
Deep Reinforcement Learning for
Dependency-aware Microservice Deployment in

Edge Computing
Chenyang Wang∗, Bosen Jia∗, Hao Yu†, Xiuhua Li‡, Xiaofei Wang∗ and Tarik Taleb†

∗College of Intelligence and Computing, Tianjin University, Tianjin, China.
†Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland.
‡School of Big Data & Software Engineering, Chongqing University, Chongqing, China.

Abstract—Recently, we have observed an explosion in the
intellectual capacity of user equipment, coupled by a meteoric rise
in the need for very demanding services and applications. The
majority of the work leverages edge computing technologies to
accomplish the quick deployment of microservices, but disregards
their inter-dependencies. In addition, while constructing the
microservice deployment approach, several research disregard
the significance of system context extraction. The microservice
deployment issue (MSD) is stated as a max-min problem by
concurrently evaluating the system cost and service quality. This
research first analyzes an attention-based microservice represen-
tation approach for extracting system context. The attention-
modified soft actor-critic method is proposed to the MSD issue.
The simulation results reveal the ASAC algorithm’s priorities in
terms of average system cost and system reward.

I. INTRODUCTION

The exceptional growth of intelligent devices and the need
to pave the way for 5G or beyond 5G communication sys-
tems promote a wide variety of high-demanding services and
applications, e.g., face recognition, virtual/augmented reality
(AR/VR), and 3D games [1]. These applications are resource-
hungry, and rapid response is required. To cope with the chal-
lenges above, some studies [2]–[5] deploy the services in cloud
servers with the benefit of rapid elasticity, on-demand resource
pooling, and self-configuration. However, transmitting massive
data from devices to the remote cloud center usually produces
unpredictable latency and excessive resource consumption. It
is crucial to design revolutionary schemes of microservice
deployment technologies to address these challenges.

Amount of studies focus on service deployment by utilizing
edge computing technology [6] to leverage the computation
resources in proximity to data sources, e.g., literatures [7],
[8] investigate the optimization strategies of service deploy-
ment under cloud-edge architecture to achieve the minimum
service completion time. However, the system environment
and dependencies between services are ignored. Typically, a
service is usually decoupled into multiple microservices with
the characteristics of low cost, flexibility, and scalability, to
achieve the fast response and dynamic deployment of various
services and applications [9]. Generally, the dependency of
microservices is modeled by a directed acyclic graph (DAG),

reflecting the order in which microservices are executed [10].
The problem with different dependencies of services is that
the communication protocols are heterogeneous, i.e., different
microservices may be transmitted by various types of channels,
resulting in extra execution/response time even for the same
microservice deployed in the different locations.

To depict the heterogeneity and dynamics of the environment
from the changes in infrastructure conditions (e.g., the waiting
queue of service in an edge server) and the services involved
(e.g., the topology of service DAG). Other studies focus
on the utilization of artificial intelligence (AI) technologies,
e.g., deep learning (DL), deep reinforcement learning (DRL),
to design the service deployment strategies [11]–[13]. For
instance, the literature [13] utilizes a DL method to learn
branching/pruning policies for optimizing the service chain
implementation. Therefore, it is necessary to abstract the
key features of the system context to better represent the
inner dependencies between the microservices and pass the
information of infrastructure influenced.

In this paper, we investigate an efficient microservice de-
ployment strategy for edge computing, we consider a three-
layer UE-Edge-Cloud architecture, the microservices are de-
ployed in any layer according to the optimization model, and
the dependencies between microservices are modeled as a
DAG. Then an attention mechanism-based microservice repre-
sentation (AMR) algorithm is carried out to extract system con-
text information. Finally, distinguished from the state-of-the-
art, we model the microservice deployment problem (MSD)
as a Markov Decision Process (MDP), and the attention-
modified soft actor-critic (ASAC) algorithm is proposed to
derive the optimal decision making. We summarize the main
contributions of this paper as follows:

• We introduce the dependency of microservices as a di-
rected acyclic graph (DAG), making it more practical
for deployment, the microservices deployment problem
(MSD) is modeled as the NP-hard max-min problem by
jointly considering the optimization of overall system cost
and the Quality of Service (QoS) of UEs.

• We extract the comprehensive network information using
an attention-based microservices representation (AMR)

method. The system context of both infrastructure and
microservice features is embedded and concatenated into
a meta-chain by a multi-head attention mechanism.

• We model the max-min problem as a Markov decision
process (MDP) and propose an attention-modified soft
actor-critic algorithm named ASAC to solve the above
problem. Simulation results also show the priorities of
the proposed algorithms.

The rest of this article is organized as follows: Section II
introduces the system model and the optimization problem,
the proposed algorithm is derived in Section III and the
experimental simulation is conducted in Section IV. Finally,
we conclude this paper in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We introduce the overall three-layer architecture consisting
of a cloud data center C in the Cloud Layer, edge servers
K = {1, 2, ..., k} in the Edge Layer, and mobile users M =
{1, 2, ...,m} in the UE Layer. Given M = {1, 2, ...,m} UE,
S = {S1, S2, ..., Sn} services, each service is represented by
a DAG. Denote the service DAG SD

n = {MSn, En}, where
MSn = {msin|i = 1, 2, ..., I} is the set of microservice of
Sn and En = {eijn |i, j ∈ {1, 2, ..., I}, i ̸= j} represents the set
of dependencies of microservices, i.e., the precedence relation
such that microservice msin is completed before msjn starts.

As illustrated in Fig.1, when service S1 consisting of 6
microservices is delivered to a forward-equipment (FE), note
that ms21 cannot start its execution before ms11 finished, and
the database (DB) receives S1 when all the microservices are
accomplished. Specifically, we define FE and DB as two virtual
nodes mson and msI+1

n indicating the entry and exit of service
S1, respectively. Each msin ∈ Sn is associated with the two-
tuples (cin, d

i
n), where cin is the required CPU cycles to finish

msin and din denotes the size of input microservice.

 



 










 



Fig. 1. Illustration of service DAG.

We define a deployment variable αi,l
n = {0, 1}, l ∈ I , I =

{M,K,C}, e.g., when l = k means that msin is deployed
on edge server k, αi,l

n = 1 means that msin is deployed, 0 is
otherwise. We have the following definitions to introduce the
time and energy consumption of service execution:

Definition 1 (Ready Time): The time that msin has all
prerequisites for execution, denoted as RT i,l

n , l ∈ I.
Definition 2 (Finish Time): The time that msin accom-

plishes all the workload cin, denoted as FT i,l
n , l ∈ I.

Definition 3 (Wireless Receiving Time): Define RT i,wt,l
n ,

FT i,wt,l
n , l ∈ I as the ready time and finish time of msin

when receiving the wireless channel from the Edge Layer and
Cloud Layer, respectively.

A. UE Layer Execution Model

Assume that each UE has σm cores with the cm CPU
frequency. Denote FT σ,m as the minimum finish time in UE
m, then the ready time is RT i,m

n = max
m′∈pre{m}

gi,mn , and gi,mn =

max{FT i,m′
n , FT i,wr,m′

n , FT i,wr,k
n , FT i,wr,c

n , FT σ,m′},
where pre{m} is the set of immediate predecessors of msin,
note that the execution of msin will not start unless all the
predecessors have been accomplished. Accordingly, we have
the local processing time as T i,m

n =
di
n

cUE
m

. Thus, the finish
time of msin at UE Layer is FT i,m

n = RT i,m
n + T i,m

n . The
corresponding energy consumption of msin at local execution
can be obtained as ϵi,mn = κmd

i
n(c

UE
m)2 [14], where κm

is the coefficient related on chip types. Note that we have
ϵ0,mn = ϵI+1,m

n = 0 for the FE and DB, respectively.

B. Edge Layer Execution Model

When microservice msin is deployed at an edge server k,
assume that UE m directly sends msin to k via cellular links,
denote the transmission time as T i,w,k

n = P i
n/vm,k, where

vm,k is the uplink transmission rate [15]. We set the channel
gain as gm,k = −4 db power of the distance between UE
m and edge server k. In this case, the energy consumption
of UE m is ϵi,kn = gm,k × T i,w,k

n . Thus, the ready time
on Edge Layer is RT i,k

n = max
m′∈pre{m}

gi,kn + T i,w,k
n , and we

have gi,kn = max{FT i,m′
n , FT i,wr,m′

n , FT i,wr,k
n , FT i,wr,c

n }.
Suppose that each edge server equips σk

m cores with the ckm
CPU frequency, and the minimum accomplishment time for all
the microservices is denoted as FT σk

m . Note that we consider
both the edge servers and cloud server can satisfy the demand
to potentially perform the concurrent microservices, thus we
have σk

m = ∞. Therefore, the execution time of msin can
be calculated as T i,k

n =
di
n

ckm
. Consequently, the finish time of

msin on Edge Layer is FT i,k
n = RT i,k

n + T i,k
n . The energy

consumption in edge server k is ϵi,kn = κkd
i
n(c

k
m)2.

C. Cloud Layer Execution Model

If the microservice msin is deployed in the Cloud Layer,
similar to the execution on Edge Layer. We consider that
the msin is first sent to edge server then delivered to cloud
server directly via fiber connections, the data transmission
delay can be ignored in this way. Thus, the ready time of
msin on Cloud Layer can be regraded as RT i,C

n = FT i,k
n .

The CPU capability of the cloud is denoted as cC , and
the execution time of msin is TC

n,i = din/c
C . Accordingly,

the energy consumption in Cloud Layer can be obtained as
ϵi,Cn = κCd

i
n(c

C)2. Therefore, the finish time of msin is
presented as FT i,C

n = RT i,C
n + T i,C

n .






















































  







 





 

 









 

Fig. 2. Implementation of ASAC scheme.

Recall that the deployment variable αi,l
n = {0, 1}, here we

define the average cost of time-varying energy (CTE) ξm as:

ξm = ωt × (FT I+1,l
n − FT 0,l

n) + ωe × E, (1)

where E is the total energy consumption of all devices,
holding ωt + ωe = 1, are the coefficients of execute time
and energy consumption, respectively. Besides, we define the
microservices deployment fee (MDF) as ζl, l ∈ I, where
ζm ≫ ζk ≫ ζC . The overall system cost is expressed as:

A =
∑

i∈msin

∑
x∈X

∑
n∈SD

n

(
αi,l
n ζ

l +
1

X

X∑
x=1

ξx
)
, (2)

where X ⊆ I is the number of the devices executing the
microservices.

Define δ = tUE−FE + tmsin
is the whole time consumption

where tUE−FE is the communication latency between UE and
FE, and tmsin

is the serving time which is regarded as msin
processing time related on the hardware conditions of devices.
Furthermore, assume that δmax is the maximal tolerant time
of the UE with the demand for the delay-sensitive services,
and we denote qi,xn as the indicator function that satisfies the
demand of a UE when executing the microservices.

qi,xn =

{
1, δi,xn < δmax

0, otherwise
. (3)

Thus, the Quality of Service (QoS) can be obtained as:

B =
∑

i∈msin

∑
x∈X

∑
n∈SD

n

αi,l
n q

i,x
n (4)

Finally, the problem of microservices deployment (MSD) can
be modeled as the max-min joint optimization problem, which
minimizing the overall system cost to promise the QoS of all
the UE in the system, shown as follows:

max
q

min
α

Z(A,B)

s.t. ωt + ωe = 1

α = {0, 1}
ζm ≫ ζk ≫ ζC

qi,xn ∈ {0, 1}

(5)

Due to the terms αi,l
n ζ

l in the objective (2), the problem can
be regarded as a mixed binary integer linearly constrained pro-
gramming (MBILP). Meanwhile, the objective (4) is a binary
integer linearly constrained quadratic programming (LCQP)
problem for the presence of the quadratic terms αi,l

n q
i,x
n . A

similar problem is proved as NP-hard [16], thereby making
it not feasible to solve it by heuristic algorithm or dynamic
programming because of its high computational and spatial
complexity and large scale. Thus, we carry out an attention-
modified DRL method to solve the aforementioned problem.

III. ATTENTION BASED DEEP REINFORCEMENT LEARNING

This section first introduces the attention-based microservice
representation (AMR) layer to extract the system features using
a multi-head attention mechanism. Then, a modified DRL
algorithm is derived to solve the above joint optimization
problem. The implementation process is shown in Fig.2.

A. Attention based Microservice Representation

1) System Features Embedding: We extract the system
features from two aspects, i.e., the infrastructure and microser-
vices. The infrastructure feature fx, x ∈ I is based on the
calculation of service and energy overhead, related to the
features of user devices, edge servers, and cloud server.

Aiming to learn the embedding of the infrastructure status,
we have the embedding wx = H·fx, where the transformation
matrix H is used to map fx. Considering the dependencies, we
employ the same matrix H to map the microservice’s features
fy, y ∈ msin (e.g., the size/type of microservice). Similarly,
we can obtain the corresponding embedding as wy = H · fy .

2) Microservice Meta-chain Attention: We consider the
infrastructure-microservice pair as a structure, and a meta-
chain of microservice DAG O is defined to obtain the com-
prehensive representation. The structure attention τxy indicates
the importance of microservice to infrastructure embedding
on O. In this way, we can obtain the representation of the
infrastructure by integrating the learnable weighted sum of

the neighbouring service as wO
x = ψ(

∑
x∈NO

x
µO
xy · wy),

where µO
xy = softmax{τOxy} indicating the operation of

graph structure information injection by using masked attention
mechanism. Then, the multi-attention mechanism is utilized to
stabilize the learning process [17] by applying U independent
heads to compute the hidden states as follows:

wO
x = ψ(

1

U

U∑
u=1

∑
y∈NO

x

µO
xy ·wy). (6)

Finally, we have U groups of chain-specific representations of
the infrastructure and microservice embeddings space WOu

x

and WOu
y , u = {1, 2, . . . , U}, respectively. Therefore, from

the infrastructure perspective, the score function ΛOu of
service-chain Ou is introduced to indicate the importance of
the different meta-chain, shown as follows:

ΛOu =
1

| U |

U∑
x∈U

gT · tanh
(
W ·wOu

x + b
)
, (7)

where g is attention coefficient vector, W is the weight matrix
and b denotes the bias vector.

Taking the learned meta-chain attention as coefficients in
system, the final infrastructure (FI) embedding Wx and final
service (FS) embedding Wy can be derived by the aggregation
of the service-chain embeddings as:{

Wx =
∑U

u=1 ω
Ou ·WOu

x , x ∈ I
Wy =

∑U
u=1 ω

Ou ·WOu
y , y ∈ msin

, (8)

where ωOu is the normalized softmax function ΛOu .

B. DRL-based Microservice Deployment Strategy Design
We consider the deployment policy learning is in the contin-

uous action spaces, and an infinite-horizon Markov Decision
Process (MDP) is deployed as follows:

Algorithm 1 ASAC Algorithm
1: Initialize: Infrastructure features fx, x ∈ I;

Soft Q-function parameters ϱ1, ϱ2;
Value function parameters ϖ and target value network parameters
ϖ̄. Soft policy parameters κ.

2: for t = 0, 1, 2, ..., T do
3: Obtain the system state {st}×(x,y) and action {at

n}×Sn by
AMR algorithm;

4: for each episode do
5: Get system action at according to input system state st in

actor network, holding at ∼ πκ(a
t | st).

6: Obtain current reward rt and next system state st+1.
7: Store the quadruplet into replay memory

D ← {(st,at, rt, st+1)} ∪ D.
8: Randomly sample a batch of N samples from D.
9: end for

10: for each gradient step in batch N do
11: Update the soft Q-function parameters ϱ1 and ϱ2 according

to (11).
12: Update the soft value function parameters ϖ̄ ← τϖ+(1−

τ)ϖ̄ according to (12).
13: Update soft policy parameters κ according to (14).
14: end for
15: end for

1) System State: As aforementioned, we obtain the final
representation of infrastructure Wx and service embedding
Wy . Here we define the system state vector space with two-
tuple St = {st}×(x,y) = {stx, sty}, where stx = (Wt

x)x∈I and
sty = (Wt

y)y∈msin
indicate the system infrastructure state and

microservice placement state, respectively.
2) System Action: The system decides which microservice is

executed in which infrastructure. We define the system action
space as At = {atn}×Sn = {αi,l

n }, ∀n, i ∈ msin, l ∈ I.
3) System Reward: It is calculated as the weighted sum of

current reward r, we formulate the system reward according
to the joint optimization objective, expressed as Rt(St,At) =
η1At + η2Bt, where At = (αi,l

n ζ
l + 1

X

∑X
x=1 ξ

x)t denotes
the overall system cost and Bt = (αi,l

n q
i,x
n)t is the QoS,

respectively. The coefficients hold η1 + η2 = 1, and A, B
are both non-negative, the system reward meets Rt > 0.

By utilizing the SAC mechanism, we consider the stochastic
policy by augmenting the cumulative system reward with the
expected entropy of the policy over ρπ(st) in the finite-horizon
scenario. The objective is to find the optimal policy π∗ as:

π⋆ = arg max
π

T∑
t=0

E(st,at)∼ρπ

[
r
(
st,at)+ ϕH

(
π
(
· | st

))]
, (9)

where ϕ > 0 is the trade-off coefficient indicating the rel-
ative importance of the entropy term against reward, so as
to control the stochastic of the optimal deployment policy.
H (π (· | st)) = Eat∼ρπ

[−logπ (at | st)] is the policy entropy
which measures the uncertainty of the random variable.

C. Soft Deployment Policy Model

In the maximum entropy paradigm, policy evaluation and
policy improvement alternate in order to learn the opti-
mal maximum entropy policies. With a deterministic deploy-
ment policy, we can obtain the soft Q-value starting from
any function Q iteratively with a modified Bellman opera-
tor ΓπQ (st,at) ≜ r (st,at) + γEst+1∼p

[
V
(
st+1

)]
where

V (st) = Eat∼π [Q (st,at)− log π (at|st)] is the soft state-
value function.

Accordingly, the entropy-augmented soft returns is obtained
as rsoft(st,at) ≜ r (st,at) + γEst+1∼ρπ

[
θH

(
π
(
· | st+1

))]
which indicates that the accumulated returns under the system
state st obtained by the current deployment policy π. The
main purpose is to find the new deployment policy πnew
which is better than the current πold. Denote π ∈ Π as the
set of policies, to obtain the guaranteed deployment policy
improvement, we update it by using Kullback-Leibler (KL)
divergence, and output the Gaussian distribution as follows:

πnew(·|st) = arg min
π′∈Π

DKL

(
π′ (·|st) ∥ exp (Qπold

(
st·
))

Zπold (st)

)
,

(10)
where DKL(·) is the KL divergence operation, and the partition
function Zπold (st) is used to normalize the distribution.

0 2 4 6 8 10 12
Episode 102

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
A

ve
ra

ge
 S

ys
te

m
 C

os
t

10-2

Edge Server = 10
Edge Server = 20
Edge Server = 30

(a) Different edge servers.

0 2 4 6 8 10 12
Episode 102

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

A
ve

ra
ge

 S
ys

te
m

 C
os

t

10-2

User = 10
User = 20
User = 30

(b) Different UEs.

0 1 2 3 4 5
Episode 102

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

A
ve

ra
ge

 S
ys

te
m

 C
os

t

10-2

Proposed ASAC
SAC-non-Attention

(c) The proposed ASAC and SAC.

Fig. 3. Performance of average system cost under different number of edge servers, UEs and comparison between the proposed ASAC and SAC.

0 2 4 6 8 10 12
Episode 102

15

20

25

30

35

40

45

50

55

Sy
st

em
 R

ew
ar

d

10-2

Edge Server = 10
Edge Server = 20
Edge Server = 30

(a) Different edge servers.

0 2 4 6 8 10 12
Episode 102

16

18

20

22

24

26

28

30

32

34

Sy
st

em
 R

ew
ar

d
10-2

User = 10
User = 20
User = 30

(b) Different UEs.

0 1 2 3 4 5
Episode 102

21

21.5

22

22.5

23

23.5

24

24.5

25

25.5

Sy
st

em
 R

ew
ar

d

10-2

Proposed ASAC

SAC-non-Attention

(c) The proposed ASAC and SAC.

Fig. 4. Performance of system reward under different number of edge servers, UEs and comparison between the proposed ASAC and SAC.

D. ASAC Learning Process

To deal with the large continuous domains obtained from the
AMR layer, the function approximators for both Q-function
and policy are employed by alternating between optimizing
bother networks with stochastic gradient descent (SGD).

The soft Q-function parameters can be trained by minimiz-
ing the soft Bellman residual, shown as follows:

∇̂ϱJQ (ϱ) =∇Qϱ

(
st,at) (Qϱ

(
st,at)− rt − γVϖ̄

(
st+1))

(11)
where the ϖ̄, from a target value network Vϖ̄, is used to
stabilize the training process by exponentially moving average
of the soft Q-function weights. The soft value function Vϖ(st)
is to trained by minimizing the mean squared error (MSE) with
the unbiased estimator as:

∇̂ϖJV (ϖ) =∇ϖVϖ(st)(Vϖ

(
st
)
−Qϱ(s

t,at)

+ logπϖ(at | st)])2].
(12)

In this way, it is observed that the actions are selected accord-
ing to the current policy, rather than from the replay buffer
D. Similarly, the policy parameter can be trained by directly
minimizing the KL-divergence from (10) as:

Jπ(κ) =Est∼D,̊at∼Å[logπϖ

(
fϖ
(̊
at; st

)
| st
)

−Qϱ

(
st, fϖ

(̊
at; st

))
],

(13)

where å is an input noise vector, sampled from a fixed spherical
Gaussian distribution, holding fϖ (̊at; st) = at. In this way, we
can approximate the gradient as follows:

∇̂κJπ (κ) =∇κlogπκ
(
at | st

)
+∇κfκ

(̊
at; st

)(
∇at logπκ

(
at | st

)
−∇atQ

(
st,at)) . (14)

The process of the proposed ASAC is shown in Algorithm.1.
Input the system state {st}×(x,y) and action {at}×Sn obtained
from AMR layer (Line 3), compute the current reward and
next system state at each episode (Line 4-9), then update the
soft Q-function, value function, and soft policy parameters until
convergence (Line 10-14). The complexity is derived hereafter,
there are K iterations in the outer loop, and a batch of N
samples in one episode in the inner loop, thus the complexity
of ASAC is O(KN).

IV. EXPERIMENT

A. Simulation Settings
In this section, we conduct the experimental simulations

in the python environment, the main parameter values of
computation ability of UE layer cm, edge layer ckm, and cloud
layer cC are uniformly set as 1.0-1.2GHz, 2.4-2.5GHz and
3.0GHz. The discount rate γ is 0.85, the learning rate is 3e−4,
and the batch size is 128. Other parameters of simulations in
this work are similar to [15].

B. Simulation Results
We demonstrate the simulation results in terms of the

performance of average system cost and the system reward.
All the results are obtained by the average values of 20 times.

1) Performance of average system cost: We deploy 20 UEs
and 30 microservices in the system for the demonstration.
From Fig. 3(a), it is observed that ASAC reaches the maximum
average system cost when the number of Edge servers is 10,
while the optimal cost occurs when the number is 30. With
the increase in the number of Edge servers, the system cost
becomes smaller until it converges. This is mainly because
fewer edge servers mean less disposable network resources, so
as the number of edge servers increases, system cost becomes
smaller. Fig. 3(b) shows the average system cost performance
with different UEs, 10 edge servers and 30 microservices are
deployed in this case. It can be seen that when the number of
UE is 10, ASAC has the worst performance in the beginning
but achieves the lowest cost in the end, while UE is 30, the
performance is the worst. This is because the AMR algorithm
occupies many network resources at the beginning of the
system representation, and finally, the resources are optimally
allocated with the system operation. We deploy 10 edge serves,
20 UEs, and 30 microservices in the following case. Fig. 3(c)
shows that the proposed ASAC reduces 5% average system
cost compared to the original SAC [18]. The main reason
is that ASAC extracts the critical features from the system,
accelerating the deployment speed at a lower cost.

2) Performance of system reward: For the same settings
as the above demonstration, respectively, we carry out the
performance of system reward, shown as Fig. 4. It can be
observed that when the edge server is 30, ASAC achieves the
best performance in Fig. 4(a), the performance improvement
is positively correlated with the number of edge servers while
there is a negative correlation with the increase of users in
Fig. 4(b). The reason is that when UE is 10, it occupies many
network resources, which leads to the high system cost in the
beginning, while when UE is 30, the average system cost is
over-consumed, resulting in the low QoS for each UE. Fig. 4(c)
shows that the priorities of the proposed ASAC outperform the
SAC algorithm for almost 30%.

V. CONCLUSION

This paper has investigated the microservice deployment
(MSD) problem, formulated as the max-min problem, by
jointly considering the overall system cost and the quality of
service (QoS). For better extracting the system context, an
attention-based microservice representation (AMR) has been
carried out, and then the MSD problem has been formulated
as a Markov decision process. Moreover, an attention-modified
soft actor-critic algorithm (ASAC) has been derived to solve
the above problem. The experimental simulation results have
shown the superiority of the proposed algorithm.

ACKNOWLEDGMENT

This work was partially supported by the CHARITY project
that received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No
101016509. This work was also supported partially by the Na-
tional Key Research and Development Program of China under
Grant No. 2019YFB2101901; the National Science Foundation
of China under Grant No. 62072332, China NSFC (Youth)
through grant No. 62002260; and the China Postdoctoral
Science Foundation under Grant No. 2020M670654, and the
National NSFC (Grant No. 61902044), Key Research Program
of Chongqing Science & Technology Commission (Grants
No. cstc2021jscx-dxwtBX0019) and the Chinese Government
Scholarship (NO. 202006250167) awarded by China Scholar-
ship Council.

REFERENCES

[1] J. B. Gomes Gilzamir, Creto A and Y. L. Nogueira, “Two level control
of non-player characters for navigation in 3d games scenes: A deep
reinforcement learning approach,” in SBGames, 2021, pp. 182–190.

[2] H. Yu, T. Taleb, J. Zhang, and H. Wang, “Deterministic latency bounded
network slice deployment in ip-over-wdm based metro-aggregation net-
works,” IEEE TNSE, vol. 9, no. 2, pp. 596–607, 2022.

[3] H. Yu, T. Taleb, and J. Zhang, “Deterministic latency/jitter-aware service
function chaining over beyond 5g edge fabric,” IEEE TNSM, 2022.

[4] H. Sun, S. Wang, F. Zhou, L. Yin, and M. Liu, “Dynamic deployment
and scheduling strategy for dual-service pooling based hierarchical cloud
service system in intelligent buildings,” IEEE T Cloud Comput, 2021.

[5] Y. He, G. Han, J. Jiang, H. Wang, and M. Martinez-Garcia, “A trust up-
date mechanism based on reinforcement learning in underwater acoustic
sensor networks,” IEEE Transactions on Mobile Computing, 2020.

[6] X. Wang, C. Wang, X. Li, V. C. Leung, and T. Taleb, “Federated
deep reinforcement learning for internet of things with decentralized
cooperative edge caching,” IEEE Internet Things J., vol. 7, no. 10, pp.
9441–9455, 2020.

[7] J. Islam, T. Kumar, I. Kovacevic, and E. Harjula, “Resource-aware
dynamic service deployment for local iot edge computing: Healthcare
use case,” IEEE Access, vol. 9, pp. 115 868–115 884, 2021.

[8] Z. Fan, W. Yang, F. Wu, J. Cao, and W. Shi, “Serving at the edge: An
edge computing service architecture based on icn,” ACM TOIT, vol. 22,
no. 1, pp. 1–27, 2021.

[9] H. Tian, X. Xu, T. Lin, Y. Cheng, C. Qian, L. Ren, and M. Bilal, “Dima:
Distributed cooperative microservice caching for internet of things in
edge computing by deep reinforcement learning,” WWW, pp. 1–24, 2021.

[10] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, “Offloading tasks
with dependency and service caching in mobile edge computing,” IEEE
TPDS, vol. 32, no. 11, pp. 2777–2792, 2021.

[11] Y. Zhai, T. Bao, L. Zhu, M. Shen, X. Du, and M. Guizani, “To-
ward reinforcement-learning-based service deployment of 5g mobile
edge computing with request-aware scheduling,” IEEE Wirel Commun.,
vol. 27, no. 1, pp. 84–91, 2020.

[12] C. Li, L. Zhu, W. Li, and Y. Luo, “Joint edge caching and dynamic
service migration in sdn based mobile edge computing,” J Netw Comput
Appl., vol. 177, p. 102966, 2021.

[13] C. Pham, N. H. Nguyen, K. K. Nguyen, and M. Cheriet, “Optimized iot
service chain implementation in edge cloud platform: A deep learning
framework,” IEEE TNSM, vol. 18, no. 1, pp. 538–551, 2021.

[14] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun Surv Tut, vol. 19, no. 4, pp. 2322–2358, 2017.

[15] J. Chen, Y. Yang, C. Wang, H. Zhang, C. Qiu, and X. Wang, “Multi-
task offloading strategy optimization based on directed acyclic graphs
for edge computing,” IEEE Internet Things J., 2021.

[16] X. Li, X. Wang, Z. Han, and V. C. Leung, “Hierarchical edge caching
in device-to-device aided mobile networks: Modeling, optimization, and
design,” IEEE J-SAC, vol. 36, no. 8, pp. 1768–1785, 2018.

[17] A. Vaswani, N. Parmar, J. Uszkoreit, and I. Polosukhin, “Attention is all
you need,” in Adv Neural Inf Process Syst., 2017, pp. 5998–6008.

[18] T. Haarnoja, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor,”
in ICML, 2018, pp. 1861–1870.

