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Abstract—In the context of emerging 6G services, the re-
alization of everything-to-everything interactions involving a
myriad of physical and digital entities presents a crucial chal-
lenge. This challenge is exacerbated by resource scarcity in
communication infrastructures, necessitating innovative solutions
for effective service implementation. Exploring the potential
of Semantic Communications (SemCom) to enhance point-to-
point physical layer efficiency shows great promise in addressing
this challenge. However, achieving efficient SemCom requires
overcoming the significant hurdle of knowledge sharing between
semantic decoders and encoders, particularly in the dynamic
and non-stationary environment with stringent end-to-end quality
requirements. To bridge this gap in existing literature, this paper
introduces the Knowledge Base Management And Orchestration
(KB-MANO) framework. Rooted in the concepts of Computing-
Network Convergence (CNC) and lifelong learning, KB-MANO
is crafted for the allocation of network and computing resources
dedicated to updating and redistributing KBs across the system.
The primary objective is to minimize the impact of knowledge
management activities on actual service provisioning. A proof-of-
concept is proposed to showcase the integration of KB-MANO
with resource allocation in radio access networks. Finally, the
paper offers insights into future research directions, emphasizing
the transformative potential of semantic-oriented communication
systems in the realm of 6G technology.

Index Terms—6G, The Metaverse, Semantic Communications,
SemCom, Semantic Networking, Semantic-Aware Orchestration,
KB-MANO, Computing-Network Convergence, Resource Alloca-
tion, and Lifelong Learning.

I. INTRODUCTION

In the foreseeable future of 6G communication sys-
tems, connections are expected to expand to everything-to-
everything interactions within platforms like the Metaverse,
involving diverse physical and digital objects continually en-
gaging, traversing, and coexisting. A consequential outcome
of deploying such immersive environments is the contin-
ual proliferation of connected objects, leading to significant
increases in upstream traffic. Predictions suggest that 6G
will be linked to highly dense environments with a con-
siderable number of entities and a substantial volume of
global data, of which a significant portion will be routed
to computing resources, particularly for services such as
telemedicine, holographic teleportation, immersive learning,
precision agriculture, smart supply chaining, and intelligent
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Fig. 1. The anticipated characteristics, QoS/QoE criteria, and illustrative
examples of services expected in 6G.

transportation. These services necessitate rigorous End-to-End
(E2E) Quality of Service/Experience (QoS/QoE) prerequisites,
encompassing requirements such as microsecond-level latency,
bounded jitter, multi-gigabit-level throughput, ultra-high reli-
ability, exceptionally high computing capacity, and superior
energy efficiency [1], as illustrated in Fig. 1.

To meet the substantial demand with stringent performance
requirements, the scarcity of infrastructure resources emerges
as a significant challenge. To tackle this challenge, there has
been notable interest in a recent paradigm, recognized as
Semantic Communications (SemCom). This paradigm extends
beyond the conventional Shannon paradigm (which primarily
optimizes opaque data pipes aiming to reproduce exactly
exchanged sequences of symbols) and centers on effectively
inferring the meaning of what has been communicated. This
process is facilitated through the utilization of background
and contextual knowledge, known as Knowledge Bases (KBs),
shared a priori between communicating parties necessary for
achieving a predefined shared view on the goal of communi-
cation [2]. To facilitate this, the sender and receiver engage
in semantic encoding/decoding (transcoding), as detailed in
Fig. 2. This semantic shift promises a ubiquitous connection
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Fig. 2. The elements of semantic encoders and decoders (transcoders)
encompassing various tasks, including buffering traffic, synchronizing traffic
from diverse sources, splitting or constructing streams, sampling data from
distinct streams, extracting or constructing semantics, and performing traffic
shaping. Semantic encoders can be implemented as service-specific functional
components on user devices or the system’s edge computing resources.
Conversely, semantic decoders should be implemented at locations where the
semantics need to be utilized.

without mandating the presence of a shared syntax or pro-
tocol in the transmission of data, improves communication
efficiency and reliability, and enhances QoS/QoE for human-
oriented services [3]. Furthermore, in contrast to conventional
bit-oriented methodologies where there is no inherent meaning
beyond bits, semantics can play a pivotal role in the decision-
making process of orchestrating communication system re-
sources. Leveraging the correlation between semantics allows
for the optimization of resource scheduling and utilization.

The exploration of realizing SemCom and its impact on
communication efficiency has been a focal point in recent
research efforts. Some studies have investigated the potential
of semantic-oriented communications to enhance point-to-
point physical layer connections, aiming to surpass Shannon’s
limit. Meanwhile, new research explores incorporating seman-
tic awareness into emerging communication systems. Trevlakis
et al. [4] thoroughly examined the integration of SemCom
in the context of 6G, suggesting a new SemCom network
structure based on optimal point-to-point resource utilization.
Luo et al. [5] and Wheeler et al. [6] proposed ML-aided
E2E semantic-aware communication systems for beyond 5G.
Yang et al. [7] introduced a similar edge-driven concept with
the aim of improving transcoding efficiency, where training,
maintenance, and execution of semantic transcoding are based
on KBs shared by service users. Similarly, Lu et al. [8]
developed an ML-transcoded semantic-aware design inspired
by natural human interactions. Furthermore, some research
efforts have aimed to introduce semantic awareness into radio
network architecture through architectural enhancements [9]–
[11].

While the aforementioned studies have tried to address
different challenges to realize SemCom, their applicability to
6G is limited. Achieving efficient SemCom in 6G necessitates
universal access to the same background knowledge by all
semantic transcoders of a given service, posing an exception-
ally formidable challenge, especially for dynamic and non-
stationary future systems [1], [5], [8], [9]. Existing literature

lacks a real-time and systematic approach to address the chal-
lenge of KB management, particularly tailored to the structure
of 6G and its ever-fluctuating services. To address this gap, we
first describe future 6G systems and their components in Sec-
tion II, highlighting the most challenging aspects of enabling
SemCom: KB refinement and KB arrangement. Subsequently,
we introduce the KB Management And Orchestration (KB-
MANO) framework in Section III, designed for the allocation
of network and computing resources dedicated to updating and
redistributing KBs across the system. The primary objective is
to minimize the impact of knowledge management on actual
service provisioning. Given that KB-MANO is grounded in
the principles of Computing-Network Convergence (CNC)
and lifelong learning, this section also delves into strategies
suitable for KB updating across various scenarios. Section IV
features a proof-of-concept scenario evaluating the efficiency
of semantic-aware orchestration enabled by KB-MANO, fol-
lowed by an exploration of open research directions in Section
V. The paper concludes in Section VI, summarizing key
findings and implications.

II. FUNDAMENTALS, CHALLENGES, & ENABLERS

A. Service Provision over Integrated 6G

In the context of 6G systems, decentralized computing
resources extend across in-network, edge, regional, and central
nodes dispersed across vast geographical areas. These nodes
interconnect through diverse networking technologies in radio
access, transmission, and core network sub-domains, featuring
varied network devices and links. Provisioning future services
over such infrastructures necessitates precise resource orches-
tration. A Metaverse scenario depicting users participating in a
holographic presence service within a virtual conference room
by a live lakeshore is illustrated in Fig. 3. The service inte-
grates rendering, motion tracking, stereoscopic 3D display, and
audio spatialization functionalities. To bring this experience to
life, the software instances of these functionalities should be
loaded onto available computing nodes. Subsequently, users’
video, audio, and motion data are transmitted to the instances
through their designated network paths. These instances col-
laborate in accordance with a predetermined order specified
in the service’s function chaining map. Following that, the
generated rendered content is transmitted back to users’ de-
vices, such as headsets. Throughout these processes, strict
compliance is maintained with factors such as the QoS/QoE
requirements of the service (as delineated in Fig. 1) and the
availability of resources.

B. Semantic Mastery in Orchestration

In the context of SemCom for future extensive-scale ser-
vices, users employ semantic encoders to compress data into
semantic segments (or semantics), transmitting these semantics
instead of raw bulk data to their designated instances. The
instances, in turn, utilize semantic decoders to reconstruct the
intended output. In scenarios such as holographic conferences,
spatial, visual, and auditory semantics—including positioning,
gestures, and ambient sounds—are extracted using semantic
encoders, and semantic decoding captures user interactions
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Fig. 3. Forthcoming 6G services facilitated by an integrated cloud-network infrastructure, incorporating technologies such as deterministic networking,
time-sensitive networking, and intelligent medium access control.

with virtual elements, each other, and the environment, con-
tributing to a realistic rendering and presentation of the
holographic presence. The adoption of semantics not only
reduces resource consumption and enhances efficiency but
also optimizes resource orchestration. By understanding the
semantics of user requests, prioritization can be applied giving
top priority to critical semantics to ensure seamless service
responsiveness, and similar requests can be directed to shared
computing nodes and network paths. While the vision of
SemCom has long existed, the recent emergence of ML-aided
semantic understanding is recognized as a promising enabler
of 6G [12]. This involves the utilization of semantic-specific
Deep Neural Networks (DNNs) for transcoding semantics1.

C. Semantic Costs in Play

In achieving effective semantic-aware provision and orches-
tration, a significant challenge arises from the dynamic nature
inherent in future systems. To comprehend this dynamism,
consider the holographic meeting scenario, wherein the ever-
changing nature of interactions is influenced by a multitude
of sources. For instance, users may fluidly transition between
various roles, each accompanied by distinct QoS require-
ments, or they may modify their receivers, evolving their
QoE standards for immersive experiences across each receiver.
Additionally, physical mobility at varying speeds introduces
changes in users’ connection points to the system. Considering
the temporal fluctuations in 6G resources, distributed across
diverse domains and operating under different supervisions,
two primary challenges are anticipated: knowledge refinement

1In ML-aided SemCom, background knowledge corresponds to the DNN
weights of a trained ML agent. In non-ML solutions, it may take the form of
a knowledge graph or a set of rules extracting information bit values.

and knowledge arrangement. Knowledge refinement pertains
to the optimal allocation of scarce computing and network
resources to continuously evolve KBs, and knowledge arrange-
ment involves the efficient distribution of updated KBs to
users, instances, and entities responsible for resource allo-
cation, such as network edge devices and/or the system or-
chestrator. In dynamic environments, constantly refining KBs
while arranging every piece of updated knowledge can lead
to impractical resource depletion. Thus, achieving a balanced
approach is essential for optimal semantic-aware provisioning
and orchestration.

D. The Era of Intelligent Integration

Addressing knowledge refinement involves utilizing the
concept of lifelong learning, which accommodates a theoreti-
cally unlimited number and variety of tasks, segregating train-
ing procedures for different contexts by assigning each one to a
task. This results in the long-term applicability and coherence
of trained tasks for recurring scenarios, diminishing the need
for frequent retraining, as well as the effectiveness of training
from scratch for new situations. The approach mitigates the
environmental impact and computational overhead associated
with traditional ML techniques. In the realm of SemCom,
this proves advantageous for adeptly managing emerging sit-
uations. For instance, in the holographic meeting scenario,
lifelong learning can be applied to 1) dedicate an individual
task to maintain each existing KB updated with changes in data
streams (such as emerging words and meanings in supported
languages) and 2) initiate new tasks in response to the demand
for new KBs (such as the introduction of new data streams
facilitated by emerging user-side technologies).
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Another crucial enabler is the concept of CNC. In the con-
text of the integrated infrastructure of 6G, consisting of distinct
computing and network domains, CNC aims to orchestrate
diverse domain resources collectively, establishing network-
aware, detectable, assignable, and schedulable computing re-
source pools. By actively monitoring computing and network
domains in real-time and discerning system-wide states, the
CNC E2E orchestrator adeptly allocates resources for each
domain, facilitated not only by leveraging its own domain state
but also by incorporating the state information from the other
domain. This dynamic adjustment considers changes in net-
work accessibility, availability, and computing capacity quality
[13], stemming from factors like dynamic traffic patterns
or administrative restrictions imposed by different domains
or regions. Employing the CNC concept ensures that data
collection, the training process for KBs, and subsequent dis-
tribution among users, instances, and entities making resource
allocation decisions are conducted with careful consideration
to prevent overloads on actual network traffic and running
services.

III. PROPOSED FRAMEWORK

A. The System Model

To enable semantic-aware provision and orchestration for
6G’s dynamic, massive-scale services with stringent QoS/QoE
requirements, we consider a system equipped with integrated
computing and network resources, referred to as the infras-
tructure. Within this system, service providers (like those
facilitating the holographic meeting scenario) register services,
encompassing functional instances (e.g., rendering, motion
tracking, etc.). The registered services incorporate SemCom,
enabled by their corresponding KBs, and introduce their
own lifelong learning tasks (or simply, training tasks) that
ensure KBs remain updated. Users initiate requests to access
the registered services within the system, establishing E2E
connections that manage the transmission of semantics to the
instances of their requested services. Processed data (such as
a live-rendered holographic meeting scene) is then delivered
back to users. Resource allocation for service instances and
user requests occurs through the multi-layer, CNC-empowered
resource orchestration framework, named CNCO, implement-
ing decisions at the network’s edge devices, named the Points
of Arrival (PoAs), the entry points for requests into the system.
CNCO employs KBs associated with each service at PoAs to
comprehend the transmitted semantics, integrating them into
its decision-making process.

B. KB-MANO

Considering the system model and adhering to the defined
challenges of knowledge refinement and arrangement, we
intend to optimize the allocation of network and computing
resources for updating and (re)distributing KBs throughout the
system. This ensures that users, service instances, and PoAs
have access to the latest KBs, aiming to minimize the impact of
knowledge management and orchestration activities on actual
service provisioning. To achieve this objective, we propose

the KB-MANO framework, which addresses knowledge re-
finement by incorporating KB training strategies enabled by
lifelong learning and dynamically switching between them
based on available resource information received from CNCO.
Additionally, it handles knowledge arrangement by managing
the organization of KB distribution among users, instances,
and PoAs through proactive measures initiated by service-level
QoS/QoE degradation thresholds, guided by monitoring infor-
mation provided by CNCO. The components of KB-MANO
are categorized into three distinct layers: E2E, Domain, and
Resource, as depicted in Fig. 4 and elaborated upon in the
following subsections.

1) E2E layer:

The E2E layer assumes the responsibility of high-level
decision-making related to knowledge refinement and ar-
rangement. Its initial function involves gathering computing
and network utilization data from CNCO’s E2E orchestrator,
which is then stored in the Memory Bank over time. Addi-
tionally, performance metrics for active services across all
users are received from CNCO. Note that the collection of
this information is conducted anonymously to uphold user
privacy. The Workload Analyzer component accumulates this
historical data over the last T e time slots, predicts future
utilization patterns across computing and network domains,
and anticipates QoS/QoE trends for each active service. The
derived insights are subsequently stored in the memory bank.
Evidently, T e (the history window size) is adjustable, catering
to the dynamics of the system. Smaller window sizes capture
recent fluctuations with computational efficiency, while larger
window sizes yield more stable predictions using more com-
plex prediction models. ML techniques, such as eXplainable
Long Short-Term Memory (XLSTM) and transformers, are
employed to analyze historical and temporal data, enabling
the forecasting of future states.

Now, the KB Refinement Manager relies on present and
anticipated resource states to allocate resources for KB up-
dates. This entails two primary steps: selecting a KB training
strategy, which assesses the suitability of distributed versus
centralized processing based on current and future resource
availability (elaborated in Section III-C), and subsequently
placing the KB training tasks on computing resources while
establishing network paths for data transmission from users
to the assigned computing nodes. As these training tasks are
implemented and executed by the service provider (for ex-
ample, the entity in charge of the holographic meeting setup),
the data remains in their custody, alleviating privacy concerns.
The conclusive module, designated as the KB Deployment
Manager, is tasked with disseminating the latest KB versions
to users, service instances, and PoAs. The distribution pro-
cess hinges on predetermined QoS/QoE thresholds for active
services and the current and anticipated network resources.
A heightened sensitivity to slight quality alterations prompts
increased network resource utilization for KB distribution,
ensuring continual updates across the system. Conversely,
adopting more lenient thresholds leads to reduced network
consumption, albeit potentially resulting in less precise seman-
tic transcoding.
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Fig. 4. The KB-MANO architecture integrated with the CNCO framework (detailed by Shokrnezhad et al. [13]). It is noteworthy that the E2E and domain
layers can be instantiated as components within the CNCO E2E and domain orchestrators, respectively. Furthermore, the network and computing resource
layers can be realized as virtual functions on network devices and computing nodes.

2) Domain Layer:

The Domain layer oversees intra-domain resource allocation
for knowledge refinement and arrangement. In the network do-
main, historical data on the availability of the network graph is
received from CNCO’s network orchestrator and stored in the
Memory Bank, along with usage predictions from the domain-
level Workload Analyzer. The history window size in this layer
(T d) can be set smaller than T e to capture transient changes
with reduced complexity. Based on the strategy chosen by the
KB Refinement Manager and current and predicted network
usage, the Domain KB Manager adjusts network paths for
data transmission (between users and the allocated computing
nodes) and KB distribution. In the absence of a feasible
network path for either conveying user data or distributing the
latest KBs, this module prompts the E2E layer to reassess
its chosen strategy, optimizing it to align with the current
network conditions. Path feasibility is compromised when the
necessary bandwidth surpasses the thresholds established to
protect actual network traffic. Another factor is the excessive
latency of bandwidth-feasible paths, preventing the timely
update of KBs within the predefined time constraints dictated
by the QoS/QoE requirements of their associated services. The
computing domain mirrors this process, readjusting computing
capacity for assigned tasks.

3) Resource Layer:

The Resource layer manages resource allocation for knowl-
edge refinement and arrangement across network devices and
computing nodes. It gathers availability information from var-

ious resource elements, predicts their future states, and stores
this data in the resource Memory Bank. The history window
size in this layer (T r) is kept minimal to reduce resource
consumption during the prediction process and capture subtle
resource-level fluctuations. Subsequently, the Resource KB
Manager utilizes this information to dynamically adjust the
capacity allocated for KB refinement and/or arrangement.
On network devices, this adjustment includes (re)allocating
bandwidth for transmitting user data from users to training
tasks or prioritizing traffic for distributing the latest KBs
from training tasks to users, service instances, or PoAs. On
computing nodes, the adjustment entails (re)scaling allocated
computation, memory, and storage capacity for training tasks
or migrating them to nodes accessible via the assigned network
paths. In cases of infeasibility, the Domain layer is notified by
the KB Refinement Resource Manager to reallocate resources
at the domain level.

C. KB Training Strategies

Concerning the system state, which denotes the current
availability and the predicted availability of resources for
future time slots, the KB Refinement Manager in the E2E layer
can adopt various strategies for updating KBs. As illustrated
in Fig. 5, the most favorable strategies include:

1) Centralized Training:

The straightforward strategy is to treat each KB’s training
tasks as an atomic operation and place them on computing
nodes, either at the network edge or in core data centers, to
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Fig. 5. The KB refinement training strategies, including centralized, distributed, and federated approaches. It is essential to highlight that the implementation
of the semantic encoder can occur independently on user devices or be integrated into network edge devices.

be executed in a centralized manner as illustrated in Fig. 5-A.
This type of offloading simplifies the process by avoiding the
complexities of task decomposition and combinatorial resource
optimization, which could introduce additional computation
costs and scheduling delays in the E2E layer. However, this
strategy requires substantial data transmission from users to
edge or core computing nodes, which may not be viable in
future scenarios where limited network resources must be
allocated to actual traffic. Additionally, due to the atomic
nature of training task placement, this strategy lacks flexibility
for accommodating future dynamic patterns and may lead to
inefficient resource utilization. As another notable vulnerabil-
ity, the transmission of user data to edge or core computing
nodes may potentially elevate the risk of privacy concerns.

2) Distributed Training:

Considering the enhanced capabilities of future user devices,
a viable strategy involves partially offloading training tasks to
edge or core computing nodes, as depicted in Fig. 5-B. In
this strategy, the E2E layer decomposes each KB’s training
tasks into partitions, and it determines the allocation of these
partitions to user devices and the infrastructure’s computing
nodes. While the dynamic adjustment of partitioning and
resource allocation poses a complex optimization challenge,
it enables more efficient resource utilization by considering
the real-time and predicted states of resources. A potential
decomposition method within this strategy involves breaking
tasks at the DNN level, where an individual or groups of DNN
layers form one partition (a.k.a. split learning). Executing
these partitions across user devices and computing nodes in a
distributed manner achieves the execution of the entire DNN.
The classification of partitions as computation- or network-
intensive is then determined based on the live and predicted
resource states, guiding their placement on user devices or
computing nodes.

3) Federated Training:

To significantly mitigate privacy and security risks, as well
as reduce the volume of data transmission between users and
computing nodes during KB updates, training tasks can be
performed on user devices using their local data. However,

since the data of an individual device may not adequately
represent global coherence, the resulting trained models (e.g.,
updated DNN weights) can be transmitted to edge and core
computing nodes for hierarchical aggregation (such as aver-
aging DNN weights). Guided by the live and predicted states
of resources and the characteristics of services, including their
QoS/QoE metrics, the KB Deployment Manager intermittently
replaces local models with global models. This transition
ensures that the training process can resume over the updated
models. The closed-loop nature of this strategy is illustrated in
Fig. 5-C. While this strategy is well-suited for potential offline
scenarios, it does elevate the load on user devices, potentially
leading to increased energy consumption and associated costs
for users.

IV. PERFORMANCE EVALUATION

In this section, we present a proof-of-concept scenario
designed to assess the effectiveness of the KB-MANO frame-
work in facilitating semantic-aware orchestration. Specifically,
we investigate a radio cell served by a Small Base Station
(SBS), where N intelligent users contend for access to C time-
slotted uplink channels allocated to the SBS. Collisions occur
when multiple users attempt to transmit data over the same
channel within the same time slot. The aim is to illustrate
that by enabling users to extract semantic information from
their transmitted data and subsequently sharing this knowledge
with the SBS through the implementation of KB-MANO,
the semantic throughput (or simply throughput), defined as
the number of successful semantic transmissions, can be
improved. To accomplish this, we utilize a Double and Dueling
Deep Q-Learning (D3QL)-based approach to categorize users’
data into a predefined set of K semantics. The training and
execution of this model, as well as the sharing of its weights
(KBs) with the SBS, are facilitated through the application of
federated training, as discussed in Section III-C3.

Subsequent to the extraction of semantic information by the
SBS, we employ a method termed Semantic Aware Multiple
Access (SAMA)-D3QL, serving as part of OCNC as detailed
in [14], to manage user channel access. Throughout the train-
ing phase of this approach, each user constructs a historical
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record, wherein each entry pertains to a particular time slot,
encompassing:

• User’s action:
– (Sen., c): Sense channel c.
– (Trn., c): Transmit over channel c.

• User’s observation:
– When sensing: {Busy, Idle}.
– After transmissions: {Success, Collision}.

• User’s assisted throughput: The number of shared seman-
tics between this user and others, transmitted by this user
during each time slot. The SBS calculates this metric
utilizing the transmission records of users, enabled by
the deployment of KB-MANO.

By configuring the reward as the weighted average of through-
puts, with the weights corresponding to assisted through-
puts, each user trains its individual SAMA-D3QL model.
Subsequently, users employ their respective models to make
determinations regarding medium access.

In Fig. 6-A and -B, we compare the outcomes of SAMA-
D3QL against those of MA-D3QL (without assisted through-
put data), random access control (RND), and the optimal
solution derived from exhaustive search. Fig. 6-A illustrates
the temporal evolution of total throughput, revealing SAMA-
D3QL’s significant outperformance of MA-D3QL, ultimately
converging to the optimal solution. Fig. 6-B portrays average
user throughputs, with the shaded region denoting each user’s
assisted throughput, underscoring the spectrum utilization en-
hancement achieved through semantic awareness. In Fig. 6-
C, the assisted semantic efficiency ratio of SAMA-D3QL,
computed as the average of assisted throughput divided by
total throughput for all users, is depicted for varying numbers
of users and different quantities of users with shared semantics.
It is observed that the increase in the number of users
sharing semantics results in enhanced assisted throughput.
Specifically, with 5 users sharing semantics, each transmission
assists ∼1.75 semantics. This indicates that with KB-MANO
implementation, ∼1.75 transmissions can be omitted for 1
successful transmission, resulting in significant resource sav-
ings. These freed resources can then be allocated to transmit
larger or redundant semantics to achieve higher-level semantic
metrics and distribute updated KBs among network elements.
Notably, similar resource savings are anticipated for comput-
ing resources. Moreover, Fig. 6-C demonstrates the scalability
of KB-MANO implementation in communication infrastruc-
tures, as this phenomenon remains consistent regardless of the
number of users.

V. FUTURE RESEARCH DIRECTIONS

To achieve an efficient and effective implementation of
semantic-enabled 6G systems, meticulous consideration must
be devoted to addressing various technological and societal
challenges, some of which are outlined in the following:

1) E2E Management of KB Refinement and Deployment:

Within the E2E layer of KB-MANO, two crucial compo-
nents stand out: the KB Refinement and Deployment Managers.
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Fig. 6. A) The evolution of D3QL-based methodologies throughout their
operational time slots, compared with the random and optimal outcomes, in
terms of sum throughput, and B) the average throughput for all users and
methodologies. It is pertinent to note that, in the experimental setup of A and
B, N is set to 4, C is 1, and users are divided into two distinct groups, each
sharing similar data and corresponding semantics among their group members.
C) The assisted semantic efficiency ratio of SAMA-D3QL, computed as the
average of assisted throughput divided by total throughput for all users, for
varying numbers of all users and different quantities of users with shared
semantic segments.

These components address optimization problems related to
resource allocation, including running KB training tasks, fa-
cilitating data transmission between users and these tasks, and
distributing KBs across the infrastructure. In scenarios where
federated training is enabled (see Section III-C), training tasks
occur on user devices, eliminating the need for data transmis-
sion during training, and model weights (which have negligible
size compared to user data) are transmitted to distribute KBs.
However, for distributed or centralized training (when device
resources are insufficient), training tasks must migrate to edge
or cloud resources, requiring data transmission between users
and these tasks. In these cases, precise allocation of computing
and network resources, taking into account service charac-
teristics and real-time system state, is essential to minimize
the impact on actual traffic. Challenges include selecting and
configuring training strategies, allocating network bandwidth
for KB updates and computing power for model trainings, and
prioritizing traffic for deploying updated KBs. ML-based or
heuristic approaches offer potential solutions within specified
time constraints and considering the dynamic nature of the
system, representing a promising avenue for future research.
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2) E2E Calculation of Semantic Performance:

In the E2E management of KB refinement and arrange-
ment, a crucial consideration lies in constraining service char-
acteristics, particularly semantic-based service performance
requirements. Unlike traditional networks with well-defined
E2E performance parameters, translating the E2E QoS/QoE
performance of semantic-enabled systems into metrics such
as E2E latency or minimum required network and computing
capacity poses challenges. For example, speech-based services
commonly utilize metrics like Word Error Rate (WER) and
Signal-to-Distortion Ratio (S2DR), while video-based services
rely on Video Quality Assessment (VQA) metrics for per-
formance evaluation [15]. Furthermore, the subjective nature
of semantics adds complexity, as different services, users,
or service providers in multi-domain scenarios may perceive
performance differently. Addressing semantic-based metrics
and transforming them into constraints and thresholds for
resource allocation through innovative research initiatives will
aid in overcoming current challenges associated with assessing
system-wide semantic awareness comprehensively.

3) E2E Deterministic Provision of Services:

In the holistic oversight of E2E KB refinement and ar-
rangement, it is crucial to integrate not solely the service
characteristics but also the real-time system state. Among
these, a pivotal component is the real-time states of semantic
transcoding blocks, in conjunction with the examination of
resource states enabled by CNCO. For example, live services
like the holographic meeting may involve intensive semantic
extraction during certain time slots when users initiate the use
of a specific device. In this time frame, considering semantic
extraction delays is crucial, which influences E2E quality
metrics and makes edge resources the only viable option
to implement corresponding service instances. Conversely,
during time slots requiring lighter semantic extraction with
negligible delay, instances can be migrated to cost-effective
regional or core data centers. Thus, dynamic resource allo-
cation, considering the impact of reduced performance due
to semantic transcoding, is imperative for E2E deterministic
semantic awareness.

4) Sustainable Design of Semantic-Aware Systems:

In the pursuit of service providers’ strategic objectives,
refining and deploying KBs can be strategically structured to
enhance various operational metrics. This includes reducing
resource utilization, decreasing E2E latency, and augmenting
user support capacity. However, integrating SemCom and
orchestration requires incorporating semantic transcoding at
various stages within the framework, leading to increased
demand for computing resources and higher energy consump-
tion. Hence, alongside these objectives, sustainably respon-
sible resource allocation becomes paramount. This involves
prioritizing renewable energy sources for computing resources
and consolidating tasks and traffic to free up computing and
network space, enabling surplus resource deactivation. More-
over, the advent of novel semantic transcoding paradigms,
anchored in causality and advanced cognitive capabilities,

along with lifelong learning mechanisms such as Continual
Learning (CL) that systematically integrate new information to
prevent catastrophic forgetting, presents potential for mitigat-
ing unnecessary retrains or redistributions. This advancement
holds promise for nurturing more environmentally sustainable,
semantically-enabled systems.

VI. CONCLUSION

This paper focused on addressing challenges related to KB
refinement and arrangement to enable efficient SemCom for
dynamic 6G services. It first introduced the 6G infrastructure
and its entities, explained the concept of SemCom, highlighted
the benefits of incorporating semantics in resource orchestra-
tion, outlined challenges in implementing efficient semantic-
enabled 6G systems, and proposed enabling technologies to
overcome these challenges. Subsequently, the KB-MANO
framework was introduced, designed for allocating network
and computing resources dedicated to updating and distribut-
ing KBs across the system, aiming to minimize the impact
of knowledge management on service provisioning. Addi-
tionally, a proof-of-concept scenario demonstrated semantic-
aware radio resource orchestration empowered by KB-MANO.
The paper concluded by outlining various research avenues
that are crucial for the advancement of semantic-oriented
communication systems. These directions are essential for
paving the way toward an optimized, resilient, inclusive, and
future-proof 6G infrastructure.
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