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Abstract—Identifying the top-K flows that require much more
bandwidth resources in a large-scale Software-Defined Network
(SDN) is essential for many network management tasks, such
as load balancing, anomaly detection, and traffic engineering.
However, identifying such top-K flows is not trivial, not only
because of the fluctuations in flow bandwidth requirements
but also because of the combinatorial explosion of problem
instance sizes. In this paper, we weaken the tradeoff between
exploration and exploitation and innovatively define the online
top-K flows identification problem as identifying the top-K arms
in a Combinatorial Multi-Armed Bandit (CMAB) model. Then,
we propose a general greedy selection mechanism with some
identification strategies that focus on temporal variations in the
rewards. Extensive simulation experiments based on real traffic
data are conducted to evaluate the performance of different
strategies. In addition, the results of numerical simulations
demonstrate that our proposed greedy selection mechanism
significantly outperforms existing counterparts on top-K arms
identification.

Index Terms—Software-Defined Network, Combinatorial
Multi-Armed Bandit, top-K arms identification, and temporal
variations in rewards.

I. INTRODUCTION

Software-Defined Network (SDN) [1] is a novel network
architecture that decouples the network control plane and data
forwarding plane, providing operators with a flexible and low-
cost new way to manage the network. In SDN, operators can
deploy various management policies (e.g., data flows forward-
ing policy) to the controllers based on a global view, and then
the data forwarding plane will carry out these policies. In
addition, operators can adjust these policies dynamically by
collecting and analyzing the statistics on data flows.

In a real network, the distribution of traffic flows is ex-
tremely skewed [2], that is, more than 80% of the traffic
flows are less than 10KB in size, and most of the packets
in the network are generated by the top 10% of large flows,
which means that a small number of flows in a network have
large bandwidth requirements. Identifying the top-K flows is
critical in a wide variety of application scenarios, such as
traffic rerouting [3], anomaly detection [4], network slicing
[5], [6], [7], time-sensitive network [8], [9], [10], and caching
of forwarding table entries [11].

Because in SDN, managers can effectively and timely col-
lect statistical data of traffic flows [12], [13], some researchers
put forward the concept of Knowledge-Defined Networking
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(KDN) [14] based on SDN and Network Analytics (NA)
[15]. As shown in Fig. 1 (a), KDN sets up an artificial
brain that gathers knowledge (e.g., how to identify the top-
K flows online) about the network and then exploits that
knowledge to design various management policies. However,
online identification of top-K flows is still a challenging task
due to many factors. On one hand, the solution space can be
exponential to the network size due to combinatorial explo-
sion. For example, top-K flows are identified among M flows,
the solution space of this problem has CK

M combinations. We
simply set K = 10, M = 100 [16], and there are as many as
17 trillion combinations possible in the solution space. On the
other hand, the time fluctuations of different types of traffic
demand are not consistent [17], [18], which brings greater
challenges to dynamically identifying top-K flows. Even if
we reduce K to 1, the task of online identification is still
very challenging, as shown in Fig. 1 (b), from t0 to t1, the
bandwidth requirement of flow 1 is the highest, thus flow 1 is
the target flow. However, the bandwidth requirements of the
flows change over time, so the target flow also changes over
time. From t1 to t3, flow 2 is the target flow, while after t3,
the target flow should be flow 3.

Although now some researchers have carried out related
research on finding the top-K elephant flows [19], or the
identification of top-K critical flows [16] in specific scenarios,
their researches focused on identifying elephant flows within a
time window, or ignore temporal changes in traffic flow band-
width requirements. As shown in the above example, to tackle
the vast solution space and various kinds of flows’ bandwidth
requirements uncertainties, a reasonable online identification
mechanism for the top-K flows is desired.

In this paper, we investigate the problem of how to identify
the changing top-K flows online [20] in SDN effectively, that
is to continuously identify the top-K flows. We innovatively
define the problem as a variant of the best arms identification
task in stochastic Combinatorial Multi-Armed Bandit (CMAB)
[21], namely, identify the top-K arms in CMAB. Unlike some
existing works, our work considers the temporal changes of
the reward distributions of all arms and ignores the tradeoff
between exploration and exploitation, a detailed definition of
our study and how it differs from existing work can be found in
Section III, and Section II. B, respectively. Then, we propose
a general greedy arms selection mechanism based on different
identification strategies.

The main contributions of this paper are summaries as
follows.

• We formulate the online top-K flows identification prob-
lem in SDN as a variant of the best arms identification
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Fig. 1. The problem of identifying the top-K flows in SDN based on the KDN concept.

task in CMAB with the aim of maximizing the cumulative
reward. Then, we propose a general greedy arms selection
mechanism based on different identification strategies.

• We verify the performance of our proposed arms selection
mechanism using traffic data from two real network
topologies. Extensive simulation results demonstrate that
our proposed mechanism far outperforms the benchmark
algorithms in performance, and the identification result
of our proposed mechanism can be close to 99% of the
theoretically optimal solution.

The remainder of the paper is organized as follows: Section
II reviews the related work. In Section III, we state the research
problem in our work. Section IV introduces the details of our
proposed general greedy arms selection mechanism. In Section
V, we present the numerical results, and finally, we conclude
the paper in Section VI.

II. RELATED WORK

In this section, we present the study of related work on
finding top-K flows. In addition, because the Multi-Armed
Bandit (MAB) and CMAB model can bring a lot of benefits
to the research in the networking field [22], we also introduce

the related work of best arms identification in MAB in this
part, which is closely related to our research.

A. Finding top-K flows

Metwally A et al. proposed the first algorithm Space-Saving
[23] that can guarantee both the correctness and the order
of the top-K flows in the case of the data skew. Besides,
their proposed algorithm only uses minimal space. To further
reduce memory usage, unlike Space-Saving, Ben-Basat R et
al. [24] used statically allocated memory rather than pointers.
However, such strategies greatly overestimated the size of
the flows, thereby degrading the accuracy performance. To
solve this defect, Yang T et al. [19] proposed a probabilistic
method to keep top-K flows in the bucket, moreover, they used
multiple hash tables with different hash functions to address
the problems of wrong elections and wrong estimation.

In [19], [23], [24], a flow is defined as a combination of
certain packet header fields (e.g.,5-tuple), but in some other
scenarios, like traffic engineering, a flow can be defined as
a source-destination pair. Zhang J et al. [16] investigated
the traffic flow rerouting problem in SDN. Interestingly, they
found that compared to simply rerouting top-K flows, their



TABLE I
COMPARISON OF RELATED WORKS

Literature Number of K
Reward distribution

of arms in experiments
Consider tradeoff between

exploration and exploitation
Audibert et al. [25] 1 Allows Bernoulli distributions Y
Bubeck et al. [26] Varies with the total number of arms Allows Bernoulli distributions Y

Zhang et al. [27] No more than 5
Allows Gaussian distribution

or exponential distribution Y

Zhuang et al. [28] No more than 3 Allows Bernoulli distributions Y

Ours Varies with the size of the network
Generated from real traffic data,

and varies over time N

reinforcement learning-based strategy can better identify the
key flows in the network, thereby taking into account the
overhead of rerouting and maximizing link utilization.

However, the mentioned related works only considered
identifying the top-K flows within a specific time window
and ignored the flows’ bandwidth requirements fluctuations.

B. Best arms identification

The Best arms identification problem is a different view-
point [25] in the MAB model, it allows the players to play the
bandit within a given number of rounds, also called a budget.
Then, players should determine an or a set of arms that with
a higher expected reward. J.-Y. Audibert et al. [25] proposed
a Successive Rejects policy that gradually rejects arms that
seem suboptimal, but this policy is only used to identify the
best arm. Similar to the Successive Rejects idea, Bubeck S et
al. [26] proposed the Successive Accepts and Rejects (SAR)
policy which can identify the top-K arms. Further, Zhang et
al [27] proposed a quantile version of SAR (Q-SAR) which
determines the optimal arms set through the quantile of the
reward distributions rather than the mean. Zhuang et al. [28]
considered a different scenario of top-K arms identification,
they proposed two sampling strategies to identify the arms
with extremely high or low expected rewards that are very
different from others.

However, while in the above studies, the reward distribu-
tions of the arms were invisible to the players when designing
the experiment, the rewards were generated by specific distri-
butions. But in reality, the distribution of rewards may change
over time. About the difference between our work and related
works is summarized in Table I, and a detailed definition of
the research problem in our work can be found in Section III.

III. PROBLEM STATEMENT

In this section, we describe the problem of identifying the
changing top-K flows online in SDN. Note that, for ease of
reference, the notations used in this paper are summarized in
Table II.

A. Problem Definition

In SDN, at every sampling granularity T (e.g., 5 minutes,
15 minutes...), we need to identify the top 10% of flows
that require more bandwidth resources based on all statistics

TABLE II
SUMMARY OF NOTATIONS

Notation Definition
N number of nodes in a network
n number of total rounds
M number of total arms
K number of top-K arms
yi reward distribution of the i-th arm

Xi,t
random reward of the i-th arm in the
t-th round

Xi,t
the random reward information of the i-th arm
up to the t-th round

XE
i,t

expected reward of the i-th arm in the
t-th round

St
the set of arms that the agent selects in the
t-th round

S∗
t the set of optimum arms in the t-th round

r the cumulative regret
T sampling granularity
α weight
d sliding window

collected for all network flows, in our current work, flows are
defined as source-destination pairs [16]. This process is shown
in Fig 2 that is similar in spirit to [29], [30], where dataTn

represents the statistical data collected from tn−1 to tn.

Obviously, the problem of identifying top-10% flows online
in SDN can be transformed into a CMAB model. Assuming
a total of N nodes in the network topology, in the CMAB
model, there are a total of M arms, and after each sampling
granularity T , the player needs to select K arms together rather
than one by one, where M = N ∗ (N − 1), K = 10%M [2],
[16]. If we regard a flow as an arm, and consider the bandwidth
requirement Xi,t of the flow i from t− 1 to t as the random
reward generated by selecting arm i in round t. Then, our
problem can be defined as Eq. (1), where n represents the
total number of rounds.

maximize

n∑
t

K∑
i

Xi,t (1)
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Fig. 2. Issues about identifications and validations over time.

Further, in the CMAB model, in the round t, the set St of
the arms selected by the player is defined as a super-arm [21],
and clearly, the number of super-arm combinations is CK

M . If
we define in the round t, the set of arms that can make the
player’s total reward 1 maximum be the optimal super-arm S∗

t ,
then our goal can be equivalent to Eq. (2), because the goal
of maximizing the cumulative rewards through the game is
equivalent to minimize the difference between the optimum
super-arm and the super-arm that selected by the player [31].

minimize r =

n∑
t

(
∑
i∈S∗

t

Xi,t −
∑
j∈St

Xj,t) (2)

B. Discussion

To make the CMAB model more suitable for practical
application scenarios, we add some new constraints and as-
sumptions.

• Time-varying rewards. In a general CMAB or some
other multi-armed bandit models, each arm is associated
with a reward distribution, which can be stationary or
non-stationary. Typically, the i-th arm’s reward distribu-
tion can be represented as yi and yi is usually unknown
to the players. However, in the network, the reward distri-
bution for an arm is not only unknown, but also changes
over time due to the sudden and time-varying nature of
user needs [17], [18]. In this case, yi can be redefined
as yi(t), which means that the reward distribution of the
i-th arm is a function of time.

• Reward information sharing. How to balance explo-
ration and exploitation is a key topic in CMAB models.
But in SDN, we do not need to consider this constraint.
Due to the global view and flexibility of SDN, the
network managers can easily collect global network flow

1In our work, the reward of selecting a super-arm in round t is the sum of
the rewards of the arms in St, and a more complex definition of the reward
of St is beyond the scope of this article.

statistics, such as traffic matrix. Thus, after each round,
players can obtain the random reward for the arms that
are not selected. In other words, after each round t,
∀i ∈ M,Xi,t are available.

Although we do not need to consider the balance between
exploration and exploitation, due to the time-varying distri-
bution of rewards for each arm, how to use the historically
collected reward sequence to estimate the expected reward
XE

i,t+1 for the i-th arm in the t+ 1 round is difficult [32]. In
short, the fewer past observations an arm retains, the greater
the stochastic error associated with an arm’s estimate of the
mean reward, while using more past observations at the same
time increases the risk of these being biased.

IV. GENERAL GREEDY SELECTION MECHANISM

In this section, we first introduce the general greedy selec-
tion algorithm we designed, then introduce different identi-
fication strategies, and finally analyze the complexity of our
designed algorithm.

A. General Greedy Selection Algorithm

• Motivation. Greed [20] is an important idea. Not only
is it very simple and easy to implement, but it always
excels at solving many practical problems, although it
does not provide theoretical guarantees. The core of the
greedy idea is that in each round t, the player will
always perform the action At with the largest expected
reward, where At = argmaxi∈MXE

i,t. Note that, XE
i,t

is calculated based on the i-th arm’s historical reward
data Xi,t = {Xi,1, Xi,2, · · · , Xi,t−1}, and its specific
calculation method is given in Section. IV.B. In each
round, we can directly select the top K arms with the
largest expected reward to maximize the expected reward.

• Implementation. Generally, greed can be implemented
in the following three steps. (1) For each arm i ∈ M ,
calculate its expected reward in the next round according
to all the historical random reward data Xi,t. (2) Rank all
the arms according to their expected reward. (3) The top
K arms are selected as the super-arm in the next round.
Note that, as shown in Fig.2, our CMAB starts in the
second round to avoid the problem of setting the initial
reward of each arm. Algorithm 1 shows the pseudo-code
of the general greedy selection algorithm.

In Algorithm 1, lines 8 to 9 indicate that after each round,
we need to maintain some necessary information, such as
the collected historical reward information and the number
of rounds.

B. Identification strategies

As mentioned before, how the expected reward of arm i is
calculated plays a decisive role in our online identification
task. In this part, we propose several different strategies
for calculating expected rewards, which are also defined as
identification strategies.



Algorithm 1 General Greedy Selection Algorithm
Input: number of total arms M , number of top-K arms K,
all collected random reward Xi,1, for all arm i ∈ M , total
number of rounds n.
Output: cumulative regret r.

1: Initialization: let r = 0, t = 1;
2: while n > 0 do
3: for each arm i ∈ M do
4: Using Xi,t, calculate XE

i,t+1 according to various
equations in Section. IV.B;

5: end for
6: Sort all arms i ∈ M by its XE

i,t+1 in ascending order;
7: Let St+1 = {i0, i1, · · · , ik}; // get the super-arm
8: Let t = t+ 1, n = n− 1; // end of current round
9: For i ∈ M , let Xi,t+1 = Xi,t +Xi,t+1;

10: r = r + (
∑

i∈S∗
t+1

Xi,t+1 −
∑

j∈St+1

Xj,t+1);

11: end while
12: return r.

1) mean-greedy: Taking the average of all historical ran-
dom rewards of arm i as its expected reward for the next
round is a naive calculation method [33], [34], which we call
mean-greedy. XE

i,t+1 can be calculated through Eq. (3).

XE
i,t+1 =

Xi,1 +Xi,2 + ...+Xi,t

t
(3)

2) weighted-greedy: The mean-greedy strategy is only suit-
able for stationary bandits model, and for some non-stationary
bandits models, it makes sense to give more weight to the
recent reward than the reward of a long time in the past [35].
We call this strategy weighted-greedy, and XE

i,t+1 is calculated
through Eq. (4), where α ∈ (0, 1] is the weight parameter.

XE
i,t+1 = αXi,t + (1− α)

2
αXi,t−2 + · · ·

+ (1− α)
t−1

αXi,1 (4)

=

t∑
j=1

(1− α)
t−j

αXi,j

3) sliding window-greedy: Similar to the weighted-greedy
strategy, sliding window-greedy also focuses on recent random
rewards information. However, unlike the weighted-greedy,
sliding window-greedy only focuses on the recent d random
reward values, and completely ignores random rewards infor-
mation collected a long time ago. In this strategy, XE

i,t+1 can
be calculated by Eq. (5), where d ≥ 1 is the sliding window.

XE
i,t+1=

t∑
j=t−d

Xi,j

d
(5)

C. Complexity analysis

Next, we analyze the complexity of our proposed general
greedy selection algorithm in a single round (lines 3 to 8 in
Algorithm 1). First, for the first for loop, we have to calculate

XE
i,t+1. Note that, we do not have to use all the collected

historical random rewards information. For mean − greedy,
XE

i,t+1 =
(t−1)·XE

i,t−1+Xi,t

t , and for weighted − greedy,
XE

i,t+1 = (1 − α) · XE
i,t−1 + α · Xi,t. Thus, for these

two strategies, maintaining the expected reward for the last
round is sufficient for each arm. However, for the sliding
window − greedy, calculating XE

i,t+1 relies on the recent
d historical random reward data, for such cases, we need to
maintain d data for each arm. Then, the temporal complexity
for the sorting process is O(Mlog2M). The above results are
summarized in Table III.

TABLE III
COMPLEXITY ANALYSIS IN A SINGLE ROUND

Method Temporal
Complexity

Spatial
Complexity

mean-greedy O(M +Mlog2M ) O(M )
weighted-greedy O(M +Mlog2M ) O(M )

sliding window-greedy O(M +Mlog2M ) O(dM )

V. NUMERICAL RESULTS

In this section, we evaluate the performance of our proposed
general greedy selection algorithm with different identifica-
tion strategies. We first introduce the dataset we used, then
we describe the state-of-the-art top-K arms identification
algorithms. Finally, we conduct an extensive simulation to
compare our proposed algorithm with some other identification
algorithms.

A. Dataset

In our work, we evaluate the performance of different
algorithms using two real-world network topologies (Abilene
and Geant, respectively)2 that are widely used in the field
of computing network research [16], [36], [37]. Table IV
summarizes the properties of these topologies, such as the
number of nodes, sampling granularity, and the number of
top-K flows. For the Abilene network, we collected bandwidth
requirements for 6 days (starting April 2, 2004) for a total of
1728 traffic matrices. For the Geant network, we choose a total
of 672 traffic matrices over a week (starting May 5, 2005) as
our dataset.

TABLE IV
INFORMATION OF TOPOLOGY

Topology N M K T n
Abilene 12 132 13 5 minutes 1728
Geant 22 462 46 15 minutes 672

Note that, for some other identification algorithms (SAR,
Q-SAR), We need to use the first 70% bandwidth demand
data in the dataset to randomly generated reward data for
arms determination. Please refer to Section.V.B for specific
instructions.

2information available at: http://sndlib.zib.de/home.action



B. Introduction of Compared Algorithms

In our simulation, we compare our proposed greedy se-
lection algorithm with the random selection algorithm, SAR
[26] and Q-SAR [27]. The random selection algorithm is
the weakest baseline. If the performance of an algorithm is
weaker than random selection, we can consider this algorithm
to be meaningless. SAR and Q-SAR are excellent related
works that are used to identify the top-K best arms in MAB.
Before presenting our simulation results, we first give a brief
introduction to these compared algorithms.

• Random: The random selection algorithm completely
ignores the historical reward information of the arms, and
in each round t, it always randomly selects K different
arms.

• SAR [26]: SAR focuses on identifying the top-K arms
in a multi-armed bandit game with a fixed budget. It first
divides the rounds into M−1 phases, then in each phase,
SAR pulls each active arm at the same frequency. After
each phase, SAR either accepts the arm with the highest
empirical average or removes the arm with the lowest
empirical average.

• Q-SAR [27]: Q-SAR is a revised version of SAR. Similar
to SAR, Q-SAR also first divides the given budget into
M − 1 phase, and then pulls all the arms equally. Unlike
SAR, which uses the empirical mean as the summary
statistic, Q-SAR uses quantiles as the summary statistic,
and then it decides whether to accept or reject an arm
based on the best and worst empirical gaps instead of all
empirical gaps.

The tasks of both SAR and Q-SAR are to output a set
{i1, i2, · · · , iK} corresponding to the set of arms with the K
highest mean rewards after exploring the multi-arm gambling
machine to a specified round (fixed budget). In the original
work of related researchers, the reward for each arm obeyed a
fixed reward distribution, and we can call this type of problem
an offline problem, which means that the reward distribution
does not change over time. In our evaluation, we use the nearly
top 70% bandwidth requirement data of the dataset as training
data (for Abilene, training data begins at 00:00 on April 4,
2004, and ends at 06:10 on April 6, 2004, and for Geant,
training data begins at 00:00 on May 5, 2005, and ends at
21:30 on May 9, 2005) to randomly generate random rewards
for the arms for SAR and Q-SAR algorithms. Then, we use
the remaining 30% of the data as the testing data (for Abilene,
there are a total of 201 bandwidth demand matrix data, and
for Geant, the number is 501) to verify the performance of all
algorithms.

C. Evaluation indicators

To more intuitively reflect the performance difference of the
algorithms, in addition to the cumulative regret defined in Eq.
(2), we also define an additional indicator RS∗,S(t) to measure
the cumulative similarity between the super-arms selected by
algorithms and the optimal super-arms, where RS∗,S(t) can
be calculated by Eq. (6).

RS∗,S(t) =

∑
t

∑
i∈St

Xi,t∑
t

∑
i∈S∗

t

Xi,t
(6)

D. Evaluation results

First, we need to evaluate the effectiveness of greed. We
compare the performance of the naive mean-greedy strategy
and random selection algorithm. As shown in Fig. 3, 4, in
a period of time, the mean-greedy strategy can effectively
approach the theoretical optimum super-arm at each round
and outperform the random selection algorithm. However, its
performance starts to degrade when the reward distributions
of arms change.

Fig. 3. Experiment 1 in Abilene network.

Fig. 4. Experiment 1 in Geant network.

Next, we compare the performance of different identifi-
cation strategies in our general greedy selection algorithm.
Initially, we set w = 0.01, d = 20. As shown in Fig. 5,
6, because both weighted-greedy and sliding window-greedy
strategies focus much more on the recent historical random
reward information, it can adapt to the temporal changes of the
reward distributions better (after 1150 rounds in the Abilene,
and after 500 rounds in the Geant). However, we also notice
that sometimes their performance may drop drastically (e.g.,
in the 1445 round in Abilene). Thus, we should investigate
how the weight and sliding window affect the performance.

We try to gradually increase w and reduce d to reduce the
focus on historical reward data from a long time ago, and
observe the change in performance. Interestingly, at least in
our validation experiments, performance improves effectively
as we pay more and more attention to recently received random



Fig. 5. Experiment 2 in Abilene network.

Fig. 6. Experiment 2 in Geant network.

rewards information, as shown in Fig 7, 8, 9, and 10. For
the weight-greedy strategy, the performance seems to reach a
maximum when w increases to a certain extent. Finally, we
set w = 0.9, d = 1 for the following comparative experiments.

Fig. 7. Experiment to determine d in Abilene network.

Fig. 8. Experiment to determine d in Geant network.

Fig. 9. Experiment to determine w in Abilene network.

Fig. 10. Experiment to determine w in Geant network.

To be fair, for SAR and Q-SAR, we set the exploration
budget to be large enough (in our work, we set the fixed budget
to be 100 times the total number of arms) to ensure that they
can adequately perceive each arm’s historical random reward
information. We then compare the performance differences of
various algorithms on testing dataset. As shown in Fig 11,
12, the performances of both SAR and Q-SAR are not ideal,
especially SAR, which has a very high cumulative regret.
Although the performance of Q-SAR in Geant network is
significantly better than that of SAR, its performance is still
much weaker than the greedy selection algorithm we designed.
We also note that the performance of sliding window-greedy
far outperforms all other strategies, and its cumulative regret
is almost 0 over time. We then use RS∗,S (t = 501, 201
in Abilene, Geant, respectively) to evaluate the comparison
results. We find that the identification result of sliding window-
greedy can reach 99% of the optimal solution, which is
almost equivalent to the optimal solution. The above results
are summarized in Table. V.

Note that, for SAR and Q-SAR, after exploration, they do
not update the evaluation of each arm, which means that they
do not bring extra cost. Thus, both SAR and Q-SAR assume
that the reward distribution of each arm does not change over
time. However, in many scenarios, the above assumption does
not work. For our proposed scheme, to adapt to the temporal
variations in the rewards, we update the evaluation of each
arm after each round. It definitely brings extra cost, but as
concluded in Table. III, generally, the extra cost is acceptable.



Fig. 11. A comparison of various algorithms in Abilene network

Fig. 12. A comparison of various algorithms in Geant network

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigated the online top-K flows
identification problem in SDN and modeled it as a variant
of the CMAB. With the help of SDN’s global view, we
appended the assumption of reward information sharing. We
were pleasantly surprised to find that a simple greedy selection
strategy works well for this task. At the same time, with the
constraint of temporally changing reward distributions of arms,
some traditional best arms identification algorithms lost their
efficiency. In addition, there are some interesting researches
that we can carry out in the future. For example, currently, we
did not combine the top-K flow identification with some other
network management tasks (e.g., traffic engineering, anomaly
detection, SFC migration [38]. . . ). In such cases, the reward of
a super-arm should not be simply set up as a superposition of

TABLE V
SUMMARY OF COMPARISON RESULT

Topology Method RS∗,S

Abilene

SAR 33.96%
Q-SAR 67.33%

mean-greedy 69.44%
weighted-greedy 92.47%

sliding window-greedy 99.38%

Geant

SAR 58.70%
Q-SAR 90.75%

mean-greedy 91.92%
weighted-greedy 95.92%

sliding window-greedy 99.18%

its sub-arms’ rewards, in other words, complicated forms of the
super-arms need to be considered based on specific scenarios.
Second, we also need to adjust our CMAB model to some
other multi-armed bandit models, like sleeping bandits, and
contextual bandits, to adapt to the realistic scenarios.
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