
Multi-Model based Federated Learning Against
Model Poisoning Attack: A Deep Learning Based

Model Selection for MEC Systems
Somayeh Kianpisheh1, Chafika Benzaı̈d1, and Tarik Taleb2

1Centre for Wireless Communications, University of Oulu, Finland, 2 Ruhr University Bochum, Germany
Emails: somayeh.kianpisheh@oulu.fi, chafika.benzaid@oulu.fi, tarik.taleb@rub.de

Abstract—Federated Learning (FL) enables training of a global
model from distributed data. However, the singular-model based
operation of FL is open with uploading poisoned models com-
patible with the global model structure and can be exploited as
a vulnerability to conduct model poisoning attacks. This paper
proposes a multi-model based FL as a proactive mechanism to
enhance the opportunity of model poisoning attack mitigation. A
master model is trained by a set of slave models. To enhance the
opportunity of attack mitigation, the structure of client models
dynamically change and the supporter FL protocol is provided.
For a MEC system, the model selection problem is modeled as
an optimization to minimize loss and recognition time, while
meeting a robustness confidence. A deep reinforcement learning
based model selection is proposed. For a DDoS attack detection
scenario, results illustrate a competitive accuracy gain under
poisoning attack with the scenario that the system is without
attack, and also a potential of recognition time improvement.

Index Terms- federated learning, poisoning attack, MEC,
deep reinforcement learning.

I. INTRODUCTION

Federated Learning (FL) provides collaboration opportu-
nities for devices in training a global model from locally
distributed data while preserving the data privacy by shar-
ing model parameters instead of raw data [1]. The learning
is performed through some epochs. At each epoch, locally
trained models of devices are transmitted to an aggregator
server which aggregates the models to shape a global model
for the next epoch of training. Utilizing a centralized server
is inefficient due to single point of failure and intolerable
latency in realtime scenarios [2], [3]. FL in edge computing is
an alternative where Multi-Access Edge Computing (MEC),
collocated at base stations either aggregate the parameters
from the devices in their district and return the results for a
fast response, or partially aggregate the parameters and further
transmit to a server for global aggregation [2], [3]. Most of the
FL studies in edge computing assume a secure FL protocol.

A model poisoning attack exploits system vulnerabilities to
control the global model’s aggregation by generating poisoned
local model updates to inject into the system so that the global
model becomes either useless or less accurate. To make the FL
robust, defense mechanisms mainly focus on mitigating model
poisoning attack through outlier-detection mechanisms [4], [5],
[6], [7] or behavioural-based analysis [8], [9]: The studies in
[4], [5] utilize robust aggregation rules in FL, that apply outlier

detection methods to remove malicious models. The study in
[6] provides a cost-efficient outlier detection method to isolate
the attackers. The authors of [10] emphasize on performance
of learning when applying an outlier detection. The authors of
[7] make FL robust against Byzantine clients while preserving
the privacy of individual users. The studies in [8], [9] analyze
the behaviours of the clients to determine unreliable clients and
remove them in the aggregation phase. Either outlier-detection
based mechanisms or mechanisms using behavioural-based
analysis might not be efficient in recognition of new emerging
model poisoning attack patterns, or attacks with complex be-
haviours. Also, the performance of outlier-detection methods
reduces in heterogeneous environment where benign model
might be considered as outlier [10], [11]. In contrast to the
reactive robustness mechanisms in the literature, this paper
advocates a proactive approach to make the opportunity for
poisoning lower, which can foster defense lines in addition to
outlier-detection approaches, particularly for the attacks which
can deceive the attack detection by intelligent model crafting.

The poisoning attacks have a knowledge about global model
structure so that they emulate a poisoned model compatible
with global model. For example, A Little Is Enough attack
[11], according to a Gaussian-based statistics deviates each
dimension of the model parameter from the mean with a
fraction of the standard deviation. Model poisoning attack
has been mathematically modeled in [8]. The attacker tries to
deviate from global model with an arbitrary malicious model.
Poisoned models compatible with global model structure, are
uploaded. The poisoned model is calculated by updating global
model with a learning rate based on the difference between
the malicious target model and the global model.

The poisoning attacks use the singular-model based oper-
ation of FL as a vulnerability. They assume that all clients
use the same model as the global model. Then, through
applying an algorithm that follows their objectives in global
model deviation, they emulate poisoned models with the same
structure of the global model and inject them in learning
process e.g., [11], [8], [4], [6]. This paper, proposes a multi-
model based FL at which a master model or global model is
trained by a set of slave models, letting dynamic change of
client models within the learning epochs.

Dynamic change of models that should be trained by clients

can be either a barrier for attack operation or reduce the
attack triggering chance. For example, A Little Is Enough
attack [11] may not be able to drive the mean and standard
deviation for the global model dimensions, when the clients
will have heterogeneous models with different structures. Also,
poisoning attacks e.g., [11], [8], [4], [6] construct a poisoned
model compatible with the structure of the global model. When
the client model is planned to be different from the global
model, the mismatch between uploaded poisoned model and
planed model, can be detected at aggregation time–providing
the opportunity of attack detection and mitigation. Emulation
of client model is impossible if the communication protocol
of FL be secure and the client model structure be dynamic
and unknown for the attacker. Otherwise, random crafting of
client model can be easily detected by detection mechanisms
due to high deviation from normal behaviour. Sophisticated
crafting of a client model demands designing new advanced
attacks and introduces complexities. Advanced knowledge
about e.g., dynamicity of the models, models’ structures are
required and new optimization for crafting should be derived
to deviate global model in the desired direction, with crafting
of heterogeneous, dynamic and different models from global
model at client sides. To the best of our knowledge this sort of
attack has not been investigated yet. Thus, multi-model based
FL introduces potentials in dealing with poisoning attacks.

This paper introduces Multi-Model based FL (MM-FL) to
reduce poisoning opportunity. An optimization is provided for
model selection problemand a Deep Reinforcement Learning
(DRL) based model selection is proposed. For a Distributed
Denial of Service (DDoS) attack detection scenario, results
illustrate improvement in accuracy and recognition time.

II. SYSTEM MODEL

Network: A network consists of N devices such as IoT and
mobile devices, M Base Stations (BSs) equipped with MEC
servers, and a (central) cloud. Let mth BS be represented
with BSm with CPU frequency f cmp

m . The available CPU
cycle at the central cloud is f cmp

c . We use symbol u for
a device, and its data with size |Du| is represented with
Du = {(xu

1 , y
u
1), ...(x

u
|Du|, y

u
|Du|)}, where y is the label for

input x. CPU frequency of the device u is f cmp
u .

The model sharing can be done through MEC/cloud infras-
tructure, to construct a global model through FL. The aim
of FL is to train a global learning model Mc based on the
distributed data in the devices, through some learning epochs.
At each epoch of learning, a device performs learning on its
local data to train a local model. The local models will evolve
global model through FL process, based on which the required
recognition is performed (e.g., attack detection).

Adversary Knowledge and Operation: At any epoch of
learning, the adversary can exploit vulnerabilities of devices
and compromise them to inject poisoned models in learning
process. The attacker does not have any control over aggre-
gation process at MEC, nor over the protocol of the benign
devices which follow a normal implementation of the protocol.

Fig. 1. Multi-model FL architecture.

In consistent with the poisoned attacks in the literature,
adversary has the knowledge about global model and emulates
poisoned model(s) with the same structure as global model
through applying an algorithm. It then uploads the malicious
model(s) on behalf of the compromised device(s) when com-
municating with aggregator at MEC [8]. The attack can be
targeted or untargeted depending on the attacker objective,
and our approach is applicable for both cases. In the case
of targeted attack, the malicious model(s) are crafted so
that the aggregated model over learning epochs approaches
a targeted model [8]. Otherwise, untargeted deviation strategy
is employed in poisoning [8].

Federated Learning Objective: The aim of federated
learning is to train a global learning model, namely called
master model based on the distributed data in the devices that
take part in learning. Master model is trained through a set of
slave models with the objective of making the FL robust with
a predefined confidence level, while keeping the performance
of FL in terms of accuracy and recognition time.

III. MULTI-MODEL BASED FL

Fig. 1 shows the architecture of multi-model based FL.
Multiple models are used to train the main model, thereby
having multiple training scripts at a device. At each learning
epoch, network state is observed, according which a DRL-
based model selection decides about the model that should
be trained at each device. Then, the decision about models
are announced to devices and they will train the model, they
have been asked. After uploading model parameters, the edge
aggregator will perform attack mitigation, aggregation, and
knowledge transfer. The model parameters are downloaded
for the next round. In the case of attack, the adversary that
has knowledge about the global model structure, emulates
poisoned models compatible with global model and upload
them on behalf of the compromised devices. The attack can
be mitigated before aggregation due to mismatching with the
model plan which the multi-model coordinator arranged it.
A. Fundamental

Let Mc be the master model with weights wc and Ms =
{M1

s , ...M
l
s} be the slave models with weights {w1

s , ...w
l
s}.

Mc also can belong to the set of slave models, i.e., Mc ∈ Ms.
The main idea is to train master model using slave modes
according to an optimal model selection plan that operates

as hindrance against Poisoning attack while maintaining the
performance of FL.

Let xj,u
s (τ) be the binary variable indicating the usage of

model M j
s in federation of knowledge of device u at epoch

time τ . The value of 1 indicates the usage of the model, while
a value of 0 indicates not use of the model. As at every epoch
of FL, only one model is selected for a device:

∀τ, u :

l∑
j=1

xj,u
s (τ) = 1. (1)

We define the variable Tu(τ) as the slave model that is
selected to be used for the device u. We assume the asso-
ciated weight is Wu. The attack which emulates a poisoned
global model on behalf of device u, can be detected at edge
aggregator, due to a mismatch with the plan, if we have:

Tu(τ) ̸= Mc (2)

The aim is to secure the FL with a user defined confidence
level, while maintaining the efficiency of FL performance. The
diversity of models, will introduce hidden variables and will
reduce the success of triggering poisoning attack. However,
two issues will rise: First, new FL protocol should be designed
to let the multi-model based learning process. Second, an op-
timization framework should be developed to decide about the
models that are trained by devices, considering the dynamic
nature of the network.

Algorithm 1: Knowledge Transfer
1 for each BS m do
2 for each slave model Ms,j

e,m do
3 for each instance in De,m do
4 input ← instance
5 give input to model Ms,j

e,m

6 label ← output neurons of Ms,j
e,m

7 we,m(τ)← GD optimization to minimize the loss
function with the input for training as labeled De,m

B. Multi-Model Based FL Protocol

Multi-model based FL can train master model from slave
model set. Master model can be included in the slave model
set, since it can be the most efficient model in the context
of recognition problem. The parameters of master model are
found in learning process to minimize the global loss function
in (4), where f(wc, x

u
s , y

u
s) is the loss value over master model

for the sample s of data of user u.

min
wc

F =
1

N

∑
u

1

|Du|

|Du|∑
s=1

f(wc, x
u
s , y

u
s). (3)

FL is performed through some epochs, indexed by τ , until
convergence or meeting of termination condition. BS m trains
a master model Me,m, which has the same neural structure
as Mc, from a set of slave models Ms

e,m = {Ms,1
e,m, ...Ms,l

e,m}
with the same structures of Ms. It also has an unsupervised
data set of instances De,m that is used for knowledge transfer.
Each FL epoch, consists of the steps as below:

1) Local Training: Each device employs a Gradient Decent
(GD) based method using its local batch data to minimize
the loss function over the planed model Tu(τ). Then it
transmits the local model parameters to its associated BS
for the purpose of partial aggregation.

2) Attack Detection and Mitigation: For each uploaded
model from a device u if the the parameters count are
different than the planed model parameters count for that
device (Wu(τ)), the model will be detected as malicious
and will be excluded from the aggregation.

3) Partial Aggregation at BSs: For each slave model, the
partial aggregation at BS m, is performed as a weighted
average of received parameters of that model:

Ms,j
e,m =

1

Km,j
=

Km,j∑
u=1

N (|Du|).wu, (4)

where Km,j is the number of devices under the coverage
of BSi, who use slave model Ms,j

e,m; and |Du| is the size
of batch data of device u; and finally, wu is the weight
of the trained model of device u. Symbol N (.) is the
normalization operator.

4) Knowledge Transfer To Master Model: Each BS performs
knowledge transfer step to transfer the knowledge of each
slave model to the master model. First, the unsupervised
data set is given to each slave model to be labeled. Then,
the labeled data set is used to train and update the weights
of the master model we,m(τ), based on a GD based
optimization. Algorithm 1 is the pseudocode.

5) Parameters Uploading: Each BS transmits it’s master
model we,m(τ) to the cloud for the global aggregation.

6) Cloud Aggregation: The global model is constructed at
central cloud as average of models of BSs and will be
broadcasted to the BSs:

Mc(τ) =
1

M

M∑
m=1

Me,m. (5)

7) Broadcasting the Update Results: Among the slave mod-
els in Ms

e,m, the model with the same structure of Tu(τ)
will be transmitted to the user u.

FL epochs will be repeated, and finally the Mc parameters
will be broadcasted to the users at the final epoch or when
the termination condition be met. Note that at step 6 after
broadcasting of global model, the master model at BSs, and
accordingly the devices that have uploaded the master model,
will automatically be updated. This lets the master model
update distribution even through training.

IV. MODEL SELECTION OPTIMIZATION

The 6G wireless model in [12] is used for communication
between devices and the base stations. The transmission rate
device u communicates with BS i, is calculated by (6). Bi,
Ptu, gu, η are respectively, transmission bandwidth of the
base station, transmission power of the device, channel gain
of the device, and background noise power. Eq. (7) is the
channel gain calculation. Here, Cg , du,i, α are respectively
path loss fading coefficient, distance between device u and
base station i, and path loss exponent. Note that when devices
move transmission rates will change due to distance variation.

Ru,i = Bi ln(1 +
Ptu.gu

η
), (6)

gu = Cg .d
−α
u,i , (7)

The time cost of one epoch of FL is the time it takes a device
receives the new updates of the model parameters. It includes

the time slots allocated for local training, up/down-link param-
eter transmission, knowledge transfer, and the aggregation.

• Knowledge Transfer: In BS m, the time for transferring
knowledge to master model is calculated by:

Tm
knw =

∑
j

[
|De,m|.fcmp

ds,j

fcmp
m

+
|De,m|.fcmp

ds,c

fcmp
m

], (8)

where f cmp
ds,j , f cmp

ds,c are the number of required CPU cycles
to label one unit of data by slave model M j

s , and train
master model Me,m with one unit of data, respectively.

• Aggregation: The time for partial aggregation at BS m
includes: (a) the time it takes the parameters be trans-
mitted from devices under the coverage area of that base
station i.e., Rm to the base station; (b) the aggregation
operation time over the slave models:

Tm
ag = max

u∈Rm

|Wu|
Ru,i

+
∑
j

Xj
s .|wj

s|.fcmp
w

fcmp
m

, (9)

where f cmp
w is the number of required CPU cycles to

aggregate one unit of data. Xj
s is the number of devices

under coverage of BS, that uploaded slave model M j
s .

The time for global aggregation at central cloud is cal-
culated by (10). It includes the time for partial aggre-
gation/knowledge transfer, at base stations, as well as
the time takes for global aggregation of the parameters
collected from base stations at the central cloud:

Tag = max
m=1..M

(Tm
ag + Tm

knw +
|wc|
Ri,c

) +
M.|wc|.fcmp

w

fcmp
c

. (10)

• Downlink Parameter Transmission: The required time to
download the parameters at device u under the coverage
of BS m is calculated by (11), as the time required
for parameters transmission from cloud to BS (with
transmision rate Rc), and from the BS to the device.

Tdown(u) =
|wc|
Rc

+
|Wu(τ)|
Rm,u

. (11)

• Local Training: Local training time at device u is calcu-
lated based on the computing capability of the device and
the batch size. Eq. (12) is the calculation. Here, f cmp

s is
number of required CPU cycles to train one sample of
data over selected model.

Tloc(u) =
|Du|.fcmp

s (τ)

fcmp
u

. (12)

After the download of partially aggregated model, the device
can perform the recognition. The recognition time in one
epoch of FL, for device u, is calculated as below:

TInt(u) = max
u

K.Tloc(u) + Tag + Tdown(u) +
f inf
u

fcmp
u

, (13)

where K is the local training iterations before applying the
other epoch of learning. f inf

u is the number of CPU cycles
to perform the recognition for a sample of input features. The
response time varies over epochs of learning.

In a multi-model based FL, model selection for devices
impacts the training and communication time, as well as the
accuracy (See Eq. (9), (11), (12)). Straggler devices with poor
transmission channel can prolong the learning process [13].
Selecting a smaller model than the master model, under poor

Fig. 2. (a) Policy networks. (b) Simulation grid.

transmission rates can speed up training, and compensate the
latency of transmission, as well as reduce the transmission
load–all speeding up the learning process. Furthermore, the
security is enhanced since a different model than the global
model can be utilized for training and poisoning attack can
be mitigated at aggregation time (See Fig. 1). However, in the
cases that global model be more efficient than slave models,
there can be accuracy-reduction. On the other hand, in high
quality of communication status, selecting global model in
the case that it is more efficient than smaller model can
enhance the accuracy, however the robustness reduces. Indeed,
appropriate tradeoffs are required and optimization should be
performed for the optimal selection.
The slave models are assigned to the users, to minimize the
loss function and recognition time over all users, over all
epochs of learning. α and β make the loss and time values
in the same scale. Besides the already defined constraints,
constrain (15) ensures the robustness against poisoning attack.
1.(B) is 1 if condition B holds. To reduce the potential for
poisoning, it ensures that the ratio of global model selection
be less than a threshold value Tmax ∈ [0, 1]. If Tmax = 0,
poisoning attacks that emulate global model can not be trig-
gered. However, the accuracy will be reduced if the master
model be the most accurate model.

min
x
j,u
s (τ)

∑
τ,u

α.Fu(τ) + β.TInt[τ](u) (14)

sbj. (1), (2), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13), (14),

∀τ :
∑
u

1.(Tu(τ) = Mc) ≤ N.Tmax. (15)

V. DRL-BASED MODEL SELECTION

The search space order is exponential with dynamic chan-
nel communication. MDP and RL, advocated for solutions
adoptable with dynamic network situations, can be used for
formulation, since: (i) Function (14) has the memoryless
property, as it can be calculated as the sum of loss and
recognition time values in devices, in the current interval and
the function value in the previous interval; (ii) Considering
the parameters determining the current state e.g., transmission
rates, association of slave models to devices, every action that
is performed by the agent ends to a new state transition,
that only depends on the current state. (iii) The function
(14) is in the form of accumulated rewards. Through an
iterative process of observing the state, choosing an action,
and receiving a reward, the state-action Q-values are estimated
by Bellman equation [14]. The high dimension of the states
and the dynamicity in state transitions makes observing all
states and actions in training impossible, thereby inefficiency

of conventional RL. To deal with this problem, we adapt
DRL [14], that generalizes experienced states/actions to non-
observed ones through a neural network-based approximation
of Q-values.
MDP Elements: MDP Elements include:
State: The features representing the state of network at time
step τ , are as below:

• The transmission rates represented with matrix Rd,e(τ),
at which the entry at row i and column j is the transmis-
sion rate between device i and BS j, at epoch τ . Available
bandwidth, distance of devices from BSs, channel gain
varies the transmission rates.

• The current slave model distribution denoted by vector
X(τ), at which the entry at row j and column u is the
assignment of slave model M j

s to device u at learning
epoch τ (values of xj,u

s (τ))
Actions: The action is decision about the assignment of devices
to slave models (values of xj,u

s for the next epoch of learning).
Reward: In the case of violation of constraints (1), (15), reward
is 0. To ensure, optimizing the objective function the reward
function is calculated as:

R(s(τ), a(τ)) =
∑
u

α.Fu(τ) + β.TInt[τ](u) (16)

Training: Using N policy networks, the decision policy is
derived by training them. Each Neural Network (NN) rep-
resents the assignment of a device to the slave models. The
input neurons are the state features. There is a Fully-Connected
layer, with Softmax activation function. The neuron i in the
output layer of NN u, indicates the probability of assigning
the slave model M i

s to the device u (See Fig. 2.a).
Each episode consists of a run of FL within several epochs of
learning. There are variation in network communication status,
location of devices, and compromised devices within episodes.
Training is done through two steps performed at every epoch
of learning: (i) Exploration: According to ϵ−greedy policy,
with a 1− ϵ probability, a random assignment of slave models
to devices is selected. Otherwise, the current state features are
given as input to the NNs. For each device, the slave model,
with the highest probability at output layer, will be assigned
to the device. (ii) Updating the weights: After the assignment
strategy, reward is calculated by (16), accordingly the NNs’
weights are updated by Gradient Descent (GD) method, and
using Bellman equation [14].

VI. EXPERIMENTAL RESULTS

A scenario that 10 devices that are moving by vehicles,
collaborate in DDoS attack detection, is considered. The
advantage of applying FL in DDoS attack detection in terms
of enhancing accuracy through sharing attack detection models
in comparison with individual learning have been illustrated
in recent studies e.g., [3], [15]. The study in [3], extensively
discusses the FL benefits for DDoS attack detection. We used
CICDDoS 2019 data set [16] comprising realistic traffic to
abstract the communications for legitimate and DDoS attack
traffic through protocols e.g., HTTP, FTP. We have randomly
distributed 9000 instances composed of UDPLag and SYN
DDoS attacks, among devices for training, as well as 3000

instances for the purpose of test. The dataset provides 87
IP flow features e.g., source/destination IP addresses/ports,
protocols, flow packet statistics, flag-related information etc.,
which we utilize them for the attack detection.

We assume a 4 × 4 bidirectional grid environment with
100 m width for each grid cell, where grid lines are bidi-
rectional roads (Fig. 2.b). Mobility traces of vehicles have
been generated by SUMO simulator [17]. Manhattan mobility
model in urban areas [17] with probability of 0.5 for moving
straight and 0.25 for moving right/lef at conjunctions, is
used for mobility of vehicles. The mean speed of vehicles
are 45 km/h. The mobility of vehicles will cause dynamicity
in transmission rates. We used GRU as we explained it
with details in [3] for attack detection. The feature matrix
for the packets in a flow is arranged as rows of patterns.
The occurrence probability for each pattern is calculated as
a function of previous observations using a GRU. A flow
(including 10 packets) is malicious if the ratio of the malicious
packets in that flow is larger than a threshold (0.7). TensorFlow
and Keras are used to implement the GRUs/DRL.

Without loss of generality, the learning collaboration is
only performed in the level of edge computing. Two BSs
equipped with MEC-servers with respectively CPU frequen-
cies of 3.2 and 2.6 GHz [18] are located in the locations
[50, 50], [350, 350] to provide edge coverage for devices. Each
BS has 2400 random unsupervised instances from CICDDOS
data set for knowledge transfer. The coverage radius of base
stations are 300 m, and their transmission bandwidth are
respectively, 28 and 30 MHz [3]. The CPU frequency of
devices are randomly chosen in the range of 1.9 up to 2.4 GHz.
The transmission power of BSs and devices are respectively
34 db and 23 db [18]. Path loss exponent is 5 and back ground
noise power is -174 db.m [18].

There are more explorations at early iterations of DRL,
while the exploitation gradually increases up to the greedy
selection of 98% at the last episode. For GRUs, the learn-
ing rates 0.07 for GD optimization operated efficiently.
LearningRateSchedule package of Keras reduces the learn-
ing rate within training for the purpose of convergence. The
out-layer of the GRU is a neuron to predict the occurrence
probability of a packet. See [3] for details. Discount rate of
0.1 and ADAM optimization in DRL also operated efficiently.

In the rest, GRU with 28 and 32 neurons in the hidden
layer are represented with GRU 28 and GRU 32, respectively.
Various scenarios have been considered: Two FL scenarios
when GRU 28 and GRU 32 are applied for DDoS attack
detection. Each FL is applied in a system without attack
(FL-GRU 28, FL-GRU 32), and a system with poisoning
attack (FL-GRU 28-With Attack, FL-GRU 32-With Attack).
In MM-FL the slave models set include GRU 28 and GRU
32. Two scenarios of MM-FL are considered: MM-FL with
master model as GRU 28 and MM-FL with master model as
GRU 32. We have MM-FL-DRL which utilizes DRL in model
selection, and MM-FL-RND which uses a random selection of
slave models. At each episode, the adversary compromises 3
to 5 random devices and emulates Malicious Local Models

Fig. 3. Cumulative reward. Fig. 4. DDoS attack detection accuracy. Fig. 5. Recognition time.
(MLMs) with the global model structure, for updating using
the method in [8], as explained in Introduction, with random
target malicious models and random learning rate in (0.25,
0.35). The results are average over 50 runs of test, Tmax = 0.6.

Fig. 3 illustrates the cumulative reward gain within episodes
in MM-FL. The cumulative reward has increased up to range
of 6.5 to 7 and become stable around episode 3200, with a
dominance in reward with the case that GRU 32 is master
model. Since, the scenario that GRU 32 is master has gained
better performance in terms of accuracy and recognition time.

Fig. 4 shows the accuracy of DDoS attack detection. The
bars with bold boarders are for GRU 32 scenarios, and the
rest are for GRU 28 scenarios. For GRU 32 scenarios, the
accuracy considerably decreases after poisoning, and this de-
crease becomes the worse at the late epochs of FL due to more
involvement of MLMs in aggregation e.g., drop from 0.92 to
0.15 at epoch 6. MM-FL-RND has increased the accuracy
slightly e.g., for 0.09 in epoch 6. MM-FL-DRL has increased
the accuracy considerably and in competitive with the scenario
of FL without attack, due to optimization of loss function in
model selection and selecting atleast 60% of the local models
different than the main model, according which MLMs can be
detected and mitigated. Similar results has been achieved for
GRU 28 scenarios. However, MM-FL-DRL (Master: GPU 32)
operates better than MM-FL-DRL (Master: GPU 28), which
illustrates the more efficiency of knowledge transfer from GRU
28 to GRU 32, in comparison with the reverse in MM-FL-DRL
(Master: GPU 28). This is an application dependent issue.

Fig. 5 shows the recognition time. For GRU 32 scenario,
the recognition time reduces up to 0.6 ms, after multi-model
FL application with GRU 32 as master. Since, in this scenario,
MM-FL-DRL uses GPU 28 for atleast 60% of devices which
demands less training and transmision time than GRU 32.
However, application of MM-FL with GPU 28 as master,
increases recognition time in comparison with FL with GRU
28 due to employing larger model of GRU 32 in training.

VII. CONCLUSION

This paper proposes a multi-model based FL to enhance the
opportunity of model poisoning attack detection and mitiga-
tion. A protocol at which a master model is trained by a set of
slave models, is explained. For federation over a MEC system,
the model selection problem is modeled as an optimization and
a DRL-based model selection method adaptable with dynamic
network conditions is provided. For a DDoS attack detection
scenario, results illustrate a competitive accuracy with the

scenario without attack. With a smaller model employment
in training recognition time reduces.

ACKNOWLEDGMENT

This work was supported in part by the EU’s HE pro-
gramme HORIZON-JU-SNS-2022 under the RIGOUROUS
project (Grant No. 101095933). The paper reflects only the
authors’ views. The Commission is not responsible for any
use that may be made of the information this paper contains.

REFERENCES

[1] B. McMahan et al., “Communication-efficient learning of deep networks
from decentralized data,” in Artificial intelligence and statistics, 2017,
pp. 1273–1282.

[2] J. Zhou et al., “A differentially private federated learning model against
poisoning attacks in edge computing,” IEEE Trans. on Dependable and
Secure Computing, 2022.

[3] S. Kianpisheh and T. Taleb, “Collaborative federated learning for 6G
with a deep reinforcement learning based controlling mechanism: A
ddos attack detection scenario,” IEEE Trans. on Network and Service
Management, DoI: 10.1109/TNSM.2024.3387987, 2024.

[4] E. M. El Mahdi, R. Guerraoui et al., “The hidden vulnerability of
distributed learning in byzantium,” in International Conf. on Machine
Learning, 2018, pp. 3521–3530.

[5] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust dis-
tributed learning: Towards optimal statistical rates,” in International
Conf. on Machine Learning, 2018, pp. 5650–5659.

[6] S.-M. Huang, Y.-W. Chen, and J.-J. Kuo, “Cost-efficient shuffling
and regrouping based defense for federated learning,” in IEEE Global
Communications Conf., 2021, pp. 1–6.

[7] J. So et al., “Byzantine-resilient secure federated learning,” IEEE J. on
Selected Areas in Communications, 2021.

[8] R. Al Mallah et al., “Untargeted poisoning attack detection in federated
learning via behavior attestation,” IEEE Access, 2023.

[9] X. Pan et al., “Justinian’s gaavernor: Robust distributed learning with
gradient aggregation agent,” in USENIX Security Symp., 2020.

[10] L.-Y. Chen, T.-C. Chiu, A.-C. Pang, and L.-C. Cheng, “Fedequal: De-
fending model poisoning attacks in heterogeneous federated learning,”
in IEEE Global Communications Conf., 2021, pp. 1–6.

[11] G. Baruch, M. Baruch, and Y. Goldberg, “A little is enough: Circumvent-
ing defenses for distributed learning,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[12] Z. M. Fadlullah and N. Kato, “HCP: Heterogeneous computing platform
for federated learning based collaborative content caching towards 6G
networks,” IEEE Trans. on Emerging Topics in Computing, 2020.

[13] R. Schlegel et al., “Codedpaddedfl and codedsecagg: Straggler miti-
gation and secure aggregation in federated learning,” IEEE Trans. on
Communications, 2023.

[14] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” J. Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[15] J. Li et al., “Fleam: A federated learning empowered architecture to
mitigate ddos in industrial iot,” IEEE Trans. on Industrial Informatics,
vol. 18, no. 6, pp. 4059–4068, 2021.

[16] I. Sharafaldin et al., “Developing realistic distributed denial of service
attack dataset and taxonomy,” in Conf. on Security Technology, 2019.

[17] “Sumo: https://www.eclipse.org/sumo/.”
[18] Y. Lu et al., “Low-latency federated learning and blockchain for edge

association in digital twin empowered 6G networks,” IEEE Trans. on
Industrial Informatics, vol. 17, no. 7, pp. 5098–5107, 2020.

