
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. *, NO. *, ** 2024 1

Joint Task and Computing Resource Allocation in
Distributed Edge Computing Systems via

Multi-Agent Deep Reinforcement Learning
Yan Chen, Yanjing Sun, Hao Yu, and Tarik Taleb, Senior Member, IEEE

Abstract—Edge servers can collaborate to enhance service
capability. However, cloud servers may be unable to execute cen-
tralized management due to unpredictable communications. In
such systems, distributed task and resource management are vital
but challenging due to heterogeneity and various restrictions.
Therefore, this paper studies such edge systems and formulates
the distributed joint task and computing resource allocation
problem for maximizing the quality of experience (QoE). Given
the restrictions on real-time state observations and resource
management involving other facilities, we decompose it into sub-
problems of distributed task allocation and computing resource
allocation. After formulating the problem as a partially observed
Markov decision process, we propose a two-step approach that
depends on multi-agent (MA) deep reinforcement learning. First,
each edge server performs a policy to allocate tasks for its
associated users according to a partial observation. We employ
the MA deep deterministic policy gradient to tackle vast spaces
of discrete actions. Besides, we incorporate the action entropy
of massive users’ task allocation to enhance exploration. Then,
we prove that the QoE-maximized computing resource allocation
is a problem of maxing a sum of sigmoids, and we address it
by sigmoidal programming. Simulation results reveal that the
proposed approach dramatically improves the system QoE and
reduces the average service latency. Besides, the proposed solution
outperforms benchmarks in training and convergence.

Index Terms—Edge computing, distributed task allocation,
resource allocation, quality of experience, multi-agent deep rein-
forcement learning

I. INTRODUCTION

This work was supported in part by the National Key Research and
Development Program of China under Grant No. 2021YFB2900200; in part by
the National Natural Science Foundation of China under Grant No. 62071472;
This work was also conducted at ICTFICIAL Oy, Finland; and supported in
part by the European Union’s Horizon 2020 Research and Innovation Program
through the Charity project under Grant No. 101016509; in part by the AerOS
project funded by the European Union’s Horizon Europe, the EU’s key funding
program for research and innovation under Grant No. 101069732; in part by
the Fundamental Research Funds for the Central Universities under Grant No.
2020ZDPY0304; and in part by the Future Network Scientific Research Fund
Project of Jiangsu under Grant No. FNSRFP-2021-YB-34.(Corresponding
author: Yanjing Sun)

Yan Chen is with Zhejiang Lab, Hangzhou, 311121 China. He was with the
School of Information and Control Engineering, China University of Mining
and Technology, Xuzhou, 221116 China. (e-mail: yanchen edu@outlook.com)

Yanjing Sun is with the School of Information and Control Engineering,
China University of Mining and Technology, Xuzhou, 221116 China. (e-mail:
yjsun@cumt.edu.cn)

Hao Yu is with ICTFICIAL Oy and was with the Center of Wire-
less Communications, University of Oulu, Oulu, 90570 Finland. (e-
mail:hao.yu@oulu.fi)

Tarik Taleb is with Ruhr University Bochum, Bochum, 44801 Germany.
(e-mail: tarik.taleb@rub.de)

Manuscript received **, 2023; revised ** , 2024.

EDGE computing (EC) can improve quality of service
(QoS) for ever-changing applications by extending the

ability of clouds to network edges [1]–[3]. Collaboration
among edge servers (ESs) is critical for fully utilizing the
limited resources of edge networks and enhancing their ser-
viceability [4]–[7], but it requires efficient orchestration of
resources and tasks among ESs. However, interactions be-
tween ESs and the remote cloud server (RCS) suffer from
unpredictable communications, making the RCS unable to
provide reliable centralized management of tasks and resources
in the edge networks. Furthermore, ESs are unable to pro-
vide central management due to their limited resources and
restricted access to the prior knowledge, real-time state, and
resource allocation of other ESs, primarily due to information-
exchanging costs like privacy risks and handshaking time. As
a result, users or ESs in such systems must conduct task
allocation and resource management in a distributed manner
under partial state observations.

In a distributed EC system, different components can infer
and implement task allocation or resource allocation decisions
independently. For example, the facilities initiating computing
tasks (e.g., users and service providers) [8]–[14] or the in-
frastructures supporting the EC service (i.e., ESs) [15]–[19].
However, facilities in a distributed system may be unable
to access the global state due to restrictions like associa-
tion and authority, forcing them to make decisions based
on partial state observations. In addition, under a random
system state, the state transition and performance only de-
pend on the real-time system state, actions jointly taken by
all facilities, and the system’s transition features. Therefore,
the problem is generally formulated as a partially observed
Markov decision process (POMDP) in existing works devoted
to distributed task allocation or resource allocation. Moreover,
traditional methods generally require information exchange to
fetch information about other components and obtain a result
through considerable iterations. As a result, they are hardly
implemented in a highly dynamic distributed EC system.
Recently, multi-agent deep reinforcement learning (MADRL)
is increasingly being exploited to address POMDP problems
as it can tackle challenges like system heterogeneity, time-
varying states, and restricted state observation. MADRL and
its variations have presented great potential in systems where
multiple facilities are working cooperatively or competitively
with limited sharing of information [20], [21]. However, most
existing works on distributed task allocation assume that users
and ESs are endowed with access to some global state, which

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. *, NO. *, ** 2024 2

is unattainable in some actual systems. In addition, training a
policy for every user in an EC system with massive users is
challenging and may exhaust resources.

Moreover, compared with the quality of service (QoS) like
latency, the quality of experience (QoE) is more relative to
users’ actual feelings and better reflects the service level
of modern user-centered applications [22]. Although QoE
is positively correlated with QoS, they are generally non-
linearly correlated [23], [24]. The most significant feature
is the existence of saturated areas where the user’s QoE
will not significantly change with the variation of QoS. For
example, the QoE of a user is extremely satisfied when expe-
riencing high QoS, like ultra-low latency. Although allocating
more resources further reduces the latency, the user feels
an insensible QoE increase. In such conditions, allocating
more resources to improve such users’ QoE is meaningless
compared to allocating these resources to improve the QoE of
other users. Consequently, allocating resources according to
the QoE imposes greater significance in improving resource
utilization and satisfying more users, especially in EC systems
with resource restrictions.

Existing works have contributed to distributed task alloca-
tion in various EC systems. However, most of them consider
users to conduct task allocation with the assumption that users
can obtain the resource state of all ESs, and ESs accept the
resource requirements proposed by users [9]–[12], [25]. In
actual systems, accessing the resource states and allocations
of ESs may be infeasible for users. Besides, considering the
limited state observation of users and ESs, most existing
works have proposed MADRL-based approaches that enable
users or ESs to conduct distributed management. However,
training a policy for every user is non-trivial in a system with
massive users, which hinders similar approaches to working
in mass-user EC systems. Therefore, this paper proposes that
ESs conduct task and resource allocation in a distributed
manner. This satisfies the restriction in authority to access
resource state and allocation and significantly reduces the
number of policies, thereby reducing the complexities and
costs associated with policy training. Although a few works
also enabled ES to conduct management, they assume that
agents can obtain the states of all users [15], [16] and ES
would accept the resource allocation decisions suggested by
others without considering the resource competition between
users [17], [19]. This paper studies scenarios where each ES
can only observe the state of its real-time associated users, and
each ES allocates its resources to served users independently
rather than accepting propositions from other agents. Besides,
there is resource competition between users (i.e., resources
concurrently consumed by different users cannot overlap). To
address these restrictions, we propose a two-step MADRL-
based approach that includes task allocation and resource
allocation to maximize the overall QoE for users. Here, we
summarize the main contributions as follows:

• We study an EC system with massive users, in which
users and ESs cannot access the real-time state and
resource allocation of other ESs. Then, we formulate the
distributed joint task and computing resource allocation
problem (DJTCRA) for maximizing the sum of users’

QoE by considering the quantitative correlation between
QoE and QoS.

• Next, we propose utilizing MADRL to tackle challenges
regarding system heterogeneity, dynamic task requests,
and limited state observations. Specifically, considering
users and ES cannot access the real-time state and re-
source allocation of other ESs, as well as the difficulties
in training policies for massive users, we set ES as the
controller. Then, according to state availability, we model
DJTCRA as a POMDP. Meanwhile, we decompose the
problem into a distributed task allocation problem and a
QoE-maximizing resource allocation problem.

• Subsequently, we developed a two-step solution to satisfy
these restrictions. An approach that leverages the policy-
based MADRL is employed to realize massive user task
allocation under partial state observation. Meanwhile, we
exploit sigmoidal programming to optimize the comput-
ing resource allocation following each task allocation
after proving it is a problem of maximizing a sum of
sigmoids. Moreover, we further integrate the entropy of
massive users’ task allocation actions into training multi-
agent policies to enhance exploration.

• Simulation results reveal that our proposed approach can
efficiently establish collaboration among ESs in a dis-
tributed EC system supporting massive users. Meanwhile,
it outperforms benchmarks in system QoE and service
latency by jointly optimizing task and resource allocation.

The rest of this paper is organized as follows: Related works
are reviewed in Section II. Section III introduces the system
model. Section IV formulates the investigated DJTCRA prob-
lem. Section V details the proposed MADRL-based DJTCRA
approaches. Simulations are conducted and discussed in Sec-
tion VI. This paper is concluded in Section VII.

II. RELATED WORKS

Researchers have widely investigated task and resource
management in centralized EC systems, promoting the devel-
opment of the EC continuum [26], [27]. Unlike centralized
systems, distributed EC systems lack a central controller to
gather global information and manage the system. Meanwhile,
facilities in distributed systems have difficulties obtaining
other devices’ information due to reasons like security or
unacceptable costs of exchanging information (e.g., latency).
Therefore, increasing research efforts have been devoted to
distributed task allocation or resource allocation to mine and
utilize the advantages of collaborations among ESs in various
distributed EC systems.

Edge task allocations are typically formulated as vari-
ations of combinatorial optimization problems. Traditional
mathematical approaches can hardly solve these issues alone,
especially when the system is heterogeneous and highly dy-
namic. Therefore, further considering the restrictions inherent
in distributed EC systems, approaches based on traditional
decentralized algorithms have been developed. Moreover, as
AI technologies have presented great potential, multi-agent
reinforcement learning has been widely explored to solve such
complex problems in distributed EC systems and has shown
advantages over traditional approaches.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. *, NO. *, ** 2024 3

TABLE I
COMPARISON BETWEEN RELATED WORKS AND GAP ANALYSIS

Ref. Agent Method Parallel
execution

Flexible
allocation

ES
collaboration

Global state Obj Resource
competition

Access
authority

Limitations
1 2 3 4 Specfic Common

[28] User Matching theory ✓ ✗ ✓ ✓ utility ✓ ✘
⋆2

⋆1

[29] Game theory ✗ NA ✓ ✓ ✓ ✓ latency NA ✘
[30] ES Game theory ✗ NA ✗ ✓ utility NA ✘
[8]

Users

MAQL ✓ ✓ ✓ ✓ latency ✓ ✘ ⋆4

⋆3
[9] MA A2C ✗ NA ✓ ✓ cost NA ✘

[10] MADDPG ✓ ✗ ✓ ✓ ✓ utility ✓ ✘
[11] MADDPG ✓ ✗ ✓ ✓ ✓ cost ✘ ✘
[12] MADDPG ✓ ✗ ✗ ✓ cost ✘ ✘

[15], [16]

ES

MADDPG ✗ NA ✓ ✓ latency NA ✘ ⋆5

[17] MADQN NA NA ✓ ✓ ✓ reward ✘ ✘

[31] MA AC ✓ ✓ ✓ ✓ reward ✓ ✘ ⋆6

[18], [19] MADDPG ✓ ✓ ✓ PE ✘ ✘

This work MADDPG +
Action Entropy ✓ ✓ ✓ QoE ✓ ✓

⋆1- Assume allow interactions or the existence of a central entity to gather and share the states of other components before making each decision.
⋆2- It requires considerable iterations before obtaining a decision for any given state, which is time-consuming.
⋆3- When implemented in systems with massive users, the training of policies is challenging and may exhaust resources.
⋆4- It can only handle finite state and action spaces obtained through discretization; available action needs to be filtered manually in advance.
⋆5- All ESs are homogeneous and configured with several task queues, and each task must allocated to one queue;
⋆5- It cannot decide the allocations of each task but only migrates loads of task queues to other ESs under the coordination of a central entity.
⋆6- Each time, multiple ESs may grab the same task to execute, resulting in collisions and a waste of resources.

Global state: 1←BS, 2←ES, 3←task, 4←user; NA-not applicable

A. Approaches based on Traditional Methods

In [28], a distributed task allocation solution based on
matching theory is studied. They develop a heuristic algorithm
that allocates tasks iteratively according to tasks’ preference
lists. Each preference list comprehensively considers the ES’
computing power, the conditions of the wireless channel, and
the time limits. In [29], a game theoretical model of distributed
task allocation was formulated. Then, a variational inequality
theory was utilized to obtain the task allocation equilibrium
strategy in static mixed strategies. After that, they developed
a decentralized algorithm that supports users in making their
offloading decisions with the assistance of information sent
from a central entity periodically. A mean-field game model
was created for the decentralized load schedule among ESs
in [30]. Then, they developed a pricing scheme based on
Lyapunov optimization to distribute computing load to ensure
long-term utility and load balancing.

However, these traditional decentralized approaches gener-
ally require information exchange or obtaining information
from a virtual central data collector before each decision,
which introduces costs for exchanging information and may
be infeasible in actual systems. Besides, most of these ap-
proaches solve the optimization problems under each given
state via iterations to approach an optimal solution, which is
usually time-consuming. Thus, it is hard to meet the real-time
management requirements of highly dynamic EC systems.

B. Approaches based on MA Reinforcement Learning

In [8], an MA Q-learning (MAQL) was employed, which
enables each service provider initiating the task requests to
allocate its tasks to one of the multiple associated ESs.
However, such an approach can only address problems with
limited state and action space, which hinders its applications

in complex systems. In [9], every user can obtain all ESs’ real-
time computing load states and decide its task allocation via
a policy based on the advantage actor-critic. Multi-agent deep
deterministic policy gradient (MADDPG) has been a popular
MADRL method in recent years. It enables each policy to
adapt to other policies by utilizing a centralized training
method with combined states. As a result, MADDPG has been
exploited in some distributed task allocation projects [10]–
[12], [25]. These works assume each user is an agent to
perform a MADDPG-based policy. Then, they can make
decisions independently for their task and resource allocations
with the input of local state observation and the state of all
available resources (e.g., resource states of all ESs [11], [12]
or communication states of all BS [10], [25]). Nevertheless,
these approaches empower users to perform policies, but they
require the assistance of some global state information, which
imposes certain constraints on their practical implementation.
First, requiring global information is infeasible in some sys-
tems since users may lack the authorization to access the
resource states of all ESs or BSs. Meanwhile, devices or
controllers with privileges (e.g., BS and ES) are typically re-
sponsible for resource allocation rather than users. In addition,
policy training is generally resource-hungry. Consequently,
training policies for every user dramatically increase costs,
including policy training and parameter synchronization from
the RCS to users, especially in systems with massive users.
Moreover, although MADDPG utilizes combined states for
policy training to reduce the impact of agents’ high dynamics,
it remains challenging when training large numbers of policies.

Instead of users, a few recent works select ESs to execute
distributed management. In [15], [16], the MADDPG-based
policy enables each ES to actively select some tasks to process
from a given task set based on its resource state. However, they
assume there are a limited number of tasks in the system, and

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. *, NO. *, ** 2024 4

every ES can observe the information about all tasks waiting
to be served. In [17], MA deep Q-learning was exploited
to optimize the resource rental decisions of an application
service provider (ASP). The instantiation of the ASP on each
ES determines the amount of resources to rent according to
the demand received from the served users. They assume the
task offloading has been given and the available resources on
each server are discrete. Therefore, this approach can only be
utilized for problems with a small action space and cannot
determine each user’s task and resource allocations. In [31],
a DDPG-extended MA actor-critic (AC) training method is
developed. Each ES executes a policy to allocate computing
resources to a limited number of task queues they maintain
and migrate part of their computing loads to other ESs In [18],
[19], tasks and resources are allocated to optimize the designed
processing efficiency (PE) in Cybertwin IoT by MADDPG.
However, the resource competition between tasks processed
by the same ES has not been well studied.

A comparison of the most related works discussed above
is detailed in Table I. We first focus on comparisons: Does
the work allow ES to process different tasks in parallel? Can
computing resources be allocated flexibly according to require-
ments? Can ES establish collaboration to share loads? Then,
we list if the proposed approach requires some global state
about other components. In addition, we discuss whether they
studied the resource competition between tasks and the access
authority of agents. We treat access authority as whether a
device is authorized to make decisions relevant to others, such
as resource allocation. Different from previous works, this
paper considers mass-user EC systems where ES only acquires
the state of real-time associated users. Consequently, each
ES must independently allocate tasks and resources for only
their associated users under limited state observation. This is
more reasonable since frequent information exchange is time-
consuming and privacy-risky. Besides, compared with user-
executed approaches, it can significantly reduce the number of
policies that need to be trained since ESs are generally much
fewer than users. Different from [19], we consider the resource
competition between tasks. Meanwhile, each ES cannot decide
the resource allocation for others because infeasible actions
would break the resource constraints. Besides, they may have
customized resource allocation schemes. In addition, we look
into improving the QoE after considering its quantitative
relationship with the QoS. We solve the resource allocation
problem using sigmoidal programming. Furthermore, we inte-
grate the action entropy of massive users’ task allocation into
policy training for the investigated multi-agent problem. This
is beneficial for dealing with huge discrete action spaces and
improving exploration.

III. SYSTEM MODEL

A. Preliminary
As shown in Fig. 1, this paper considers a system consisting

of multiple radio access networks (RAN) established by base
states (BSs). Each RAN is directly associated with an ES.
Thus, we use H to represent the set of RANs and ESs. Mean-
while, massive mobile users (U) are performing computation-
intensive applications, and each user moves randomly in the

system and connects to one RAN at any time through wireless
links. ESs can communicate with each other via links among
RANs to establish a cooperation space for task allocation. On
top of the edge network, RCS can interact with ESs to collect
system states but suffers from high latency.

Edge
Network

Collaboration
Space

Remote Cloud

mobility

Edge Server

Edge Server

User

Fig. 1. A distributed edge computing system

Users always offload their tasks to the ES associated with its
connected RAN. After receiving a request, the ES allocates the
task to one ES in the system. A user’s task is further offloaded
to the RCS if it can achieve higher QoS. After completing
the task processing, a result is fed back to the user via the
reverse path. Although resource-limited ESs collaborate to
support these applications, each ES can only decide the task
and resource allocation for its associated users (i.e., the users
connecting to the RAN or whose tasks are allocated to the ES)
for reasons like privacy risk. In addition, RCS is responsible
for more complex duties like training the policies executed on
each ES based on the experiences gathered from ESs.

B. Communication Model

This paper assumes users communicate over orthogonal sub-
channels and do not interfere with each other. Besides, the
RAN can allocate multiple sub-channels to one user. The
communication latency from a user u to the connected BS
depends on the channel condition, i.e.,

dcu(t) =
V Tu (t) + V Ru (t)

Bu(t) log2 (1 + Iu(t)gu(t)/Nu(t))
, (1)

where V Tu (t), V Ru (t), and Iu(t) are respectively u’s task
volume (i.e., data size), result volume, and transmitting power
at time t. gu(t) and Nu(t) are respectively the channel gain
(path loss) and noise power between u and its associated RAN.
Bu(t) is the bandwidth allocated to u. We employ the path loss
model for 5G in rural scenarios [32], i.e.,

PL =

{
PL1, 10m ≤ Υ2d ≤ ΥBP ,

PL2, ΥBP ≤ Υ2d ≤ 10km,
(2)

where

PL1=20lg(40πΥ3dfc/3)+min(0.03h̃1.72, 10) lg (Υ3d)

−min(0.044h̃1.72, 14.77) + 0.002 lg(h̃)Υ3d,
(3)

and
PL2 = PL1 (ΥBP) + 40 lg(Υ3d/ΥBP). (4)

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. *, NO. *, ** 2024 5

Υ2d is the 2-dimensional (2D) ground distance from a user
to the connected BS. Υ3d is the 3D distance between their
antennas. h̃ is the average building height. ΥBP is the break-
point distance, i.e.,

ΥBP = 2πHBSHUT fc/c, (5)

where HBS and HUT separately denote the height of BSs and
users. fc is the central frequency, and its unit is separately
GHz and Hz in (3) and (5). c=3×108 m/s.

The task processing of a user may be allocated to a
remote ES, which introduces the forwarding latency from the
connected RAN i to the corresponding ES j, i.e.,

dfu(t) =
V Tu (t) + V Ru (t)

Bi,j
+ 2δi,j , (6)

where Bi,j represents the efficient communication rate of the
link established between RAN i and RAN j, and δi,j is the
propagation latency between them.

C. Computation Model

This paper employs a popular computation model in the
EC community [2], i.e., the computing latency depends on
the requirement and the allocated resource, i.e.,

dpu(t) =
V Tu (t)κu(t)

pu(t)
, (7)

where κu(t) is the computing intensity of u at time t, which
indicates the CPU cycles required to process a per-bit task.
pu(t) represents the cycles allocated to process u’s task.

In addition, ESs have different resource and performance
features when processing different applications. For example,
an ES is optimized for processing video applications by
equipping it with GPUs. Therefore, we introduce an additional
factor to reveal the performance difference when the tasks of
an application are processed on different ESs, i.e.,

dpu(t) =
∑
h∈H

yhu(t)η
h
u

V Tu (t)κu(t)

pu(t)
, (8)

where yhu(t) = 1 indicates u’s task processing is allocated to
ES h at time t, yhu(t) = 0 otherwise. When u’s task is allocated
to ES h, the multiplicative factor ηhu is used to measure the
difference that exists in the task processing latency compared
with the benchmark. Without loss of generality, the ηhu of a
user on each ES is independent and only determined by the
ES ability and the tasks of the user.

IV. PROBLEM FORMULATION

The EC service latency includes the wireless communica-
tion latency, the forwarding latency, and the task processing
latency. Therefore, the service latency of u under a given task
and resource allocation policy at time t is

Du(t) = dcu(t) + dfu(t) + dpu(t). (9)

Compared with QoS, QoE is more accurate in reflecting a
user’s personalized satisfaction. Better QoE indeed benefits

from better QoS, but QoE and QoS are generally quanti-
tatively correlated and present an exponential relationship.
Researchers usually model such a relationship using a sigmoid
function Fig. 2(a) [22], [24], [33], as shown in. This paper also
employs such a function to model the QoE of each user u, i.e.,

Ωu(t) =
Lu

1 + e−αu(t)(ξu(t)−βu(t))
, (10)

where Ωu(t) and ξu(t) are respectively u’s QoE and QoS. Lu
is the maximum QoE that u can enjoy. βu(t) is the middle
point correlation coefficient, which reflects the sensitive area
where the QoE changes fast as the QoS changes. αu(t) is
another positive coefficient (i.e., αu(t) > 0) that reflects the
change speed correlation between QoE and QoS. Fig. 2 and
(10) reveal that the QoE of a user only changes quickly around
the middle point as the QoS changes. The region where the
user’s QoE is not satisfied but the QoS has a significant impact
is what we refer to as the user-disturbed area. The user’s QoE
is sufficiently satisfied when the QoS is high enough and does
not noticeably improve as the QoS rises. Similarly, the QoE is
severely disturbed when the QoS falls below a lower threshold,
forcing the user to give up the provided service, and the QoS
deterioration causes a negligible decline in QoE. The QoE
decreases with QoS reduction and approaches zero.

User satis�ed

User disturbed

User gives up

Quality of Service(QoS) Level

Q
oE

/S
at

is
�c

at
io

n

(a)

User satis�ed

User disturbed

User gives up

Service Latency

Q
oE

/S
at

is
�c

at
io

n
(b)

Fig. 2. The correlation between QoE and QoS

This paper selects service latency as the QoS, which is
generally negatively correlated with QoE, i.e., a lower latency
leads to a better QoE. Thus, we omit the negative symbol
in (10) and express the QoE of a user u as [23]

Ωu(t) =
Lu

1 + eαu(t)(Du(t)−βu(t))
, (11)

where βu(t) is a reference latency value, around which u
experiences significant QoE variation when Du(t) changes.
Fig. 2(b) is a graphical example of the correlation between
QoE and service latency expressed in (11).

From the above analysis, we conclude that when a user’s
QoE reaches the QoE-satisfied area, investing additional re-
sources cannot improve its QoE significantly. Instead of in-
vesting more resources to improve the QoS of QoE-satisfied
users, we can allocate more resources to QoE-unsatisfied users
and increase the sum of users’ QoE (system QoE). Therefore,
allocating resources based on QoE has more practical signif-
icance in resource-limited EC systems. Therefore, this paper
aims to maintain the long-term performance of maximizing
the sum of users’ QoE in a distributed EC system by jointly
optimizing the task and computing resource allocation, i.e.,

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. *, NO. *, ** 2024 6

y,p={yu, pu|u∈U}, for any observed state. Then, the QoE-
optimized DJTCRA problem in this paper is formulated as

P1: max
y,p

lim
T→∞

1

T

T∑
t=0

∑
u∈U

Ωu(t), (12)

s.t. C1:
∑
h∈H

yhu(t) ≤ 1,∀u ∈ U ,∀t, (13)

C2:
∑
u∈U

yhu(t)pu(t) ≤ Ph,∀h ∈ H,∀t, (14)

C3: pu(t) ≥ 0,∀u ∈ U ,∀t, (15)

C4: yhu(t) ∈ {0, 1},∀u ∈ U ,∀h ∈ H,∀t, (16)

where C1 and C4 indicate that each user’s tasks can only be
allocated to one ES at most. C2 indicates that the resource
allocated to users by an ES h cannot exceed the maximum
capacity (Ph). C3 reveals the resource allocated to a user
must be non-negative. All symbols defined till now are listed
in TABLE II. To simplify the presentation, we ignore the
explanation of the symbol (t), i.e., at time t.

TABLE II
LIST OF DEFINED NOTATIONS

Symbol Definition
U The set of users in the EC system
H The set of RAN nodes and ESs
Bi,j The communication rate between RAN nodes i and j
δi,j The propagation delay between RAN nodes i and j
Ph The maximum computing resource capacity of ES h
Bu(t) Wireless communication bandwidth allocated to user u
Iu(t) Transmission power of user u
Nu(t) Wireless communication noise of user u
gu(t) Wireless communication channel gain of user u
Υ2d 2D distance between a user and the connected RAN
Υ3d 3D communication distance between a user and RAN
ΥBP Break-point distance in the communication path loss model
fc The central frequency of communication spectrum

HBS The height of base stations in the system
HUT The height of users’ devices
h̃ The average height of buildings in the cover of the system

V T
u (t) The volume of computing tasks generated by user u

V R
u (t) The volume (data size) of u’s computing results
pu(t) Computing resource (CPU cycles) allocated to user u
κu Computing intensity (cycles/bit) of u’s task processing
ηhu Performance difference factor of u’s tasks processing

yhu(t) Binary indicator indicating if u’s task is allocated to ES h
dcu(t) Wireless communication latency in the EC process of u
dfu(t) Forwarding latency in the EC process of u
dpu(t) Task processing latency in the EC process of user u
Du(t) The service latency of the whole EC process of user u
Ωu(t) The QoE of the user u
Lu The maximum QoE level can be achieved by user u
ξu(t) The real-time actual QoS value of u
βu(t) The middle point coefficient of u’s QoE-QoS correlation
αu(t) The coefficient reflecting the QoE variation speed of u

V. MADRL-BASED DJTCRA APPROACHES

A. Problem Analysis and Decomposition

This work considers EC systems with massive users. As a
result, problem P1 is challenging, especially in the following
concerns: First, each user and ES has no prior knowledge
about other ESs and has limited authority to decide the task
allocation and resource allocation of others. Besides, ES and

users are heterogeneous regarding resource capacities, com-
puting abilities, and task requests. Moreover, users’ location,
task requests, and wireless communication conditions are time-
varying. Therefore, the traditional methods make it difficult to
address these complexities and provide reliable management
in such systems. In addition to task allocation, resource
allocation is critical to optimizing QoE. However, as an ES
only obtains a user’s state after establishing an association,
resource allocation is hardly optimized simultaneously with
task allocation when considering resource allocation restric-
tions. The reason is that resource allocation decisions from
other agents for tasks processed on an ES may not satisfy the
resource capacity constraints (i.e., C2). This would introduce
additional complexity regarding whether to accept the resource
allocation decision for involved users.

At any time the system runs, there are two associations
between RANs and users, i.e., communication association
(CA) and computation association (PA). At any time slot, the
CA users of a RAN node connect to the RAN. The PA users
of an ES are users whose task processing is allocated to the
ES after task allocation. In a distributed EC system, CA users
of a RAN node depend on users’ mobility, and only their
connected RAN can access their real-time state. However,
an ES can only identify the PA users after implementing a
task allocation. Besides, after task allocation, the performance
only depends on the resource allocation of every ES. Then,
the overall QoE can be maximized by optimizing the sum of
users’ QoE on every ES via optimized resource allocation at
this stage. Thus, based on such an order, we decompose the
DJTCRA problem into two steps: 1) distributed task allocation
for CA users completed by each BS, and 2) resource allocation
on each ES for PA users following the task allocation.

B. QoE-Maximizing Computing Resource Allocation

At any time slot, users’ communication and forwarding
latency are determined after implementing a task allocation.
Meanwhile, each ES can identify its PA users and acquire
corresponding information, including real-time computing re-
quirements and QoE-related features. Then, each user’s QoE
only depends on the computing resource allocation because
the communication latency, computing requirements, and QoE
properties have been fixed. Moreover, the maximum system
QoE can be achieved by maximizing the sum QoE of all
PA users of every ES because each ES works independently.
Therefore, after task allocation, the optimal QoE is obtained
by optimizing computing resource allocation on every ES. We
use Uh(t) to represent the set of an ES h’s PA users after
implementing task allocation at time slot t. According to (1),
(6), (8), (9), and (11), the QoE-maximized resource allocation
problem on the ES h can be written as can be expressed as

P2: max
pu

∑
u∈Uh

Lu

1+eαu(dcu+d
f
u+ηhu

V T
u κu
pu

−βu)
, s.t. C2,C3, (17)

where we ignore the time symbol t. Besides, C1 and C4 are
naturally disappeared after task allocation. Only the resource
capacity and the resource allocation value constraints need to
be satisfied when an ES allocates resources to its PA users. C2

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. *, NO. *, ** 2024 7

and C3 are both linear constraints. The feasible set of pu is an
obvious convex set and is a polyhedron [34]. Besides, the QoE
function of each user in P2 is differentiable and monotonically
increasing with respect to the variable pu. Moreover, we have

Proposition 1: There exists a value ϵ > 0, which makes the
QoE function of a certain user up concave when pu ≥ ϵ.

Proof 1: The proof is attached in the Appendix I.
Thus, P2 is an NP-hard problem of maximizing a sum of
sigmoids [35]. Then, we can resort to sigmoidal programming
to obtain the QoE-maximized computing resource allocation.
We use the bisection method to roughly select the inflection
points of QoE functions [36].

C. Framework of MADRL-based DJTCRA Approach

The method above can allocate the computing resource fol-
lowing a task allocation. Then, P1 is converted to optimize the
task allocation without considering resource allocation. This
is a difficult combinatorial optimization problem, especially
considering system heterogeneity and limited prior knowledge.
Besides, approaches requiring global knowledge are ineffective
in our work because each ES independently makes decisions
with limited state observation. Thus, we exploit MADRL to
realize distributed task allocation. MADRL has been exploited
to deal with the heterogeneity and dynamics of EC systems.
However, most existing works consider a small group of users
to conduct task allocation with the assumption of knowing the
resource states of all ESs (e.g., [10]–[12], [25]). In addition
to the difficulty of obtaining sufficient states, training a policy
for each user in a system with massive users is non-trivial.
In multi-agent systems, each agent’s policy is dynamically
updated over the training process, introducing additional and
highly dynamic complexity. At the same time, each policy
needs to adapt to the dynamics of all other policies during
the training process. This is arduous in a system where
massive agents work in a distributed manner of cooperation
or competition. Therefore, this work proposes to conduct
distributed task allocation by ES. In addition to satisfying
the restrictions on accessing state and resource management
for other components, this approach can significantly reduce
the number of policies. As a result, this approach simplifies
the complexity of policy training and reduces corresponding
resource requirements (e.g., synchronizing the models from
the cloud to each agent and the memory required by training
policies). Besides, to cope with the vast and discrete action
space of massive users’ task allocation, we developed an
approach that relies on the policy-based MADDPG method.
This involves training with policy output but executing the
action mapped from policy output since naive MADDPG is
designed to handle continuous action [37]. To enhance the
exploration, we integrate the action entropy of massive users’
actions into policy training for the multi-agent task allocation
problem of massive users. In such a problem, each agent faces
a vast and discrete action space.

According to the system model, we set all ESs to perform
distributed task allocation, and they jointly determine the sys-
tem task allocation. Assuming users’ states maintain stability
when implementing a DJTCRA. Then, the DJTCRA process

is a POMDP since ESs work cooperatively, and each ES h can
only observe its local state Oh

t . At any time t, the system tran-
sition depends on the joint action At taken by all ESs and the
current system state St, i.e., St×At→St+1. The system state
is the union of all local states, i.e., St=(

⋃
h∈HOh

t) ∪ st,∀t,
where st is the additional available state. The system action
is the union of actions independently taken by every ES, i.e.,
At=

⋃
h∈Ha

h
t ,∀t. Based on the system setting and objective,

we define states, actions, and the reward function as follows:
Local state: The partial state observation of each RAN h at

the beginning of a time slot t, including the real-time proper-
ties of its CA users (Uht), including the requests, QoE and QoS
correlations, locations, and communication conditions, i.e.,

Oh
t = [h, V Tu , V

R
u , κu, αu, βu,Υ

u
2d,Bu,Nu]|Uh

t |×9, (18)

in which, we ignore the time symbol t for simplification. Υu2d
is the 2D distance from u to its connected RAN node.

System state: The union of all local states, i.e.,

St = [uh, V
T
u , V

R
u , κu, αu, βu,Υ

u
2d,Bu,Nu]|U|×9, (19)

where uh indicates the RAN that u is connecting. Besides, we
assume users communicate with the associated RAN on fixed
transmitting power and only move on the ground surface.

In addition, we set the arrays representing the local state and
the system state to share the same structure, i.e., a 2D array
whose size is |U|×9. Then, we can deploy policies sharing the
same structure on every ES to deal with the issue of different
numbers of CA users due to mobility. We assume the RCS has
indexed all users according to information like MAC addresses
and shares the indexes with ESs in advance. Then, each row
of the array contains the state of the corresponding users. In a
local state array, the rows corresponding to users who are not
the CA users of the ES are filled with 0, and other rows are
encapsulated with the CA users’ information.

Distributed task allocation action: The action generated
by an ES indicates the assignment of each CA user’s tasks to
one ES. For each ES, there is an enormous action space. Then,
value-based methods that compare all candidates to select one
are impractical when there are numerous users. Therefore, we
employ a policy-based method and define each user’s action as
the probability of allocating its task to every ES, as in our prior
work [37], so that the action maintains the policy gradient, i.e.,

aht = [pi,j]|Uh
t |×|H|. (20)

pi,j is the probability of selecting ES j to process tasks of the
i th user in Uht . The i th row of aht is aht [i]= [pi,1,· · ·, pi,|H|]

and satisfies
∑|H|
j=1 pi,j =1. After generating aht according to

Oh
t , the ES indicated by the highest probability in each row

is selected to process the task of the corresponding user. The
union of selected ESs is the implementable action ah,t, i.e.,

ah,t[i] = argmax{aht [i]},∀i ∈ Uht , (21)

System action: The union all ESs’ actions, i.e.,

At = [pi,j]|U|×|H|. (22)

We also set distributed task allocation actions and system
actions to have the same data structure. When an ES generates

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. *, NO. *, ** 2024 8

an action for its CA users, it only picks data from the rows
corresponding to its real-time CA users. This setting also
endows the DJTCRA model with the potential to handle newly
joined users by maintaining several additional state and action
rows. After allocating indexes to newly joined users, extra
rows can accommodate their states and corresponding actions.
If detecting a policy mismatch, the latest collected experiences
can be utilized for adapting policy by methods like meta-
learning [38], which is beyond the scope of this work.

Reward: According to P1, we defined the system reward
obtained after implementing an action as system QoE, i.e.,

Rt =
∑
u∈U

Ωu(t) =
∑
h∈H

rht , (23)

where rht is the sum QoE of the CA users of ES h.

……

Input
layer

Hidden layers Output
layer

Task
allocation

actionLo
ca

lly
 o

b
se

rv
e

d
 s

ta
te

1 …

…
…

…
…

…

…
…

…
…

…
…

…
……

…
…

…

…
…

…
…

……

…
…

…
…

Fig. 3. The structure of a DJTCRA policy network.

We design a policy network as shown in Fig. 3, in which
outputs of the last layer are reshaped to a 2D array with size
|U|×|H|. Then, each row is processed by softmax to produce
the distributed task allocation action. Finally, we can obtain
the executable action by executing the argmax on each row.

D. Architecture for Training and Executing policies

As depicted in Fig. 4, we employ an architecture that
includes centralized training on the RCS and distributed exe-
cutions on ESs [39]. Considering the resource restrictions of
ESs, DJTCRA policies are trained on RCS, which reduces
the resource consumption of ESs. Meanwhile, the RCS main-
tains global information, i.e., the local state observation and
distributed task allocation of all ESs. Then, utilizing system
states and actions for policy training allows each policy to
adapt to other ESs’ policies and improve training efficiency
and stability. Updated policies are synchronized from the cloud
to the corresponding ESs. Then, each ES executes the updated
policy to manage the system and collect more experience.
Distributed execution of DJTCRA policies on ESs rather
than by users dramatically reduces the costs of training and
parameter synchronization. We name the controller performed
on each ES as an agent, including the actor for task allocation
and a resource allocation module.

The main work procedures of this DJTCRA architecture
are displayed in Fig. 5. The cloud only interacts with each ES
when synchronizing the actor’s parameters to it and receiving
collected data from it. In the beginning stage, the cloud
initiates the images of all agents relevant to policy training. In
addition to the image of the corresponding actor, twin critics,

Edge node h

Agent k

Actor

Locally
observed state

Task allocation
action

 Allocated tasks

QoE-optimized
 resource allocation

Edge node 1

Agent 1

Actor

Locally
observed state
Task allocation

action

 Allocated tasks
QoE-optimized

 resource allocation

Replay Buffer

Sample Experiences

①

②

①

②

② Model download

Mount the Image of
model to edge

① Experiences upload

Mount the Image of
model to edge

Agent 1

Critic1

Critic2

Agent k

Target Critic1

Target Critic2

Actor
(Image)

Target
Actor

Critic1

Critic2

Target Critic1

Target Critic2

Actor
(Image)

Target
Actor

Resource
Allocation

Resource
Allocation

Fig. 4. The architecture for the MADRL-based DJTCRA approach

corresponding target policies, and a replay buffer for gathering
data updated from ESs are created to assist in policy training.
The actor image shares the same structure as that performed
on ES, and they are mounted to each other for quick synchro-
nization. After initiation and each time of updating actors, the
parameters of actors are synchronized to the corresponding
ES. After each time of parameter synchronization, ESs would
perform the updated agent to manage the system cooperatively.
The main work processes of the agent performed on each
ES include task allocation and resource allocation. At each
time slot, each ES observes the state of its identified CA
users. Then, it will input the observed state of these users
(Oh

t) to its actor and generate corresponding task allocation
action for these users (aht). After the tasks of all ESs’ CA
users are assigned to corresponding ESs, each ES can identify
its PA users and perform the resource allocation module to
allocate computing resources. Finally, each ES obtains the
QoE of its CA users and tracks a local state transition (rht and
Oh
t+1). Then, each ES collects and uploads such experiences.

Meanwhile, after receiving data from ES, RCS records it in
the instantiated replay buffer. Once gathering sufficient data,
RCS samples data from the replay buffer and updates policies.
We employ twin critics and soft-delay update methods to
improve training stability [40]. Then, once actors are updated,
the parameters are synchronized to the corresponding agents.
The above procedures are repeated until convergence. It is
worth mentioning that the training process can be conducted
independently after gathering enough data without always
waiting for new data from ES.

E. Training of DJTCRA Policies based on MADRL

Assuming DJTCRA policies are π = {πθ1,· · ·, πθ|H|} and
their parameters are θ = {θ1,· · ·, θ|H|}. The objective of
training a DJTCRA policy is to enable it to generate distributed
task allocation actions for any given local state observation at
any time. The action collaborates with actions generated by
other ESs to maximize the long-term expected reward, i.e.,

J (θh)=E{S,πθh
}[Rt|St, (πθ1(O1

t), . . . , πθ|H|(O
|H|
t))]. (24)

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. *, NO. *, ** 2024 9

ESCloud

Start

Initiate actor, critic, target
actor, target critic for each ES

Intiate a Replay Buffer

Synchronize parameters of
actor to ES’s local actor

Collect sufficient data?

Sample data and update
policies

Actor is updated?

No

Yes Upload collected data to Cloud

ES1
Load actor
parameters

ES2
Load actor
parameters

ES n
 Load actor
parameters

Task execution and statistic QoS of users

…

Yes

No

Receive data from ESs and
cache it to replay buffer

Collect data includes

Perform local agent to manage system

Resource Allocation

Observe the state
of PA users

Allocate computing
resource for PA users by
Sigmoidal Programming

Resource Allocation

Observe the state
of PA users

Allocate computing
resource for PA users by
Sigmoidal Programming

Task Allocation

Observe a state
of CA users

Allocate tasks of CA
users by actor

Task Allocation

Observe a state
of CA users

Allocate tasks of CA
users by actor

Fig. 5. The work flowchart of MADRL-based DJTCRA approach

The expected reward of a given state St after implementing
an action named the state-action value or Q-value, i.e.,

Qπ
h (St,At) = Q

(
St,

(
πθ1(O1

t), · · · , πθ|H|(O
|H|
t)

))
. (25)

According to Bellman equation [41],

Qπ
h (St,At) = Rt + γE{At+1∼π} [Q

π
h (St+1,At+1)] , (26)

where γ ∈ [0, 1) is a discount factor. Assuming the sys-
tem state maintains stability when implementing a DJTCRA
process, the system transition depends only on deterministic
actions and system transition features. According to the policy
gradient theory and MADDPG [42], the gradient of expected
reward to the policy performed on ES h is

∇θhJ (θh)=E{S,aht }

[
∇θha

h
t∇aht

Qπ
h

(
St, a1t ,· · ·, a

|H|
t

)]
,

(27)
where aht =πθh(Oh

t),∀h∈H,∀t. We can find that the gradient
calculation requires aht to maintain the gradient of πθh , which
is the reason for using probabilities as the action for policy
training (Section V-C). Then, the policy can be updated by
minimizing the negative expectation of Q-values, i.e.,

L(θh) = ED

[
Q
(
St,

(
πθ1(O1

t), · · · , πθ|H|(O
|H|
t)

))]
, (28)

via the gradient descent approach. D is a batch of experiences
{(St,At,Rt,St+1)} sampled from the replay buffer, and each
Oh
t is extracted from St. Due to system randomness, we

generally estimate state-action values by a neural network in
real implementations, i.e., the critic or Q-network represented
by Qψh

. The critic aimed at estimating state-action values ac-
curately, whose parameters ψh can be updated by minimizing
the Bellman residual loss [40], i.e.,

L(ψh) = ED

[
(Qψh

(St,At)−Ψ(t))
2
]
. (29)

Ψ(t) is the target estimation of Q-value, which is the sum of
the experienced reward of executing At under state St and a
discounted Q-value of (St+1, Ât+1), i.e.,

Ψ(t) = Rt + γQψ̂h
(St+1, Ât+1). (30)

Ât+1 is the union of actions regenerated by the latest target
actors (πθ̂h). The corresponding target critics (Qψ̂h

) estimate
the Q-values of the corresponding next state-action pairs to
increase training stability.

Although the above-described MADDPG method has been
widely employed in existing works [10], [12], a deterministic
policy is prone to converge to sub-optimal areas [43]. Some
studies have approved that introducing action entropy can
significantly improve exploration abilities over the training
process [44], [45]. Besides, in problems with limited discrete
actions, the action entropy can be directly calculated according
to the probability distribution of candidate actions [46]. Given
this, we integrate max-entropy (MAxEnt) to train policies for
the investigated multi-agent DJTCRA problem with vast and
discrete action spaces.

To integrate action entropy, the target estimation of state-
action values is converted to

Ψ(t) = Rt + γ(Qψ̂h

(
St+1, Ât+1) + ωhŜht+1

)
, (31)

where ωh is a trainable max entropy coefficient. Ŝht+1 is
the entropy of action âht+1 generated by the corresponding
target actor for Oh

t+1. Each user’s task allocation action space
includes all ESs, and users are independent. Thus, we have

Ŝht = −
∑
u∈Uh

t

∑
h′∈H

p̂u,h′(t) log (p̂u,h′ (t)) , (32)

where p̂u,h′(t) is the probability of selecting ES h′ to process
u’s tasks in the action âht . Meanwhile, the loss function for
updating an actor is re-defined as

L(θh) = ED

[
Q(St, Ãt) + ωhS̃ht

]
, (33)

where Ãt is the union of actions generated by the latest
actors according to corresponding local states. S̃ht is the action
entropy of ãht , which can also be calculated through (32). ωh
can be updated by minimizing the difference between action
entropy and target action entropy. The target action entropy
can be the negative action dimension [45]. In the investigated
problem, the action dimension of each user is 1, i.e., an ES.
Therefore, ωh can be updated by minimizing

L(ωh)=ED

[
ωh
(∑
u∈Uh

t

(∑
h′∈H

p̃u,h′(t) log p̃u,h′(t)−1
))]

, (34)

where p̃u,h′(t) is obtained from ãht that generated by the
updated actor with Oh

t as the input.
Algorithm 1 illustrates the training of DJTCRA policies

based on the proposed approach (MAMaxEnt). As detailed
in algorithm 2, each ES works independently to determine
task allocation for its CA users, resource allocation for its PA
users, and upload experiences to the RCS. To provide data for
policy training at the initial stage, there is a warm-up process
in the system that first runs Tc episodes to collect data. After
that, the training process is triggered. When updating critics,
the action entropy of distributed task allocation is calculated
(line 8) based on the action generated by the target actor
(line 7). Then, the target estimation of the state-action value
is calculated (lines 9–10). Then, the critics are updated (lines

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. *, NO. *, ** 2024 10

Algorithm 1 Policy training via MAMaxEnt
Input: EC system, users, DJTCRA policies
Output: ES executable DJTCRA policies

1: Initialize a replay buffer, ωh, and policies: actor, critic,
and target policies (θh, ψh, θ̂h, ψ̂h), ∀h∈H

2: for t′ = 1, 2, 3, · · · do
3: Collect experiences as detailed in Algorithm 2
4: if t′ > Tc then
5: for h ∈ H do
6: Sample D and extract Oh′

t+1,∀h′∈H
7: Ât+1 =

⋃
h′∈Hπθ̂h′

(Oh′

t+1)

8: Calculate Ŝht+1 according to (32)
9: Ψ(t)=Rt+γmin(Q

ψ̂i
h

(St+1, Ât+1))|i=1,2

10: Ψ(t) = Ψ(t) + γωhŜht+1

11: L(ψih) = ED[(Qψi
h
(St,At)−Ψ(t))2]|i=1,2

12: ψih =Adam(∇{ψi
h}(L(ψ

i
h))|i=1,2

13: if t′%λS == 0 then
14: for all h ∈ H do
15: Sample D and extract Oh′

t ,∀h′∈H
16: Ãt=

⋃
h′∈Hπθh′ (Oh′

t)

17: Calculate S̃ht according to (32)
18: L(θh)=ED[min(Qψi

h
(St))+ωhS̃ht]|i=1,2

19: θh =Adam
(
∇θh(−L(θh))

)
20: θ̂h=µθ̂h+(1−µ)θh, ψ̂ih = µψ̂ih+(1−µ)ψih|i=1,2

21: if t′%λS == 0 then
22: for all h ∈ H do
23: Sample D and extract Oh

t , ãh(t)=πθh(Oh
t)

24: CalculateL(ωh) according to (34)
25: ωh =Adam(∇ωh

(−L(ωh)))

11–12). When updating an actor, the entropy of the distributed
task allocation actions is calculated (line 17). Then, the loss
value integrated with the action entropy of massive users is
calculated (line 18), and the actor is updated (line 19). Target
networks are updated by the soft update method (line 20),
where µ is the soft-update coefficient. This paper also employs
the delayed update method to update ωh but sets a different
update frequency λS. We find by experiment that updating
ωh faster than the actor benefits convergence. Thus, we let
λS<λ, and the learning rate for updating ωh greater than that
used to update other policies. When updating ωh, the extracted
local states are processed by respective actors to generate new
actions (line 23). Then, ωh is updated by processing the loss
value calculated from these generated actions (lines 24–25).

F. Complexity analysis

The policy training is performed on the RCS with suffi-
cient computing power in an off-policy style. Therefore, we
should care more about the complexity of policy execution
on ESs. The inference is a forward propagation process
conducted by a multi-layer perceptron (MLP). The matrix
computation of MLP layers determines the inference com-
plexity [17], [47]–[49]. Besides, there is a softmax operation
on the output in DJTCRA policy, whose complexity is equal
to the number of processed items. Therefore, the inference

Algorithm 2 Agent execution and experience collection
Input: EC system, DJTCRA policies, replay buffer

1: for t′ = 1, 2, 3, · · · do
2: Each ES h observes its local state Oh

t′

3: Each ES h implements an action aht′ = πθh
(
Oh
t′

)
4: Each ES h obtains information of its PA users Uht′
5: Every ES allocates the resource to its PA users
6: Each ES h obtains rht′ and Oh

t′+1

7: Every ES uploads (Oh
t′ , a

h
t′ , r

h
t′ ,Oh

t′+1)
8: RCS calculates St′ , At′ ,Rt′ and St′+1

9: RCS adds (St′ ,At′ ,Rt′ ,St′+1) to the replay buffer

complexity of a DJTCRA policy performed on each ES is
O(sk0+

∑ĥ−1
i=0 kiki+1+kĥa+a), where s is the input state size

(i.e., |U|×9), k0 is the output size of the input layer. ĥ is the
number of hidden layers, and ki is the hidden size of the ith

hidden layer. a is the size of the output action (i.e., |U|×|H|).

VI. PERFORMANCE EVALUATION

A. Simulation Setup

We conduct extensive simulations using PyTorch 1.9 and the
sigmoidal programming optimizer with the support of PyJu-
lia [36], [50]. We deploy 7 RAN nodes, and the computing
resource capacities Ph of ESs associated with each RAN are
different and set to [60, 60, 80, 90, 100, 120, 160] GHz. The
communication rate of links between RANs and a user’s pro-
cessing performance variation factors among ESs (i.e., ηhu) are
randomly selected from the configured intervals and fixed. To
imitate the unbalanced speed of ESs’ computing, we randomly
generate the number of users on each ES whose tasks can
obtain the maximum processing speed (i.e., minimum ηhu).
Then, we randomly sample users for each ES according to the
generated number and set the corresponding ηhu as the mini-
mum value by swapping operations. In each training episode,
the user positions (connected RAN, distance to the connected
RAN), wireless communication noise, bandwidth, computing
requirements, and QoE-QoS correlations are all randomly
generated from configured intervals and distributions. The
correlation coefficients (i.e., αu and βu) are generated fol-
lowing normal distributions. Other parameters are randomly
generated following uniform distributions [23]. TABLE III
details parameter configurations [32]. The maximum QoE a
user can achieve (Lu) is homogeneously set to 1, reflecting
the QoE satisfaction ratio. In addition, the communication rate
and propagation delay between RAN nodes and the RCS are
separately set to 100 Mbps and 200 ms, respectively. Besides,
we set the task processing speed on RCS to 20 GHz. In
addition, parameters related to DJTCRA policy networks and
policy training are detailed in TABLE IV.

We evaluate and compare the proposed approach with
MADDPG which is widely employed in previous works [10],
[16], [19], [43]. Besides, our framework cannot directly adopt
the value-based methods since generating and comparing the
Q-values of all candidate actions for more than hundreds of
users is impossible. Therefore, we compare the value-based
MADRL methods that enable each user to decide their task

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. *, NO. *, ** 2024 11

TABLE III
SIMULATION PARAMETERS

Parameter Value Parameter Value
Bi,j [8, 20]×10 Mbps HUT 1.5 m
Bu [2, 7]×8 MHz h̃ 5 m
Nu [-120, -80] dbm HBS 35 m
αu N(15, 42)/1000 fc 5 GHz
ηhu [0.5, 8] Iu 20 dbm
κu [228, 328] cycles/bit Υ2d [30, 100] m
V R
u [10, 20] KB δi,j [10, 20] ms

TABLE IV
CONFIGURATIONS RELATED TO MADRL APPROACHES

Configuration Value
The input and output size of hidden layers 256
The depths of hidden layers 3
The activation function between hidden layers ReLU
The delayed update frequency λ, λS 15, 5
The soft update coefficient µ 0.995
The learning rate of policy networks 1e-4
The learning rate of max entropy coefficient ωh 1e-3

allocation, as proposed in many previous works [8], [17], [51].
The comparison benchmarks include:

1) MADDPG: Each ES allocates the tasks of its CA users
as described in our work. However, we train the policies
using MADDPG, in which the training process is done
without integrating the entropy of massive users’ task
allocation actions [18], [19].

2) VDN-L: Each user determines its task allocation based on
local state observation (i.e., state of the user). The policies
are trained by the VDN algorithm, in which the policies
of all users are updated simultaneously by utilizing the
accumulating Q values of all policies. More details can
be seen from [52].

3) VDN-G: Each user determines its task allocation with the
input of the global state (i.e., system state). We set each
user to obtain the state of other users from a virtual central
unity or by interactions, as assumed in some previous
work [15], [29].

4) IDQN: Each user maintains and trains a policy by DQN
independently, and the policy can determine its task
allocation with local state observation [8].

5) GA-Aware: Greedy algorithm that assumes that each user
knows the ES that can process its task request with fast
speed under given resources and select this ES to process
its tasks, i.e., h∗ = argmin{ηhu}.

6) DAES: Each user’s tasks are allocated to the directly
associated ES rather than a remote ES.

We set the percentile of greedy selecting a random action
for exploration in VDN and IDQN as 0.15. We evaluate
approaches using the following metrics:

1) System QoE: Sum QoE of all users after implementing a
DJTCRA action, which is the primary objective and can
be calculated by (9), (11), and (12).

2) Average service latency: The service latency of each user
can be calculated based on (9). We average the service
latency of all users for visualization.

3) Users distribution: The number of users classified by
QoE, including QoE-satisfied users (SU), QoE-disturbed
users (DU), and users with extremely disturbed QoE
(GU). The QoE thresholds for classifying SU, DU, and
GU are separately set to 0.9 and 0.1. We also count the
users whose tasks are offloaded to RCS (CU).

B. Simulation Results

Fig. 6 compares the convergence of MADRL-based ap-
proaches over the training process and compares them with tra-
ditional approaches. The results of every 50 training episodes
are moving-averaged and displayed. From Fig. 6, we can
find that the performance of IDQN is barely better after
convergence and is even worse than DAES, which suggests
that policies do not learn meaningful information. Compared
with IDQN and DAES, VDN can help achieve better per-
formance in average system QoE and latency. Besides, it
can reduce the number of GUs as compared with DAES.
Moreover, despite the acceleration of convergence, even with
the global system state of all users, VDN-G cannot achieve
higher performance than that only with local state observation
(i.e., VDN-L). However, policies trained using IDQN and
VDN for users perform worse than those using MADDPG
and MAMaxEnt for ESs because inferring and adapting to
a mass of other users’ policies updated during the training
process is challenging. When MADDPG is employed, the
QoE and latency are significantly superior to those utilizing
IDQN, DAES, and VDN. Besides, there are considerably more
SUs and DUs but fewer GUs and CUs in the system with
MADDPG. The greedy algorithm GA-Aware achieves slightly
better performance (i.e., higher system QoE and lower latency)
than MADDPG. The reason is that when allocating tasks
to the ES with the fastest processing speed for it, the QoE

0 25 50 75 100 125 150 175 200
Episode 1e2

45

50

55

60

65

70

75

Av
er

ag
e

sy
st

em
 Q

oE

Episode=300

DAES
IDQN
VDN-L
VDN-G

GA-Aware
MADDPG
Proposed

(a)

0 25 50 75 100 125 150 175 200
Episode 1e2

280

300

320

340

360

380

400

Av
er

ag
e

se
rv

ice
 la

te
nc

y
/ m

s Episode=300

(b)

40

50

60

70

DU: Disturbed usersEpisode=300

0 50 100 150
Episode 1e2

10

20

SU:Satisfied users

Av
er

ag
e

nu
m

be
r o

f u
se

rs

(c)

0 25 50 75 100 125 150 175 200
Episode 1e2

10
15
20
25
30
35
40
45
50

Av
er

ag
e

nu
m

be
r o

f u
se

rs

GU: Give up users
CU: Users forwarded to Cloud

DAES GU
IDQN GU
VDN-L GU
VDN-G GU

GA-Aware GU
MADDPG GU
Proposed GU

DAES CU
IDQN CU
VDN-L CU
VDN-G CU

GA-Aware CU
MADDPG CU
Proposed CU

(d)

Fig. 6. Training process. |U|=100, γ=0.1, βu∼N(350, 102) ms, V T
u ∼

U(200, 800) KB. (a) Average system QoE. (b) Average service latency. (c)-
(d) Average number of SUs, DUs, GUs, and CUs.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. *, NO. *, ** 2024 12

of the user can be satisfied with fewer resources, making
more resources available to please more users, especially
those requiring fewer resources. Then, the service latency
decreased, and system QoE increased because of the lower
task processing latency. Compared with MADDPG and GA-
Aware, our proposed approach further improves system QoE
and reduces average service latency. Besides, there are further
increases in SUs and DUs and decreases in GUs and CUs.
Fig. 6d reveals that the number of CUs is slightly fewer than
that of GUs and almost the same. This phenomenon demon-
strates that EC system resource limitations primarily cause
severe QoE disruption. We can also find that the proposed
approach outperforms MADDPG regarding convergence speed
and optimal performance. The performances of MADDPG
continue to increase extremely slowly after about 3000 training
episodes. However, the proposed approach achieves optimal
performance and remains stable after 8000 training episodes.
Moreover, the performance improvement of our approach is
slower than others at the initial training stage because the
initial max entropy coefficients are not optimal, resulting in
policies taking more random actions.

0 25 50 75 100 125 150 175 200
Episode 1e2

45

50

55

60

65

70

75

80

Av
er

ag
e

sy
st

em
 Q

oE

Episode=300

MADDPG =0.1
MADDPG =0.5
MADDPG =0.95

MA Max Entropy =0.1
MA Max Entropy =0.5
MA Max Entropy =0.95

(a)

0 25 50 75 100 125 150 175 200
Episode 1e2

300

320

340

360

380

400

Av
er

ag
e

se
rv

ice
 la

te
nc

y
/ m

s

Episode=300

IDQN =0.1
IDQN =0.5
IDQN =0.95

VDN L =0.1
VDN L =0.5
VDN L =0.95

VDN G =0.1
VDN G =0.5
VDN G =0.95

(b)

0 25 50 75 100 125 150 175 200
Episode 1e2

40

45

50

55

60

65

70

75

80

Av
er

ag
e

nu
m

be
r o

f Q
oE

-d
ist

rib
ut

ed
 u

se
rs

(c)

0 25 50 75 100 125 150 175 200
Episode 1e2

4

6

8

10

12

14

16

18

20

22

Av
er

ag
e

nu
m

be
r o

f Q
oE

-s
at

isf
ie

d
us

er
s

(d)

0 25 50 75 100 125 150 175 200
Episode 1e2

20

30

40

50

60

70

Av
er

ag
e

nu
m

be
r o

f G
U

(e)

0 25 50 75 100 125 150 175 200
Episode 1e2

20

30

40

50

60

70

Av
er

ag
e

nu
m

be
r o

f G
U

(f)

Fig. 7. Inpact of discount factors. |U|=120, βu∼N(350, 102) ms, V T
u ∼

U(200, 800) KB. (a) Average system QoE. (b) Average service latency. (c)-
(f) Average number of DUs, SUs, GUs, and CUs.

Fig. 7 evaluates the convergence of MADRL-based ap-
proaches under different discount factors. We moving-average
the results for every 100 episodes. We can find that the results

of all algorithms present apparent convergence, although there
is a slight difference in the training process. Under different
discount factors, each of them can achieve similar convergent
performance. Furthermore, policies trained for ESs using the
proposed approach and MADDPG outperform policies for
users using IDQN and VDN in terms of performance after
convergence and stability. In addition, our proposed approach
achieves optimal performance and is more stable, as other
approaches expose an apparent performance difference after
convergence under different discount factors.

70 90 110 130 150
Number of users

40

50

60

70

80

90

Av
er

ag
e

sy
st

em
 Q

oE

DAES
IDQN
VDN-L
VDN-G

GA-Aware
MADDPG
Proposed

(a)

70 90 110 130 150
Number of users

225
250
275
300
325
350
375
400
425

Av
er

ag
e

se
rv

ice
 la

te
nc

y
/ m

s

DAES
IDQN
VDN-L
VDN-G

GA-Aware
MADDPG
Proposed

(b)

70 90 110 130 150
Number of users

10
20
30
40
50
60
70
80
90

Av
er

ag
e

nu
m

be
r o

f u
se

rs

GA-Aware SU
MADDPG SU
Proposed SU

DAES SU
IDQN SU
VDN-L SU
VDN-G SU

DAES DU
IDQN DU
VDN-L DU
VDN-G DU
GA-Aware DU
MADDPG DU
Proposed DU

(c)

70 90 110 130 150
Number of users

0
10
20
30
40
50
60
70
80

Av
er

ag
e

nu
m

be
r o

f u
se

rs

DAES CU
DAES GU
IDQN CU
IDQN GU
VDN-L CU
VDN-L GU
VDN-G CU
VDN-G GU
GA-Aware CU
GA-Aware GU

65.2

65.4

65.6

MADDPG CU
MADDPG GU
Proposed CU
Proposed GU

(d)

Fig. 8. Impact of the number of users. βu ∼ N(350, 102) ms, γ = 0.1,
V T
u ∼U(200, 800) KB. (a) Average system QoE. (b) Average service latency.

(c) Average number of SUs and DUs. (d) Average number of GUs and CUs.

Fig. 8 compares the performance under different numbers
of users. We average the results of the last 2000 episodes
after 20000 training episodes for each simulation. Regardless
of the approach, the average system QoE and service latency
will increase with the number of users. The reason is that more
users with lower computing requirements can be served, which
increases the sum of QoE since users’ QoE is non-negative.
The number of SUs decreases slightly, but the number of
DUs significantly increases as the number of users increases.
The potential reason is that the reward function is the system
QoE without considering the number of SUs. Therefore, the
computing resources are separated to improve the QoE of users
whose QoE is in the disturbed area, which can be significantly
increased with more computing resources. Besides, as shown
in Fig. 8(a), except for when there are 70 users, the number
of SU obtained by GA-Aware is slightly higher than that by
the proposed approach. The reason is that GA-Aware always
selects the ES that can maximize the task processing speed,
which increases the opportunity for users who require fewer
resources to be satisfied. When an ES only provides service
for several users whose tasks can processed on it with the
fastest speed, its resources are sufficient to satisfy the QoE of
all these users. Consequently, compared with our proposed
approach, the number of SUs increased slightly. However,

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. *, NO. *, ** 2024 13

it leads to inefficient resource utilization. Thus, the overall
QoE has decreased, and the number of GUs is slightly higher.
When there are 70 users, the resources of ESs are sufficient
to provide service to almost all users. The proposed method
can better utilize ESs’ resources, resulting in a little more
SU, significantly more DUs, and almost no DUs (Fig. 8(d)).
Fig. 8(d) reveals that the number of CUs and GUs increases
as the number of users increases. The reason is that more
users have to be reallocated to the RCS due to the resource
limitations of ESs, resulting in considerable service latency
and an extremely disturbed QoE. As a result, the average
service latency increased (Fig. 8b). Besides, the proposed
approach can minimize the number of CUs and GUs. Fig. 8
reveals that IDQN and VDN perform similarly to DAES,
while MADDPG, GA-Aware, and our proposed approaches
outperform them. We can also find that when VDN is allowed
to gather the global states (VDN-G), it performs even a little
worse than when only the local states are available (VDN-
L). The possible reason is that the VDN-based approaches
cannot enable massive policies in our problem to learn efficient
knowledge, which can be concluded from the above results.
Then, the global system state increases the complexity of the
input data that the policy needs to process and the difficulties
of policy training. Then, the reliability of trained policies
decreases. Besides, GA-Aware achieves better than MADDPG,
especially when there are more than 110 users. The reason is
that the percentile of users requiring fewer resources to satisfy
QoE has increased, and the resources of each ES will be fully
consumed as the increase in computing load arrives at each
ES. Additionally, the number of users served by ESs obtained
by GA-Aware is comparable to that obtained using our pro-
posed approach, and these users have similar requirements.
Consequently, GA-Aware obtains similar performance as our
proposed approach. However, our proposed approaches can
still outperform all other benchmarks. Besides, we can find
that when the ESs’ resources are adequate to support users,
i.e., only a few users need to be allocated to RCS, the proposed
approach outperforms others.

The correlation between QoE and QoS determines the
resources required to enable users to achieve different levels
of QoE. Therefore, Fig. 9 compares methods under different
QoE and QoS correlation coefficients, i.e., the average middle
point value. We set different mean values while maintaining
the same variance in generating the βu of users. In this part,
we use βu to represent the average value of the middle point
for easy expression. We can find that the average system QoE
increases with the increase of βu regardless of the employed
approach. When fixing allocated resources, users can tolerate
higher service latency under a higher βu and obtain a better
QoE. Under higher βu conditions, users can achieve the same
QoE as in lower βu conditions with fewer resources. Then,
some users may be allocated fewer computing resources, and
the freed resources are allocated to other users to maximize
the system QoE. As a result, some users’ task processing
can be moved from the RCS to ESs, reducing their service
latency. However, reducing the resources allocated to users
increases their service latency. Thus, there are decreases in
GUs and CUs as the βu increases (Fig. 9(d)), and the average

service latency only experiences a slight increase (Fig. 9(c)).
Besides, users’ QoE can be satisfied with fewer resources
under a higher βu condition, reducing the resource required for
satisfying a user and increasing the probability of satisfying
the QoE of more users. Thus, Fig. 9(c) exhibits that SUs
increase as the βu increases. The increase in SUs reduces
the percentile of DUs and GUs. Thus, DUs decrease as
βu increases, while the decrease in DUs is fewer than the
increase in SUs. Fig. 9 also reveals that IDQN can hardly
learn effective policy, and VDN-based approaches can slightly
improve performance compared to DAES and IDQN. GA-
Aware obtains slightly better results than MADDPG. Our
proposed method outperforms other benchmarks in terms of
QoE and latency. Besides, our proposed method can minimize
the number of DUs and CUs, although GA-Aware results in a
few more SUs. We can conclude that our proposed approach
can improve resource efficiency compared with benchmarks.

300 320 340 360 380
Average middle piont value (u) / ms

40

50

60

70

80

90

Av
er

ag
e

sy
st

em
 Q

oE

DAES
IDQN
VDN-L
VDN-G

GA_Aware
MADDPG
Proposed

(a)

300 320 340 360 380
Average middle piont value (u) / ms

300

330

360

390

Av
er

ag
e

se
rv

ice
 la

te
nc

y
/ m

s

DAES
IDQN
VDN-L
VDN-G

GA-Aware
MADDPG
Proposed

(b)

300 320 340 360 380
Average middle piont value (u) / ms

20

40

60

80

Av
er

ag
e

nu
m

be
r o

f u
se

rs

DAES SU
IDQN SU
VDN-L SU
VDN-G SU

GA_Aware SU
MADDPG SU
Proposed SU

DAES DU
IDQN DU
VDN-L DU
VDN-G DU

GA_Aware DU
MADDPG DU
Proposed DU

(c)

300 320 340 360 380
Average middle piont value (u) / ms

0
5

10
15
20
25
30
35
40
45
50
55
60

Av
er

ag
e

nu
m

be
r o

f u
se

rs

DAES CU
IDQN CU
VDN-L CU
VDN-G CU
GA-Aware CU

DAES GU
IDQN GU
VDN-L GU
VDN-G GU
GA-Aware GU

MADDPG CU
MADDPG GU

Proposed CU
Proposed GU

(d)

Fig. 9. Impact of the average middle point value. |U| = 110, γ = 0.1,
V T
u ∼U(200, 800) KB. (a) Average system QoE. (b) Average service latency.

(c) Average number of SUs and DUs. (d) Average number of GUs and CUs.

Fig. 10 evaluates the impact of maximum task volume
(MTV). First, we can observe that VDN and IDQN achieve
similar results as DAES. VDN-based approaches achieve
slightly better performance in QoE and latency than DAES,
but IDQN results in the lowest performance. MADDPG,
GA-Aware, and our proposed approaches outperform VDN,
IDQN, and DAES. Besides, the proposed approach achieves
the maximum system QoE, minimum latency, and minimum
number of CUs. The average system QoE decreases, and
the average service latency increases as the MTV increases
because increased task volume increases wireless communica-
tion, forwarding, and task processing latency. Besides, more
resources are required by users’ task processing, resulting in
resource strain for ESs. Then, there are increases in CUs
(Fig. 10(d)) and service latency, decreasing the average system
QoE. As shown in Fig. 10(c), the number of SUs and DUs de-
creases as MTV increases since more resources are required to

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. *, NO. *, ** 2024 14

500 700 900 1100 1300
Maximum task volume (VT

u) / KB

40

50

60

70

80

90

Av
er

ag
e

sy
st

em
 Q

oE

DAES
IDQN
VDN-L
VDN-G
GA-Aware
MADDPG
Proposed

(a)

500 700 900 1100 1300
Maximum task volume (VT

u) / KB

250

300

350

400

450

Av
er

ag
e

se
rv

ice
 la

te
nc

y
/ m

s

DAES
IDQN
VDN-L
VDN-G
GA-Aware
MADDPG
Proposed

(b)

500 700 900 1100 1300
Maximum task volume (VT

u) / KB

10
20
30
40
50
60
70
80
90

Av
er

ag
e

nu
m

be
r o

f u
se

rs

GA-Aware SU
MADDPG SU
Proposed SU

DAES SU
IDQN SU
VDN-L SU
VDN-G SU

DAES DU
IDQN DU
VDN-L DU
VDN-G DU

GA-Aware DU
MADDPG DU
Proposed DU

GA-Aware DU
MADDPG DU
Proposed DU

(c)

500 700 900 1100 1300
Maximum task volume (VT

u) / KB

10

20

30

40

50

60

70
Av

er
ag

e
nu

m
be

r o
f u

se
rs

DAES CU
IDQN CU
VDN-L CU
VDN-G CU

DAES GU
IDQN GU
VDN-L GU
VDN-G GU

DAES CU
IDQN CU
VDN-L CU
VDN-G CU

DAES GU
IDQN GU
VDN-L GU
VDN-G GU

GA-Aware CU
MADDPG CU
Proposed CU

GA-Aware GU
MADDPG GU
Proposed GU

(d)

Fig. 10. Impact of the maximum computing task volume. |U|=110, γ=0.1
βu∼N(350, 102) ms. (a) Average system QoE. (b) Average service latency.
(c) Average number of SUs and DUs. (d) Average number of GUs and CUs.

satisfy QoE. More users are allocated to the RCS and become
GUs. The number of DUs that resulted from the proposed
approach and GA-Aware increased when MTV increased from
500 KB to 700 KB. When the MVT is small, users require
fewer resources to satisfy their QoS. In such conditions, the
resources of ESs are sufficient, and there is a high probability
that the QoE of a user is satisfied when employing the
GA-Aware approach and our proposed approach. The reason
is that their targets are to reduce the computing resource
consumption of each user and to utilize limited resources
more efficiently through optimal task allocation, respectively.
However, some users’ QoEs rapidly declined and fell into the
QoE-disturbed area when the task volume increased because
resources became insufficient. Consequently, the number of
SUs significantly decreases, but the number of DUs slightly
increases on the left side of Fig. 10(c) since more users’
QoE falls into the QoE-disturbed area. Moreover, the GA-
Aware approach exhibits more instability than others, as its
performance heavily relies on the distribution of users and
their requirements, rendering it unreliable, especially in certain
special cases. For instance, a super ES can deliver maximum
processing speed for all users in a random system. The
edge system can support nearly all users if it employs our
recommended approach when the MTV is 500 KB.

VII. CONCLUSION

This paper studied a distributed EC system with massive
users. Then, the DJTCRA problem of maximizing over QoE
is set up, considering both resource efficiency and the quanti-
tative correlation between QoE and QoS. The restriction that
each ES can only obtain the state of real-time associated
users and allocate its limited resources to served users by
itself has been comprehensively considered. According to the

work procedures and the restrictions on state observation and
resource allocation at different stages, we decomposed the
DJTCRA problem into a distributed task allocation problem
and a resource allocation problem. To address the problem,
this paper developed a two-step MADRL-based approach after
formulating it as a POMDP. This solution first proposes a
policy-based MADRL method to realize the massive users’
distributed task allocation with vast discrete action spaces.
Besides, considering the challenges of policy training for
numerous agents, this paper selects ESs as the agents. Then,
we further integrated it with the action entropy of enormous
users’ task allocation to enhance exploration. Besides, we
proved that resource allocation for maximizing QoE is a
problem of maximizing a sum of sigmoids, and we leveraged
sigmoidal programming to solve it. Extensive simulation re-
sults demonstrated that the proposed approach can improve
QoE and reduce service latency compared with benchmarks.
Besides, the proposed approach outperforms classic MADDPG
in training efficiency and performance after convergence.

APPENDIX
PROOF OF THE Proposition 1

Define a function f(x) = h(g(x)), where x is the variable
and x > 0. Meanwhile, g(x) = C/x and

h (z) =
1

(1 + eα(M−β+z))
, (35)

where α,M, β, and C are all constant values greater than 0.
Thus, the derivative of h(z) to z is always negative, i.e.,

h′(z) = − αeα(M−β+z)

(eα(M−β+z) + 1)2
< 0. (36)

In addition, the second derivative of h(z) is

h′′(z) =
α2eα(M−β+z)(eα(M−β+z) − 1)

(eα(M−β+z) + 1)3
. (37)

The second-order derivative of f(x) to variable x is

f ′′(x) = h′′(g(x)) g′(x)2︸ ︷︷ ︸
>0

+h′(g(x))︸ ︷︷ ︸
<0

g′′(x)︸ ︷︷ ︸
>0

. (38)

It’s obvious that f ′′(x) must be negative when h′′(g(x)) is
negative. From (37), we have h′′(z) < 0 when (M−β+z) <
0. Then, since x > 0, when (β −M) > 0 we have

h′′(g(x)) < 0,∀x > C

β −M
, (39)

In addition, from (36), (37), we can express (38) as (40), where
z = C

x . As we have x > 0, the positiveness and negativity of
f ′′(x) depend on the numerator of (40). By omitting a positive
constant value C, we express the numerator as

eα(M−β+C
x)︸ ︷︷ ︸

>1

(
α2−2xα

)
eα(M−β+C

x)︸ ︷︷ ︸
>1

−(α2+2xα)︸ ︷︷ ︸
>0

 . (41)

Then, as α > 0 and C/x > 0, we have eα(M−β+C/x) > 1
and 2xα > 0 when (β −M) ≤ 0. Then, when (β −M) ≤ 0
and x > α/2, we can obviously find that((

α2 − 2xα
)
eα(M−β+C/x) − (α2 + 2xα)

)
< 0 (42)

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. *, NO. *, ** 2024 15

f ′′(x) =
α2eα(M−β+z) (eα(M−β+z) − 1

)(
eα(M−β+z) + 1

)3 C

x4
+

−αeα(M−β+z)(
eα(M−β+z) + 1

)2 2Cx3
=
α2eα(M−β+z) (eα(M−β+z) − 1

)
− 2xαeα(M−β+z) (eα(M−β+z) + 1

)
x4

(
eα(M−β+z) + 1

)3 C

(40)

Thus, when (β −M) ≤ 0, when have

f ′′(x) < 0,∀x > α

2
. (43)

According to the above analysis, we can conclude that there
always exists a value ϵ, making f ′′(x) < 0,∀x > ϵ, i.e, f(x)
is up concave when x > ϵ.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[2] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[3] Y. Zhou, L. Liu, L. Wang, N. Hui, X. Cui, J. Wu, Y. Peng, Y. Qi,
and C. Xing, “Service-aware 6g: An intelligent and open network based
on the convergence of communication, computing and caching,” Digital
Communications and Networks, vol. 6, no. 3, pp. 253–260, 2020.

[4] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” IEEE Communications Surveys Tutorials, vol. 22, no. 2, pp.
869–904, 2020.

[5] D. Wu, R. Bao, Z. Li, H. Wang, H. Zhang, and R. Wang, “Edge-
cloud collaboration enabled video service enhancement: A hybrid
human-artificial intelligence scheme,” IEEE Transactions on Multime-
dia, vol. 23, pp. 2208–2221, 2021.

[6] T. M. Ho and K.-K. Nguyen, “Joint server selection, cooperative offload-
ing and handover in multi-access edge computing wireless network: A
deep reinforcement learning approach,” IEEE Transactions on Mobile
Computing, vol. 21, no. 7, pp. 2421–2435, 2022.

[7] D. Wu, Q. Liu, H. Wang, D. Wu, and R. Wang, “Socially aware
energy-efficient mobile edge collaboration for video distribution,” IEEE
Transactions on Multimedia, vol. 19, no. 10, pp. 2197–2209, 2017.

[8] Y. Zhang, B. Di, Z. Zheng, J. Lin, and L. Song, “Distributed multi-cloud
multi-access edge computing by multi-agent reinforcement learning,”
IEEE Transactions on Wireless Communications, vol. 20, no. 4, pp.
2565–2578, 2021.

[9] J. Heydari, V. Ganapathy, and M. Shah, “Dynamic task offloading in
multi-agent mobile edge computing networks,” in 2019 IEEE Global
Communications Conference (GLOBECOM), 2019, pp. 1–6.

[10] Z. Cheng, M. Min, Z. Gao, and L. Huang, “Joint task offloading and
resource allocation for mobile edge computing in ultra-dense network,”
in GLOBECOM 2020 - 2020 IEEE Global Communications Conference,
2020, pp. 1–6.

[11] H. Lu, C. Gu, F. Luo, W. Ding, S. Zheng, and Y. Shen, “Optimization of
task offloading strategy for mobile edge computing based on multi-agent
deep reinforcement learning,” IEEE Access, vol. 8, pp. 202 573–202 584,
2020.

[12] Y. Gong, J. Wang, and H. Yao, “Distributed multi-agent empowered
resource allocation in deep edge networks,” in 2021 International
Wireless Communications and Mobile Computing (IWCMC), 2021, pp.
974–979.

[13] X. Liu, J. Yu, Z. Feng, and Y. Gao, “Multi-agent reinforcement learning
for resource allocation in iot networks with edge computing,” China
Communications, vol. 17, no. 9, pp. 220–236, 2020.

[14] A. M. Seid, G. O. Boateng, B. Mareri, G. Sun, and W. Jiang, “Multi-
agent drl for task offloading and resource allocation in multi-uav
enabled iot edge network,” IEEE Transactions on Network and Service
Management, vol. 18, no. 4, pp. 4531–4547, 2021.

[15] C. Hu, J. Li, H. Shi, B. Ning, and Q. Gu, “Decentralized offloading
strategies based on reinforcement learning for multi-access edge com-
puting,” Information, vol. 12, no. 9, 2021.

[16] L. Ma, H. Shi, J. Li, and K.-S. Hwang, “A multi-agent reinforcement
learning based offloading strategy for multi-access edge computing,” in
2021 International Automatic Control Conference (CACS), 2021, pp.
1–5.

[17] L. Chen and J. Xu, “Seek common while shelving differences: Or-
chestrating deep neural networks for edge service provisioning,” IEEE
Journal on Selected Areas in Communications, vol. 39, no. 1, pp. 251–
264, 2021.

[18] H. Lin, W. Hou, H. Wen, W. Lei, S. Wu, and Z. Chen, “Maddpg-
based task offloading and resource management for edge system,” in
The 2nd International Conference on Computing and Data Science, ser.
CONF-CDS 2021. New York, NY, USA: Association for Computing
Machinery, 2021.

[19] W. Hou, H. Wen, H. Song, W. Lei, and W. Zhang, “Multiagent deep
reinforcement learning for task offloading and resource allocation in
cybertwin-based networks,” IEEE Internet of Things Journal, vol. 8,
no. 22, pp. 16 256–16 268, 2021.

[20] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey
of multiagent reinforcement learning,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 38, no. 2,
pp. 156–172, 2008.

[21] B. Gu, X. Yang, Z. Lin, W. Hu, M. Alazab, and R. Kharel, “Multiagent
actor-critic network-based incentive mechanism for mobile crowdsens-
ing in industrial systems,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 9, pp. 6182–6191, 2021.

[22] S. Shenker, “Fundamental design issues for the future internet,” IEEE
Journal on Selected Areas in Communications, vol. 13, no. 7, pp. 1176–
1188, 1995.

[23] S. Li, J. Huang, J. Hu, and B. Cheng, “Qoe-deer: A qoe-aware decentral-
ized resource allocation scheme for edge computing,” IEEE Transactions
on Cognitive Communications and Networking, pp. 1–1, 2021.

[24] P. Lai, Q. He, G. Cui, X. Xia, M. Abdelrazek, F. Chen, J. Hosking,
J. Grundy, and Y. Yang, “Qoe-aware user allocation in edge computing
systems with dynamic qos,” Future Generation Computer Systems, vol.
112, pp. 684–694, 2020.

[25] D. Kwon, J. Jeon, S. Park, J. Kim, and S. Cho, “Multiagent ddpg-based
deep learning for smart ocean federated learning iot networks,” IEEE
Internet of Things Journal, vol. 7, no. 10, pp. 9895–9903, 2020.

[26] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
multi-access edge computing: A survey of the emerging 5g network edge
cloud architecture and orchestration,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1657–1681, 2017.

[27] B. Kar, W. Yahya, Y.-D. Lin, and A. Ali, “Offloading using traditional
optimization and machine learning in federated cloud–edge–fog systems:
A survey,” IEEE Communications Surveys & Tutorials, vol. 25, no. 2,
pp. 1199–1226, 2023.

[28] B. Gu, Y. Chen, H. Liao, Z. Zhou, and D. Zhang, “A distributed
and context-aware task assignment mechanism for collaborative mobile
edge computing,” Sensors, vol. 18, no. 8, 2018. [Online]. Available:
https://www.mdpi.com/1424-8220/18/8/2423

[29] S. Jošilo and G. Dán, “Decentralized algorithm for randomized task
allocation in fog computing systems,” IEEE/ACM Transactions on
Networking, vol. 27, no. 1, pp. 85–97, 2019.

[30] X. Wang, J. Ye, and J. C. Lui, “Decentralized scheduling and dynamic
pricing for edge computing: A mean field game approach,” IEEE/ACM
Transactions on Networking, vol. 31, no. 3, pp. 965–978, 2023.

[31] J. Yang, Q. Yuan, S. Chen, H. He, X. Jiang, and X. Tan, “Cooperative
task offloading for mobile edge computing based on multi-agent deep
reinforcement learning,” IEEE Transactions on Network and Service
Management, pp. 1–1, 2023.

[32] ETSI, “Lte;5g; study on channel model for frequency spectrum
above 6 ghz (3gpp tr 38.900 version 14.2.0 release 14),” European
Telecommunications Standards Institute,3rd Generation Partnership
Project (3GPP), Technical Report (TR) 138 900, 06 2017, version

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. *, NO. *, ** 2024 16

14.2.0. [Online]. Available: https://www.etsi.org/deliver/etsi tr/138900
138999/138900/14.02.00 60/tr 138900v140200p.pdf

[33] P. Lai, Q. He, G. Cui, F. Chen, M. Abdelrazek, J. Grundy, J. Hosking,
and Y. Yang, “Quality of experience-aware user allocation in edge
computing systems: A potential game,” in 2020 IEEE 40th International
Conference on Distributed Computing Systems (ICDCS), 2020, pp. 223–
233.

[34] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge, UK:
Cambridge university press, 2004.

[35] M. Hemmati, B. McCormick, and S. Shirmohammadi, “Qoe-aware
bandwidth allocation for video traffic using sigmoidal programming,”
IEEE MultiMedia, vol. 24, no. 4, pp. 80–90, 2017.

[36] M. Udell and S. Boyd, “Maximizing a sum of sigmoids,” May 2015.
[Online]. Available: https://people.orie.cornell.edu/mru8/doc/max sum
sigmoids.pdf

[37] Y. Chen, Y. Sun, C. Wang, and T. Taleb, “Dynamic task allocation and
service migration in edge-cloud iot system based on deep reinforcement
learning,” IEEE Internet of Things Journal, vol. 9, no. 18, pp. 16 742–
16 757, 2022.

[38] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in Proceedings of the 34th Interna-
tional Conference on Machine Learning - Volume 70, ser. ICML’17.
JMLR.org, 2017, p. 1126–1135.

[39] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762,
2019.

[40] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxima-
tion error in actor-critic methods,” in 35th International conference on
machine learning. PMLR, 2018, pp. 1587–1596.

[41] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Cambridge, MA, USA: MIT press, 2018.

[42] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” in
Proceedings of the 31st International Conference on Neural Information
Processing Systems, Long Beach, California,USA, 2017, pp. 6382–6393.

[43] X. Wang, R. Li, C. Wang, X. Li, T. Taleb, and V. C. M. Leung,
“Attention-weighted federated deep reinforcement learning for device-
to-device assisted heterogeneous collaborative edge caching,” IEEE
Journal on Selected Areas in Communications, vol. 39, no. 1, pp. 154–
169, 2021.

[44] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proceedings of the 35th International Conference on Machine
Learning. PMLR, 2018, pp. 1861–1870.

[45] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel, and S. Levine, “Soft actor-critic
algorithms and applications,” arXiv preprint, 2018. [Online]. Available:
https://doi.org/10.48550/arXiv.1801.01290

[46] P. Christodoulou, “Soft actor-critic for discrete action settings,” arXiv
preprint, 2019. [Online]. Available: https://doi.org/10.48550/arXiv.1910.
07207

[47] Q. Tang, R. Xie, F. R. Yu, T. Chen, R. Zhang, T. Huang, and Y. Liu,
“Distributed task scheduling in serverless edge computing networks for
the internet of things: A learning approach,” IEEE Internet of Things
Journal, vol. 9, no. 20, pp. 19 634–19 648, 2022.

[48] Y. Liu, H. Wang, M. Peng, J. Guan, and Y. Wang, “An incentive
mechanism for privacy-preserving crowdsensing via deep reinforcement
learning,” IEEE Internet of Things Journal, vol. 8, no. 10, pp. 8616–
8631, 2021.

[49] D. Wu, H. Shi, H. Wang, R. Wang, and H. Fang, “A feature-based
learning system for internet of things applications,” IEEE Internet of
Things Journal, vol. 6, no. 2, pp. 1928–1937, 2019.

[50] “Pyjulia,” The Julia and IPython development teams, 2019. [Online].
Available: https://pyjulia.readthedocs.io/en/latest/index.html

[51] A. Suzuki, M. Kobayashi, and E. Oki, “Multi-agent deep reinforcement
learning for cooperative computing offloading and route optimization in
multi cloud-edge networks,” IEEE Transactions on Network and Service
Management, pp. 1–1, 2023.

[52] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and
T. Graepel, “Value-decomposition networks for cooperative multi-agent
learning based on team reward,” in Proceedings of the 17th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems, ser.
AAMAS ’18. Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems, 2018, p. 2085–2087.

Yan Chen received the B.E. degree in Information
Engineering and the Ph.D. degree in Information &
Communication Engineering from China University
of Mining and Technology, China, in 2016 and
2022. He is currently a Postdoctoral Researcher with
Zhejiang Lab, China. He was also a visiting Ph.D.
student at Aalto University, Finland. His research in-
terests include Edge Computing, Internet of Things,
and Wireless networks.

Yanjing Sun has been a Professor in the School of
Information and Control Engineering at the China
University of Mining and Technology since July
2012. He received the Ph.D. degree in Information
and Communication Engineering from the China
University of Mining and Technology in 2008. His
current research interests include wireless commu-
nication, wireless sensor networks, Cyber-physical
systems, and so on.

Hao Yu received the B.E. and Ph.D. degree in com-
munication engineering from the Beijing University
of Posts and Telecommunications (BUPT), Beijing,
China, in 2015 and 2020. He was also a Joint-
Supervised Ph.D. Student with the Politecnico di
Milano, Milano, Italy. He is currently a Postdoctoral
Researcher with the Center of Wireless Communica-
tions, University of Oulu, Finland. His research in-
terests include network automation, SDN/NFV, time-
sensitive networks, and deterministic networking.

Tarik Taleb (Senior Member, IEEE) received the
B.E. degree (with distinction) in information engi-
neering and the M.Sc. and Ph.D. degrees in infor-
mation sciences from Tohoku University, Sendai,
Japan, in 2001, 2003, and 2005, respectively. He
is currently a Full Professor at Ruhr University
Bochum, Germany. He was a Professor with the
Center of Wireless Communications, University of
Oulu, Oulu, Finland. He is the founder of ICTFI-
CIAL Oy, and the founder and the Director of the
MOSA!C Lab, Espoo, Finland. From October 2014

to December 2021, he was an Associate Professor with the School of Electrical
Engineering, Aalto University, Espoo, Finland. Prior to that, he was working
as a Senior Researcher and a 3GPP Standards Expert with NEC Europe Ltd.,
Heidelberg, Germany. Before joining NEC and till March 2009, he worked
as an Assistant Professor with the Graduate School of Information Sciences,
Tohoku University, in a lab fully funded by KDDI. From 2005 to 2006, he
was a Research Fellow with the Intelligent Cosmos Research Institute, Sendai.
Taleb has been directly engaged in the development and standardization of
the Evolved Packet System as a member of the 3GPP System Architecture
Working Group. His current research interests include AI-based network
management, architectural enhancements to mobile core networks, network
softwarization and slicing, mobile cloud networking, network function virtu-
alization, software-defined networking, software-defined security, and mobile
multimedia streaming.

