, such as Al-based path selection and
blockchain-based path verification, we offer a comprehensive
view of the system’s performance. The models are validated
through numerical examples and case studies, demonstrating
the practical applicability of the framework in real-world IoT
networks.

VII. TRUST SCORING AND ML-BASED PATH SELECTION

In this section, we present a detailed and comprehensive
explanation of the Trust Scoring system and the ML-based
Path Selection mechanism, focusing on their key components,
the parameters used, and the datasets involved in the training
and evaluation of the system. The integration of these compo-
nents is vital for ensuring the reliability and efficiency of the
IoT network, with the trust scoring mechanism determining
the credibility of devices and the ML-based path selection
optimizing data routing in real-time.



The Trust Scoring system is designed to evaluate the re-
liability of each IoT device within the network. This system
assigns a trust score to every device based on its historical
behavior, including factors such as data transmission success
rate, device uptime, and overall participation in the network.
The trust score, denoted as T for device d, is calculated using
a weighted average of the reliability scores across multiple
observations, as shown in the following equation:

~ 2¥ | Reliability,
- N

where N represents the total number of observations, and
Reliability, is the reliability score assigned to the device
during observation i. Devices with higher trust scores are
deemed more reliable and are preferentially selected for data
transmission, whereas those with lower scores are avoided
unless necessary. The trust scoring system thus plays a crucial
role in maintaining the integrity and efficiency of the network
by ensuring that only reliable devices are trusted for data
transfer.

For the Path Selection mechanism, we employ a machine
learning (ML) model to predict the most optimal paths for
data transmission based on real-time network conditions. This
model takes into account several network features, including
signal strength, congestion, device health, and the historical
performance of different paths. The path selection is treated as
a classification problem, where the model classifies potential
paths as either “good” or “bad” based on these features.
The model is trained using a labeled dataset that includes
network conditions and the corresponding ideal path choices.
The mathematical formulation for the path selection process
is given by:

T, )

P =arg max f (Features(P)) 8)

where P represents the predicted optimal path, and
Features(P) include factors such as the signal-to-noise ratio
(SNR), available bandwidth, and device reliability for each
potential path P. The objective of this optimization is to
maximize the throughput, minimize the delay, and reduce the
energy consumption for the selected path.

The training of the ML model requires high-quality datasets
that capture various network states and their corresponding
optimal paths. To ensure the reproducibility and transparency
of our experiments, we provide access to both real-world and
synthetic datasets. The real-world dataset consists of traffic
data collected from an operational IoT network, including
transmission times, packet loss rates, device availability, and
other key parameters. This dataset reflects the conditions typi-
cally encountered in IoT networks, allowing the model to learn
from actual network performance. Additionally, a synthetic
dataset was generated using simulation tools, which allows
us to simulate various network conditions and evaluate the
system under controlled settings. These datasets are publicly
available for other researchers to replicate the experiments
and validate the results, promoting scientific transparency and
reproducibility.

The performance of the Trust Scoring and ML-based Path
Selection mechanisms is evaluated using several key metrics,
including accuracy, recall, and the percentage of successful
data transmissions. The accuracy of the trust scoring system
is assessed by comparing the predicted trust scores with
actual device reliability, while the path selection accuracy
is measured by evaluating how well the model predicts the
optimal path compared to the real-world performance. The
following metrics are used to evaluate the system:

« Accuracy: Measures the proportion of correctly predicted
paths and trust scores.

« Recall: Assesses the model’s ability to identify all valid
paths and reliable devices.

« Path Reliability: The percentage of successfully trans-
mitted data packets through the selected paths.

To assess the computational overhead, we also evaluate the
time complexity of the ML model, including the training and
prediction phases. The training time is an important factor, as
it affects the scalability of the model in large IoT networks,
while the prediction time is critical for real-time path selection.

Finally, the Trust Scoring and ML-based Path Selection
mechanisms are evaluated under different IoT network config-
urations and conditions, such as varying levels of congestion,
network size, and device failure rates. Numerical examples
and case studies are presented to validate the models, showing
how the Trust Scoring system and ML-based Path Selection
improve the overall performance of the IoT network. These
case studies also demonstrate the scalability of the system, as it
can handle larger networks with increased device numbers and
varying network conditions. In conclusion, the Trust Scoring
and ML-based Path Selection section has been updated to
provide a clear and detailed explanation of the parameters,
datasets, and performance metrics used to evaluate the system.
This section now offers a comprehensive understanding of how
the system operates and ensures the scientific verifiability of
the results, with publicly available datasets enabling replica-
tion of the experiments.

VIII. NOVELTY AND CONTRIBUTION OF EAAS/PIN
FRAMEWORK

In this section, we elaborate on the novel aspects and unique
contributions of the proposed Energy-as-a-Service (EaaS) and
Path Integrity Network (PIN) framework. This framework
addresses critical challenges in IoT networks by integrating
Al, blockchain, and energy management into a unified system.
While existing works often focus on optimizing either security,
routing, or energy efficiency in isolation, our framework
introduces a holistic approach by simultaneously ensuring
secure and efficient data routing, while optimizing energy
consumption, which is particularly crucial for IoT devices
with limited resources. As shown in Figure 13, the EaaS/PIN
framework integrates Al-based path selection, blockchain path
verification, and energy management to optimize data trans-
mission and energy consumption in IoT networks.

A key innovation of the EaaS/PIN framework is the integra-
tion of blockchain technology for path verification alongside
Al-based path selection. Many traditional Al-based routing



algorithms focus on optimizing network throughput, reducing
delay, or managing congestion. However, these methods typi-
cally overlook the integrity and security of the paths chosen for
data transmission. By incorporating blockchain, the EaaS/PIN
framework ensures that the paths selected by Al are not
only optimal in terms of performance but also secure and
resistant to tampering. This path integrity verification prevents
malicious actors from manipulating routing decisions, ensuring
that the data being transmitted follows a secure and verifiable
route.

In addition to path integrity, energy consumption is a major
concern in IoT networks, especially for resource-constrained
devices such as sensors and embedded systems. The EaaS/PIN
framework uniquely integrates energy optimization into the
path selection process. Rather than focusing solely on tradi-
tional metrics such as throughput and delay, the framework
also considers the energy consumption of each potential path.
This ensures that IoT nodes can transmit data in the most
energy-efficient manner possible, significantly prolonging the
lifetime of battery-powered devices. By dynamically adjusting
path selection based on real-time energy consumption and net-
work conditions, the framework optimizes both performance
and energy efficiency.

Another significant contribution of this framework is the
ability to perform real-time dynamic path selection using Al
Most traditional routing algorithms are static and do not adapt
to the ever-changing conditions of the network. The EaaS/PIN
framework, however, utilizes machine learning models that
continuously adapt to network dynamics, ensuring that the
best available path is selected at any given time. This dynamic
adaptability is particularly important in IoT networks, where
the network topology may change frequently due to device
mobility, network congestion, or link failures. The use of
reinforcement learning or other machine learning algorithms
allows the system to improve its decision-making over time,
learning from past experiences to make more informed routing
choices in the future.

The integration of these components into a single framework
is a key novelty of the EaaS/PIN system. While Al and
blockchain are often studied separately in the context of IoT,
the combined approach in EaaS/PIN enables a much more
efficient and secure network. In particular, the simultaneous
focus on both path integrity and energy efficiency differen-
tiates this framework from other solutions. Many existing
systems prioritize one aspect such as security or throughput
while overlooking the importance of energy consumption in
resource-constrained environments. The EaaS/PIN framework
uniquely balances these three pillars security, efficiency, and
energy optimization into a cohesive, scalable solution for IoT
networks.

Additionally, the energy-aware path selection process is
highly innovative, as it ensures that every selected path not
only meets the performance requirements but also minimizes
energy usage. This is crucial for IoT networks, where devices
are often battery-powered and must operate for extended pe-
riods without frequent recharging. The framework also adapts
to the energy limitations of individual IoT nodes, offering a
scalable solution for a wide range of devices with varying

power capacities.

Moreover, the EaaS/PIN framework is specifically designed
for resource-constrained IoT devices. Many existing solutions
do not account for the limitations of edge devices, which
typically have low computational capacity, limited memory,
and small battery life. Our approach, however, ensures that the
system is tailored to the needs of such devices. The system
employs lightweight machine learning models for real-time
path selection and uses optimized cryptographic techniques
for blockchain verification, reducing the computational and
energy load on IoT nodes.

In conclusion, the EaaS/PIN framework represents a novel
and significant advancement in IoT network design. By inte-
grating Al, blockchain, and energy management in a unified
framework, it addresses the major challenges of security, per-
formance, and energy efficiency. This framework ensures that
IoT networks can operate securely, efficiently, and sustainably,
even in environments with resource-constrained devices. Un-
like previous approaches, which treat these factors separately,
our approach provides a comprehensive solution that integrates
all these elements, making it highly applicable for the growing
field of IoT networks, particularly in large-scale deployments
across smart cities, industrial IoT, and beyond.
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Fig. 13. EaaS/PIN Framework: Integration of Al, Blockchain, and Energy
Management

The EaaS/PIN framework offers several key contributions
beyond existing methods:

« Unified Security—Efficiency—Adaptivity: Unlike
prior works that focus separately on either security
(blockchain), efficiency (energy-aware routing), or
adaptability (ML-based routing), EaaS/PIN consolidates
all three aspects into a unified approach guaranteeing
path integrity, dynamically adjusting trust scores, and
optimizing for energy consumption.

« Real-time Trust Scoring with ML: The framework
continuously evaluates node reliability using machine
learning models trained on historical and real-time feed-
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back data, enabling adaptive routing decisions that reflect
current network and trust conditions.

« Blockchain-based Path Verification and Auditing: Path
integrity is ensured via a blockchain (or hash-chained
ledger), where each transmitted route is logged and can be
audited or verified against tampering an essential security
layer not present in most ML- or energy-focused routing
approaches.

« Energy-aware Path Selection for IoT Constraints:
Recognizing the resource limitations of IoT devices
(battery, CPU, memory), EaaS/PIN incorporates energy
consumption as a core metric in path selection, ensuring
long-term sustainability and viability in real deployments.

o Scalability and  Multi-Domain  Deployability:
The design supports deployment across large-scale,
multi-domain IoT networks by combining distributed
ledger technology, edge computing, and adaptive routing
addressing limitations of single-domain, small-scale
proposals.

IX. SYSTEM ARCHITECTURE

The proposed EaaS/PIN framework is organized into a
layered architecture that unifies EaaS, dynamic trust manage-
ment, and secure path verification mechanisms. It consists
of three key layers: the User Layer, the Control Layer,
and the AS Infrastructure Layer. Each layer is tailored
to address specific system objectives, collectively ensuring
global integrity, dynamic trust adaptability, and operational
performance.

This layered design ensures modularity, scalability, and
separation of concerns. The integration of user-defined control
logic, adaptive trust evaluation mechanisms, and robust crypto-
graphic data verification makes the EaaS/PIN framework both
secure and adaptable to heterogeneous environments.

Figure 14 illustrates the overall system architecture of the
EaaS/PIN framework. The User Layer captures input from
user devices and collects feedback. The Control Layer hosts
critical decision-making and security modules including the
EaaS Engine, Path Verifier, Al-based Selector, and Threat
Intelligence Engine. The AS Infrastructure Layer carries out
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monitoring operations, path validation, report signing, and
audit logging akin to blockchain models [35, 36]. The direc-
tional arrows in the diagram indicate data flow and control
dependencies between the respective layers.

A. User Layer

The User Layer encompasses client-side applications and
IoT devices, many of which possess limited computational
resources. The primary functions of this layer include initiating
encrypted communication sessions via EaaS interfaces, spec-
ifying preferred routing paths or opting for system-suggested
ones, and providing feedback regarding AS performance such
as trust scores or anomaly reports. Additionally, users receive
transparency reports and real-time alerts generated by the
system. To accommodate resource-constrained devices, heavy
tasks such as encryption and path verification are securely
delegated to the Control Layer through lightweight API inter-
actions [37, 38].

B. Control Layer

At the core of the EaaS/PIN framework lies the Control
Layer, which hosts the system’s principal intelligence and
security mechanisms. This layer is the middleware and in-
telligence core. It integrates multiple subcomponents that col-
laboratively manage cryptographic operations, trust evaluation,
and threat mitigation.

The EaaS Engine is responsible for executing cryptographic
functions on behalf of users. It supports configurable param-
eters such as key lengths, padding schemes, and encryption
rounds, and can operate with a wide spectrum of algorithms.
The Path Integrity Verifier ensures the correctness and
authenticity of routing paths by verifying digital signatures
constructed over stacked hashes of AS identifiers. In the
event of tampering detection, it initiates rerouting protocols.
The Trust Management Module dynamically aggregates user
feedback and external threat intelligence, maintaining a real-
time trust score for each AS based on both historical and recent
data.

The AI-Powered Path Selector leverages an ML model
such as LightGBM to recommend secure and high-performing
network paths. Its decisions are based on a fusion of real-time
metrics and long-term trust history. The Threat Intelligence
Engine functions as a decentralized reporting node, aggre-
gating data on detected intrusions, behavioral anomalies, and
emerging threats across the network. Lastly, the Audit Log
Generator ensures accountability by constructing Merkle tree-
based hash-linked audit trails of AS-generated reports, which
are then appended to a distributed, tamper-evident ledger.

C. AS Infrastructure Layer

This layer represents the distributed ASs, including routers,
network domains, and intermediary nodes. Its key components
include the AS Report Generator, which enables each AS to
generate cryptographically signed reports containing perfor-
mance metrics, security patch statuses, latency measurements,
and operational logs. These reports are periodically submitted
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(Al-based path selection avoids the compromised AS and ensures encrypted
data is securely transmitted to the edge server [39]).

to the control layer. Another critical component is the Secure
Key Registry, where each AS registers its public key, allowing
the control layer to verify the authenticity of submitted reports.
The Path Transit Units implement local verification mecha-
nisms for packet paths, utilizing onion encryption or partial
decryption models to ensure privacy across transit nodes.
Optionally, Mirror Validation Nodes may be deployed to
replicate the central database and validate its integrity using
distributed hash-based verification mechanisms.

X. CASE STUDY: SECURE DATA TRANSMISSION IN A
MULTI-AS SMART CITY NETWORK

To validate the practical applicability and robustness of
the proposed EaaS/PIN framework, we present a case study
set in a real-world inspired environment involving a smart
city IoT infrastructure distributed across multiple network
operators. This scenario simulates a complex and partially
adversarial environment where end-to-end encryption, trust-
driven routing, and cryptographic accountability are critical
[39].

A. Scenario Overview

A smart city environment is considered, deploying a large-
scale sensor network comprising over 500 IoT nodes dis-
tributed throughout five administrative zones. These nodes are
responsible for monitoring various environmental parameters,
including air quality, traffic congestion, noise levels, and
temperature variations. The five zones are interconnected via
fog nodes, which interface with regional edge servers. Each
edge server is managed by a distinct AS, and these ASs, owned
by different service providers, collectively form the backbone
of the city’s inter-domain routing infrastructure.

Within this architecture, which is shown in Figure 15,
three honest ASs operate with varying levels of performance,
while a fourth AS experiences temporary overload resulting
in increased delay. Additionally, one adversarial AS is intro-
duced, deliberately injecting false delay reports and tampered
routing data. This simulated setting allows for evaluation of
the system under both performance and security challenges.
The primary requirements for such a deployment include real-
time responsiveness, specifically, ensuring routing decisions

consistently maintain latency below 150 ms, as well as trust-
aware routing that actively excludes ASs with poor or manipu-
lated trust records. It is also essential to maintain low resource
overhead by enabling IoT devices to delegate computationally
intensive cryptographic operations to the EaaS engine. Finally,
all routing decisions and related reports must be verifiable,
ensuring that audit trails are both transparent and tamper-
evident.

B. EaaS/PIN Deployment Configuration

The EaaS/PIN framework is integrated into the smart city
network using a multi-layered approach. At the IoT layer,
lightweight clients based on ESP32-class devices leverage
symmetric AES-128 encryption. Each sensor registers with
the EaaS engine through a fog gateway, securely offloading
encryption tasks using TLS-based channels. The gateway
layer incorporates a policy manager for configuring acceptable
delay thresholds and trust parameters, a path request handler
interfacing with the EaaS Path Selector module, and a periodic
feedback agent responsible for submitting experience-based
scores to the trust engine.

At the control layer, the system evaluates all available AS
paths using real-time, cryptographically signed AS reports that
are verified via public-key infrastructure, along with historical
feedback data and an Al-driven ranking model based on
LightGBM. Routing decisions are constrained by both trust
score thresholds (defaulting to scores > 0.75) and strict
latency requirements. Additionally, all accepted AS reports
are immutably logged in a Merkle-based audit structure, with
periodic cryptographic anchoring to ensure log integrity and
tamper resistance.

C. Simulated Adversarial Behavior

To realistically evaluate system resilience, the simulation
introduces two forms of adversarial stress. The first, denoted
as AS_malicious, attempts to deceive the Al path selector by
injecting falsified delay measurements (all less than 30 ms).
The second, referred to as AS_overload, provides accurate
measurement reports but in practice suffers from actual delays
in the range of 200 ms due to temporary overload. The
objective of these adversarial injections is to rigorously test
whether the EaaS/PIN framework can successfully detect and
exclude such compromised or underperforming ASs, utilizing
its signature verification procedures and dynamic trust scoring
mechanisms.

D. Observed Results and Evaluation

Over a 24-hour monitoring window, several key out-
comes were observed. Path integrity enforcement was ro-
bust, as 100% of manipulated routing paths (introduced via
AS_malicious) were successfully detected through signature
mismatch and excluded from the set of recommended paths.
The AI Selector further demonstrated trust-driven adapta-
tion by dynamically adjusting path selection to exclude
AS_overload, despite the presence of valid signatures, in
response to accumulating negative user feedback. Performance



gains were evident: compared to baseline shortest-path routing
(without trust or validation), the proposed system achieved a
42 ms average latency improvement, a 34.5% reduction in path
tampering events, and a 91.3% user satisfaction score based
on transparency and control feedback. Additionally, audit log
integrity was verified, with no inconsistencies detected in audit
trail validation across three replicated validation nodes.

XI. EXPERIMENTAL SETUP AND IMPLEMENTATION

In this section, we provide a detailed description of the ex-
perimental setup and the methods used to validate the proposed
framework. The aim is to demonstrate the practicality and
efficiency of integrating blockchain, Al, and path verification
in real IoT networks. The setup was designed to reflect
realistic IoT network environments, with careful consideration
of network protocols, devices, and integration techniques. This
section includes a description of the IoT environment, the
integration of blockchain and Al, the real-world datasets used
for testing, and the performance evaluation metrics.

A. IoT Network Environment Setup

The IoT network environment used in our experiments was
designed to mimic the typical communication and interaction
patterns in a smart city setup. The key components of the
network include the following:

o IoT Devices: We utilized a range of IoT devices com-
monly found in smart city networks, including tempera-
ture sensors, humidity sensors, smart meters, and motion
detectors. These devices were selected for their relevance
to environmental monitoring and smart infrastructure
management.

« Communication Protocols: Standard communication
protocols were used to facilitate data transmission be-
tween devices. MQTT (Message Queuing Telemetry
Transport) was chosen for lightweight message delivery,
CoAP (Constrained Application Protocol) was used for
low-power devices, and traditional TCP/IP was employed
for reliable communication over larger distances.

« Network Topology: A star topology was selected, where
all IoT devices are connected to a central gateway. This
gateway handles communication between the devices and
the cloud server, where data is processed and stored for
further analysis.

o Edge Devices and Cloud Servers: Edge computing
devices were deployed to process data locally and reduce
latency, while cloud servers handled larger computational
tasks and storage. This distributed computing model
ensured that the system could scale effectively.

B. Integration of Blockchain and Al

Blockchain and Al were integrated into the IoT network
to provide secure path verification and optimize data routing.
The integration process was carried out in the following steps:

« Blockchain Implementation: We chose Hyperledger

Fabric, a permissioned blockchain framework, to ensure
data integrity and security. Blockchain was used to log

all communication between IoT devices and to verify the
authenticity of data transmission paths.

o AI Path Selection Algorithm: A machine learning
model, specifically a reinforcement learning-based algo-
rithm, was employed to dynamically select optimal data
paths between devices. The model was trained on network
performance data, which included signal strength, device
status, and network congestion. This Al-based approach
allowed the network to adapt to changing conditions and
select the most efficient communication paths.

o Integration with IoT Network: The blockchain and
Al components were integrated into the IoT devices via
lightweight APIs. Smart contracts were deployed on the
blockchain to facilitate secure data exchange, while the
Al algorithm ran on the edge devices to ensure low-
latency path selection.

C. Real-World Datasets

For the experiments, we used real-world datasets from
operational IoT networks Lu et al. [40]. The datasets included
the following:

« Traffic Data: We collected traffic data from a smart home
IoT network. The data included timestamps, message
sizes, delivery times, and failure rates. This dataset was
used to evaluate the effectiveness of the Al path selection
algorithm and the blockchain-based verification process.

« Environmental Data: Data from environmental sensors
(e.g., temperature, humidity, air quality) was used to
simulate the effects of environmental factors on network
performance. This dataset helped us assess how envi-
ronmental conditions might influence path selection and
blockchain verification.

o IoT Device Status Data: The status of IoT devices,
including battery levels, signal strength, and device avail-
ability, was also tracked. This data was used to train the
Al model to select the most reliable communication paths.

D. Performance Evaluation Metrics

To evaluate the performance of the proposed system, we

defined several key metrics:

o Communication Delay: The average time taken for a
message to travel from the source IoT device to the cloud
server. This metric was used to assess the responsiveness
of the network.

o Throughput: The total amount of data successfully trans-
mitted within a given time period. Higher throughput
indicates a more efficient network.

« Path Verification Accuracy: The percentage of data
transmission paths verified by the blockchain without
errors. This metric evaluates the effectiveness of the
blockchain in ensuring data integrity.

o Energy Consumption: The energy consumption of IoT
devices during data transmission, including both active
and idle power usage.

The following table presents the performance evaluation

results for the system with and without blockchain and Al
integration.



Metric Without With With Solution 1: Op- | Solution 2: Blockchain
Blockchain Blockchain Blockchain timized Path Se- | with AI Integration
+ AI  Path | lection
Selection
Communication Delay (ms) 150 120 110 105 100
Throughput (Mbps) 8 10 12 13 14
Path Verification Accuracy (%) 75 90 95 97 99
Energy Consumption (mJ) 5 4 3.5 3 2.8
Security (Data Integrity) No blockchain Blockchain  for | Blockchain + AI | Enhanced with | Blockchain + Al to
path verification for dynamic path | smart contracts | prevent data manipulation
adjustment for real-time | during transmission
verification
Scalability (Nodes) Low Moderate High High Very High
Reliability (Packet Loss %) 12 7 5 4 2
Adaptability (Network Conges- | Low Moderate High High Very High
tion)
Fault Tolerance Low Moderate High High Very High
Deployment Complexity High Moderate Low Moderate Low
Computation Overhead (ms) 10 15 12 8 6
TABLE T

PERFORMANCE COMPARISON OF I0T NETWORK SOLUTIONS WITH BLOCKCHAIN AND AI INTEGRATION

E. Experimental Results

The results from our experiments demonstrate the signif-
icant benefits of integrating blockchain and Al into the IoT
network. Specifically, the key findings are as follows:

o The integration of blockchain improved path verifica-
tion accuracy, with the blockchain successfully verifying
over 95% of the paths, compared to only 75% without
blockchain.

o Al-based path selection reduced communication delays
by 20%, from 150ms to 120ms, by optimizing data
transmission paths based on real-time network conditions.

o The throughput of the system increased by 25%, from
8Mbps to 10Mbps, after integrating blockchain and Al,
and further increased to 12Mbps with full Al integration.

« Energy consumption was reduced by 20%, demonstrating
the efficiency of the Al algorithm in selecting power-
efficient paths.

The experimental results validate the practical applicability
of the proposed framework in real IoT networks. The integra-
tion of blockchain ensures the integrity and security of data
transmission paths, while Al optimizes communication routes
to improve network performance. Our system showed signifi-
cant improvements in communication delay, throughput, path
verification accuracy, and energy consumption, demonstrating
its potential for deployment in real-world IoT environments.

XII. COMPUTATIONAL OVERHEAD AND RESOURCE
CONSTRAINTS FOR IOT NODES

In this section, we present an in-depth analysis of the com-
putational overhead and resource constraints imposed on IoT
nodes by the complex modules in our proposed framework.
These modules include Al-based path selection, blockchain
verification, trust management, and encryption. Given the
resource limitations of typical IoT devices such as low process-
ing power, limited memory, and restricted energy capacity it
is crucial to evaluate how these modules affect overall system
performance, energy consumption, and processing efficiency.

The Al-based path selection and blockchain verification
modules, in particular, impose significant computational over-

head due to the complexity of their algorithms. The Al model
requires substantial processing for both training and real-
time inference, while blockchain transactions demand crypto-
graphic operations such as hashing and transaction validation,
which can be resource-intensive. Trust management, although
less computationally demanding, still requires periodic calcu-
lations of trust scores for devices, which adds to the total over-
head. In addition, encryption for data security requires further
computational resources, especially when using sophisticated
cryptographic algorithms.

To quantify these resource demands, we present a compre-
hensive table that summarizes the resource consumption for
each module in terms of CPU usage, memory usage, energy
consumption, and operational time. This table illustrates the
relative impact of each module and highlights the modules
that are the most resource-intensive.

The table above clearly shows that Al-based Path Selection
and Blockchain Verification are the most computationally
demanding modules in the system. Specifically, blockchain
verification incurs the highest energy consumption due to its
frequent cryptographic operations and transaction validation
requirements. The Al-based Path Selection module, while
requiring substantial CPU usage and memory for model in-
ference, also introduces significant operational time due to
the complexity of path selection. Trust Management, although
necessary for the system’s security, has a relatively lower
resource demand, primarily consuming memory and CPU for
the periodic calculation of device trust scores. Encryption,
which is essential for ensuring data confidentiality, also adds
to the resource demands, though its impact is less significant
compared to Al and blockchain modules.

The Operational Time column indicates the average time
each module takes to complete its task. Blockchain operations
tend to take longer due to the cryptographic validation pro-
cesses, while Al path selection also introduces latency due
to its complexity. Network Latency is an additional factor
influenced by the time it takes for each module to process
the data and transmit it across the network. Blockchain and
Al modules tend to increase the latency significantly due to
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Module CPU Usage (%) | Memory Usage | Energy (mJ) Operational Latency (ms) | Frequency
(MB) (ms)
Al-based Path Selection 45 70 350 25 50 High
Blockchain Verification 50 45 700 55 60 Medium
Trust Management 30 20 180 12 10 Low
Encryption (AES) 40 35 250 40 45 Medium
TABLE V

RESOURCE CONSUMPTION OF SYSTEM MODULES IN IOT NODES

the additional steps involved in data validation and decision-
making.

The Frequency of Operations column provides an indication
of how often each module is invoked in the system. Al-
based path selection typically occurs frequently during net-
work communication, while blockchain verification may be
invoked less often but requires more time per transaction. Trust
management is invoked periodically and with low frequency,
making it less demanding on the system, while encryption is
applied to each data packet, making it a moderate-frequency
operation.

A. Optimization Strategies for Resource Management

Given the substantial resource demands of Al, blockchain,
trust management, and encryption, it is essential to implement
optimization strategies to mitigate the impact on IoT nodes.
The following strategies are proposed to address these chal-
lenges:

« Lightweight AI Models: To reduce the computational
load of Al-based path selection, we recommend using
lightweight models such as decision trees or shallow neu-
ral networks for real-time path inference. These models
require significantly less memory and processing power
compared to deep learning models while still provid-
ing effective decision-making capabilities. Additionally,
pruning techniques can be applied to remove unnecessary
branches from decision trees, further reducing the model’s
complexity.

« Offloading to Edge Devices: To reduce the burden on
resource-constrained IoT nodes, we propose offloading
the computationally intensive tasks of AI model train-
ing and blockchain verification to more powerful edge
devices or cloud servers. This approach leverages the
computational power of edge devices to perform heavy
lifting, allowing IoT nodes to focus on simpler tasks, such
as data collection and basic communication.

o Optimizing Blockchain Operations: To mitigate the
computational load of blockchain verification, we sug-
gest limiting the frequency of blockchain verifications.
This can be achieved by using caching mechanisms to
store previously verified paths and only verifying new or
critical paths in real-time. Moreover, replacing complex
cryptographic algorithms with lighter alternatives, such
as elliptic curve cryptography (ECC), can further reduce
computational overhead.

« Energy-Efficient Algorithms: We propose using energy-
efficient algorithms for both AI and blockchain opera-
tions. For instance, reducing the number of computations

during model inference and using lower-bit representa-
tions for neural networks or minimizing the number of
blockchain transactions can significantly reduce energy
consumption. Similarly, optimizing the frequency and
complexity of cryptographic operations can help save
energy in IoT devices.

« Adaptive Resource Allocation: We suggest implement-
ing adaptive resource allocation strategies that adjust the
resource usage based on the current network conditions
and device capabilities. For example, during periods of
low network activity, the system can reduce the frequency
of data transmission and blockchain verifications to con-
serve energy and computational resources.

B. Scalability and Future Considerations

As the IoT network scales up to accommodate a larger num-
ber of devices, the resource demands of each module become
more pronounced. The optimization strategies outlined above
will help manage these demands, but further enhancements
may be necessary for large-scale IoT deployments. Future
work will explore advanced techniques, such as hierarchical
blockchain architectures, distributed AI models, and federated
learning, to handle the increased computational overhead and
resource constraints of large networks. These approaches will
help ensure that the system remains scalable, efficient, and
cost-effective as it expands to handle thousands or millions of
devices. In this section, we have provided a thorough analysis
of the computational overhead and resource constraints for
IoT nodes, highlighting the impact of Al-based path selection,
blockchain verification, trust management, and encryption on
system performance. The proposed optimization strategies,
including model simplification, offloading to edge devices, and
blockchain optimizations, help mitigate the impact of these
resource demands. By applying these strategies, the proposed
framework can be effectively deployed in IoT networks with
limited device capabilities. As IoT networks grow in size and
complexity, further optimization and scalability solutions will
be essential to maintain efficient operation and ensure the long-
term viability of the system.

XIII. TRUST SCORING AND ML-BASED PATH SELECTION

The ML model used for trust-based routing recommen-
dations employs supervised learning techniques, where the
model is trained on historical network data, including device
performance, node reliability, and previous routing decisions.
The model takes into account various features for predicting
optimal and secure paths, including historical performance of
the nodes, such as success rates, average data transmission
time, and their involvement in any attacks or failures. The



model continuously updates the trust scores based on real-time
feedback from the network, ensuring that routing decisions
are dynamically adjusted as the network conditions change.
Furthermore, key parameters such as the learning rate, number
of iterations, and dataset features used for training are carefully
selected to ensure the accuracy and robustness of the model.
This continuous learning process allows the model to adapt
effectively to changing network environments. Additionally, to
ensure the validity and reproducibility of the results, the model
is trained on both real-world and synthetic datasets, which
are publicly available for other researchers to replicate the
experiments and verify the results. The model’s performance
is evaluated using metrics such as accuracy, recall, and path
reliability, which ensure that the model is capable of selecting
secure and efficient paths within the IoT network.

XIV. SCALABILITY BOTTLENECKS IN MULTI-DOMAIN
IMPLEMENTATIONS

One of the major challenges in deploying the EaaS/PIN
framework in large-scale, multi-domain IoT networks is ad-
dressing potential scalability bottlenecks. As the network size
increases, the computational and resource demands also grow,
which can affect the system’s performance. The computational
requirements for tasks like path verification and trust evalua-
tion increase significantly as the number of nodes and devices
in the network rises. This can lead to delays in real-time path
selection and trust updates, especially when using complex
cryptographic operations and machine learning models.

Several key scalability bottlenecks were identified:

- Network latency: As the network expands, the time taken
to transmit data and verify paths also increases, which can
impact the overall response time of the system. - Blockchain
validation delays: Blockchain operations such as transaction
validation and block creation require significant computational
resources and time, especially when the number of transactions
grows. - Resource limitations of IoT devices: IoT devices have
limited processing power, memory, and battery life, which
can hinder the execution of complex algorithms like machine
learning models or cryptographic operations.

To address these bottlenecks, we propose several strategies:

1. Edge computing: Offloading computational tasks such as
blockchain validation and machine learning model processing
to edge devices can reduce the burden on IoT nodes and
decrease network latency. 2. Lightweight cryptographic pro-
tocols: Implementing more efficient cryptographic protocols,
such as Elliptic Curve Cryptography (ECC) or hash-based
verification, reduces the computational overhead associated
with blockchain operations. 3. Distributed ledger technology
(DLT): The use of DLT can help distribute the workload of
verifying paths and managing trust across multiple nodes,
making the process more scalable and efficient. 4. Distributed
trust management: By decentralizing trust management, we
allow the framework to handle a larger number of nodes
without overwhelming a central server or authority.

These strategies ensure that the EaaS/PIN framework re-
mains scalable and efficient, even in large and complex multi-
domain IoT networks, maintaining both security and perfor-
mance while mitigating the impact of these bottlenecks.

21

Scalability Bot-
tleneck

Impact

Proposed Mitigation
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tions of IoT De-
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sources for executing
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Blockchain Vali- | Increased delays in | Adoption of
dation Delays path verification due | lightweight
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processing. (e.g., ECC) and
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computations to edge
devices and  using
lightweight models and
protocols.

operations.
TABLE VI
SCALABILITY BOTTLENECKS AND MITIGATIONS IN MULTI-DOMAIN
IMPLEMENTATIONS OF EAAS/PIN

XV. DISCUSSION

The EaaS/PIN framework demonstrates substantial improve-
ments over traditional Encryption-as-a-Service and secure
routing models by holistically addressing core security, trust,
and performance challenges in distributed network environ-
ments. Through the integration of cryptographic path integrity,
multi-layered trust management, ML-based path selection,
and blockchain-inspired auditability, the framework establishes
new standards for transparency, adaptability, and resilience in
adversarial settings.

The results of the smart city case study validate that the
proposed system consistently detects and excludes manipu-
lated routing paths and compromised Autonomous Systems,
achieving a marked reduction in both end-to-end latency and
security incidents. The use of user feedback, real-time trust
scoring, and collaborative threat intelligence not only enhances
system responsiveness but also empowers users to participate
actively in risk mitigation.

Comparison with related works highlights that EaaS/PIN
uniquely combines user-driven trust management, customiz-
able encryption, and transparent, auditable decision reporting
features often absent or insufficiently realized in prior frame-
works. Furthermore, the compatibility with SDN/NFV archi-
tectures ensures that the system remains scalable and adaptable
to evolving network demands and emerging technologies.

As summarized in Table I, previous studies have each
addressed aspects of encryption offloading [1, 20], lightweight
cryptography [2], path integrity [5], trust management [11],
and privacy or auditability [9, 13]. However, most lacked
integrated solutions for simultaneous path verification, adap-
tive trust scoring, user feedback, and transparent, auditable
decision-making. While works such as the one done by Mei
and Qiu [17] applied ML for secure routing, and blockchain-
based approaches [13] improved tamper resistance, none of-
fered a unified, scalable framework tailored for heterogeneous
IoT and multi-AS networks. In contrast, our EaaS/PIN frame-
work holistically combines cryptographic path integrity, multi-
layer trust management, intelligent path optimization, and
transparent auditability, setting a new benchmark for secure



and resilient communication in next-generation distributed
networks.

A. Security Analysis and Threat Model

To complement the functional evaluation, this part of the
discussion formalizes the security posture of the EaaS/PIN
framework by outlining the system assumptions, adversary
capabilities, and the corresponding defense coverage. The
analysis connects the three primary challenges defined earlier
to the mechanisms validated in the case study. We assume
that the initial key distribution and registration processes
are performed over secure channels and that the EaaS/PIN
certificate authority (CA) remains trusted. Participating ASs
may operate honestly, suffer temporary overload, or act ma-
liciously. IoT devices and gateways are assumed to offload
heavy cryptographic operations to the EaaS backend, while
all communications between core EaaS components take place
over mutually authenticated channels.

The adversary is modeled as having the capability to inspect,
modify, or forge packet headers during inter-AS transit, submit
falsified performance or trust reports to influence routing
decisions, and attempt to inject, alter, or delete records in the
global EaaS/PIN database. The adversary may also perform
replay attacks or selectively drop packets to degrade perfor-
mance. However, it is assumed that standard cryptographic
primitives such as AES, SHA-256, and RSA/ECC remain
secure within practical time bounds and that the trusted CA is
not compromised.

In terms of threat scenarios, path manipulation by com-
promised ASs or man-in-the-middle attackers is addressed
through the stacked-hash path signature mechanism, which
binds the ordered AS sequence to a source-generated dig-
ital signature. Any modification to the path invalidates the
signature, enabling immediate detection and rerouting. False
reporting by malicious ASs is mitigated by the multi-layer
trust scoring model, which combines user feedback, real-
time quality-of-service data, and anomaly detection in the
Al-driven path selector. Persistent inconsistencies between
reported and observed performance lead to reduced trust scores
and deprioritization in routing decisions. Database tampering
is countered by enforcing digital signatures on all AS reports
and storing them in a hash-chained audit log, ensuring that any
unauthorized modification is both detectable and verifiable.

Under these assumptions, EaaS/PIN provides strong in-
tegrity by ensuring that path and report data cannot be
altered without detection, confidentiality by concealing the
complete route from all but the necessary nodes, authenticity
by verifying that only registered ASs can submit valid reports
through PKI-based mechanisms, and resilience by using Al-
based rerouting and collaborative threat intelligence to adapt
to emerging threats. Residual risks remain in the event of a
compromise of the CA or secure key registry, which could
enable the issuance of fraudulent credentials, as well as insider
threats within trusted domains. These risks can be reduced
through multi-party CA governance, periodic key rotation,
and independent auditing of the trust infrastructure. As illus-
trated in Figure 16, the framework links system assumptions
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Fig. 16. Security analysis and threat model for the EaaS/PIN framework.

and adversary capabilities to specific threat scenarios and
their corresponding defensive mechanisms, ensuring that each
identified risk is met with a targeted mitigation strategy that
collectively upholds the stated security guarantees.

Table VII summarizes the core security challenges and
architectural capabilities of the proposed EaaS/PIN framework.
For each item, the table concisely outlines the relevant threat
scenario, the primary defense mechanism, associated detection
signals, and the resulting security guarantees, along with cross-
references to the corresponding sections, figures, algorithms,
and capability descriptions. This condensed view serves as a
quick reference linking the threat model to the implemented
mitigation strategies and the security assurances they provide.

XVI. SUMMARY AND CONCLUSION
A. EaaS Path Integrity Network

In this study, we developed EaaS/PIN (Encryption-as-a-
Service / Path Integrity Network). This unified framework
systematically addresses the core security and trust challenges
of distributed, resource-constrained network environments,
particularly those involving IoT and edge devices. Specifically,
we have targeted and resolved three main challenges.

First, in response to Challenge 1, which is Path Manip-
ulation and Header Tampering by Compromised ASs, we
implemented a cryptographic path verification protocol utiliz-
ing stacked hash values and digital signatures. This solution
reliably detected and prevented any unauthorized modification
of routing paths, thereby protecting the network against both
compromised ASs and MITM attacks.

Second, to overcome Challenge 2, which is Untrusted AS
Measurement Reports and Misleading Status Claims, we de-
ployed a multi-layered trust assessment system. This approach
combined user feedback-based trust scoring, real-time Al-
driven ranking, and a collaborative threat intelligence platform.
By leveraging these mechanisms, our system dynamically
prioritized trustworthy ASs, successfully identified false or
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TABLE VII
CONDENSED SECURITY CHALLENGES AND CAPABILITIES WITH SOLUTIONS FOR EAAS/PIN.
Chal./Cap.  Threat/Scenario  Proposed Solution Guarantee Reference
Challenge 1 Path Cryptographic path verification: stacked-  End-to-end path  Figure 1
manipulation or  hash of AS IDs signed with sender’s private  integrity, imme-  Figure 2
header tampering  key; verification at destination; auto reroute  diate tamper de-  Algorithm 1
by compromised on mismatch tection Algorithm 2
AS or MITM
Challenge 2 False AS  Multi-layer trust scoring: signed reports, Data authenticity,  Figure 3
performance/trust  user feedback aggregation, ML-based trust  resilience in path  Figure 4
reporting to ranking, and collaborative threat intelli- selection Algorithm 3
influence routing  gence Algorithm 4
Challenge 3 ~ Tampering Per-AS digital signatures; hash-  Integrity and au-  Figure 5
with global  chain/Merkle tree immutable audit log;  ditability of net-  Figure 6
database or  distributed mirror validation nodes work reports Algorithm 5
communication Algorithm 6
links for reports
Capability 1 ~ Path anonymity  Onion-style hop encryption; only predeces- Confidentiality of  Figure 7
to prevent full- sor/successor visible to each AS routing metadata
route disclosure
Capability 2 Lightweight, cus-  Offload crypto to EaaS nodes; user-defined ~ Secure, flexible  Figure 8
tomizable EaaS algorithm, key length, and parameters comms for
IoT/edge devices
Capability 3  Intelligent ML-  LightGBM model trained on trust scores, Optimized secu-  Figure 9
based path  QoS, and anomalies; updated in real time rity—performance
recommendation routing
Capability 4  Threat Distributed TI platform; crowdsourced  Proactive threat  Figure 10
intelligence anomaly reports; dynamic AS blacklist avoidance
integration  for
risk awareness
Capability 5  Transparent, Tamper-evident logs; public trust score his-  Accountability Figure 11
auditable routing tories; path justification reports and  regulatory
decisions compliance
Capability 6  SDN/NFV- Policy-driven SDN controllers; virtualized — Agility and  Figure 12
based dynamic  EaaS/trust modules; on-the-fly reconfigura-  scalability
adaptability tion under changing
conditions

manipulated reports, and ensured that routing decisions re-
mained both secure and adaptive to real-time conditions.
Third, for Challenge 3, which is Threats to the EaaS/PIN
Global Database and Communication Integrity, we applied a
dual-layered security mechanism based on cryptographically-
signed AS reports and a blockchain-inspired, tamper-evident
audit ledger. This ensured that all data transmissions and
database entries were authenticated, auditable, and resistant
to both direct and indirect tampering or injection attacks.
Beyond solving these major security challenges, we estab-
lished a robust set of technical capabilities: (1) EaaS/PIN
incorporated path anonymity protocols to conceal complete
routes from intermediaries, (2) lightweight and customizable
EaaS for resource-constrained clients, (3) intelligent ML-based
path recommendation for optimized security and quality of
service, (4) real-time threat intelligence integration, (5) trans-
parent and auditable reporting, and (6) seamless SDN/NFV
compatibility for scalable and programmable deployment.

B. Architecture Overview and Component Interactions

Figure 17 illustrates the proposed EaaS/PIN architecture,
integrating the challenges, proposed solutions, and key capa-
bilities described in this work. The architecture is organized
into three primary layers:

o User Layer: This layer includes clients, IoT devices, and

edge/fog gateways responsible for initiating secure com-
munication sessions. User feedback and incident reports

are also collected here to support Trust Scoring under
False Reporting.

o Control Layer: This is the intelligence core of the sys-
tem. It addresses major challenges such as Secure Path
Verification, Trust Scoring under False Reporting, and
Threats to the EaaS/PIN Global Database. Correspond-
ing solutions include Cryptographically-Signed Reports
and Immutable Audit Logs. These modules enable ad-
vanced capabilities like ML-Driven Intelligent Path Rec-
ommendation, Threat Intelligence Integration and Collab-
orative Risk Awareness, Transparent Decision Reporting
and Auditability, and SDN/NFV Integration for Dynamic
Control.

o AS Infrastructure Layer: This layer represents the in-
terconnected ASs, including benign nodes (AS1, AS2),
overloaded nodes (AS3), and adversarial nodes (AS4). It
also contains the Global Database/Mirror Nodes for re-
port replication and the Secure Key Registry for managing
cryptographic keys.

This figure shows an extra layer, Secure Services Layer, that
includes edge and core secure services, which receive traffic
through selected and verified paths. The arrows in the figure
represent functional interactions, with blue edges indicating
control or policy flows, thick edges denoting selected secure
data paths, dashed edges indicating deprioritized or blocked
routes, and dotted edges representing key distribution or ledger
replication. Each connection label corresponds directly to the



User/Edge Layer

24

Clients / loT / Gateways

Control ayer (EaaS/PIN Core)

Secure Path Verification

’ Threats to the EaaS/PIN Global Database

< Capability 4: Threat Intelligence Integration and Col-

Capability 4: Threat Intelligence Integration and Col- Capability 3: Machine Learning-Driven Intelligent Path

< Capability 5: Transparent Decision Reporting and Au- ‘) SDN/NFV Integration for Dynamic

Capability 5: Transparent Decision Reporting and Au-

’ SDN/NFV Integration for Dynamic }>

/

SDN/NFV Integration for Dynamic

User Feedback / Reports

Secure Path Verification

\
Trust Scoring under False Reporting

Capability 3: Machine Learning-Driven Intelligent Path

Edge labels are verbatim phrases from the paper (section titles/phrases).
Blue: control/policy; Thick: selected data path; Dashed: deprioritized

N\ Trust Scoring under False Reporting
\

Cryptographically-Signed Reports

Cryptographically-Signed Reports

Immutable Audit Logs

Immutable Audit Logs

Cryptographically-Signed Reports  keys

SDN/NFV Integration for Dynamic

Core Service

Fig. 17. EaaS/PIN architecture illustrating challenges, proposed solutions, capabilities, and their interactions across all layers.

terms and modules described in this paper, ensuring traceabil-
ity between the system design and its functional representation.

C. Conclusion

This paper presented EaaS/PIN (Figure 18), a comprehen-
sive framework designed to address the growing demand for
scalable, secure, and resilient cryptographic services in het-
erogeneous, resource-constrained network environments. The
proposed framework systematically tackles three significant
challenges inherent in EaaS deployments: (i) path manipula-
tion and compromised ASs, (ii) untrusted measurement reports
and misleading trust claims, and (iii) database tampering
and communication integrity threats. To address these threats,
EaaS/PIN integrates robust cryptographic mechanisms, trust-
aware routing, and advanced intelligence components.

For path integrity, EaaS/PIN employs a cryptographic path
verification protocol that uses stacked hash values of AS
identifiers, digitally signed with private keys, to ensure that
any unauthorized modification of packet headers is reliably
detected and mitigated. Against the challenge of untrusted
AS reports, the framework implements a multi-layered trust
assessment system: user feedback-based trust scoring, Al-
driven path recommendation engines leveraging real-time and
historical metrics, and distributed threat intelligence plat-
forms to enhance reliability and responsiveness. To counter
database and communication attacks, EaaS/PIN employs a
dual-layered approach combining per-AS digital signatures
with a blockchain-inspired, tamper-evident audit ledger, en-
suring authenticity and non-repudiation of all reports and data
transactions.

Beyond threat mitigation, EaaS/PIN delivers advanced capa-
bilities for modern networks. It hides full routes for anonymity,
offloads encryption for resource-limited clients, and allows

cryptographic customization. Using ML, it adapts to dynamic
trust and QoS metrics and leverages decentralized threat
intelligence for proactive defense. Transparent, tamper-evident
logs ensure accountability, while seamless integration with
SDN/NFV enables scalable, programmable, and flexible de-
ployment.

The framework’s effectiveness is validated through de-
tailed mathematical modeling, algorithmic development, and
a comprehensive smart city case study. Results demonstrate
significant gains in path integrity enforcement, adversarial
resilience, latency reduction, and user satisfaction compared
to baseline solutions.

For Future Directions, Building upon these results, fu-
ture work will explore large-scale real-world deployments of
EaaS/PIN, integration with emerging technologies such as ex-
plainable Al for trust assessment, automated policy adaptation
in dynamic environments, and cross-domain standardization
efforts. Additionally, investigating real-time interoperability
with legacy systems and expanding the threat intelligence
ecosystem will further enhance the security and usability of
next-generation cryptographic service platforms.
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