
Towards A Fast Service Migration in 5G

Rami Akrem Addad1, Diego Leonel Cadette Dutra2, Miloud Bagaa1, Tarik Taleb1

and Hannu Flinck3
1 Aalto University, Espoo, Finland

2 Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
3 Nokia Bell Labs, Espoo, Finland

Abstract—The development of the 5G technology has been
driven by the need for faster and higher-capacity networks that
would be able to sustain modern, high-demanding applications.
Low-latency communication (1ms – 10ms) is one of the im-
portant requirements of the 5G systems [1]. For achieving such
requirements, the services should be shifted towards the vicinity
of the users as much as possible. In this scope, Multi-access Edge
Cloud (MEC) [2] will play a tremendous role in 5G technology by
hosting various services close to the end-users. MEC is a network
architecture concept that allows placing different services near
the user equipment (UEs) for enabling very low latency and high
bandwidth, which is required by real-time applications, such as
mobile broadband in vehicles that are characterized by high UEs
mobility. In order to ensure the service requirement in terms
of low-latency communication, those services should follow (i.e.,
service migration) the user mobility by placing them always at
the closest MEC. Placing services nearby highly mobile UEs is
a very challenging problem. Lightweight migration of service
states among MECs is one of the promising techniques that will
mitigate such a problem. Motivated by the evolution of real time
applications, we propose and evaluate three different mechanisms
to improve the end user experience by using container-based live
migration paradigm. In these approaches, we leverage the follow-
me edge concept for enabling lightweight live migration. While
the two first solutions take into consideration the mobile users’
paths, e.g., cars, paths, the third one is oblivious to the users’
paths. The obtained results demonstrate the efficiency of these
solutions compared to prior works. These results show a drastic
decrease in the service downtime during the migration and a
near seamless user experience.

I. INTRODUCTION

The mobile network traffic keeps increasing at a very fast

pace, and that is due to the emerging mobile applications,

such as high-resolution video streaming, cloud gaming and

augmented reality applications [3]. Within few years, 4G
systems definitely will not catch up with the pace of the traffic

increase, as well as the expected requirements of the new

emerging applications, such as autonomous cars, unmanned

aerial vehicles (UAVs) and augmented reality. For this reason,

many efforts, by both academia and industrial researchers,

have been carried out in order to make the 5G system a reality

in the nearest future. As mentioned in [4], currently, there is

a wide consensus among different actors about the services

that should be enabled by 5G systems. In fact, the 5G system

will not be an incremental version of the 4G system with

more capacity (i.e., new spectrum bands and higher spectral

efficiencies) but will also target new emerging applications

that will serve various industrial verticals. As in [4], 5G mainly

focuses on enabling three verticals, each of which has different

requirements.

1) Massive Machine-Type Communications (mMTC):

Within this vertical, we expect up to tens of billions of

network-enabled devices would be connected through 5G
systems. In this case, the 5G system should ensure a

scalable connectivity for those devices regardless of their

locations (indoor or outdoor);

2) Ultra-reliable Machine-Type Communications

(uMTC): This vertical requires ultra-reliable and

low-latency communications (URLLC). The main

applications, targeted by this vertical, are vehicle to

anything (V2X) communication, industrial control

applications and Smart Grid;

3) Extreme Mobile BroadBand (xMBB): This vertical is

also refereed to as enhanced mobile broadband (eMBB).

It mainly requires both extremely high data rates and low-

latency communication.

There is also a consensus among academia and industrials

that the 5G system will leverage emerging technology, such

as network function virtualization (NFV) and software defined

networking (SDN), for achieving its objectives [5]. While SDN

gives more flexibility for connecting different components

and enables the network softwarization, NFV allows running

Virtual Network Functions (VNF) as software components on

top of a virtualization system (i.e., Virtual Machines - VMs - or

Containers) hosted in various clouds; allowing high flexibility

and elasticity to deploy network services and functions [6].

These VNFs will run on top of cloud computing that are

sparsely distributed over the globe. Cloud computing [7] offers

cost-effective services, scalability features, and multi-tenancy

support. The use of NFV on top of cloud computing in the

5G system will reduce dramatically both capital expenditures

(CAPEX) and operating expenses (OPEX) [8] [9]. However,

it can be against the requirements of 5G systems in terms of

high data rates and low latency. In fact, instantiating different

VNFs at faraway clouds would have a negative impact on

both the data rates and end-to-end delay. In order to overcome

this limitation, the concept of Multi-access Edge Computing

(MEC) has been introduced [10]. It allows instantiating various

VNFs (i.e, containers) in the vicinity of users. Clearly, the

closer VNFs to the end users are, the higher data rates and978-1-5386-4633-5/18/$31.00 c© 2018 IEEE

lower latency we get. Indeed, the MEC technology allows

the deployment of a subset of cloud resources at the edge

of the cellular network (eNodeB), thus network congestion is

reduced and better QoS/QoE [11] can be ensured for different

customers. It also allows easy and efficient deployment of

services by offloading compute-intensive applications from the

core to the edge of the cloud.

The recent studies have confirmed the benefits of MEC

on the cloud computing for achieving the objectives of the

5G system [12]. In this context, MEC has been proven to

be beneficial in reducing latency and offering an overall

better experience. As mentioned earlier, a user in 5G can be

characterized by high mobility that may take him far away

from the original MEC node where his service started running.

In order to overcome such problem, a new concept, dubbed

Follow Me Cloud (FMC) [13]–[17], has been introduced. In

fact, the FMC concept allows the mobility of services between

different edges for placing them closest to end users, which

ensures low latency (1ms − 10ms) and high capacity (more

than 100 mbps). However, the main challenging problem

of FMC is the service interruption during the migration of

services from an edge cloud to another, which dramatically

affects the requirements of industrial verticals.

In contrast to state-less migration [18]–[20], stateful mi-

gration, while ensuring service continuity after the mobility

of the service to the new mobile edge, is a highly chal-

lenging problem. Towards addressing the problem of service

interruption when migrating services between edge clouds,

in this paper, we propose and evaluate three solutions that

leverage on the container technology to reduce the migration

time, and then reduce the services’ interruption. The three

solutions leverage LXC container tool and Checkpoint/Restore

in Userspace (CRIU) for enabling stateful migration, and

then ensuring the service continuity after migration. These

proposed solutions enable the FMC concept for ensuring high

availability and ultra-low latency for real-time applications,

such as autonomous cars driving and UAVs’ management [21].

While the first two solutions assume that the trajectories of the

mobile users, e.g., cars or UAVs, are well known a priori. The

third solution is more general, as it is oblivious to the mobile

users’ trajectory. The main contributions of this paper are as

follows:

• Design and implementation of three container migration

approaches using CRIU and LXC;

• To the best knowledge of the authors, the best downtime

achieved by existing solutions is around 2s. In this paper,

we have succeeded to reduce the downtime to be around

1s;

• A preliminary analysis of the impacts of CRIU’s page

server on the migration performance.

The remaining of the paper is organized as follows. Sec-

tion II presents the background of this research and some

related work. In Section III, we describe the types of migration

evaluated in this paper and how they are deployed in our test

environment. In Section IV, we present and discuss the results

of our experimental evaluation. Finally, the paper concludes in

Section V.

II. BACKGROUND & RELATED WORK

This section introduces several underlying concepts that

ease the paper readability. A summary of past relevant research

work is also included.

A. Background

1) Containers: In the proposed solution, we leverage the

container technology instead of the legacy Virtual Machine

(VM) technology. Linux containers are a lightweight method

for operating system virtualization that leverages kernel shar-

ing with the host. Each container has its own environment

comprising CPU, memory, I/O blocks, network resources, and

resource management mechanisms. Most of the components

needed by Linux containers are provided by the Linux kernel,

for example, namespaces and SELinux that are used to ensure

proper isolation between processes, and separation between

the containers, and between the host and the containers.

2) Linux Container (LXC): LXC is a lightweight virtual-

ization technology integrated into Linux kernel to enable the

running of multiple containers on the top of the same host. As

opposed to OpenVZ [22], it runs on an unmodified kernel and

allows Linux users to create and manage containers through

its application program interface (API). LXC is a lightweight

software virtualization tool that is built by mixing the Linux

namespaces and CGroups to ensure a soft separation without

virtualizing the hardware as the legacy virtual machine does.

Compared to Docker, LXC [23] is a system level container.

In other words, it provides a better flexibility when it comes

to using system utilities, ensuring a similar powerful Linux

system with a less overhead compared to a legacy virtual

machine.

3) Checkpoint/Restore In Userspace (CRIU): To carry an

efficient container-based service migration, the proposed sys-

tem leverages the CRIU (Checkpoint/Restore In Userspace)

tool [24], which allows to check-point/restore processes in

Linux systems. It has the ability to save the state of a running

application, so that its execution can later be resumed from

the time of the checkpoint. Our migration approach for LXC

containers with CRIU can be divided into two steps, namely

checkpoint and restore, in addition to the copy process if the

dumped files do not reside on a shared file system between

the source and target host.

4) Live Migration: Compared to the cold migration and the

hot migration that do not allow the copy of the memory pages

to the destination host while it is in running state, the live

migration is the process that guarantee the transfer of both

the disk and the current memory pages when the migration is

triggered.

5) Iterative Migration: As explained above, the migration

has essentially two phases: (i) copying the disk, (ii) and then

copying the page memory. Furthermore, while the first phase

(disk copy) does not stop the state of the container, the second

phase stops it. Thus, if the size of the memory pages is large,

a critical downtime will be observed. To cope with this issue,

the concept of iteration was created: in general, the copy of

memory pages will be divided into several steps, each one

of them (except the last one) does not stop the container and

takes only the changes relative to the previous iteration. We

name each intermediate step by predump phase, while the last

one is named ”dump phase”. The dump phase will provoke

the stop of the instance of virtualization (i.e., container in our

case). However, a small downtime will occur due to the small

number of memory pages copied to the destination host.

6) Downtime: Downtime is the period during which the

services provided by the migrating instance (i.e., VM or

container) are not available or no longer meet user requests.

This notion plays a major role in high availability systems

because this metric defines the power of the designed system

offered to the users. Formally, the downtime is the exact time

of the dump phase.

7) Total migration time: The total migration time is the

period of time between the launch of the migration process

and the moment when the instance is made available to the

destination server. In other words, it is the sum of (i) the

downtime (i.e., dump), (ii) the time needed for the memory

copy (i.e., predump) and disk copy. The total time Ψ can be

defined as follows:

Ψ = Γ +
k∑

i=0

γi +Υ (1)

where Γ denotes the time needed to copy the disk, k denotes

the number of predump phases, γi is the time needed during

the predump i, and Υ is the time needed for the dump phase

(i.e., Downtime) and the restore phase.

8) Checkpoint: The checkpointing procedure consists in

collecting and saving the complete state of all processes

running in the container. This action occurs in the last iteration

(i.e., dump phase) in case of iterative migration or in the initial

copy of memory pages in case of basic live migration. After

that, all processes will be killed and will be waiting for a new

upcoming action which is the restore.

9) Restore: It can be viewed as the opposite action of

checkpointing. The restore procedure creates new processes

from the dumped file which was obtained from the previous

checkpoint action. After resuming processes execution and

enabling the network, the container continues its normal

execution.

B. Related work

The virtualization industry is moving towards supporting

more and more elastic cloud-based solutions. In this context,

container technology is gaining more ground than ever, thanks

to its efficiency and ease of use. Unlike traditional VMs,

containers do not run a full copy of an operating system,

nor the underlying virtual hardware. In [25], containers and

VMs were compared based on high availability. Results show

that containers have better high availability (HA) features than

hypervisor-based systems.

Yang [26] presented a generic checkpoint/restore mecha-

nism and evaluated its performance using Docker. Each of the

checkpoint and restore phases took 2183 ms and 1998 ms,

respectively, when considering a 256MB container size. In

contrast to Docker, LXC container gives more flexibility for

running different applications, services and protocols. Indeed,

Dockers are standalone applications running in an isolated

environment and do not offer any system level functionality.

Moreover, the checkpoint and restore phases take a consid-

erable amount of time for a lightweight container. For this

reason, in this paper, we have used LXC container technology

instead of Docker technology.

Xavier et al. [27] evaluated the performance of a MapRe-

duce cluster over LXC. Their experimental results showed

that LXC offers a very good balance between performance

and flexibility. Meanwhile, a previous comparison had shown

that checkpoint/restart migration on OpenVZ had poor perfor-

mance when compared to LXC [28], regarding the Downtime

and Total Migration Time.

In [29], the authors evaluated container migration on a MEC

platform based on OpenVZ. Their results showed that the total

time for migration of a blank container is considerable even

when using shared storage (NFS) and shared-async mode with

a range of (10s–11s). Machen et al. [30] presented a multi-

layer framework for migrating active applications in the MEC.

While the obtained results show exceptional total migration

times, the downtime was considerable with an average of 2s in

case of a blank container. The increase of the Downtime is due

to the non-use of the iterative approach in the live migration

process.

Thanks to the use of LXC combined with our new migration

strategies based on iterative migration, the proposed solutions,

herein, enhance the aforementioned works in terms of migra-

tion time, as well as the Downtime.

III. ON USING LIGHTWEIGHT CONTAINERS IN MEC

ENVIRONMENTS FOR ENABLING UMTC AND XMBB

APPLICATIONS

In this section, we first present the main architecture of

our proposed framework for enabling lightweight container

migration. Then, we will present the three proposed solutions

that will enable lightweight container migration.

A. Main architecture and problem formulation

Fig. 1 depicts a typical three-layer cloud-based architecture

for 5G networks. It supports scalable, distributed deployment

models that aim to meet the 5G requirements, in terms of low

latency and high data rate, for new mobile broadband and IoT

services. The top layer (Layer 3 in Fig. 1) consists of the core

network which can include data centers with powerful com-

puting power from different vendors (e.g., Amazon, Microsoft,

OpenStack). Orchestrated by the top layer, the edge clouds

feature the Radio Access Network (RAN) with high spectral

efficiency and bandwidth. This distributed computing model

allows users – from the third layer – to be close to the compute

capabilities according to their mobility. In our presented use-

cases, the users are on board high-speed vehicles or UAVs

and their paths can be either pre-determined/predictable [31]

(i.e., this allows us to trigger the migration process earlier on,

before reaching the edge of the cell), or random which means

that they can take a random path at any given moment and

the actual migration has to be done in a limited time frame

(when reaching the edge of the cell). The main focus is on the

implementation of the live migration itself in several aspects

to ensure a seamless migration across edge clouds, without

taking into account other use-case-specific aspects, such as

the signal strength received by each vehicle, user equipment

(UE) or UAV.

B. State-full service migration based on predefined path

In this section, we present two solutions that should be used

for predefined paths. A common use-case for this would be

a vehicle or a UAV that has a known path from departure

to destination. Knowing the paths allows us to anticipate the

different source and target MECs for any migration along the

way of the mobile node. This also means that the different

MECs can be fully independent, e.g., no shared storage is

needed, and gives enough time to copy the file system, which

gives more freedom to the migration service. In the following

section, we will introduce a live iterative migration based on

two different approaches by using the CRIU tool [24].

1) Temporary File System based Lightweight Container

Migration: This solution is also named tmpfs migration. The

tmpfs migration solution starts first copying the container’s file

system along with the user files from the current MEC host

to the destination MEC node using the rsync utility without

service disruption. Second, the memory of the container is

iteratively copied from the source MEC host to the destination

MEC host. In this step, the CRIU utility will be used for

iteratively dumping the container’s memory - while it is

running - into a tmpfs-mounted directory at the source MEC

host. In this case, at the source MEC host, we have one reading

from the memory and one writing to the tmpfs-mounted

directory. In fact, we have one reading and one writing at the

source MEC host. Each dump is then copied to the destination

host via the network into the tmpfs-mounted directory at the

destination MEC host which will result in a writing operation

at the destination MEC host. Finally, read actions will be

used in order to restore the container at the destination MEC

host. We will also have one reading and one writing at the

destination MEC host.

2) Disk-less based Lightweight Container Migration: In

the first solution, we noticed that the memory images have

two readings and two writings, which could have a negative

impact on the total migration time. The process can be

worse if the application uses a large amount of memory

and/or multiple iterations (predumps). The disk-less migration

solution overcomes this limitation. It aims to eliminate the

step of copying the images to the local tmpfs directory in

order to reduce further the total migration time. The proposed

solution starts by copying the file system and preparing a

tmpfs mount on both (source and destination) MEC hosts.

Moreover, at the destination MEC host, we start a page server

indicating the images directory and the port which will be

used by the source MEC host to copy the files. Then on

the source MEC host, using CRIU, we have adopted a new

strategy by combining our iterative approach of live migration

with the page server implementation. We start by dumping the

memory pages directly into the target cloud using the two extra

parameters: the page server’s address and port while keeping

the iterative concept working. Finally, we copy the rest of

the images to the destination MEC host and we restore our

container right after.

In order to test the two types of migration procedures as

introduced above, we built a testbed, as shown in Fig. 2(b), to

guarantee the most common architecture in a real case. The

testbed consists of two VM hosts; each one representing a

different Edge Cloud (i.e., an independent Infrastructure as a

Service - IaaS - provider). Our container host is running on

top of the first VM.

C. State-full service migration based on undefined path

In most real-world applications, the service provider (cloud

service provider) does not know the movement pattern of the

users. For this reason, we suggest a more general solution

that considers the paths of users are unknown a priori. In

this case, the copy of the file system and memory from

the source MEC host to the destination MEC host could

be a challenging process. For this reason, in this solution,

also named lightweight containers migration with a shared

file system, we need to use an alternative, fast and efficient

migration process.

To eliminate the need to copy files over the network during

the migration phase, we stored the container’s file system

along with the system images in a shared storage pool. This

means that all that had to be done was to iteratively unload

the container’s memory using CRIU on the source node and

then restore the container to the target node immediately after.

This approach uses more network resources, while reducing

the total migration time for LXC.

For evaluating the third solution, we have used the testbed,

depicted in Fig. 3 (b), that consists of three VMs. The first

VM is the source MEC host, whereas the second one is

the destination MEC host. Meanwhile, the third VM is the

Network File Storage (NFS) server that is used to store the

containers’ file-system. We choose NFS because it represents

a standard file system sharing technique, and while it is not

scalable as a distributed or parallel file system, it allows the

evaluation of the impact that a shared file system has on our

migration procedure with containers. Furthermore, in terms

of performance overhead, it represents for our setup a lower-

bound as a distributed file system would impose additional

overheads for a small-scale deployment. In the testbed, we

For the video container, this migration method had a mean

total migration time of 28, 788.045 ms and 658.231 ms as

its 95% confidence interval. The Disk-less Migration method

imposed a mean total migration time of 16, 015.2164 ms

and 27, 841.798 ms for both blank and video containers,

respectively. Finally, for our shared storage scenario, the mean

total migration time was 2, 831.442 ms for the blank container

with 95% confidence interval of 54.738 ms, while in case

of the migration of the video container, these values were

3, 678.089 ms and 155.701 ms, respectively.

In order to show the impact of adding services, we are

focusing on empty containers to have a clear idea of the

increase in migration time. From the results, we can observe

that for tmpfs and Disk-less Migration, the long migration time

was due to the file system copy, which was avoided in the NFS

scenario. Furthermore, for the video streaming container, we

clearly notice that the container size merely affects the total

time of migration in the case of local storage because of the

file system copy. Furthermore, for the NFS scenario, the longer

migration time of the video container in comparison with the

blank is due to the greater number of memory pages been

copied.

C. Impact of the number of pages on the migration downtime

As our experimental evaluation results are influenced by the

hardware technology available to us, e.g. network bandwidth,

we summarized in Table II the number of memory pages

copied during the last dump step in our migration procedures.

In the first column, we have the evaluated scenario, followed

by the mean number of pages copied during our evaluation, the

standard deviation, and the 95% confidence interval. An initial

assessment of this table shows us how disparate the results for

the disk-less migration solution are in comparison with the

others, which corroborates the results presented in Fig. 5, as it

indicates that the larger downtime of this approach was caused

by the interaction of the page server and the CRIU migration

code which caused an increase in the number of copied pages

by almost x8.84 in our worst-case scenario.

TABLE II
SUMMARY OF PAGES COPIED DURING THE LAST DUMP.

Migration types & cases Mean N. Pages Std N. Pages CI 95%
Blank-Tmpfs Migration 509.5 6.3 5.14
Blank-Disk-less Migration 1779.3 6.84 5.57
Blank-Shared file system Migration 517.8 17.56 14.30
Video-Tmpfs Migration 577.1 7.52 6.125
Video-Disk-less Migration 5100.2 12.52 10.20
Video-Shared file system Migration 551 16.8 13.68

The behavior exhibited for the tmpfs and shared file system

solutions are quite similar for both the blank container and

our video streaming container, albeit their disparate downtime

performances. As previously discussed, the higher downtime

for the shared file system solution is caused by the multiple

small writes over the network. Meanwhile, the tmpfs solution

was able to drastically reduce the downtime as it keeps the

number of copied pages in the last dump small and is able

to fully utilize the network bandwidth through rsync. Fur-

thermore, when we analyze the difference between the mean

number of copied pages for the tmpfs and shared file system

solutions for the blank container, and the same difference for

the video streaming application, we conclude that the CRIU

dump code exhibits a similar behavior for both solutions.

D. Results Discussion

As addressed in Table II, the tmpfs and shared file system

solutions exhibit a similar behavior with regards to the number

of copied pages during the last dump for both the blank

container and the video streaming application. The analysis of

the number of copied pages also enables us to do a qualitative

assessment of the impact that the network bandwidth had over

our experimental results, as Table II shows the average number

of pages transferred in our best experimental scenario was

509.5 for the blank container and 577.1 for the video container.

This means that on average, we transferred 2086912 bytes

in the blank case, and 2281882 bytes in case of the video

application, assuming the default 4KB memory page used in

our evaluation hardware. These transfers would take around

16.7 ms for the blank container, and 18.9 ms for the video

container assuming a Fast Ethernet connection (100Mbps),

while for a Gigabit Ethernet (1Gbps) the time spent copying

the pages over the network was of the order of 1.67 ms for

the blank container and 1.89 ms for the video container. This

ten times millisecond improvement due to the network is still

fifty times smaller than our improvements in downtime in

comparison with Yang [26] and Machen et al. [30].

We have also observed that although the solutions based

on predefined paths offer the best downtime results, the total

migration time is the highest compared to the other ones. This

is simply due to the fact that the file system, user files, and

memory images are copied during the migration phase. This is

not an issue since we can foresee the migration operations in

advance. In contrast, the solution which is based on unknown

paths offers great overall migration time, while sacrificing a

few downtime milliseconds since the storage speed is limited

by the available bandwidth of the network. However, this is

the best solution for this scenario since the decision to trigger

the migration along with the migration process itself has to be

done in a matter of a couple of seconds.

V. CONCLUSION

In this paper, we proposed and evaluated three migra-

tion approaches for the container technology to enable the

Follow Me Edge concept using MEC technology, ensuring

high availability and supporting ultra-low latency for real-time

applications, such as autonomous cars driving. The Follow

Me Edge allows the system to guarantee a lower latency

between the mobile user and the service provider, which is a

fundamental requirement for VN and 5G networks. We have

evaluated the proposed solution using real testbed experiments.

The obtained results showed that while the NFS approach

delivered the shortest migration time, it also imposed the

highest downtime. Meanwhile, the larger migration time (in

the approaches without a shared file system) was caused by

the file system copy, which was done while the container was

running. We have also shown that our approach that uses iter-

ative migration achieved a mean downtime of 1, 042.974ms,

which represents an improvement of 61.039% in comparison

to the work of Yang [26], and 50% better compared to Machen

et al. [30].

Finally, it is important to note the high downtime of the

Disk-less approach, which we expected to be the lowest

downtime, in comparison with the iterative. Our preliminary

analysis indicates a performance issue in the current imple-

mentation of CRIU’s page server and its interaction with the

page copying procedure as shown by the number of copied

memory pages in Table II. In the future, we plan to extend

our page server evaluation to improve its performance as this

is a promising path to achieve sub-second downtime. We also

intend to study the impact of the use of a distributed file system

on the performances of the NFS approach.

ACKNOWLEDGMENT

This work was partially supported by the TAKE 5 project

funded by the Finnish Funding Agency for Technology and

Innovation (TEKES) and in part by the Finnish Ministry of

Employment and the Economy. It is also partially supported by

the European Unions Horizon 2020 Research and Innovation

Program through the MATILDA Project under Grant No.

761898.

REFERENCES

[1] N. Alliance, “5g white paper,” Tech. Rep., February 2015.
[Online]. Available: https://www.ngmn.org/uploads/media/NGMN 5G
White Paper V1 0.pdf

[2] H. Liu, F. Eldarrat, H. Alqahtani, A. Reznik, X. de Foy, and Y. Zhang,
“Mobile edge cloud system: Architectures, challenges, and approaches,”
IEEE Systems Journal, vol. PP, no. 99, pp. 1–14, 2017.

[3] W. Cai, R. Shea, C. Y. Huang, K. T. Chen, J. Liu, V. C. M. Leung, and
C. H. Hsu, “A survey on cloud gaming: Future of computer games,”
IEEE Access, vol. 4, pp. 7605–7620, 2016.

[4] “Preliminary views and initial considerations on 5G RAN
architecture and functional design,” Tech. Rep., March 2016.
[Online]. Available: https://bscw.5g-ppp.eu/pub/bscw.cgi/d92532/5G-
PPP-METIS-II-5G-RAN-Architecture-White-Paper.pdf

[5] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
slicing; softwarization: A survey on principles, enabling technologies;
solutions,” IEEE Communications Surveys Tutorials, vol. PP, no. 99, pp.
1–1, 2018.

[6] F. Z. Yousaf and T. Taleb, “Fine-grained resource-aware virtual network
function management for 5g carrier cloud,” IEEE Network, vol. 30, no. 2,
pp. 110–115, March 2016.

[7] A. Ahmed and E. Ahmed, “A survey on mobile edge computing,” in
2016 10th International Conference on Intelligent Systems and Control

(ISCO), Jan 2016, pp. 1–8.
[8] T. Taleb, M. Corici, C. Parada, A. Jamakovic, S. Ruffino, G. Karagiannis,

and T. Magedanz, “Ease: Epc as a service to ease mobile core network
deployment over cloud,” IEEE Network, vol. 29, no. 2, pp. 78–88, March
2015.

[9] T. Taleb, “Toward carrier cloud: Potential, challenges, and solutions,”
IEEE Wireless Communications, vol. 21, no. 3, pp. 80–91, June 2014.

[10] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
multi-access edge computing: A survey of the emerging 5g network edge
cloud architecture and orchestration,” IEEE Communications Surveys

Tutorials, vol. 19, no. 3, pp. 1657–1681, thirdquarter 2017.

[11] H. Rifa, S. Mohammed, and A. Mellouk, “A brief synthesis of qos-qoe
methodologies,” in 2011 10th International Symposium on Programming

and Systems, April 2011, pp. 32–38.
[12] Y. C. Hu, M. Patel, D. Sabellaa, N. Sprecher, and V. Young,

“Mobile edge computing a key technology towards 5g,” Tech. Rep.,
September 2015. [Online]. Available: http://www.etsi.org/images/files/
ETSIWhitePapers/etsi wp11 mec a key technology towards 5g.pdf

[13] T. Taleb and A. Ksentini, “An analytical model for follow me cloud,”
in 2013 IEEE Global Communications Conference (GLOBECOM), Dec
2013, pp. 1291–1296.

[14] A. Ksentini, T. Taleb, and M. Chen, “A markov decision process-
based service migration procedure for follow me cloud,” in 2014 IEEE

International Conference on Communications (ICC), June 2014, pp.
1350–1354.

[15] T. Taleb and A. Ksentini, “Follow me cloud: interworking federated
clouds and distributed mobile networks,” IEEE Network, vol. 27, no. 5,
pp. 12–19, September 2013.

[16] A. Aissioui, A. Ksentini, A. Gueroui, and T. Taleb, “On enabling
5g automotive systems using follow me edge-cloud concept,” IEEE

Transactions on Vehicular Technology, vol. PP, no. 99, pp. 1–1, 2018.
[17] A. Ksentini, T. Taleb, and F. Messaoudi, “A lisp-based implementation

of follow me cloud,” IEEE Access, vol. 2, pp. 1340–1347, 2014.
[18] I. Farris, T. Taleb, M. Bagaa, and H. Flick, “Optimizing service

replication for mobile delay-sensitive applications in 5g edge network,”
in 2017 IEEE International Conference on Communications (ICC), May
2017, pp. 1–6.

[19] I. Farris, T. Taleb, A. Iera, and H. Flinck, “Lightweight service repli-
cation for ultra-short latency applications in mobile edge networks,” in
2017 IEEE International Conference on Communications (ICC), May
2017, pp. 1–6.

[20] I. Farris, T. Taleb, H. Flinck, and A. Iera, “Providing ultrashort
latency to usercentric 5g applications at the mobile network edge,”
Transactions on Emerging Telecommunications Technologies, vol. 29,
no. 4, p. e3169. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/ett.3169

[21] N. H. Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned aerial
vehicles-based internet of things services: Comprehensive survey and
future perspectives,” IEEE Internet of Things Journal, vol. 3, no. 6, pp.
899–922, Dec 2016.

[22] Virtuozzo, “Openvz,” Tech. Rep., (Last visit on : 02-12-2017). [Online].
Available: https://openvz.org/Main Page

[23] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”
IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, Sept 2014.

[24] team CRIU, “Criu (checkpoint and restore in user space) main page,”
2016. [Online]. Available: https://criu.org/Main Page

[25] Wubin, Li and Ali, Kanso, “Comparing Containers versus Virtual
Machines for Achieving High Availability,” in 2015 IEEE International

Conference on Cloud Engineering, Tempe, AZ, 2015, pp. 353-358.
[26] Yang Chen, “Checkpoint and Restore of Micro-service in Docker

Containers,” in Proceedings of the 3rd International Conference on

Mechatronics and Industrial Informatics.
[27] M. G. Xavier, M. V. Neves and C. A. F. D. Rose, “A Performance

Comparison of Container-Based Virtualization Systems for MapReduce
Clusters,” in 2014 22nd Euromicro International Conference on Parallel,

Distributed, and Network-Based Processing, Torino, 2014, pp. 299-306.

[28] P. S. V. Indukuri, “Performance comparison of Linux containers (LXC)
and OpenVZ during live migration,” Master’s thesis, Blekinge Institute
of Technology, Sweden, 2016.

[29] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck, “Mobile edge
computing potential in making cities smarter,” IEEE Communications

Magazine, vol. 55, no. 3, pp. 38–43, March 2017.
[30] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Live ser-

vice migration in mobile edge clouds,” IEEE Wireless Communications,
vol. PP, no. 99, pp. 2–9, 2017.

[31] A. Nadembega, A. Hafid, and T. Taleb, “A destination and mobility
path prediction scheme for mobile networks,” IEEE Transactions on

Vehicular Technology, vol. 64, no. 6, pp. 2577–2590, June 2015.

