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Abstract—Advancements in deep learning and the Internet
of Things (IoT) enable early fire detection through vision-
based systems, reducing ecological, social, and economic damage.
These systems necessitate lightweight, cost-effective convolutional
neural networks (CNNs) for real-time operation. Effective deploy-
ment on AI-assisted edge devices is crucial for optimal perfor-
mance. To mitigate this problem, we present the optimized fire
attention network (OFAN) for effective and efficient fire detection.
In the re-engineered attention block, we swapped the convolution
layers by dilated variants and integrated additional dense layers
to capture global context and refine more weight optimization. We
calibrate the OFAN for real-time processing using a lightweight
and efficient feature extractor backbone model. Additionally, a
challenging fire dataset is a critical contribution that contains
extremely diverse, blazing, and non-fire, captured in lighting
and foggy environments. It advances traditional fire detection
samples by considering low-light and foggy conditions. A com-
prehensive experiment is conducted over three widely used fire
detection datasets, and our proposed OFAN outperforms state-
of-the-art. The proposed OFAN achieved 96.23%, 96.54% and
94.63% accuracies over BoWFire, FD and the newly proposed
DiverseFire dataset, respectively. Our research sets a standard
for fire detection over edge devices, offering improved accuracy
and better frames per second (FPS) performance.

Index Terms—Attention Mechanism, Convolutional Neural
Network, Deep Learning, Disaster Management, Fire Classifica-
tion, Fire Detection, Fire Localization, IoT, Surveillance System.
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Fig. 1. A comparative analysis between the proposed OFAN and the
current studies in terms of Precision (P), Recall (R), F1-Score (F1), and
Accuracy (ACR). The variant circle size in the graph represents the number
of parameters. The larger circles indicate a higher number of parameters. The
proposed OFAN has fewer trainable parameters and outperforms as compared
to state-of-the-art models in terms of various evaluation metrics, demonstrating
its effectiveness and efficiency.

F IRE is a disaster deemed highly dangerous due to its rapid
propagation and devastating impact. Promptly controlling

a fire is exceptionally challenging, especially in areas abundant
with highly combustible materials, such as forest woodlands
and residential zones. Fires can ignite due to human activity,
equipment failure, elevated temperatures, climate variations,
among other factors. An uncontrolled fire can inflict substantial
damage on an area’s economy, ecology, and environment.
Forest and bushfires represent the most perilous types of fires,
as their intensity can rapidly escalate, leading to significant
environmental devastation. For example, the bushfires in Aus-
tralia from January to March 2020 burned close to 19 million
hectares, took the lives of 33 people, killed around 1500
million animals and destroyed more than 3,000 shelters [1]
[2] [3].

A similarly devastating fire in California led to numerous
fatalities and extensive property damage [6]. Furthermore, fires
in buildings and automobiles are a threat to human safety and
property. A report from early 2018 reveals that between 1993
and 2016, approximately 4.5 million fires cases were outlined
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across more than 50 countries, resulting in an estimated 62,000
fatalities [7]. In China, between 2009 and 2015, the average
annual count of vehicle fires was 20,000, leading to an annual
financial burden of roughly 370 million chinese yuan [8]. In
the United States, data from 2019 showed that there were
approximately 189,500 highway vehicle fires, leading to 550
deaths [9]. By leveraging smart techniques that utilize various
forms of sensory data, early fire detection can substantially
mitigate loss of life and property damage in most scenarios.

Over the past few years, various scalar sensor-based sys-
tems for fire detection have been investigated by numerous
researchers. A variety of smart devices and services are
being tested for fire detection. These cost-effective systems
utilize sensors such as flame, particle, temperature, and smoke
detectors [10]. While these devices may be suitable for indoor
environments, they require human interaction to activate, as
well as proximity to the fire. Additionally, assorted com-
ponents of equipment are necessary for timely delivery of
information about the fire, such as its degree of burning,
size, and location. Conversely, various authors [11] [12] have
probed vision sensor-based fire detection systems, which offer
numerous benefits when compared with scalar sensor-based
systems, including no need for human intervention, an imme-
diate response, wide coverage, and environmental robustness.

Vision sensor-based fire detection techniques are mainly
classified into two categories: machine learning (ML) and
DL-based methods. ML-based approaches for fire detection
concentrate on the shape, motion, color, and texture features
of an input frame [13] [10]. These techniques heavily rely
on the handcrafted features. However, selecting the most
prominent features is a demanding task, as various materials
have different flame colors, light and air flow have different
affects on fire shape. Hence, balancing the accuracy, loss, and
false-positive rate (FPR) and false-negative rate (FNR) metrics
is an unresolved challenge through these techniques.

Nowadays, DL approaches have gained popularity in var-
ious computer vision (CV) domains and show tremendous
performance in fire detection [10]. DL methods have shown
better detection accuracy and significantly lower FAR when
compared to ML-based techniques. However, DL has lim-
ited capabilities to classify and locate complex fire scenes,
including fire-colored lighting, fire-like objects, and sunlight
that appears like fire. The existing literature [4]–[6] reveals
that there is a scarcity of fire image samples for the purpose
of training and testing. The publicly available datasets lack
diversity, which are mostly small in size and are insufficient
to produce reliable and efficient models. As a result, in this
study, we accumulated multiple benchmark datasets containing
fire and non-fire samples. These datasets were merged to
create composite samples thoroughly utilized in this work.
Furthermore, the inadequate performance of existing deep
models in terms of both efficiency and accuracy poses a
challenge to the practical application of the systems.

As a solution to these challenges, this article introduces
OFAN that utilizes a lightweight CNN model followed by
a modified fire attention module formulated through opti-
mized channel attention (OCA) and optimized spatial attention
(OSA) mechanisms. As a result of the attention module,

deep models are able to detect the presence of fire, fire-like
objects, and colors. The proposed method outperforms the
state-of-the-art in terms of accuracy and having fewer trainable
parameters, as presented in Fig. 1. To choose the optimal
collection for the proposed model numerous backbone models
are deeply checked with different attention combinations. To
this end, a comprehensive empirical study effectively analyzes
the performance of the individual model setup. After rigorous
analysis, we found that MobileNetV3Small showed the best
scene classification score due to usage of variant kernel size,
hard-swish activation function, lightweight squeeze-and-excite
attention, and our modified attention module. In the modified
attention module the OCA module exploits the inter-channel
relationships between features in order to refine backbone
features from pre-trained CNNs, with the tensor maps of each
channel being viewed as single detector. By leveraging the
inter-spatial relationships of pixels, the OSA module iden-
tifies informative features, thereby complementing the OCA
module’s activities. In terms of diversity of data, we collected
highly diverse samples from nine different public benchmark
datasets. The entire contributions of our work are summarized
as follows:

1) We present a novel approach called the OFAN that in-
corporates OCA and OSA modules. By integrating these
modules with various backbone models, our research
achieves state-of-the-art classification results, expanding
the potential application domains. Our proposed method
yields an inference model of an equitable size, roughly
12 megabytes (MB), making it highly suitable for de-
ployment on edge devices equipped with embedded
vision capabilities. Through rigorous experimentation,
we have demonstrated that the proposed method outper-
forms state-of-the-art approaches in terms of accuracy
and efficiency. As a result, we consider our method
to be a strong contestant for integration into disaster
management systems, where timely and accurate fire
detection is of paramount significance.

2) To overcome the scarcity of fire images and facilitate
researchers in vision-based fire detection, we combined
fire images from various well-known public datasets,
resulting in a diverse collection of 47,000 images.
This dataset includes challenging fire scenarios such as
burning clouds, intense light sources, and red objects.
Although benchmark datasets exist for specific environ-
ments, uncertain surveillance environments are currently
not represented in any dataset. To fill this gap, we have
curated a dataset that incorporates synthetic fire images
with fog and low light conditions. By including these
challenging scenarios, our dataset aims to support the de-
velopment of robust fire detection algorithms specifically
tailored to uncertain environments. Our dataset will be
publicly available at (https://github.com/naqqashdilshad/
OFAN) to encourage collaborative research in the field.

3) In order to evaluate how well and diverse our proposed
DiverseFire dataset performed, we re-implemented the
state-of-the-art methods in order to determine its per-
formance. We identified the most suitable approaches
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for each challenge posed by the DiverseFire dataset
through a benchmarking study, that enabled us to deter-
mine which ones were most suitable for addressing the
challenges. Furthermore, the study provides a starting
point for further advances in fire detection, as it provides
a deep understanding of the performance landscape of
this field in addition to providing a baseline for assessing
future progress.

The subsequent sections of this paper are structured as
follows: Section II presents a comprehensive literature review,
outlining the ML-based, and DL-based methods with concise
descriptions. Section III provides a brief overview of the
proposed method. In Section IV, we discuss the dataset, perfor-
mance evaluation, parameter settings, quantitative along with
qualitative results obtained through our research. Finally, in
Section V, we conclude the article, highlighting the limitations
of our study and suggesting potential areas for future research.

II. RELATED WORK

The field of fire detection has attracted a significant amount
of research interest, with a particular focus on developing
CV-based approaches for the early and accurate identification
of fire. These methods can be broadly classified into two
categories: ML-based and DL-based fire detection methods.

A. ML-based Methods

The primary objective of these methods is to leverage shape,
motion, color and texture features present in an input image
for effective fire detection. In baseline methods, color features
are extracted using color spaces such as red green blue (RGB)
and luminance, chroma blue, chroma red (YCbCr) [14] [15].
There has also been research that combines statistical color
features, super-pixel texture discrimination, and fuzzy logic
into an integrated form to detect fires. In addition, the analysis
of objects in motion [13], employing optical flow features [16],
has been widely used to detect fires. As a result, there is a vast
array of research going on in the fire detection domain, with
CV-based methods playing a central role in facilitating the
accurate and timely detection of fires.

However, ML-based methods are often susceptible to envi-
ronmental factors such as fire-like objects that are in motion
and objects with orange or red tint, which contribute to
higher FPR. Moreover, brightness fidelity cannot adequately
depict the overall impression of fire, and optical flow-based
techniques are computationally expensive. To address these
issues, researchers have utilized trainable classifiers to reduce
subjective apprehension effects in the classification phase.
For instance, [17] propose the use of uni-modal covariance
features from spatial-temporal blocks, Gaussian, and a support
vector machine (SVM) to extract and classify fire-colored
regions that are constantly in motion. Due to the presence of
moving objects that look like fires, varying lighting conditions,
shadows, and low accuracy, ML-based approaches may be
challenging and time-consuming to use for early fire scene
classification and alarm generation. This led researchers to
investigate various end-to-end DL-based techniques to enhance
fire classification.

B. DL-based Methods

Researchers have investigated the use of CNNs for fire
detection in order to address the limitations of ML-based
methods. With CNNs, fire detection is more convenient and
reliable because features are extracted and classified automat-
ically. As described in this study [18], the best fire detection
performance was achieved by GoogLeNet, over VGG13 and
AlexNet. Authors in [19] employed VGG16 and ResNet50
models for fire classification, where ResNetFire outperformed
VGG16 in terms of accuracy, although the dataset used for
experimentation was small. LeNet-5 were utilized for fire
classification in [20], and this model achieved superior results
than ML-based techniques, but the large footprint and compu-
tational complexity of LeNet-5 method make it inappropriate
for resource-constrained devices (RCDs).

Furthermore, researchers have attempted to combine ML
with CNNs to enhance fire classification. Authors in [21]
utilized the combination of SVM and CNN to detect fires by
employing Haar-like features and an AdaBoost cascade clas-
sifier for region of interest (RoI) extraction. Furthermore, for
fire classification, they used a two-tier SVM based on a CNN
architecture with four layers. To detect smoke and fire, the
authors fused a CNN with motion detection and irregularities
[22]. Furthermore, saliency detection was employed to extract
RoI in [23]. Authors in [24] introduced temporal and spatial
features for fire classification. Additionally, authors in diverse
fields have integrated attention-based techniques with CNN
architectures to enhance the efficiency of their methods [25].
These techniques show convincing performances due to the se-
lection of most prominent features before classification, which
prompted numerous investigators to utilize them for the precise
localization and classification of fire [4] [6]. Nonetheless, in
these methods, the OCA module was exclusively employed for
fire scene localization, but it lacks the necessary level of detail
for precise fire localization. The literature indicates that there
is scope for a superior performing model for fire classification
and localization. Moreover, the scarcity of diversity in the
datasets poses a challenge for researchers who seek to evaluate
the robustness of their proposed models.

In summary, the existing literature has the following limi-
tations:

• High False Alarm Rates: Existing deep learning models
for fire detection often suffer from high false alarm
rates, meaning they frequently mistake non-fire events for
fires. This inaccuracy can lead to unnecessary panic and
resource deployment.

• Slow Inference Speeds: Conventional fire detection mod-
els often grapple with slow inference speeds. This inef-
ficiency poses significant challenges to timely fire detec-
tion and subsequent emergency responses, thus hindering
their application in real-time scenarios that demand swift
action.

• Insufficient Attention to Pertinent Channels: Existing
models might not effectively accentuate the most relevant
channels and capture spatial details with considerable
depth, leading to sub-optimal performance. Furthermore,
the current systems might not be able to discern the depth



IEEE INTERNET OF THINGS JOURNAL 4

Disaster Control Room

Police Station

Fire Brigade

Surveillance System

Adding Fog and 

Low-Light Scenarios

Pre-processing Deep Discriminative Feature Extraction Real-time Application

DiverseFire Dataset
GM

Optimized Spatial

 Attention
LF

AF

BF

GF

F
C

F
C

OFAN

Fire

Non-Fire

Action

Alert

Optimized Channel

 Attention

Backbone Features Attention Features Training Phase Testing PhaseConvolution Gradient Map

1 × 1 7 × 7 1 × 1

1 × 1 GAP

5 × 5 5 × 5 5 × 5 5 × 5

5 × 5 5 × 5 5 × 5 5 × 5

112 × 112 56 × 56

14 × 14 14 × 14 14 × 14

7 × 7 1 × 1

BN
1 × 1

3 × 3 3 × 3 3 × 3 3 × 3
224 × 224

14 × 14 14 × 14 7 × 7 7 × 7

7 × 7

28 × 28

FV GM

28 × 28

BN

BN

Fig. 2. The proposed OFAN framework: Enhancing fire detection with deep discriminative feature extraction, optimized attention mechanisms, and synthesized
DiverseFire benchmark.

and scope of fires, which can limit their effectiveness in
detecting and assessing the size of the fire.

• Inability to Adapt to New Fire Patterns: Given the
rapidly evolving nature of fire incidents, it can be chal-
lenging for existing models not trained on newer fire
patterns to detect and classify them accurately.

• Complex Architecture: Many existing models employ
complex backbones for feature extraction, which can be
computationally heavy and unsuitable for real-time usage,
especially on edge devices.

As a result, in this study, we introduce a cost-effective
model, which is an effective technique for fire scene clas-
sification and localization. In addition, it was trained on an
extremely diverse set of data.

III. THE PROPOSED METHODOLOGY

In this section, the technical details of each component used
in the proposed model are provided. The key contributions in
this study are as follows: (a) a transfer learning approach is
used to compress the parameters of the lightweight pre-trained
MobileNetV3, also tuned it for fire scene classification; (b) we
optimized the current attention modules for enhancing their
learning capability and obtain more representative features; (c)
Additionally, we developed a large-scale diverse fire dataset
which covers various challenging scenarios. The summarized
description of the proposed work is given in the subsequent
paragraph.

Overview: We introduced an attention module composed
of both OCA and OSA mechanisms in the proposed
OFAN model. As a result of this module, we are able to obtain
more accurate spatial details and more informative channels
when determining fire classification. The main architecture of
the OFAN model is composed of three key steps, including

pre-processing training followed by the testing phase, the
graphical representation of the entire framework is illustrated
in Fig. 2. In the pre-processing step the various benchmark
datasets are integrated to create a composite dataset, to make
it more complex, we added synthetic foggy and low-light
uncertainties. While the training phase involves an efficient
backbone followed by a modified attention module to extract
more discriminative, representative, and optimized features.
Lastly, the proposed OFAN is tested over complex data to
investigate its compatibility for real-time processing. The step-
by-step process is outlined in Algorithm 1. It is particularly
designed for classifying various fires into their respective
class. To this end, the fire dataset is initially loaded followed
by pre-trained CNN model weights. Next, the entire proce-
dure is divided into training and testing. For the training,
set all the hyper-parameters and extract features from the
backbone model. Later, significant information is forwarded
to the attention module. This module mainly comprises OCA
and OSA that obtain more meaningful and precise features.
Later, the attention-obtained features are fused to make it
a more refined descriptor. Next, these are incorporated with
backbone features to make a resultant descriptor. Eventually,
these feature vectors are passed to the two fully connected,
followed by the activation function softmax for classification.
When the training phase is completed, the proposed model
is saved. In the testing phase, the trained model is loaded
and evaluated on various fire samples regarding accuracy,
precision, and F1 score. We elaborate on it further in the
subsequent sections.

A. Pre-Processing

Pre-processing is an essential step in data analysis, partic-
ularly in ML and DL, where data cleaning, transformation,
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Algorithm 1: Pseudocode of the proposed OFAN for
fire detection.

1 Input: Load Fire Image Dataset
2 Output: Classifying Fire and Non-Fire with Label and

Confidence
3 Pre-Initialization:
4 Load Dataset → (D)Σn

i=1();
5 Load Pre-trained CNN Weights → M ;
6 Model Training Procedure:
7 Proposed Model → P ;
8 Set The Model Hyper-parameters → Ψ;
9 Steps:

10 while D ̸= 0 do
11 for i → Ii → (I1, I2, I3, ...In) do
12 Backbone features → (β) → (Ii) → (GF );
13 Modified Attention Block → Æ;
14 Opt. Channel Attention → OCA → (GF) → (F1);
15 Opt. Spatial Attention → OSA → (GF) → (F2);
16 Attention Fusion → (AF) → (F1)⊕ (F2);
17 Resultant Fusion → RF →

(GF )⊕ (AF ) → M(F3);
18 M(F3) → FC1 → FC2 → SoftMax;

19 Save (model) → Ω
20 Model Testing Procedure:
21 Load Trained Model → Ω;
22 Load Testing Data → τ ;
23 for j → Ij → (I1, I2, I3, ...In) do
24 Extract Features → (Γ);
25 Evaluate Performance → α;
26 Accuracy → (A);

and filtering make data suitable for analysis and training. In
fire datasets, pre-processing ensures that the data is appro-
priate for the intended scenario as fire datasets are collected
in different environments with varying conditions that can
affect data quality. The surveillance environment changes over
time, leading to fog and darkness in outdoor surveillance
scenarios, significantly impacting the model’s ability to detect
fire, resulting in high false alarm rates. In order to address
these challenges and improve the model robustness in such
an uncertain environment, the dataset was pre-processed. The
proposed dataset was pre-processed by adding fog and low-
light conditions through image processing techniques into
all images to ensure the model’s generalization ability in
complex and critical scenarios, reducing the risk of high
false alarm rates, and improving the accuracy and detection
of the fire in different environments and scenarios. The fog
effect was simulated by setting a coefficient of -1, while a
coefficient of 0.7 was used for low-light conditions. These
specific values were determined through experimentation to
strike a balance between realism and model performance. By
introducing these challenging scenarios during pre-processing,
the model becomes more adept at detecting fires under adverse
conditions, thus strengthening its generalization capability and
ensuring reliable performance in real-world scenarios.

B. Motivation for using MobileNetV3Small for Fire Detection

In scenarios where resources are limited and timely
decision-making is crucial, such as disaster management,

TABLE I
STATISTICS COMPARISON OF ALL LIGHTWEIGHT VARIANTS OF

MOBILENET

Parameters MobileNetV1 1.0 MobileNetV2 1.0 MobileNetV3Small 1.0

MACs (millions) 569 300 66
Parameter (millions) 4.24 3.47 2.9
Top-1 Accuracy (%) 70.9 71.8 68.1
Top-5 Accuracy (%) 89.9 91.0 87.4

the selection of an appropriate model is of utmost impor-
tance. Among various pre-trained CNN architectures, Mo-
bileNetV3Small is preferred due to its compatibility with
hardware architectures which has limited processing capa-
bilities such as field programmable gate arrays (FPGAs),
smart sensors, and Raspberry Pi, and its suitability for IoT
environments. Compared to MobileNetV1 and MobileNetV2,
MobileNetV3Small offers better accuracy with fewer compu-
tations and learned parameters, making it a more compact
and efficient choice. MobileNetV3Small employs depthwise
separable convolutional layers instead of traditional convolu-
tion. The kernels processing occurs at the same time across
the channels while the traditional convolution employs filter
over individual channels that is computationally complex
procedure. Table I provides a comparison of statistics for all
three variants.

The expression ”1.0” denotes the version of Mo-
bileNetV3Small, and MAC stands for Multiply-Accumulate
operations, which measure the number of computations re-
quired to make an inference on a single image having input
size of 224×224×3. According to this measure, V3Small is
almost nine times as fast as V1 and five times as V2. Mobile
devices are also much slower at computing than they are at
accessing memory, so V3Small has fewer parameters than both
V1 and V2. Additionally, V3Small has slightly less accuracy
on the ImageNet dataset but outperforms both V1 and V2 in
terms on inference speed. These features validate our selection
of MobileNetV3Small in our proposed OFAN model.

C. Deep Discriminative Feature Extraction

CNNs have shown remarkable abilities in automatically
selecting the most prominent features from the input image,
making them ideal for different CV applications. However,
selecting a domain-specific CNN architecture that provides
precise predictions and a balanced computational complexity
for real-world applications is a challenging task. Researchers
have conducted significant contributions in vision-based fire
detection utilizing pre-trained models to classify and localize
fire scenes based on their target datasets [6] [26]. Fine-tuning
pre-trained models enables the neural network to acquire
domain-specific visual features by making effective use of
their trainable parameters. It is an effective initialization tech-
nique for vision-based classification tasks since pre-trained
networks feature an extensive and robust feature extraction
pipeline. Utilizing feature extraction methods that have already
proven successful in many CV domains, we have employed
multiple lightweight backbone feature extractors, such as
Xception, EfficientNetB0, MobileNetV1, MobileNetV2, and
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MobileNetV3Small [27] to decide the prominent feature selec-
tion mechanism for fire classification in extremely uncertain
and challenging scenarios. The main reason of selecting these
models is that they are efficient and having higher Top-1
accuracy among others [27].

It is widely accepted in the research community that CNNs
have the capability to acquire informative and distinctive
features from raw input data. However, finding the optimal
configuration for a CNN requires careful consideration of eval-
uation metrics, data quantity, quality, and the specific problem
being tackled. We evaluated various CNN architectures and pa-
rameter settings for fire detection in both certain and uncertain
environments. Subsequent to substantial experimentation with
attention mechanism, we found that the MobileNetV3Small
outperformed other pre-trained models such as Xception,
EfficientNetB0, MobileNetV1, and MobileNetV2.

We used a fine-tuned version of the MobileNetV3Small
architecture that is customized for fire detection in uncertain
surveillance environments. The baseline MobileNetV3Small
was initially trained on the ImageNet dataset, which contains
1,000 object classes for classification. However, since Mo-
bileNetV3Small can learn richer features than various other
CNN models, we reused its acquired weights to achieve
precise fire detection. To achieve this, we added global average
pooling layer (GAP) that calculates the average of each feature
map across its spatial dimensions, condensing the information
into a one-dimensional vector, providing a global summary
of the input feature maps to the last fully connected layer,
allowing for classification into fire and non-fire categories.
We also added an optimized attention modules to the main
building block of the MobileNetV3Small to further enhance
its performance for fire detection. The proposed architecture
comprises of 16 layers as depicted in Fig. 2, the model pipeline
starts with a (3×3) convolution layer with H-swish activation
function which takes the input in (224 × 224) dimension
before it passes the given input to the bottleneck block. The
bottleneck layer contains three (3 × 3) layers which utilizes
the ReLU6 activation function, followed by eight consecutive
(5×5) bottleneck layers which also employs H-swish function.
After that (1 × 1) convolution layer, a (7 × 7) pooling layer
and another (1 × 1) convolution layer coupled with batch
normalization (BN) summons up the backbone architecture.
In addition, the obtained deep discriminative features from the
backbone is termed as gradient map (GM), GM is forwarded
to the optimized attention block where local fusion (LF) of
features occurs. The attention features (AF) from attention
block and backbone features (BF) are concatenated as global
features (GF) are then forwarded to the dense layer. According
to Fig. 2 an input image is processed through the proposed
architecture in order to obtain an inference on it, which
provides discriminative features that are further processed to
the attention block.

D. Optimized Attention Mechanism

Several CNN-based models followed by attention mech-
anisms in various domains provide exemplary performance
for video stream due to the high frame resemblance between
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Fig. 3. Block diagram of a modified attention block, where fully connected
(FC) and dilated convolution (DC) with variable dilation rate are employed
to extract more prominent features from the given gradient map (GM).
Furthermore, parallel attention feature maps are integrated as local fusion
(LF).

frames [28]. In these studies, individual channel attention
(CA) and spatial attention (SA) modules were used and
limited performance was obtained on image data due to the
diversity of the data and module selection. For image-based
fire detection, some studies have incorporated only a channel
module into CNN architectures [4] [6]. For simple scenarios,
integrated channel information with a DL model is highly
effective; however, in complex and uncertain scenes present
in the DiverseFire dataset, an integrated CA module has
limited performance. To improve fire classification and fire
localization, we integrate OCA and OSA as part of the OFAN,
which represents the fire attention component. The integrated
(OCA + OSA) attention scheme is used in the fire attention
module to extract and localize the most important regions.

Taking inspiration from the approach contained in [29], an
optimized attention mechanism block incorporating the OCA
and OSA are employed for detecting fire in which each block
has a diverse function based on its architecture. An illustration
of the optimized attention block can be found in the Fig. 3.
A primary principle of its design is that the foreground and
important features are the only factors that are focused on
rather than unimportant background or redundant information.
We therefore follow their policy in this study and make
adjustments attention module for the purpose of detecting
fire. There are two attention blocks in this module, which are
called OCA and OSA. Each fully connected layer in the OCA
infers high-level features that are considered the semantic
information specific to an object/class and differ in the way
they encode these features. Our objective was to enhance the
representation of the features in particular semantics of the
channel maps to ensure that mutual information is maintained
between them. The feature maps are analyzed by noting their
associations.

Content-related information is extracted from a wide range
of data in order to represent discriminative data features
relevant to understanding a scene. Due to its ability to gather
homogeneous contextual information from a wide range of
sources, OSA is sometimes called the rich relationship mod-
ule. Moreover, this technique improves the model’s feature
representation ability by encoding a great deal of contextual
information into native features. We modified the existing
attention module where each module focuses on its intended
purpose. The OCA combines the input data using global aver-



IEEE INTERNET OF THINGS JOURNAL 7

age pooling (GAP) and then uses three dense layers to obtain
channel information. In the same way, the OSA uses dilated
convolutional layers (DCL) to focus on the most important
parts. The overall attention module process is presented using
mathematical formulas, while the detailed architecture is given
in Fig. 3. For the given input activation map V ∈ Ri × j × k

specifies a detailed attention map based on a 3D map. The
final feature map V′ is evaluated as:

V ′ = V + V ×M(V ), (1)

Two attention mechanisms are involved in the proposed
method in a unified manner, where the skip learning mech-
anism followed by attention modules assist the gradient flow.
In Equation (1), we perform element-wise multiplication. To
calculate the final attention map M(V ), we first compute the
OCA Mc(V ) ∈ RX and the OSA Ms(V ) ∈ RY×Z using the
given Equation (2).

M(V ) = δ
(
Mc(V ) +Ms(V )

)
, (2)

The activation function used in this framework is repre-
sented by the sigmoid function, which is denoted as σ. To
accommodate these features, we resize the attention output
before integrating them i.e., R i × j × k. Each channel com-
prises more representative features that exploit the relationship
between the channels. To produce a channel vector Vc ∈
RX, a feature map is compiled against each frequency using
a pooling operation. Multilayer perceptron (MLP) evaluates
channel information from the resulting vector, which encodes
global information. The SA output is adjusted and re-scaled
using BN (BNorm), despite using the MLP layer. Eventually,
the OCA is computed by using the Equation (3).

Mc(V ) = BNorm

(
V c
(
AP (V )

))
= BNorm

(
r1(r0P (V ) + k0 + k1

)
,

(3)

The terms ”k0” and ”k1” represent single and the whole
channel details, correspondingly. On the other hand, ”r0” and
”r1” are utilized to compute the OCA over the channel by
applying a certain scaling down strategy.

Ms(V ) = BNorm

(∫ 1×1

1

(∫ 3×3

2

( ∫ 1×1

3

(V )
))))

. (4)

In OSA, salient locations are identified within an image us-
ing spatial feature maps. Focusing on salient locations requires
a filter with a large receptive field. In this study, DCLs with
dilation rate (d = 1, 2, 3) were utilized to enlarge the receptive
field and reduce the total sum of trainable parameters. This
work utilizes a (1×1), (3×3) and (1×1) DCLs to accumulate
the most prominent contextual features with a scale down
strategy same as OCA. Lastly, a (1 × 1) convolution with a
BNorm is utilized to improve and resize the feature map, which
is computed through Equation (4).

In summary the mathematical modeling of the proposed
scheme work is provided as follow, Equation 5, 6, 7, 8, 9,

10, and 11 represents depthwise convolution, global average
pooling, BN, SA, CA, feature fusion and softmax respectively.

D̂x,y,z =
∑
v,w

X̂v,w,z · Fx+v−1,y+w−1,z (5)

where X̂ is the depthwise convolutional kernel with size
DX × DX × Z, where the filter zth in X̂ is applied to zth
channel in F to yield the zth channel of the filtered output
feature map D̂.

GAP(X)c =
1

H ×W

H∑
i=1

W∑
j=1

Xi,j,c (6)

GAP(X)c represents the average value for the cth channel
computed by taking the average of all values in that channel
across the entire spatial dimensions of the tensor.

x̂ =
x− µ√
σ2 + ϵ

· γ + β (7)

x̂ depicts how BN normalizes the input x by subtracting
the mean, dividing by the standard deviation, and then scaling
and shifting the result using learned parameters γ and β.

S (F ) = Softmax (W8 ∗ F +B8) (8)

Here, ∗ denotes the convolution operation, W8 are the
weights, and B8 are the biases for the SA mechanism.

C (F ) = σ (WcF + bc) (9)

Wc and Bc are the weights and biases for the CA mecha-
nism, and σ denotes the sigmoid activation function.

Ffused = Fbackbone · S (Fbackbone) · C (Fbackbone) (10)

Here, we incorporate the backbone feature map with the
attention mechanisms. Assuming Fbackbone is the backbone
feature map, we apply both SA and CA.

Softmax (zi) =
ezi∑K
j=1 e

zj
(11)

The Softmax output is the probability distribution over the
classes indicating the presence or absence of fire in the input
scene.

IV. EXPERIMENTAL RESULTS

This section, provide a concise description of the experi-
mental setup, the included datasets, training, and evaluation
metrics. Following that, we present both quantitative and
qualitative analysis of OFAN in comparison with state-of-the-
art methods. Finally, we conduct an ablation study to assess
the performance of the OFAN model.
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A. System Configuration and Implementation Details

All experiments were performed using Python 3.8, Keras
DL framework with TensorFlow backend implementation, on
an Intel Core i9 12900K clocked at 5.0 gigahertz (GHz)
with an NVIDIA GeForce RTX 3090 GPU renowned for its
exceptional DL acceleration capabilities, is equipped with a
staggering 24GB of onboard memory. With its high floating-
point arithmetic performance, this powerhouse GPU can
reach 35.58 tera-floating-point operations (TFLOPs), ensuring
high-performance computing for demanding AI tasks. The
OFAN model, along with the ablation models, were trained
for 30 epochs with the default input size of (224×224×3) of
the proposed model. The batch size was set to 32, and Adam
optimizer was employed, using a learning rate of 1e-4 and
a momentum of 0.9. These hyper-parameters were selected
based on comprehensive experiments.

B. Datasets and Evaluation Metrics

In real-world fire detection scenarios, the manifestations of
fire can be incredibly varied, influenced by diverse factors such
as environmental conditions, fire types, fire size and intensity,
and lighting conditions. Existing fire detection datasets such
as BoWFire [16], Yar [30], Sharma [31], DeepQuestAI [32],
Saied [33], Carlo [34], Foggia [35], SV-Fire [11], DeepFire
[26] and FD [4] each capture different aspects and characteris-
tics of fire scenarios. However, no single dataset encompasses
all the potential variations and complexities that might be
encountered in actual fire incidents.

Thus, in order to ensure a robust and versatile fire detection
model, it is crucial to train on a composite dataset that reflects
a broad spectrum of fire conditions. This justifies our decision
to combine the publicly available benchmark datasets for
this study. This composite dataset not only includes a wider
range of fire scenarios, but also covers diverse environmental
conditions and fire characteristics. This ensures our model is
trained on and validated against a more comprehensive and
representative sample of potential real-world fire situations,
ultimately enhancing its generalizability and reliability in
practical applications. For a fair evaluation of the proposed
OFAN, we employed the following benchmark datasets.

1) BoWFire dataset [16] is highly imbalanced, diverse and
compact, with only two binary classes, namely fire and
non-fire. The fire class comprises 119 samples, whereas
the non-fire class contains 107 samples.

2) FD dataset [4] It is a combined dataset, comprised
of Foggia’s [35] and the BoWFire datasets [16], with
additional images collected from the Internet, in order
to upgrade the dataset and add new instances about
fire and non-fire scenarios. Finally, a dataset containing
50,000 images was generated for fire detection, each
class containing 25,000 images.

3) DiverseFire dataset comprises of a collection of sam-
ples that have been classified into two distinct categories,
one containing fire and the other without fire. The dataset
is mainly a composite dataset that comprises of BoWFire
[16], Yar [30], Sharma [31], DeepQuestAI [32], Saied
[33], Carlo [34], Foggia [35], SV-Fire [11], DeepFire

TABLE II
OVERALL STATISTICS OF THE INCLUDED DATASETS AND THE NEWLY

PROPOSED DATASET HIGHLIGHTED IN BLUE TEXT.

# Dataset Fire Non-Fire Total Images

1 BoWFire [16] 119 117 226
2 Yar [30] 1000 1000 2000
3 Sharma [31] 110 541 651
4 DeepQuestAI [32] 1000 1000 2000
5 Saied [33] 755 244 999
6 Carlo [34] 120 120 240
7 Foggia [35] 7018 7018 14036
8 SV-Fire [11] 1000 500 1500
9 DeepFire [26] 950 950 1900

10
Fog Scenario 12072 11490 23562
Low-light Scenario 12072 11490 23562
DiverseFire 24144 22980 47124

Fire Non-Fire Fire Non-Fire

Fig. 4. Various instances of Actual fire and fire like scenes from the newly
proposed DiverseFire dataset, the first and third column depicts fire while the
second and the last row shows non-fire samples.

[26]. The lack of benchmark datasets representing un-
certain surveillance environments poses a significant
challenge for researchers in developing effective and
adaptable systems. The dataset has a diverse range of
images captured from different angles and backgrounds
to ensure that the model is effectively trained to dis-
tinguish between the two classes. A total of 24,144
in fire and 22,980 in non-fire category were initially
compiled for this dataset. Additionally, foggy and low-
light conditions were introduced in the dataset to enrich
the complexity of fire detection scenarios for DL models.
This further augmented the total number of images to
47,124, thereby making the dataset a challenging one to
work with. A comprehensive detail of all the included
datasets are listed in Table II, while the exemplar sam-
ples from the newly proposed DiverseFire dataset are
illustrated in Fig. 4. The main reason behind the name
of DiverseFire dataset are as follow: (a) In real-world
the scenes are complex and highly diverse, which means
that type, size, intensity, and illumination conditions in
fire is very challenging; (b) Existing fire datasets mainly
cover different aspects rather then focuses on complexity
scenarios; (c) Obtaining best performance over a wide
spectrum of fire conditions indicating the robustness and
generalizability of the model.

In our evaluation, we employed the same set of parameters
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TABLE III
QUANTITATIVE ANALYSIS OF THE PROPOSED OFAN WITH STATE-OF-THE-ART ON THE INCLUDED BENCHMARK DATASETS. THE BLUE AND RED TEXT

REPRESENT THE BEST AND SECOND-BEST PERFORMANCES, RESPECTIVELY.

Methods BoWFire [16] FD [4] DiverseFire
P R F1 ACR P R F1 ACR P R F1 ACR

ML Traditional Models

FD-GCM [15] 0.55 0.54 0.54 - 0.63 0.90 0.74 0.69 - - - -
FFD-ANN [36] - - - - 0.71 0.73 0.72 0.71 - - - -
FPC [13] - - - - 0.52 0.99 0.68 0.53 - - - -
EFD-IP [14] 0.75 0.15 0.25 - - - - - - - - -
BoWFire [16] 0.51 0.65 0.67 - - - - - - - - -

DL

Large Models

ResNetFire [19] - - - 92.50 0.84 0.97 0.90 90.07 0.86 0.87 0.87 86.74
VGGFire [19] - - - 91.32 - - - - 0.86 0.84 0.84 84.67
DeepFire [26] - - - - - - - - 0.86 0.85 0.85 85.33
ViT-B/32 [12] - - - - - - - - 0.89 0.90 0.90 89.70

Lightweight Models
LW-CNN [30] 0.86 0.78 0.77 79.00 0.82 0.81 0.81 81.00 0.78 0.77 0.77 77.16
E-FireNet [11] 0.82 0.80 0.80 80.66 0.84 0.83 0.84 84.00 0.79 0.78 0.80 79.00
EMNFire [37] 0.90 0.93 0.92 92.04 0.88 0.98 0.93 92.80 0.88 0.87 0.87 87.50

Attention-based Models
EFDNet [4] 0.81 0.83 0.81 83.33 0.93 0.97 0.95 95.30 0.91 0.91 0.92 91.31
DFAN [5] 0.95 0.94 0.95 95.00 0.96 0.97 0.96 96.17 0.92 0.93 0.93 92.27
OFAN 0.96 0.95 0.96 96.23 0.97 0.96 0.97 96.54 0.94 0.95 0.95 94.63

that have been utilized to assess various state-of-the-art fire
detection techniques, as referenced in [19] [4] [30] [11].
These parameters include ACR, P, F1, R, FPR, and FNR.
Furthermore, mathematical formulations of these parameters
are provided in the preceding sources.

C. Performance Evaluation of OFAN

In this section, we will briefly compare and contrast the
quantitative and qualitative performances of the OFAN and
state-of-the-art methods as applied to the analysis of data.

1) Quantitative Analysis: We performed a quantitative anal-
ysis of the performances of OFAN and state-of-the-art CNN
based methods. To demonstrate the suitability of the OFAN for
the classification and localization of fire scenes, we used three
benchmark datasets and our proposed DiverseFire dataset.
Upon learning that several baseline CNN models could be used
as baselines for the evaluation of the proposed method, we
conducted an ablation study. There is a quantitative analysis
of the existing datasets presented in Table III, and an ablation
study of OFAN using the proposed dataset is presented in Ta-
ble IV. According to the results of these detailed experiments,
the OFAN outperformed the state-of-the-art methods on both
the existing dataset and the proposed dataset when it comes
to ACR, P, R, and F1.

a) Comparison with ML-based Methods: We compare
the performance of the OFAN method to the ML-based method
using the benchmark datasets BoWFire, FD and the newly
proposed DiverseFire datasets, which are considered in this
study, using the evaluation parameters of [4] [37]. It can
be seen from Table III that the OFAN has outperformed the
current ML-based methods on the datasets referred to in the
above. The best methods to determine BowFire’s evaluation in
terms of the listed metrics are the proposed OFAN and DFAN
[5]. The proposed OFAN outperformed [14] [15], and [16]
methods. In addition to that, the proposed model improved the
ACR from 95.00% to 96.23% when compared with previous
studies. There was a 3.90% greater R value in [13] on the FD

dataset. In comparison to ML methods, OFAN achieved the
best performance in terms of ACR, P, and F1, which illustrates
that the proposed OFAN is robust and adaptable to various
environments because it can autonomously discern intricate
patterns and representations from the data, reducing the need
for manual feature engineering, as shown in Table III.

b) Comparison with DL-based Methods: Considering the
complex objectives associated with fire scene classification, it
is crucial for fire disaster management systems to demonstrate
robustness in handling various scenarios, including objects that
are burning and objects that look like they are burning. Further-
more, certain fire scenarios may suffer from occlusion due to
thick fog or being situated at a considerable distance from the
camera or low-light hazy environment. Consequently, to assess
the effectiveness of fire scene classification and localization,
we conducted an evaluation of the OFAN on two widely used
benchmark datasets and a newly comprised DiverseFire as
presented in Table III. The re-implemented models are cat-
egorized into three sub-categories, that is, large, lightweight
and attention-based models. However, our evaluation results
demonstrate that OFAN achieved the superior performance
i.e., 96.23% on the BoWFire [16] dataset, followed closely
by DFAN [5] with 95.00%, while the worst accuracy of
79.00% was obtained by LW-CNN [30]. While analyzing the
results indicate that our proposed technique exhibits greater
robustness compared to state-of-the-art approaches, including
EFDNet [4], DFAN [5] and EMNFire [37]. The proposed
OFAN shows convincing performance in terms of ACR and
efficiency. To verify this claim, comprehensive qualitative and
quantitative results are conducted followed by time complexity
to ensure its smooth execution over the edge devices. All the
empirical results are listed in Table III, IV, V, VI and VII.

Within the domain of fire detection, FD [4] dataset holds
a prominent position as a currently large scale publicly avail-
able fire benchmark. This dataset is ranked among the most
challenging for fire detection. By employing this particular
dataset, as both fire and non-fire classes share a similar
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Fig. 5. The objective of fire detection is to determine the presence of a fire. Certain unique scenarios pose challenges to fire detection. We conducted a visual
comparison of our OFAN on the newly proposed DiverseFire dataset. Correct classification results are highlighted in BLUE text, while incorrect classification
results are indicated by RED text.

visual appearance, EMNFire [37] attains the highest R value
of 0.98. Nevertheless, in terms of P, F1 score, and ACR
values, the OFAN outperforms state-of-the-art DL methods
with accuracy of 96.54%. The F1 serves as a comprehensive
metric that levels the considerations of both P and R. Amid
the analyzed methods, DFAN [5] demonstrates the next best
performance, at the same time the OFAN exhibits the best
performance. Overall, the proposed model excels at classifi-
cation of challenging fire scenes, as listed in the quantitative
analysis Table III. Furthermore, for the DiverseFire dataset

the proposed OFAN attains the highest P, R, F1 and ACR of
0.94, 0.95, 0.95, and 94.63%, respectively. Followed closely
by DFAN [5] which achieved 0.92, 0.93, 0.93, and 92.27%.
Although it seems that the difference is small, the proposed
OFAN has 21 times fewer trainable parameters, and has 6
times smaller footprint when compared with the second-best
performing method i.e., DFAN [5]. In summary the proposed
OFAN achieved 96.23%, 96.54% and 94.63% accuracy on
BoWFire, FD and the newly proposed DiverseFire dataset.



IEEE INTERNET OF THINGS JOURNAL 11

In
pu

t
A

ct
iv

at
io

n

GT: Fire Fire Fire Fire Fire Fire
OFAN: Fire Fire Fire Fire Fire Fire

Fig. 6. Qualitative analysis of OFAN for fire detection on distant objects in outdoor environment. Correct classification results are highlighted in BLUE text.
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Fig. 7. Qualitative analysis of OFAN for fire detection relevant to image size and resolution. Correct classification results are highlighted in BLUE text, while
incorrect classification results are indicated by RED text.

2) Qualitative Analysis: To assess the qualitative per-
formance of EFDNet [4], DFAN [5] and the proposed
OFAN based on localization and class activation, we con-
ducted an analysis. Fig. 5 presents the results, demonstrating
the robustness of the OFAN in detecting fire regions within
challenging scenes in comparison with other state-of-the-art.
Additionally, for every single test sample, we added feature
map based on the backbone and activation maps of the OFAN,
highlighting the most salient parts of the input image that
captured the model’s attention. Fig. 5 showcases the visual
outcomes of the OFAN for the most puzzled samples obtained
from the proposed DiverseFire dataset. The first, sixth and
eleventh row for each set represents the input images from
the newly proposed and challenging DiverseFire dataset. The
second and third row depicts the backbone feature maps and
activation maps for each class. While the last row represents
the predicted label via EFDNet [4], DFAN [5] and the pro-
posed OFAN. The first set of input images were correctly
classified and localized regions are highlighted with gradient-
weighted class activation mapping (Grad-CAM) heat maps via
OFAN, but EFDNet [4] misclassified the third sample as the
fire is quite fire and also occluded by plants. For the last
sample, EFDNet [4] and DFAN [5] both inferred inaccurate
class activation due to the complex scenario of the sample.

However, for some complex samples shown in the second
set of input images, misclassifications occur due to the pres-
ence of confusing patterns among the fire and other scenes,
making it difficult to distinguish accurately. For the first
sample EFDNet [4] confused it with Fire due to high orange
tint and fire like illumination in the background. In the second

set of input images of Fig. 5, it is apparent that the fire
scene was confused with a non-fire scenario by all models,
as evident from the feature map and activation the proposed
OFAN is focusing at the door alley. The third sample which
represents a non-fire scene that is, fire like clouds which is
really challenging for EFDNet [4], DFAN [5] and the proposed
OFAN to distinguish it properly is also misclassified as fire due
to visual similarity. Furthermore, the fourth sample which is
a fire scene is also incorrectly classified because there is a
road sign pole in front of the object of interest and secondly
this fire scene is has low-light conditions which makes it
extremely challenging as a fire scene. The last sample was
also incorrectly classified as non-fire as the model is focusing
on an ambulance which is in foreground while the vehicle on
fire is in the background and the lighting conditions are poor
which pose a significant challenge for the included EFDNet
[4], DFAN [5] and the proposed OFAN.

Although the third set of input images were correctly
classified by the proposed OFAN, the fire samples presented in
this row have low volume and spread of fire, depicting early-
stages of fire. In the first and fifth image the fire takes place
in bushes, if not detected at early-stages the consequences can
be devastating for both human and animals, while the third
fire image depicts fire in a laboratory if not distinguished in
time, can be hazardous to human lives due to the presence
of highly flammable chemicals. The fire in this sample looks
like a glass lamp that is why both EFDNet [4] and DFAN
[5] depicts incorrect label. Also, the last image which is a
cloudy image but tricky for the EFDNet [4] model due to
the orange color and flairs. These observations illustrate both



IEEE INTERNET OF THINGS JOURNAL 12

the capabilities and limitations of the OFAN in effectively
identifying and classifying fire regions within complex scenes.
The analysis presented in Fig. 5 provides compelling evidence
of the OFAN exceptional capabilities in accurately detecting
fire regions even in challenging conditions. The visual rep-
resentation clearly illustrates the model’s proficiency in this
regard. However, upon closer examination, certain images
within Fig. 5 exhibit instances where misclassification and
inaccurate localization occur; this is due in part to the similar
visual characteristics in both classes.

Furthermore, qualitative analysis of the proposed OFAN was
conducted related to distant objects in Fig. 6. The included
samples contain fire at a long range of approximately 30-
meter or more. OFAN localized the fire for the included
samples correctly. In another qualitative analysis related to
image resolution is depicted in Fig. 7. The figure showcases
one single early-stage fire image, the proposed OFAN was
tested with different levels of image size and resolution.
The proposed OFAN correctly labelled the image until the
resolution went so low that the channel and spatial features of
the input image are no longer like the original.

D. Ablation Study

We conducted ablation studies to identify the optimal
configuration for the newly proposed OFAN. These studies
involved exploring different combinations of attention modules
and evaluating the efficacy of the proposed OFAN attention
method across various composition. The results of these ex-
periments are provided in Table IV and are discussed in the
following subsections.

a) Impact of the Optimized Attention Module: To en-
hance the accuracy of fire scene classification and local-
ization on the newly proposed DiverseFire dataset, we in-
corporated the modified attention modules that is (OCA +
OSA) into the several lightweight baseline methods namely
Xception, EfficientNetB0, MobileNetV1, MobileNetV2, and
MobileNetV3Small. The results, as presented in Table IV,
indicates that the baseline CNN models with the optimized
attention modules outperformed the methods relying solely
on OSA and OCA deep features. This observation can be
attributed to the inherent challenges associated with fire clas-
sification, which surpasses the complexity of simple ImageNet
classification tasks. The integration of optimized attention
modules effectively improves the extraction of distinctive
features from the input sample, thereby contributing to the
improved accuracy of fire classification. Among the tested
combinations with baseline methods, the integration of OSA
and OCA features with a softmax classifier yielded the best
performance due to its superior feature extraction capabilities.
Additionally, a closer examination of Table IV reveals that
the OFAN achieves the highest overall results, whereas OCA
and OSA perform relatively poorly when coupled separately
with the baseline feature extractor. In summary, the incorpo-
ration of both attention modules, in conjunction with baseline
features, yields the most favorable outcomes in terms of
fire classification and localization on the newly proposed
DiverseFire dataset.

TABLE IV
PERFORMANCE COMPARISON AMONG VARIOUS STRUCTURES ON

DiverseFire. OCA DENOTES OPTIMIZED CHANNEL ATTENTION, OSA
REPRESENTS OPTIMIZED SPATIAL ATTENTION MODULES. THE BLUE

TEXT IMITATES THE BEST PERFORMANCE, WHILE THE RED TEXT
IMITATES THE SECOND-BEST PERFORMANCE.

Baseline Methods OCA OSA P R F1 ACR

Xception
- ✓ 0.81 0.83 0.81 81.54
✓ - 0.82 0.82 0.83 82.27
✓ ✓ 0.84 0.86 0.84 84.67

EfficientNetB0
- ✓ 0.88 0.86 0.85 86.39
✓ - 0.90 0.87 0.89 88.64
✓ ✓ 0.91 0.92 0.92 91.79

MobileNet
- ✓ 0.86 0.80 0.83 82.50
✓ - 0.85 0.83 0.84 84.16
✓ ✓ 0.87 0.83 0.85 85.00

MobileNetV2
- ✓ 0.90 0.89 0.89 89.33
✓ - 0.92 0.91 0.91 91.41
✓ ✓ 0.93 0.92 0.92 92.50

MobileNetV3Small
- ✓ 0.91 0.90 0.90 90.43
✓ - 0.93 0.92 0.93 92.66
✓ ✓ 0.94 0.95 0.95 94.63

TABLE V
FIVE-FOLD CROSS VALIDATION ACCURACIES OF OFAN FOR THE

INCLUDED DATASETS. THE AVERAGE TEST ACCURACIES ARE LISTED IN
BLUE TEXT.

Fold Dataset

BoWFire FD DiverseFire

1 0.9116 0.9369 0.9204
2 0.9243 0.9341 0.9137
3 0.9067 0.9288 0.9210
4 0.9232 0.9313 0.9121
5 0.9174 0.9283 0.9187

Average Test Accuracy 0.9166 0.9318 0.9171

We conducted experiments focusing on the OFAN model
with different settings: A) Integration of OCA with
MobileNetV3Small, B) Integration of OSA with Mo-
bileNetV3Small, and C) Integration of both OCA and OSA
with the MobileNetV3Small, referred to as OFAN. We exclu-
sively evaluated the performance of the optimized attention
modules due to the limited robustness observed with and with-
out the module. The experimental evaluations, as presented in
Table IV, reveal that the individual integration of OSA with the
baseline performs relatively poor as compared to OCA. In ad-
dition, the integration of OCA yielded better results compared
to the OSA in terms of ACR from 90.43% to 92.66%. Notably,
when both modified attention modules are integrated with the
baseline method exhibited the highest performance among the
evaluated combinations. OFAN surpassed MobileNetV3Small
+ OCA by approximately 2.00% in terms of ACR, as depicted
in Table IV. Although, the decisive effect of optimized atten-
tion module in OFAN yields the best results, when coupled
with MobileNetV2 and EfficientNetB0 yields second-best P
and R values. Overall, the OFAN model achieved the best
performance among all the possible combinations, showcasing
the efficiency and effectiveness of the proposed approach.

b) K-Fold Cross Validation Evaluation: To further eval-
uate the strength of the proposed OFAN and the included
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TABLE VI
TEN-FOLD CROSS VALIDATION ACCURACIES OF OFAN FOR THE INCLUDED
DATASETS. THE AVERAGE TEST ACCURACIES ARE LISTED IN BLUE TEXT.

Fold Dataset

BoWFire FD DiverseFire

1 0.8907 0.9171 0.8940
2 0.8944 0.9139 0.8971
3 0.8884 0.9012 0.8966
4 0.8826 0.9151 0.9032
5 0.8802 0.9175 0.8980
6 0.8961 0.9188 0.9046
7 0.8713 0.9093 0.8880
8 0.8836 0.9142 0.8977
9 0.8851 0.9074 0.8958
10 0.8768 0.9162 0.8897

Average Test Accuracy 0.8849 0.9130 0.8964

TABLE VII
THE PARAMETERS, MODEL SIZE, MFLOPS, AND TIME COMPLEXITY OF THE

PROPOSED OFAN AND OTHER STATE-OF-THE-ART. THE BLUE TEXT
INDICATES THE BEST PERFORMANCE AND THE RED TEXT INDICATES THE

SECOND-BEST PERFORMANCE.

Method Parameters (M) ↓ Size (MB) ↓ MFLOPs ↓ Frames Per Second ↑

RPi 4B+ CPU

ResNetFire [19] 25.60 98.00 3800 1.07 11.70
VGGFire [19] 138.4 528.00 15500 0.60 10.02
ViT-B/32 [12] 86.00 345.63 8560 - 21.94
DeepFire [26] 143.7 549.00 19670 0.45 8.66
LW-CNN [30] 3.31 25.3 9.6 16.02 27.93
E-FireNet [11] 7.63 76.3 7649 3.71 18.49
EMNFire [37] 3.47 13.23 300 5.0 21.25
EFDNet [4] 23.90 4.80 1130 - 4.43
DFAN [5] 22.47 83.63 141.25 0.83 12.98
OFAN 1.02 12.2 19.42 8.37 25.50

datasets, we conducted a thorough assessment by subjecting
it to both 5-fold and 10-fold cross-validation across. The out-
comes of the cross-validation analysis reveal that OFAN main-
tains a robust performance across all folds, despite a marginal
decline in average test accuracy when dealing with smaller
training samples within each fold compared to the entire
dataset. This sustained level of performance underscores the
resilience and dependability of the OFAN model. For a more
detailed breakdown of the cross-validation results, please refer
to Table V and VI, which provide a comprehensive summary
of the 5-fold and 10-fold cross-validation accuracies for each
dataset, along with the average test accuracy computed across
the 5 and 10-folds. These findings further substantiate the
efficacy of OFAN model in effectively handling complex
datasets, consistently delivering robust results that hold prac-
tical significance in real-world fire detection.

E. Time Complexity Analysis

In order to evaluate the proposed model, we compared it
with several state-of-the-art methods in terms of parameters,
model size, mega-floating-point operations (MFLOPs), and
inference time. These factors play a pivotal role in determining
the inference speed of DL methods. For the comparison, we
selected nine state-of-the-art models namely ResNetFire [19],
VGGFire [19], ViT-B/32 [12], DeepFire [26], LW-CNN [30],
E-FireNet [11], EMNFire [37], EFDNet [4], and DFAN [5].
We analyzed the computational complexity by examining the

TABLE VIII
THE PARAMETERS, MODEL SIZE, MFLOPS, AND TIME COMPLEXITY OF THE
MODELS HAVING MORE THAN 90% ACCURACY AGAINST THE PROPOSED

OFAN. THE BLUE TEXT DENOTES THE BEST PERFORMANCE AND THE RED
TEXT DENOTES THE SECOND-BEST PERFORMANCE.

Method Parameters (M) ↓ Size (MB) ↓ MFLOPs ↓ Frames Per Second ↑

RPi 4B+ CPU

EMNFire [37] 3.47 13.23 300 5.0 21.25
EFDNet [4] 23.90 4.80 1130 - 4.43
DFAN [5] 22.47 83.63 141.25 0.83 12.98
OFAN 1.02 12.2 19.42 8.37 25.50

TABLE IX
ANALYSIS OF OFAN FOR A HIGH SPEED VEHICLE OVER A 30-METER

DISTANCE AND THE EXTRACTED FRAMES VIA RPI 4B+. THE RESULTS
FOR HIGH SPEED IS HIGHLIGHTED IN BLUE TEXT.

Speed (Kph) Distance Covered (Seconds) Extracted Frames

25 4.00 33.48
50 2.16 18.07
75 1.07 8.95

100 0.83 6.94
125 0.60 5.02
150 0.55 4.65

MFLOPs and the model size on the disk in MB for each
model as listed in Table VII. For evaluation purposes, we
ran experiments with two settings: 1) Intel Core i9-12900K
clocked at 5.0 GHz coupled with 64GB Quad Channel Con-
figuration RAM clocked at 2,400 megahertz (MHz), and 2)
Raspberry Pi model 4 (B+) system-on-chip (SoC) is powered
by a 64-bit quad-core Cortex-A72 processor with a clock
speed of 1.5 GHz and is accompanied by a generous four
GB of onboard main memory. In the large model category
DeepFire [26] exhibits higher MFLOPs and a larger model
size followed by VGGFire [19], ResNetFire [19], and ViT-
B/32 [12]. Similarly, for lightweight models LW-CNN [30]
has the lowest number of MFLOPs that is, 9.6 but EMNFire
[37] has a smaller size of 13.23 MB. Additionally, in attention-
based model EFDNet [4] and DFAN [5] has 1130 and 141.25
MFLOPs respectively, while the proposed OFAN method has
19.42 MFLOPs beating the state-of-the-art by a big margin
in terms of model complexity, and number of parameters.
During the experiments, we observed that the performance
limitations, computational complexity, and slower FPS values
of EFDNet [4] and DFAN [5] make them less suitable for
real-world implementation. Although EFDNet [4] and LW-
CNN [30] have smaller model sizes, their ACR values are
lower than those of OFAN. While in terms of inference speed
LW-CNN [30] achieved higher values due to its low number
of MFLOPs. Additionally, the proposed OFAN inference was
hypothetically tested for a high-speed vehicle over a 30-meter
distance, the model extracted approximately 4.65 frames. A
single frame proved sufficient for detecting fire on a high-
speed vehicle. The analytical study is listed in Table IX.

In summary, the proposed OFAN outperforms other state-of-
the-art studies in terms of parameters, ACR and performs the
second-best in terms of size on disk, MFLOPs and FPS when
compared with all deep models, on the other hand our method
comes on top when compared with models having more
than 90% accuracy details of which are listed in Table VIII.
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Due to the usage of depthwise separable convolutions, novel
activation functions, and architectural enhancements, resulting
in a compact model that consumes less memory, offers faster
inference times. Additionally, the optimized attention module
which mainly focuses on the most important and pertinent
features of an input image, the proposed OFAN approach
achieves higher performance.

V. CONCLUSION

In the CV, the utilization of CNNs has significantly im-
proved the efficacy of fire detection models. Although, existing
CNN-based fire detection approaches exhibit certain disadvan-
tages. They tend to miss-classify fire scenes in challenging and
uncertain environments, and their large model sizes and high
time complexities make them unsuitable for deployment on
RCDs. In order to deal and offset these challenges, we propose
a fire detection framework that employs a MobileNetV3Small
model coupled with optimized CA and SA mechanisms.
Compared with existing CNN-based fire detection methods,
our method offers a better balance of accuracy, model size,
and inference speed. Aside from its relatively small size, the
model is highly suitable for industrial applications of vision-
based fire detection techniques. In future, we aim to use object
detection techniques and semantic segmentation techniques,
which will enables us to accurately identify the fire area in
the input samples.
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based fire and flame detection method in video,” Machine Vision and
Applications, vol. 23, pp. 1103–1113, 2012.

[18] W. Lee, S. Kim, Y.-T. Lee, H.-W. Lee, and M. Choi, “Deep neural
networks for wild fire detection with unmanned aerial vehicle,” in 2017
IEEE international conference on consumer electronics (ICCE). IEEE,
2017, pp. 252–253.

[19] J. Sharma, O.-C. Granmo, M. Goodwin, and J. T. Fidje, “Deep convo-
lutional neural networks for fire detection in images,” in Engineering
Applications of Neural Networks: 18th International Conference, EANN
2017, Athens, Greece, August 25–27, 2017, Proceedings. Springer,
2017, pp. 183–193.

[20] W. Mao, W. Wang, Z. Dou, and Y. Li, “Fire recognition based on multi-
channel convolutional neural network,” Fire technology, vol. 54, pp.
531–554, 2018.

[21] Z. Wang, Z. Wang, H. Zhang, and X. Guo, “A novel fire detection
approach based on cnn-svm using tensorflow,” in Intelligent Computing
Methodologies: 13th International Conference, ICIC 2017, Liverpool,
UK, August 7-10, 2017, Proceedings, Part III 13. Springer, 2017, pp.
682–693.

[22] X. Wu, X. Lu, and H. Leung, “An adaptive threshold deep learning
method for fire and smoke detection,” in 2017 IEEE International
Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2017,
pp. 1954–1959.

[23] L. Shi, F. Long, C. Lin, and Y. Zhao, “Video-based fire detection
with saliency detection and convolutional neural networks,” in Advances
in Neural Networks-ISNN 2017: 14th International Symposium, ISNN
2017, Sapporo, Hakodate, and Muroran, Hokkaido, Japan, June 21–26,
2017, Proceedings, Part II 14. Springer, 2017, pp. 299–309.

[24] C. Hu, P. Tang, W. Jin, Z. He, and W. Li, “Real-time fire detection
based on deep convolutional long-recurrent networks and optical flow
method,” in 2018 37th Chinese Control Conference (CCC). IEEE, 2018,
pp. 9061–9066.

[25] X. Shu, L. Zhang, G.-J. Qi, W. Liu, and J. Tang, “Spatiotemporal co-
attention recurrent neural networks for human-skeleton motion predic-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 44, no. 6, pp. 3300–3315, 2021.

[26] A. Khan, B. Hassan, S. Khan, R. Ahmed, and A. Abuassba, “Deepfire:
A novel dataset and deep transfer learning benchmark for forest fire
detection,” Mobile Information Systems, vol. 2022, 2022.

[27] Keras, “Keras Applications,” https://keras.io/api/applications/, 2020,
(Online; accessed March 22, 2023).

[28] J. Tang, X. Shu, R. Yan, and L. Zhang, “Coherence constrained graph
lstm for group activity recognition,” IEEE transactions on pattern
analysis and machine intelligence, vol. 44, no. 2, pp. 636–647, 2019.

[29] J. Park, S. Woo, J.-Y. Lee, and I. S. Kweon, “Bam: Bottleneck attention
module,” arXiv preprint arXiv:1807.06514, 2018.

[30] H. Yar, T. Hussain, Z. A. Khan, D. Koundal, M. Y. Lee, S. W. Baik et al.,
“Vision sensor-based real-time fire detection in resource-constrained iot
environments,” Computational intelligence and neuroscience, vol. 2021,
2021.

[31] A. Sharma, “Fire Detection Dataset,” https://www.kaggle.com/general/
181150, 2020, (Online; accessed March 22, 2023).

[32] DeepQuestAI, “Fire Detection Dataset,” https://github.com/
DeepQuestAI/Fire-Smoke-Dataset, 2020, (Online; accessed March
22, 2023).

[33] A. Saied, “Fire Dataset,” https://www.kaggle.com/datasets/phylake1337/
fire-dataset?select=fire dataset, 2020, (Online; accessed March 22,
2023).

[34] Carlo, “Fire and smoke.zip,” https://www.kaggle.com/datasets/carlo946/
fire-and-smokezip, 2020, (Online; accessed March 22, 2023).

[35] P. Foggia, A. Saggese, and M. Vento, “Real-time fire detection for video-
surveillance applications using a combination of experts based on color,

https://keras.io/api/applications/
https://www.kaggle.com/general/181150
https://www.kaggle.com/general/181150
https://github.com/DeepQuestAI/Fire-Smoke-Dataset
https://github.com/DeepQuestAI/Fire-Smoke-Dataset
https://www.kaggle.com/datasets/phylake1337/fire-dataset?select=fire_dataset
https://www.kaggle.com/datasets/phylake1337/fire-dataset?select=fire_dataset
https://www.kaggle.com/datasets/carlo946/fire-and-smokezip
https://www.kaggle.com/datasets/carlo946/fire-and-smokezip


IEEE INTERNET OF THINGS JOURNAL 15

shape, and motion,” IEEE TRANSACTIONS on circuits and systems for
video technology, vol. 25, no. 9, pp. 1545–1556, 2015.

[36] D. Zhang, S. Han, J. Zhao, Z. Zhang, C. Qu, Y. Ke, and X. Chen, “Image
based forest fire detection using dynamic characteristics with artificial
neural networks,” in 2009 International Joint Conference on Artificial
Intelligence. IEEE, 2009, pp. 290–293.

[37] K. Muhammad, S. Khan, M. Elhoseny, S. H. Ahmed, and S. W. Baik,
“Efficient fire detection for uncertain surveillance environment,” IEEE
Transactions on Industrial Informatics, vol. 15, no. 5, pp. 3113–3122,
2019.

Naqqash Dilshad (Student Member, IEEE) received
his Bachelor’s degree in Computer Sciences from
Abdul Wali Khan University, Mardan, Pakistan in
2014. He acknowledged his Master’s degree in Com-
puter Sciences from COMSATS University, Islam-
abad, Pakistan in 2018. Currently, he is enrolled in
a Ph.D. program at Sejong University, Seoul, South
Korea, and serving as a Graduate Research Assistant
at Software Engineering and Security Lab (SESLab).
His major research domains are Video Analytics,
Image Processing, Pattern Recognition, Object De-

tection, Scene Understanding, Deep Learning for Multimedia Data understand-
ing, IoT, IIoT, and Resource-Constrained Programming. He has published
several articles in peer-reviewed journals and conferences in reputed venues
including IEEE INTERNET OF THINGS JOURNAL, Elsevier JOURNAL
OF NETWORKS and COMPUTER APPLICATIONS, ELSEVIER DIGITAL
COMMUNICATIONS AND NETWORKS, TSP COMPUTER SYSTEMS
SCIENCE & AND ENGINEERING, MDPI SENSORS, MDPI SMART
CITIES, MDPI LIFE, IEEE INTERNATIONAL CONFERENCE ON INFOR-
MATION AND COMMUNICATION TECHNOLOGY CONVERGENCE
(ICTC), IEEE INTERNATIONAL CONFERENCE ON SMART INTERNET
OF THINGS (SmartIoT) and ASIA PACIFIC INTERNATIONAL CONFER-
ENCE ON INFORMATION SCIENCE AND TECHNOLOGY (APIC-IST).

Mr. Dilshad actively participates in the peer review process, contributing
as a Reviewer for various reputable journals, such as IEEE INTERNET OF
THINGS JOURNAL, IEEE COMMUNICATIONS LETTERS, SPRINGER
INTERNATIONAL JOURNAL OF COMPUTER VISION, MDPI Sensors,
MDPI Fire, MDPI Drones, MDPI Sustainability, TSP COMPUTER SYS-
TEMS SCIENCE & ENGINEERING, TSP COMPUTERS, MATERIALS &
CONTINUA and TSP INTELLIGENT AUTOMATION & SOFT COMPUT-
ING).

Samee Ullah Khan (Student Member, IEEE) re-
ceived the Ph.D. degree in software convergence
from Sejong University, Seoul, South Korea, in
2023. He is currently a Senior Research Fellow with
the Intelligent Media Laboratory, Sejong University.
His main research interests are multimedia data anal-
ysis, including person re-identification, action and
activity recognition, video summarization, and time
series data analysis for power generation and con-
sumption prediction/forecasting. He has published
several articles in peer-reviewed journals in reputed

venues, including, IEEE INDUSTRIAL INFORMATICS, IEEE INTERNET
OF THINGS JOURNAL, IEEE MULTIMEDIA, IEEE JOURNAL OF SE-
LECTED TOPICS IN SIGNAL PROCESSING, ENERGY AND BUILD-
INGS, ALEXANDRIA ENGINEERING JOURNAL, RENEWABLE AND
SUSTAINABLE ENERGY REVIEWS, INTERNATIONAL JOURNAL OF
INTELLIGENT SYSTEMS, and SPRINGER MULTIMEDIA TOOLS AND
APPLICATIONS. He provides professional review services in various reputed
journals, including IEEE INTERNET OF THINGS JOURNAL, IEEE OPEN
JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, IEEE
TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORK-
ING, IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, ASCJ.

Norah Saleh Alghamdi is an Associate Professor
in the Department of Computer Sciences at Princess
Nourah bint Abdulrahman University (PNU) in
Riyadh, Saudi Arabia. Serving as Vice-Dean of
Quality Assurance since 2019, she currently directs
business and projects management in her college.
She holds a Bachelor’s in Computer Science from
Taif University and a Master’s/Ph.D. from La Trobe
University, Australia. Her research spans data min-
ing, machine learning, text analytics, image classifi-
cation, bio-engineering, and deep learning. Actively

engaged in international conferences, she has authored/coauthored numerous
articles in reputable journals. She is also a valued member of reviewer
committees for IEEE, MDPI, Emerald, and Elsevier journals. Her multifaceted
contributions highlight her dedication to advancing computer science educa-
tion and research.

Tarik Taleb (Senior Member, IEEE) received the
B.E. degree (with Distinction) in information engi-
neering and the M.Sc. and Ph.D. degrees in informa-
tion sciences from Tohoku University, Sendai, Japan,
in 2001, 2003, and 2005, respectively.

He is currently a Professor with the Center of
Wireless Communications, The University of Oulu,
Oulu, Finland, where he is the Founder and the
Director of the MOSA!C Lab. He was a Professor
with the School of Electrical Engineering, Aalto
University, Espoo, Finland, from October 2014 and

December 2021. Prior to that, he was working as a Senior Researcher and a
3GPP Standards Expert with NEC Europe Ltd., Heidelberg, Germany. Before
joining NEC and till March 2009, he worked as an Assistant Professor with
the Graduate School of Information Sciences, Tohoku University in a lab
fully funded by KDDI. He worked as a Research Fellow with the Intelligent
Cosmos Research Institute, Sendai, from October 2005 to March 2006. His
research interests lie in the field o telco cloud, network softwarization and
network slicing, AI-based SW-defined security, immersive communications,
mobile multimedia streaming, and next generation mobile networking.

JaeSeung Song (Senior Member, IEEE) is a profes-
sor in the Department of Computer & Information
Security Sejong University. He holds the position of
Technical Plenary Vice Chair of the oneM2M global
IoT standards initiative. Prior to his current position,
he worked for NEC Europe Ltd. and LG Electronics
in various positions. He received a Ph.D. at Imperial
College London in the Department of Computing,
United Kingdom. He holds B.S. and M.S. degrees
in computer science from Sogang University. His
research interests span the areas of beyond 5G

and 6G, AI/ML enabled network systems, software engineering, networked
systems and security, with focus on the design and engineering of reliable
and intelligent IoT/M2M platforms. He also holds leadership roles in several
journals and conferences such as an associate editor of IEEE INTERNET
OF THINGS JOURNAL, an IoT series editor of IEEE COMMUNICATIONS
STANDARDS MAGAZINE and an IoT track chair of IEEE CONFERENCE
ON STANDARDS FOR COMMUNICATIONS AND NETWORKING.


	Introduction
	Related Work
	ML-based Methods
	DL-based Methods

	The Proposed Methodology
	Pre-Processing
	Motivation for using MobileNetV3Small for Fire Detection
	Deep Discriminative Feature Extraction
	Optimized Attention Mechanism

	Experimental Results
	System Configuration and Implementation Details
	Datasets and Evaluation Metrics
	Performance Evaluation of OFAN
	Quantitative Analysis
	Qualitative Analysis

	Ablation Study
	Time Complexity Analysis

	Conclusion
	References
	Biographies
	Naqqash Dilshad
	Samee Ullah Khan
	Norah Saleh Alghamdi
	Tarik Taleb
	JaeSeung Song


