
5G Slice Mutation to Overcome Distributed Denial
of Service Attacks Using Reinforcement Learning

Amir Javadpour∗, Forough Ja’fari§, Tarik Taleb¶, Chafika Benzaı̈d‡

∗ICTFICIAL Oy, Espoo, Finland
‡Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland

§Department of Computer Engineering, Sharif University of Technology, Iran
¶Faculty of Electrical Engineering and Information Technology, Ruhr University Bochum, Bochum, Germany

∗a.javadpour87@gmail.com (Corresponding Author) §azadeh.mth@gmail.com
¶tarik.taleb@rub.de ‡chafika.benzaid@oulu.fi

Abstract—5G slices are susceptible to indirect Distributed
Denial of Service (DDoS) attacks, where overwhelming traffic
directed to one slice can also disrupt other slices sharing the
same infrastructure Many current mitigation methods rely on a
detection phase, which may not be effective against unknown
or sophisticated attacks. Moving Target Defense (MTD) is a
security mechanism that invalidates the adversary’s collected
information, and it can be deployed without the detection phase.
In this paper, we propose a Slice Mutation technique based
on Reinforcement Learning (SMRL) that reduces the impact
of DDoS attacks on 5G slices while keeping the number of
allocated slices acceptable. SMRL proposes a general RL model
that considers ternary and ranking numbers to improve learning
performance. We tested SMRL on computer networks attacked
by a real botnet called Mirai and assessed its performance using
various measures, including a new functionality analysis method
The results indicate that SMRL decreases the number of slices
impacted by a DDoS attack and enhances the distribution of slices
among infrastructure resources by 46% and 20%, respectively.

Index Terms—5G networks, Moving Target Defense (MTD),
Distributed Denial of Service (DDoS), Network security, Rein-
forcement Learning.

I. INTRODUCTION

Network slicing divides a physical network into multiple
virtual networks to handle user requests for custom resources.
In 5G networks, each slice is logically separated from the other
slices [1, 2, 3, 4]. However, they share a common substrate
network, which can be the core network in 5G. This shared
infrastructure makes the impact of Denial of Service (DoS)
and Distributed DoS (DDoS) attacks, in which the adversary
tries to send flooded traffic toward a specific target to render
it unavailable, more destructive [5, 6, 7]. Consider a scenario
where two slices, namely a and b, are assigned to a single
physical node C, and the adversary intends to target slice
a. In this case, when the adversary floods the network with
traffic intended for slice a, the traffic is sent to the physical
node C, which ultimately results in the degradation of the
overall functionality of C. As a consequence, not only does
the targeted slice a suffer, but slice b is also affected by the
attack.

Most existing mitigation mechanisms for DoS/DDoS at-
tacks rely on detecting malicious activities first. However,

due to the increasing sophistication of attacker behavior and
the rise of zero-day attacks, these detection methods often
suffer from a high false negative rate, meaning many attacks
go undetected. Consequently, relying solely on diagnostic-
based solutions is not always sufficient. This highlights the
importance of mitigation techniques such as Moving Target
Defense (MTD) that do not depend on reconnaissance. MTD
works by constantly changing the attack surface, making any
information the attacker collects obsolete and reducing the
chance of a successful attack.[8, 9]. In the case of network
slices, it can be defined as mutating the slices to decrease
the impact of DDoS attacks. To our knowledge, none of the
existing research has considered slice mutation as a technique
for securing 5G networks [10, 11, 12].

This paper proposes a novel MTD method based on slice
mutation, utilizing Reinforcement Learning (RL) to find the
optimal mutation scenario. The proposed MTD method is re-
ferred to as SMRL, which stands for Slice Mutation technique
based on Reinforcement Learning. SMRL has two main goals:
(1) reducing the impact of a indirect DDoS attacks and (2)
keeping the number of successfully allocated slices acceptable.
A general RL model that different core networks can use is
proposed. This model considers the remaining CPU capacity
and the number of allocated slices for each physical machine.
However, these features are converted into ternary and ranking
numbers to enhance the model’s learning performance. The
main contributions of this paper are:

• Proposing a novel slice mutation method for protect-
ing 5G slices against DDoS attacks and reducing their
impact.
This paper introduces a new RL-based Slice Mutation
(SMRL) technique to protect 5G network slices against
distributed DDoS attacks. In traditional 5G infrastructure,
the shared physical platform supporting multiple virtual
slices makes the system vulnerable to indirect DDoS
attacks. When one slice is targeted, the effect of the attack
can spread to other slices with the same infrastructure,
compromising their availability. To address this issue, the
SMRL approach dynamically allocates slices in physical



resources through remapping, reducing the impact of
attacks on untargeted slices. By constantly moving slices
around, this method implements the MTD mechanism
effectively, making it difficult for attackers to maintain
their position. This approach doesn’t rely on traditional
detection techniques and provides an active layer of
defense.

• Proposing a general RL model that, once trained, can
be utilized by different core networks.
The RL model learns optimal mutation scenarios that bal-
ance two key goals: minimizing the impact of DDoS at-
tacks and ensuring an acceptable level of slice allocation.
What distinguishes this RL model is its generality, which
allows it to be adapted and trained for different network
environments without extensive modifications. The model
uses a combination of triple representations for remaining
CPU capacities and ranking numbers for the currently
allocated slices on each physical machine to increase
learning performance. This transformation simplifies the
learning process and enables faster convergence and more
effective decision-making. The ability of the RL model to
adapt to different core networks makes it a flexible and
scalable solution for mitigating DDoS risks in 5G and
beyond.

• Considering multiple metrics for evaluating the pro-
posed method performance and introducing novel
evaluation metrics.
This paper also introduces new evaluation criteria de-
signed to evaluate the effectiveness of the proposed
SMRL method. Unlike conventional DDoS mitigation
approaches that only focus on identifying or isolating
attacks, SMRL is assessed on several fronts, including
the proportion of affected slices, the proportion of re-
quests accepted, and the distribution of requests across
infrastructure resources. These metrics provide a more
comprehensive view of system performance by measuring
the impact of DDoS attacks and ensuring network effi-
ciency and resource utilization are maintained. Simulation
results performed on a network attacked by a real botnet
(Mirai) show significant improvements made by SMRL.

The following sections of this paper delve into mitigating
DDoS attacks against 5G slices. To begin with, a review of
the existing research on the various mitigation methods is pre-
sented in section II. The threat model and network models that
form the basis of the proposed solution are explained in detail
in section III. The proposed MTD method and its intricate
RL model are described in depth in section IV. Additionally,
section V comprehensively analyzes the proposed solution’s
effectiveness and performance. Finally, the paper concludes
with section VI, summarizing this research’s key findings and
contributions.

II. RELATED WORK

This section reviews the research on securing the network
slices against DoS/DDoS attacks. Thantharate et al. [13] have
proposed a secure framework for 5G networks, in which the
end users must first authenticate and then access the slices.
This authentication process ensures that malicious users cannot
access the critical slices. To ensure the security and safety of
the network, we utilize advanced deep neural network learning
algorithms to monitor the traffic behavior of each user. This
allows for the detection of any anomalous patterns that may
indicate a potential security threat. By continuously analyzing
and learning from user traffic, our system can identify and
respond to potential threats in real-time, keeping the network
and its users safe and secure. Kuadey et al. [14] have also
utilized a deep learning method to classify the network traffic
toward the slices as normal and malicious. If a traffic flow is
detected as a DDoS attack, it is blocked to prevent its access
to the slices. Another learning model is proposed by Bousalem
et al. [15], which detects the DDoS traffic and then enforces
the related security policies using software-defined networking
concepts. When a malicious user is detected, its traffic will be
forwarded to a sinkhole-type slice to remove it from the critical
slices. The DDoS attack against 5G slices is also detected
by the prediction model proposed by Moudoud et al. [16].
This model collects the users’ activity history and classifies
them into legal, suspicious, and malicious based on the Markov
stochastic process. The malicious activities are then blocked,
and the suspicious ones are carefully monitored. Niu et al. [17]
suggests blocking a slice that is the target of traffic load higher
than a specific threshold.

The research we previously reviewed is based on detection
and requires a detection phase to address DDoS attacks.
These methods have limitations in dealing with zero-day
(i.e., unknown) and sophisticated attacks because they rely on
previously collected datasets. Our focus is on methods that
depend on the detection phase.Sattar [18] have considered
slice isolation to mitigate DDoS attacks. In allocating the
slices on the physical network, the objective is to maximize
their separation. ObSI (Optimization-based Slice Isolation)
becomes ineffective in high-load conditions due to the lim-
itations of available resources. When there are many slice
requests, isolating each slice on separate physical machines
becomes increasingly difficult because the system must handle
more slices than its resources can fully support. As the load
increases, multiple slices are forced to share the same physical
infrastructure, undermining the isolation. If a DDoS attack
targets one slice, the lack of isolation allows the attack to
affect other slices on the same machine. Consequently, the
optimization algorithm can only ensure proper isolation when
there are fewer requests, but it cannot maintain this isolation
under heavy load.

The mentioned limitations of detection-based and isolation-
based works, which are summarized in Table I, motivate us
to use more powerful techniques, such as MTD, to overcome
them.



TABLE I
A SUMMARY OF THE RESEARCH TO MITIGATE DDOS ATTACKS AGAINST 5G SLICES.

Reference Year Main Idea Limitation
Thantharate et al. [13] 2020 Authenticating the users and monitoring the traffic to detect anomalies

Kuadey et al. [14] 2021 Classifying the traffic into normal and malicious, and blocking the malicious class Dependency
Bousalem et al. [15] 2022 Detecting the malicious traffic and forwarding it to a sinkhole-type slice on the
Moudoud et al. [16] 2020 Collecting users’ activities log and blocking the malicious activities detection phase

Niu et al. [17] 2022 Blocking the slice which is the target of high load traffic
Sattar, Javadpour et al. [18, 19] 2019,2023 Performing slice isolation to reduce the impact of DDoS attacks Non-scalability

III. PROBLEM DEFINITION

In a practical scenario, an adversary can gather information
about which machine in the main network has the most
allocated sectors through several detection techniques. A traffic
analysis method involves monitoring data flow between end
devices and core network machines to infer which machines
carry more load and suggest more cuts. Additionally, an
adversary can exploit vulnerabilities in network protocols or
management interfaces, such as insecure Application Program-
ming Interfaces (APIs), to extract resource allocation details.
Social engineering or phishing attacks targeting administrators
or system logs can also provide insights into the distribution of
network slicing. In our specified threat model, the adversary
is situated on an end device and has compromised several
other end devices to form an army. Once the army is fully
assembled, the adversary instructs them to send a large amount
of traffic towards a machine in the core network. This attack
is repeated over time. The adversary’s target is the machine
with the most allocated resources. This greedy behavior of the
adversary is also noted in a publication by Niu et al. [17].

Now, we explain the network model to formulate the
problem this paper aims to solve. We can model the network
as N = {P,R,A}, where P and R are the set of physical
machines and current active slice requests, and A is a matrix
that indicates the allocation of each request on each physical
machine. We have P = {p1, p2, . . . , pP }, where P is the total
number of physical machines in the core network and pi is
the CPU capacity of the ith physical machine. We also have
R = {r1, r2, . . . , rR}, where R is the total number of active
slices and ri is the required CPU capacity of the ith slice
request. It is worth noting that we are not focusing on the
bandwidth constraints in this paper. So, we have not considered
the links features in the defined network model. A is a binary
matrix of P × R (i.e., with P rows and R columns), where
the element in the ith row and the jth column, a(i,j), is one
if the jth slice is located on the ith physical machine. If a
request is not allocated on any of the physical machines, we
use the notation of ϕ in this matrix. Based on this definition,
we have at most a single one in each column of A.

A sample core network, α, with nine active slices is
illustrated in Figure 1. For this network, we have P =
{7, 5, 4, 4, 5} and R = {3, 3, 2, 2, 1, 3, 2, 1, 1}. The A value

p1 = 7p1 = 7p1 = 7 p2 = 5p2 = 5p2 = 5 p3 = 4p3 = 4p3 = 4

p4 = 4p4 = 4p4 = 4 p5 = 5p5 = 5p5 = 5

r2 = 3r2 = 3r2 = 3

r7 = 2r7 = 2r7 = 2

r4 = 2r4 = 2r4 = 2

r6 = 3r6 = 3r6 = 3 r1 = 3r1 = 3r1 = 3

r8 = 1r8 = 1r8 = 1

r3 = 2r3 = 2r3 = 2

r9 = 1r9 = 1r9 = 1

r5 = 1r5 = 1r5 = 1

Fig. 1. A sample core network, α, with nine active slices.

is also presented in Equation 1.

A =


0 1 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1

 (1)

Now, we define some functions related to this model. The
slic(N , i) function returns the number of slices that are
allocated on the ith physical machine. We can calculate this
function using Equation 2.

slice(N , i) =

R∑
j=1

a(i,j) (2)

max(N ) is the highest number of slices that are allocated on
a single machine. The calculation of this function is presented
in Equation 3.

max(N ) = max
1≤i≤P

slice(N , i) (3)

For calculating the consumed CPU capacity of the ith physical
machine, con(N , i) is defined. It is calculated by Equation 4.

con(N , i) =

R∑
j=1

a(i,j)×ri (4)



TABLE II
SOME OF THE NUMERICAL VALUES OF THE DEFINED FUNCTION FOR

FIGURE 1

function i = 1i = 1i = 1 i = 2i = 2i = 2 i = 3i = 3i = 3 i = 4i = 4i = 4 i = 5i = 5i = 5
slic(N , i) 3 1 2 0 3
max(N ) 3
con(N , i) 7 3 4 0 4
rem(N , i) 0 2 0 4 1
aloc(N , i, 7) 1 1 0 1 0
suc(N , i) 1 1 1 1 1
sup(N ) 9

rem(N , i) is a function that gets the physical machine index
and returns its remaining CPU capacity. It can be calculated
using the con() function as Equation 5.

rem(N , i) = pi − con(N , i) (5)

Now, we define a binary function, aloc(N , i, j), that returns
one if the jth request can be allocated on the ith physical
machine. For calculating aloc(), we can use Equation 6.

aloc(N , i, j) =


1, If a(i,j) = 1

1, Else if rem(N , i) ≥ rj

0, Otherwise = 0

(6)

We define another binary function, suc(N , i), that returns one
if the ith request is successfully allocated on a machine. We
can use Equation 7 to calculate suc(N , i).

suc(N , i) =

{
1, If ∃j : a(j,i) = 1

0, Otherwise = 0
(7)

Finally, sup(N ) is the total number of active slices that are
successfully located on a physical machine, which is calculated
by Equation 8.

sup(N ) =

N∑
i=1

suc(N , i) (8)

Table II presents some of the numerical values of the defined
functions for the illustrative example in Figure 1.

Based on defined notations and functions, which are summa-
rized in Table III, the problem this paper aims to solve is ”How
to dynamically minimize the value of max(N ), while keeping
the value of sup(N ) at an acceptable level”. Minimizing the
value of max() reduces the impact of DDoS attacks on the
non-target slices, and keeping the value of sup() acceptable
is the primary requirement of the network slicing process.

IV. PROPOSED MTD METHOD

The proposed MTD method starts after the slices are ini-
tially allocated. This method aims to mutate the slices so that
the physical machine hosting the maximum number of slices
changes over time. We give an example to depict this goal
according to Figure 1. In this example, four slices are allocated
on the first physical machine. The adversary repeats the attack
periodically. Hence, in the next launch, the first machine is
again the target, and four slices become unavailable each time.

p1 = 7p1 = 7p1 = 7 p2 = 5p2 = 5p2 = 5 p3 = 4p3 = 4p3 = 4

p4 = 4p4 = 4p4 = 4 p5 = 5p5 = 5p5 = 5

r2 = 3r2 = 3r2 = 3

r7 = 2r7 = 2r7 = 2

r6 = 3r6 = 3r6 = 3

r5 = 1r5 = 1r5 = 1

r1 = 3r1 = 3r1 = 3

r8 = 1r8 = 1r8 = 1

r4 = 2r4 = 2r4 = 2 r3 = 2r3 = 2r3 = 2

r9 = 1r9 = 1r9 = 1

Fig. 2. The mutation of the slices in the sample core network, α

Now assume that the allocation of the slices changes over time
as illustrated in Figure 2. The adversary discovers that the first
machine contains the greatest number of slices. Before the
adversary’s army received the attack command, the allocations
had already changed, resulting in the DDoS attack causing the
unavailability of only two slices.

The main challenge of the proposed method is resource
limitation. The physical machines in the core network have
specific CPU capacities, and the links are also bandwidth-
limited [20]. Hence, not all the slice mutation scenarios are
valid. The sum of the CPU capacities of the slices located
on a machine must not exceed its CPU capacity. The same
condition is required for the links. We are going to handle
this challenge using RL models.

Our proposed MTD method, called SMRL (Slice Mutation
technique based on Reinforcement Learning), suggests an RL
model that extracts the features of the core network and the
allocated slices on each machine and then finds the optimal
mutation scenario for mitigating the DDoS attacks. In each
mutation time interval, the RL model finds the best slice to
be migrated to another machine. The RL model finds both the
slice and the destination machines. In the remainder of this
section, we explain the details of the proposed RL model.

A. Action space

Finding the optimal solution in an RL model is a kind of
game for the agent. In each step of this game, one of the
slices is highlighted, and the agent can decide whether to
migrate it. In the case of migration, the agent also decides
which physical machine is the optimal destination. There is
no need to consider the actions space size as P + 1 since
no migration occurs if the destination physical machine is the
same as the current host of the slice [21]. Hence, the size of
the action space is P . The game is over when the agent reaches
the step of R. If the agent is in step i, where 1 ≤ i ≤ R, and



TABLE III
THE NOTATIONS AND FUNCTION USED IN MODELING THE NETWORK IN THIS PAPER

Notation/Function Description
N The network model, containing the core network and its active slices
P The set of physical machines
P The total number of physical machines
pi The CPU capacity of the ith physical machine
R The set of currently arrived slice requests
R The total number of active slices
ri The required CPU capacity of the ith request/slice
A The binary matrix of allocation states

a(i,j) The element in the ith row and jth column, which is one if the jth slice is allocated on the ith machine
slic(N , i) The number of slices allocated on the ith machine (Equation 2)
max(N ) The highest number of slices that are allocated on a single machine (Equation 3)
con(N , i) The consumed CPU capacity of the ith machine (Equation 4)
rem(N , i) The remained CPU capacity of the ith machine (Equation 5)
aloc(N , i, j) The condition of the jth slice about being allocated on the ith machine (Equation 6)
suc(N , i) The condition of the jth slice about being successfully allocated (Equation 7)
sup(N ) The total number of active slices that are successfully allocated (Equation 8)

selects the action of j, it means that the ith slice must migrate
to the jth physical machine [22].

B. Environment states

The environment in an RL model represents the problem
space to the agent. The agent is provided with the envi-
ronment data and then explores it to find the best solution.
The environment contains multiple states, and the transition
between the states depends on the agent’s action. In the
proposed RL model, we represent each physical machine of
the core network with two main features: (1) the remaining
CPU capacity and (2) the number of slices that are currently
mapped on it [23, 24]. It is worth noting that since we have not
considered the limitations of bandwidth capacities (section III),
the features related to the links are not presented in formulating
the environment states.

SMRL transforms the raw features into ranking or ternary
numbers to improve the agent’s learning performance. The
agent does not have to know the numerical values for the
remaining CPU capacities. The only requirement is that the
current machine can host the slice. We only need to use three
numbers: two to indicate that the slice is currently located on
this machine, one to indicate that the slice can be removed
from the machine, and two to indicate invalid migration. For
example, the sample core network, α, has P = {7, 5, 4, 4, 5}.
The agent must allocate the first slice (r1) in the first step.
This slice can be located on any of the machines. So we
can pass {1, 1, 1, 1, 1}. If the value of r1 was 6, we passed
{1, 1, 0, 0, 1} to the agent. These ternary values help reduce
the state size; accordingly, the agent can be trained more
effectively. Moreover, SMRL converts the number of slices
located on a physical machine to its rank. For example, in
Figure 1, the first and fifth machines have the greatest value of
slic(). So, they are ranked as 0. The third and second machines
are in the second and third places, respectively. So we can pass
{0, 3, 2, 4, 0} to the agent. Using this transformation makes
the proposed RL model general. In other words, once a single
model is trained, any core networks with P physical machines

Algorithm 1 The procedure of generating the environment
state
Require: N , the network model and its parameters
Require: request, the index of the current slice request
Ensure: state, the current environment state

state ← {}
for 1 ≤ i ≤ P do

if a(i,request) = 1 then
Add 2 to states

else if rem(N , pi) ≥ rrequest then ▷ Equation 5
Add 1 to state

else
Add 0 to state

ranks ← {}
for 1 ≤ i ≤ P do

max ← ϕ
for 1 ≤ j ≤ P do

if j ∈ ranks then
continue

ms ← slic(N ,max)
if max = ϕ or slic(N , j) > ms then ▷ Equation 2

max ← j
Add max to ranks

for 1 ≤ i ≤ P do
for 1 ≤ j ≤ P do

if ranks[j] = i then
ls ← slic(N , ranks[j − 1]) ▷ Equation 2
if j > 1 and ls = slic(N , ranks[j − 1]) then

Add the last member of state to state
else

Add j to state
break

return state

can utilize it. This model is dependent on neither the values
of CPU capacities nor the slice features.

The procedure of generating the environment states is
presented in Algorithm 1. In the first loop of this algorithm,
the ternary numbers are generated. The second loop sorts the
physical machines based on their allocated slices, and the last
loop calculates the rank of each machine.



Algorithm 2 The procedure of training the agent in SMRL
Require: N , the network model as the environment
Require: episodes, the number of training episodes
Ensure: model, the trained model

model ← initialize the RL model
for 1 ≤ e ≤ episodes do

moves ← 0
mutation ← FALSE
while moves < R do

state ← generate the environment state ▷ Algorithm 1
action ← the optimal action found by model
r ← moves
p ← action
if state[p] = 0 then

reward ← -30
else if state[p] = 1 then

if state[P + p] = 0 then
reward ← -10

else
reward ← 0
mutation ← TRUE

else
reward ← 0

if moves = R− 1 then
if mutation then

reward ← reward + 1
Allocate the rth request on the pth physical machine
Update model based on state, action, and reward
moves ← moves + 1

return model

C. Reward function

The agent is led toward the optimal solution by the awards
received after each action in each state. There are different
conditions for the actions as follows.

• Migrating a slice to a machine with insufficient capacities
is unsuitable. Hence, if the action leads to this situation,
the value of the reward is a big negative number (i.e.,
-30).

• Since we are performing a mutation scenario, having at
least one migration in each time interval is suitable. So,
we give a big positive number for cases with at least one
mutation.

• It is not preferred to migrate a slice to a machine with
the highest number of allocated slices (i.e., the highest
value of slic()). As a result, we give a reward equal to
a small negative number for the actions resulting in this
situation.

Algorithm 2 explains the procedure of training the agent in
detail.

V. EVALUATION

To evaluate the performance of SMRL, we simulated thou-
sands of networks, and the average results are reported in this
section. We used PyTorch to implement the RL model and
Python to simulate the networks. The performance of SMRL
is compared with that of ObSI [18, 22, 25, 26], the only
comparable method, which is a mitigation method for DDoS
attacks against 5G slices with no requirement of the detection

phase. The core networks in the simulation scenarios have
different numbers of physical machines, varying from 5 to 25.
The CPU capacity of these machines is randomly selected,
with a maximum limit of 40. The slice requests also require
a random amount of resources with a maximum of 6 CPUs.
The number of active slices at each time also varies between 2
and 100. Since there are 20 different core networks, we have
trained the proposed RL model with 20 different conditions,
all of them with 5000 training episodes.

There are 100 end devices in the simulated networks, and
they are connected to the core network through a single switch.
We have implemented the botnet of Mirai to compromise
the end devices, and the launched DDoS attack follows the
defined threat model (section III). The main adversary is
located on a random end device, and five random end devices
are initially compromised as the first bots. Then, these bots
scan the network and probe the other victim’s devices. Once
the authentication credential of an end device is found, it
is reported to Mirai’s loader component. The loader loads a
malicious script onto the victim’s device and turns it into a bot.
Once the botnet army is established, the adversary commands
them to launch a DDoS attack against the physical machine
with the highest number of slices. The DDoS command is
sent randomly every 60-120 seconds. In our comparison with
ObSI, we evaluated the performance of SMRL based on
its effectiveness in mitigating DDoS attacks without relying
on detection mechanisms. While ObSI considers additional
constraints such as bandwidth and end-to-end delay, our focus
was specifically on assessing the resilience of slice mutation
in enhancing network security against these attacks. We have
not implemented a variant of ObSI that incorporates these
constraints; instead, we analyzed SMRL in its current form.
Furthermore, it is essential to note that ObSI assumes slices
consist of multiple Virtual Network Functions (VNFs) and
discusses both intra- and inter-slice isolation. In contrast,
SMRL focuses primarily on slices composed of a single VNF,
leading us to compare them against the inter-slice scenarios
presented in ObSI mainly. We acknowledge the differences in
assumptions and constraints between the two methods, which
are crucial for interpreting the comparison results.

We have considered three evaluation metrics for assessing
SMRL’s performance: the affected slices ratio, the request
acceptance ratio, and the distribution of the allocated requests.
The remainder of this section presents the analysis of these
metrics.

A. Affected slices ratio

The affected slice ratio is the number of slices that become
unavailable after a DDoS attack compared to the total number
of successfully allocated slices. One of the SMRL’s goals is
to minimize the value of max(N ), and the affected slices
ratio is an excellent metric to evaluate it. Figure 3 reports
the simulation results regarding the affected slices ratio. The
first point about this graph is its descending order. The growth
in active slices results in fewer successfully allocated slices.
So, the core network resources are assigned to fewer slices;



0 20 40 60 80
Number of active slices

0

10

20

30

40

50

Af
fe

ct
ed

 sl
ice

s r
at

io
 (%

)
SMRL ObSI

Fig. 3. Comparing the affected slices ratio of SMRL and ObSI methods.

0 20 40 60 80
Number of active slices

20

40

60

80

100

Re
qu

es
ts

 a
cc

ep
ta

nc
e 

ra
tio

 (%
)

SMRL ObSI Random allocation no MTD

Fig. 4. Comparing the requests acceptance ratio of SMRL and ObSI methods
and having random allocations without mutations.

hence, the number of slices allocated on a single machine
becomes smaller. The other point is the significant difference
in the ratio of affected slices between SMRL and ObSI. On
average, SMRL has improved this metric by 46%. This is due
to changes in the slice allocations. The fixed allocation in ObSI
can only achieve a limited isolation level. However, the use
of SMRL results in modified allocations over time, leading to
different max() values.

B. Requests acceptance ratio

The second goal of SMRL is to retain an acceptable number
of successfully allocated slices (i.e., suc(N )). This goal can
be evaluated using the requests acceptance ratio, the ratio
of successfully allocated slices to the total number of active
(i.e., currently arrived) slices. A comparison of SMRL and
ObSI regarding acceptance ratio is presented in Figure 4.
The graph displays also the outcome of a scenario where no
MTD approaches are used, and slices are randomly allocated.

0 20 40 60 80
Number of active slices

0

1

2

3

4

5

6

7

Re
qu

es
ts

 d
ist

rib
ut

io
n

SMRL ObSI

Fig. 5. Comparing the requests distribution of SMRL and ObSI methods.

The graph is in descending order because as the number of
active slices increases, the core network’s ability to cover
them diminishes. The acceptance ratio is low if the slices are
randomly allocated without mutations. On the other hand, both
SMRL and ObSI have tried their best to allocate as many slices
as possible. Hence, there is no significant difference between
their performance in terms of acceptance ratio. The average
acceptance ratios of SMRL and ObSI are 64.17% and 64.34%,
respectively. We have reported the results of the acceptance
ratio only to check whether SMRL decreases the acceptance
ratio too much.

C. Requests distribution

A good allocation solution distributes the slices among all
the physical machines so that a single machine is neither too
idle nor too busy handling the slices. For this reason, we
can analyze the request distribution. We define the request
distribution as the variance of slic() for all the machines. This
is calculated based on Equation 9, where slic is the average
value of slic() for all i.

Requests Distribution =

P∑
i=1

(slic(N , i)− slic)2

P − 1

(9)

For example, the request distributions of Figure 1 and Figure 2
are 1.7 and 0.2, respectively. The lowest values of variance
indicate a more complete distribution. Therefore, a reason-
able allocation solution has lower request distribution values
than others. Figure 5 illustrates the comparison of requests
distribution between SMRL and ObSI. When the number of
active slices is too high, many are not successfully allocated,
and the remaining ones are easier to handle. So, the request
distribution in this case is low. On the other hand, if the
number of requests is too low, they also become easier to
handle, and the same situation happens. In the other cases, the
allocation solution has to handle many slices, and it is hard
to keep their distribution perfect. As a result, this graph has a



bell curve. Moreover, we can see that SMRL achieves a lower
value of request distribution in all the scenarios, which means
SMRL is more powerful than ObSI in distributing the slices
among all the machines. The average results show that SMRL
has improved the request distribution by about 20% compared
to ObSI.

VI. CONCLUSION AND DISCUSSION

Network slicing is one of the key processes in 5G and
beyond. The slices support the users’ custom requirements for
infrastructure resources. The slices are vulnerable to DDoS
attacks that make them unavailable. In this paper, we have
proposed a slice mutation technique based on RL (SMRL) that
first randomly allocates the slices on the physical machines
and then, in each time interval, performs a mutation to achieve
two goals: (1) reducing the impact of a DDoS attack against
a specific slice on the other slices, and (2) keeping the num-
ber of successfully allocated slices acceptable. The proposed
RL model utilizes ternary and ranking numbers to represent
the remaining CPU capacities and the number of currently
allocated slices for each physical machine, respectively. Using
these numbers, the proposed RL model is generally to be
utilized by multiple core networks. We have evaluated the
goal achievement of SMRL by three metrics: affected slices
ratio requests acceptance ratio, and requests distribution. The
average results obtained from the simulations say that SMRL
has reduced the affected slices and requests distribution by
46% and 20%, respectively, while keeping the acceptance ratio
unchanged. This paper’s future work will consider the links
and bandwidth capacities for representing the core networks
and the slice requests. Moreover, we are eager to analyze
the impact of different mutation intervals on the performance
of SMRL. Integrating honeypot and encryption as a ser-
vice (EaaS) techniques with the SMRL model offers several
promising directions for future research in securing network
slices in 5G and beyond [3, 27, 28, 29, 30]. Combining EaaS
with this approach increases security by encrypting end-to-
end communications, ensuring that even if attackers intercept
traffic, they cannot access sensitive information. Additionally,
encrypted honeypots can simulate high-value targets and divert
attention away from operational breaches while maintaining
strong data protection. A mathematical model can also be
developed to optimize the placement of honeypots in mutated
slices and determine the effect of honeypot deception on the
overall network resilience. Finally, incorporating EaaS and
honeypots into core network demonstrations, where honey-
pots simulate different bandwidth capacities and cut requests,
provides another layer of deception and security, especially
against DDoS attacks. This hybrid approach strengthens the
defense of the network-slicing environment while maintaining
acceptable performance levels.

ACKNOWLEDGMENT

This research work is partially supported by the European
Union’s Horizon Europe research and innovation program

HORIZON-JU-SNS-2022 under the RIGOUROUS project
(Grant No. 101095933).

REFERENCES

[1] S. Zhang, “An overview of network slicing for 5g,” IEEE Wireless
Communications, vol. 26, no. 3, pp. 111–117, 2019.

[2] C.-C. Liu and L.-D. Chou, “5g/b5g network slice management via staged
reinforcement learning,” IEEE Access, 2023.

[3] A. Javadpour, F. Ja’fari, T. Taleb, M. Shojafar, and C. Benzaı̈d, “A com-
prehensive survey on cyber deception techniques to improve honeypot
performance,” Computers & Security, p. 103792, 2024.

[4] A. Javadpour, F. Ja’Fari, T. Taleb, and C. Benzaı̈d, “A mathematical
model for analyzing honeynets and their cyber deception techniques,”
in 2023 27th International Conference on Engineering of Complex
Computer Systems (ICECCS), 2023, pp. 81–88.

[5] R. Khan, P. Kumar, D. N. K. Jayakody, and M. Liyanage, “A survey
on security and privacy of 5g technologies: Potential solutions, recent
advancements, and future directions,” IEEE Communications Surveys &
Tutorials, vol. 22, no. 1, pp. 196–248, 2019.

[6] C. Benzaı̈d, T. Taleb, A. Sami, and O. Hireche, “A deep transfer learning-
powered edos detection mechanism for 5g and beyond network slicing,”
in GLOBECOM 2023 IEEE Global Communications Conference, 2023,
pp. 3963–3979.

[7] M. C. Hlophe and B. T. Maharaj, “An sdn controller-based network
slicing scheme using constrained reinforcement learning,” IEEE Access,
vol. 10, pp. 134 848–134 869, 2022.

[8] W. Soussi, M. Christopoulou, G. Xilouris, and G. Gür, “Moving target
defense as a proactive defense element for beyond 5g,” IEEE Commu-
nications Standards Magazine, vol. 5, no. 3, pp. 72–79, 2021.

[9] A. Javadpour, F. Ja’fari, T. Taleb, and C. Benzaı̈d, “Reinforcement
learning-based slice isolation against ddos attacks in beyond 5g net-
works,” IEEE Transactions on Network and Service Management, 2023.

[10] C. Benzaı̈d, T. Taleb, A. Sami, and O. Hireche, “Fortisedos: A deep
transfer learning-empowered economical denial of sustainability detec-
tion framework for cloud-native network slicing,” IEEE Transactions on
Dependable and Secure Computing, 2023.

[11] A. Javadpour, F. Ja’fari, T. Taleb, M. Shojafar, and B. Yang, “Scema:
an sdn-oriented cost-effective edge-based mtd approach,” IEEE Trans-
actions on Information Forensics and Security, vol. 18, pp. 667–682,
2022.

[12] A. Javadpour, F. Ja’fari, T. Taleb, and M. Shojafar, “A cost-effective mtd
approach for ddos attacks in software-defined networks,” in GLOBE-
COM 2022-2022 IEEE Global Communications Conference. IEEE,
2022, pp. 4173–4178.

[13] A. Thantharate, R. Paropkari, V. Walunj, C. Beard, and P. Kankariya,
“Secure5g: A deep learning framework towards a secure network slicing
in 5g and beyond,” in 2020 10th annual computing and communication
workshop and conference (CCWC). IEEE, 2020, pp. 0852–0857.

[14] N. A. E. Kuadey, G. T. Maale, T. Kwantwi, G. Sun, and G. Liu,
“Deepsecure: Detection of distributed denial of service attacks on 5g
network slicing—deep learning approach,” IEEE Wireless Communica-
tions Letters, vol. 11, no. 3, pp. 488–492, 2021.

[15] B. Bousalem, V. F. Silva, R. Langar, and S. Cherrier, “Deep learning-
based approach for ddos attacks detection and mitigation in 5g and
beyond mobile networks,” in 2022 IEEE 8th International Conference
on Network Softwarization (NetSoft). IEEE, 2022, pp. 228–230.

[16] H. Moudoud, L. Khoukhi, and S. Cherkaoui, “Prediction and detection
of fdia and ddos attacks in 5g enabled iot,” IEEE Network, vol. 35,
no. 2, pp. 194–201, 2020.

[17] Y. Niu, G. Feng, Y. Li, Z. Liang, S. Zheng, Y. Zhao, and J. Zhang, “mmtc
slice mapping under ddos attack in 5g ran,” in 2022 IEEE Asia-Pacific
Conference on Image Processing, Electronics and Computers (IPEC).
IEEE, 2022, pp. 588–591.

[18] e. a. Sattar, “Towards secure slicing: Using slice isolation to mitigate
ddos attacks on 5g core network slices,” in 2019 IEEE Conference on
Communications and Network Security (CNS). IEEE, 2019, pp. 82–90.

[19] A. Javadpour, F. Ja’fari, T. Taleb, and C. Benzaı̈d, “Reinforcement
learning-based slice isolation against ddos attacks in beyond 5g net-
works,” IEEE Transactions on Network and Service Management, 2023.

[20] A. Javadpour, G. Wang, and S. Rezaei, “Resource management in a peer
to peer cloud network for iot,” Wireless Personal Communications, vol.
115, no. 3, pp. 2471–2488, 2020.



[21] W. F. Villota-Jacome, O. M. C. Rendon, and N. L. da Fonseca, “Admis-
sion control for 5g core network slicing based on deep reinforcement
learning,” IEEE Systems Journal, vol. 16, no. 3, pp. 4686–4697, 2022.

[22] A. Javadpour, F. Ja’fari, T. Taleb, and C. Benzaı̈d, “Enhancing 5g
network slicing: Slice isolation via actor-critic reinforcement learning
with optimal graph features,” in GLOBECOM 2023-2023 IEEE Global
Communications Conference. IEEE, 2023, pp. 31–37.

[23] M. R. Raza, C. Natalino, P. Öhlen, L. Wosinska, and P. Monti, “Rein-
forcement learning for slicing in a 5g flexible ran,” Journal of Lightwave
Technology, vol. 37, no. 20, pp. 5161–5169, 2019.

[24] K. Suh, S. Kim, Y. Ahn, S. Kim, H. Ju, and B. Shim, “Deep rein-
forcement learning-based network slicing for beyond 5g,” IEEE Access,
vol. 10, pp. 7384–7395, 2022.

[25] A. Javadpour, F. Ja’fari, T. Taleb, H. Ahmadi, and C. Benzaı̈d, “Cy-
bersecurity fusion: Leveraging mafia game tactics and reinforcement
learning for botnet detection,” in GLOBECOM 2023-2023 IEEE Global
Communications Conference. IEEE, 2023, pp. 6005–6011.

[26] A. Javadpour, F. Ja’fari, P. Pinto, and W. Zhang, “Mapping and embed-
ding infrastructure resource management in software defined networks,”
Cluster Computing, vol. 26, no. 1, pp. 461–475, 2023.

[27] A. Javadpour, F. Ja’fari, T. Taleb, C. Benzaı̈d, Y. Bin, and Y. Zhao,
“Encryption as a service (eaas): Introducing the full-cloud-fog architec-
ture for enhanced performance and security,” IEEE Internet of Things
Journal, pp. 1–1, 2024.

[28] A. Javadpour, F. Ja’fari, T. Taleb, C. Benzaid, L. Rosa, P. Tomas, and
L. Cordeiro, “Deploying testbed docker-based application for encryption
as a service in kubernetes,” in Proceedings of the 32nd International
Conference on Software, Telecommunications and Computer Networks
(SoftCOM 2024), September 2024.

[29] A. Javadpour, F. Ja’fari, and T. Taleb, “Encryption as a service: A review
of architectures and taxonomies,” in IFIP International Conference on
Distributed Applications and Interoperable Systems. Springer, 2024,
pp. 36–44.

[30] A. Javadpour, P. Pinto, F. Ja’fari, and W. Zhang, “Dmaidps: A distributed
multi-agent intrusion detection and prevention system for cloud iot
environments,” Cluster Computing, vol. 26, no. 1, pp. 367–384, 2023.

Amir Javadpour holds a Ph.D. in Mathe-
matics/Cybersecurity from Guangzhou University,
China. His academic journey is distinguished by
numerous publications in highly-ranked journals and
prestigious conferences. These works span a di-
verse range of topics, reflecting his deep exper-
tise in Cybersecurity, Cloud Computing, Software-
Defined Networking (SDN), Big Data, Intrusion De-
tection Systems (IDS), the Internet of Things (IoT),
Moving Target Defense (MTD), Machine Learning
(ML), Reinforcement Learning, and optimization

algorithms. Beyond his publications, he has made substantial contributions as a
reviewer and author for leading academic venues, including IEEE Transactions
on Cloud Computing, IEEE Transactions on Network Science and Engineer-
ing, and ACM Transactions on Internet Technology. His reviewing efforts ex-
tend to various reputable journals under Springer and Elsevier. Additionally, he
serves as a dedicated Technical Program Committee (TPC) member for several
international conferences. Dr. Javadpour actively collaborates internationally,
particularly with European consortiums on funded projects such as Inspire-
5Gplus (https://www.inspire-5gplus.eu/) and Rigourous (https://rigourous.eu/).
These partnerships have resulted in significant contributions to the field, with
his work featured in top-tier journals and conferences, including Globecom
and IEEE Transactions.

Tarik Taleb Prof. Tarik Taleb is currently a Chair
Professor at Ruhr University Bochum, Bochum,
Germany. Prior to that, he was a full professor at
the Centre for Wireless Communications (CWC)
– Networks and Systems Unit, Faculty of Infor-
mation Technology and Electrical Engineering, The
University of Oulu. Between Oct. 2014 and Dec.
2021, he was a Professor at the School of Electrical
Engineering, Aalto University, Finland. Prior to that,
he was working as Senior Researcher and 3GPP
Standards Expert at NEC Europe Ltd, Heidelberg,

Germany. He was then leading the NEC Europe Labs Team working on R&D
projects on carrier cloud platforms. Before joining NEC and till Mar. 2009, he
worked as assistant professor at the Graduate School of Information Sciences,
Tohoku University, Japan, in a lab fully funded by KDDI, the second largest
mobile operator in Japan. From Oct. 2005 till Mar. 2006, he worked as a
research fellow at the Intelligent Cosmos Research Institute, Sendai, Japan.
He received his B.E degree in Information Engineering with distinction, M.Sc.,
and Ph.D. degrees in Information Sciences from Tohoku Univ., in 2001, 2003,
and 2005, respectively. Prof. Taleb’s research interests lie in the field of
telco cloud, network softwarization and network slicing, AI-based software
defined security, immersive communications, mobile multimedia streaming,
next generation mobile networking. Prof. Taleb was also directly engaged
in the development and standardization of the Evolved Packet System as a
member of 3GPP’s System Architecture working group 2. Prof. Taleb served
on the IEEE Communications Society Standardization Program Development
Board. As an attempt to bridge the gap between academia and industry,
Prof. Taleb founded the “IEEE Workshop on Telecommunications Standards:
from Research to Standards”, a successful event that was awarded the “best
workshop award” by the IEEE Communication Society (ComSoC). Based
on the success of this workshop, Prof. Taleb also founded and served as the
steering committee chair of the IEEE Conf. on Standards for Communications
and Networking. Prof. Taleb served as the general chair of the 2019 edition of
the IEEE Wireless Communications and Networking Conference (WCNC’19)
held in Marrakech, Morocco. He was the guest editor-in-chief of the IEEE
JSAC Series on Network Softwarization and Enablers. He was on the
editorial board of the IEEE Transactions on Wireless Communications, IEEE
Wireless Communications Magazine, IEEE Journal on Internet of Things,
IEEE Transactions on Vehicular Technology, IEEE Communications Surveys
& Tutorials, and a number of Wiley journals.

Forough Ja’fari is a Senior Researcher in cyberse-
curity and computer science. She received her Bach-
elor’s degree from Sharif University of Technol-
ogy and her Master’s degree in Computer Network
Engineering from Yazd University, Iran. She is a
visiting scholar researcher at Guangzhou University,
China. Cloud computing, software-defined Network-
ing (SDN), cyber deception, Intrusion Detection
Systems (IDS), Internet of Things (IoT), Moving
Target Defence (MTD), and Machine Learning are
some of her research interests. She is currently a

Guest Editor (GE) of Cluster Computing (CLUS) Journal and a reviewer for
several journals and conferences.

Chafika Benzaı̈d is currently a senior research
fellow at University of Oulu, Finland. Between Nov.
2018 and Dec. 2021, she was senior researcher
at Aalto University. Before that, she worked as
an associate professor at University of Sciences
and Technology Houari Boumediene (USTHB). She
holds Engineer, Magister and “Doctorat ès Sciences”
degrees from USTHB. Her research interests lie in
the field of 5G/6G, SDN, Network Security, AI
Security, and AI/ML for zero-touch security man-
agement. She is an ACM professional member.


	Introduction
	Related Work
	Problem Definition
	Proposed MTD Method
	Action space
	Environment states
	Reward function

	Evaluation
	Affected slices ratio
	Requests acceptance ratio
	Requests distribution

	Conclusion and Discussion
	Biographies
	Amir Javadpour
	Tarik Taleb
	Forough Ja'fari
	Chafika Benzaïd


