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Abstract—Emerging XR applications, including Holography,
Augmented, Virtual and Mixed Reality, are characterized by
unprecedented requirements for Quality of experience (QoE),
largely exceeding those currently attainable. To cope with these
requirements, noticeable efforts and a number of initiatives are
ongoing to enhance the current communications technologies,
especially in the direction of supporting ultra-low latency and
increased bandwidth. This work proposes an architecture that
puts together the key enablers to support future XR applica-
tions, highlighting the shortcomings of existing technologies and
leveraging the ongoing innovations. It demonstrates the feasibility
of the proposed architecture by describing the processes driving
the platform with relevant use case scenarios, and mapping the
envisioned functionality to existing tools.

Index Terms—Immersive services, XR, VR, AR, Holography,
Network Slicing, Open RAN, New IP, 5G and beyond, Edge
Computing, and NFV.

I. INTRODUCTION

As 5G communication systems are being rolled out, we
observe high expectations at 5G, such as the processing of
data silos to provide real-time feedback within nanoseconds,
leveraging Multi-access Edge Computing (MEC) capabilities.
The deployment and standardization activities of 5G networks
are accordingly intensified. Despite these efforts, 5G is in a
relatively early stage of adoption, and it is not expected to be
in a position to support high data rates, and highly reliable
communication links for advanced mobile Cross Reality (XR)
applications.

Emerging XR applications, including Aug-
mented/Virtual/Mixed Reality and Holography, do not
rely only on fixed networks, but also on technologies that
allow user mobility. They demand unprecedented Quality
of experience (QoE) requirements. Technology enablers, in
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this case, are directly dictated by QoE requirements of the
end-users’ XR applications. In fact, studies show (e.g., [1])
that for an acceptable user experience (no motion sickness)
with high fidelity, the end-to-end latency should be less
than 15ms and the bandwidth should scale up to 30Gbps.
To provide an indication, streaming in VR applications
requires 10x more bandwidth than a 4K video. These figures
exceed by far those currently attained. It is indicative that
infrastructure and application providers currently respond to
the increased demand of digital services by throttling services
or reducing their quality1.

6G connectivity promises to tackle such QoE requirements
with offers of low latency communications and ubiquitous
mobile ultra-broadband. Such figures dwarf the rates that
are usually considered in pure 5G ultra-reliable low latency
communication scenarios [2]. The key features of 6G networks
include mobility support of up to 1000 km/h (compared to
500 km/h in 5G), control-plane latency of less than 1 ms
(compared to 10 ms in 5G), traffic capacity of tup to 1–10
Gbps/m2 (compared to 10 Mbps/m2 in 5G), 3D localization
premion of 1 cm (compared to 2D precision of 10 cm in 5G),
uniform 3D user experience of up to 10 Gbps (compared to
2D experience of 50 Mbps in 5G) [3]. Most importantly, 6G is
expected to be able to implement the necessary technologies
that will materialize a fully-fledged Tactile Internet (TI) [4].

The vision of the Tactile Internet includes the support of
haptic information (i.e., touch, actuation, motion, vibration,
surface texture) real-time transmission over the Internet [5].
This concept is central to the realization of the future XR
applications which cannot be supported by existing network
infrastructures. For instance, existing centralized architectures
do not sufficiently meet the QoE requirements mentioned
above, as well as the inherent need for mobility of the XR
applications. To this end, more distributed network architec-
tures based on edge computing need to be investigated with
the intention of bringing the XR applications closer to the end-
users [6]. Moreover, it is essential to redesign future wireless
access networks to enhance various aspects of the physical
and Medium Access Control (MAC) layers. It is also equally
important to explore to the maximum the emerging network
technologies, such as Software-Defined Networking (SDN),
Network Function Virtualization (NFV), and network coding,
in order to meet the strict reliability and latency requirements
of XR applications [7], [8].

A number of ongoing initiatives, especially in the direction

1https://www.bbc.com/news/technology-51968302
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of ultra-low latency and increased bandwidth, aim to accelerate
the 6G vision implementation. Such an initiative is Open-
RAN (O-RAN) which is promoting the idea of splitting the
Radio Access Network (RAN) into various parts based on
the functionality, and enabling the network behavior to be
dependent to the QoE requirement of the processed appli-
cation. This disaggregation allows each RAN radio unit to
deliver Quality of Service (QoS) guarantees independently,
bringing several advancements, such as low latency and also
network slicing. The key enabler in O-RAN is the support
of cognitive-based technologies (i.e., Artificial intelligence
(AI)/ Machine Learning (ML)) as the means for deploying,
optimizing and operating the mobile networks, through the
independent automated operational network functions.

Another equally important initiative is the New IP [9]–[11]
which is proposed as a mitigation measure for the complex
interconnection and extreme demands of a rapidly increasing
number of physical and virtual objects over the Internet,
which is hindered by the design of the existing IP protocol.
The New IP integrates a contract to each new IP packet
that is processed by the network and routers, allowing for
high precision communications, user-network interface, in-
band signalling, telemetry, and user-defined networking. This
idea allows the abandoning of existing IP-based communica-
tion principles: throughput should be linearly proportional to
bandwidth; latency should be linearly proportional to physical
distance; and, packet loss should be an inverse function of
buffer sizes.

This paper proposes a platform architecture that puts to-
gether the key enablers to support future XR applications and
to cope with the relevant challenges, considering the short-
comings of existing technologies and the ongoing innovations
in various fields. In particular, this paper contributes to the
state-of-art in the following ways:

• It defines a platform architecture that leverages existing
standards to support XR.

• It showcases how Open RAN and New IP can be used to
cope with the expected limitations of 5G networks, along
with a wide deployment of XR services.

• It demonstrates the feasibility of the proposed architecture
by mapping its functionalities to existing tools and open
sources.

To deliver these innovations, the paper is structured in
the following fashion. Section II presents the work that is
currently proposed in satisfying the requirements for ultra-
low latency and ultra-high bandwidth, as well as the need
to support user mobility. Section III presents the proposed
XR platform architecture. Sections IV and V focus on the
ongoing initiatives, that are more relevant to the delivery
of the expected QoE requirements for future XR services,
namely, OpenRAN and New IP. To demonstrate the feasibility
of the proposed architecture, and to validate the concept,
Section VI introduces potential tools and open sources. To
further showcase the feasibility of the proposed architecture,
Section VII introduces two sets of experimentation: the first
implements a proof of concept to show how the infrastructure
would be constructed to deploy cloud-native XR applications,

and the second evaluates a closed loop mechanism that drives
the infrastructure towards a state of high energy & cost
efficiency while maintaining QoS. Finally, concluding remarks
and plans for future work are presented in Section VIII.

II. RELATED WORK

The main challenges that the desired architecture is meant to
address are the need for ultra-low latency/ultra-high bandwidth
and user mobility. As such, we investigate the related work
focusing on these two aspects. This analysis will provide us
with the necessary information to decide on the technologies
that our architecture can be built upon. However, in order to
preserve a complete view of a modern architecture, we extend
our research towards the orchestration of network resources,
especially in multi-domain orchestration scenarios.

A. Ultra-low latency

The emergence of IoT-based applications has increased the
pressure on academics and practitioners alike to develop tech-
nologies able to provide the highly desired low-latency com-
puting and communications services. The literature presents
a number of such technologies attacking the problem from
diverse perspectives.

One such perspective is the Radio Access Network (RAN).
In order to facilitate ultra-low latency applications, Fog-Radio
Access Network (F-RAN) [12] was introduced. The corner-
stone of F-RAN is the utilization of equipment present at
the RAN in order to connect IoT devices with the cellular
network. This equipment involves various user devices, which
are considered structural blocks of the F-RAN, and are being
referred to as F-RAN nodes. Instead of exclusively utilizing
cloud resources, F-RAN employs fronthaul wireless communi-
cations and collaborative computing of multiple F-RAN nodes
near the users, in order to achieve ultra-low latency.

The Cloud-Radio Access Network (C-RAN) [13] is another
architectural approach that aims at leveraging the RAN in
order to achieve low latency. C-RAN heavily relies on remote
radio heads (RRHs) randomly located over the coverage area.
By utilizing this architectural paradigm, it is possible to
facilitate functionalities, such as content caching, in order to
achieve ultra-low latency. Instead of retrieving the requested
content from the core network, F-RAN transmits it from a
nearby RRHs. This implementation of content caching allevi-
ates the fronthaul traffic that would otherwise create a potential
bottleneck.

Another novel perspective, specifically designed to cater
to latency related QoS requirements of XR applications, is
introduced in [14]. This architectural framework is based on
optimally conducting task offloading in order to facilitate
delay-sensitive traffic. It consists of the user, the edge and
the cloud layer. In the case of collaborative processing, the
tasks to be offloaded are selected based on a number of
parameters, such as the cloud server transmission delay, and
the computational delay at the user, edge, and cloud layers
respectively.
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Some other architectural approaches focus on reducing
queuing delay in order to facilitate latency-sensitive appli-
cations. For instance, the well-established DiffServ [15] pro-
vides expedited forwarding for some packets at the expense
of others. In order to solve this issue, ultra-Low queueing
Latency, ultra-Low Loss and Scalable throughput (L4S) [16]
was introduced. L4S aspires to relieve Internet services of the
necessity to facilitate functionalities, such as traffic policing,
and contracts that prioritize specific packets over others. While
Active Queue Management (AQM) can be utilized to improve
the performance of all traffic flows, there is a limit to the extent
that queueing delay can be reduced by exclusively altering the
network. In the context of queueing delay, the degradation of
the performance usually occurs when a rather large capacity-
seeking flow is present at the bottleneck link along with other
types of traffic. Furthermore, the use of congestion control
mechanisms, that are implemented by standard TCP, intro-
duces certain constraints [17]. The replacement of standard
TCP protocols, that are currently being utilized, with scalable
alternatives, able to exploit AQM to its full extent, should be
able to provide better overall performance.

B. User mobility

User mobility modelling is essential for service migration
at run time. This is even more relevant now, with the advent
of IoT devices being connected to the infrastructure and users
being dependent on specialized end devices such as Head-
Mounted Displays (HMD). The challenge is twofold: on one
hand, the need for protocols that will make the networking
feasible as the service is “following” the client, and on the
other hand, the need for more computational approaches that
will enable the actual migration of the service.

In the category of the networking protocols, a noteworthy
approach is MobilityFirst [18], an ICN network architecture
that defines a flat and globally unique identifier to each
network object independently of its network address. It then
uses a service to map the unique identifier to the group of
network addresses, allowing prompt handoff, as the service is
moving following the client. The drawback of this approach
is that, in the case of IoT devices, it still uses fixed-length
addresses resulting in high power consumptions.

To this end, we also considered the work in [19] which
studies and compares three LPWAN standards that take the
mobility of the things, or devices, into consideration, namely,
LoRaWAN, DASH7, and NB-IoT. These technologies are
designed to offer a set of features including wide-area and
massive scale connectivity [20] for low power, low cost, and
low data rate devices. This latter characteristic makes those
standards inappropriate for XR applications.

In the front of physical migration approaches, we can iden-
tify three types of service relocation: i) Handoff process, in-
cluding “break-before-make” and “make-before-break”, refers
to the transfer of ongoing connection sessions following the
user mobility. In this type of applications, the services are
instantiated at the central clouds while the intermediate con-
nections are transferred at the anchor nodes. Unfortunately,
running applications at the central clouds have a negative

impact on end-to-end delay and bandwidth, which is not
suitable for high-interactive applications; ii) Service applica-
tion migration across different edges. This type of service
relocation requires data serialization to enable the user context
mobility across different replicates deployed at the edge-nodes
following user mobility. However, this technique has three
main drawbacks: a) Application dependability that requires a
dedicated service relocation for each service and application,
which breaks the concept of network modularity; b) Data
serialization that may require a higher computation time that
has a negative impact on the time of service relocation; c) The
deployment of replicates at different edges leads to resource
under-utilization and over-provisioning. iii) Finally, system-
level migration requires the migration of the whole microser-
vice (i.e. container) across edges following user mobility.
The main drawbacks of this technique are the migration of
unnecessary data, such as operating system, and technological
dependability. In fact, microservice migration across different
multi-technological domains (e.g., running different operating
system distributions) still needs extra works.

Checkpoint/Restore in Userspace (CRIU 2) has been widely
used for enabling system-level migration across different
edges. Many studies have been proposed to optimize the
service relocation which could be cost-related optimization or
time-related. In cost-related optimization solutions, where a
migration decision has to be taken based on the incurred cost to
avoid costly migrations while ensuring the system performance
(e.g., QoE), a trade-off between the performance and incurred
costs was studied in order to reduce the cost while ensuring
QoE. Taleb et al. [21] propose an MDP-based optimization to
capture the trade-off between the migration cost and the user
experience.

A trade-off between E2E delay and the migration cost
was a strategy followed by a few proposals, including Mixed
Integer Linear Programming (MILP) [22] and Lyapunov-
based optimization model [23]. However, many solutions were
proposed in order to avoid frequent migration costs, based
on the user mobility, a prediction of future nodes where a
service will be migrated can reduce even better the cost, either
to reduce migration and transmission costs [24], the number
of migrations [25] or network utilization [26]. In time-related
optimization solutions, these solutions focus on reducing the
downtime or the migration time. However, they all build on
the premise of a fixed, largely available network, often bearing
unrealistic properties in terms of latency and bandwidth.

An alternative would be to predict the user movement or
the general load at the edge nodes and proactively migrate
the services and data. In edge computing, this is indeed a
rather popular research area, e.g., [27]–[30]. These solutions
also suffer from a lack of realistic conditions under which they
perform, especially in the aspect of the availability of adequate
network resources. Prediction mechanisms are trained over
datasets that incorporate the assumption that network band-
width is unrealistically high.

2https://criu.org/Main
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C. Orchestration

What makes the technologies examined up to this point such
exceptional tools in regards to cloud-based orchestration is the
fact that they have evolved in a way which allows their distinct
operations to be aligned with each other. The aggregation
of these technologies results in the emergence of highly
adaptive cloud-based frameworks which are able to operate
optimally despite the challenges they are presented with. These
challenges derive from the need to facilitate various rather
demanding services such as XR applications. Applications
such as these are often associated with strict latency-related
and bandwidth-related QoS requirements. These requirements
have to be implemented in an environment which is comprised
of numerous, heterogeneous network assets. Nowadays, cloud-
based frameworks have to facilitate a large number of compu-
tational and network resources. Furthermore, these resources
are often part of different domains and/or located at entirely
different regions. This has led to a drastic increase in the
complexity which is associated with the orchestration of cloud-
based resources. The orchestration of complex systems such
as these requires the use of automation technologies, since the
notion that these systems can be managed via human-centered
intervention alone can no longer be sustained. These technolo-
gies have gradually formed an ecosystem which allows them to
operate collaboratively and matured into the backbone of many
cloud-based frameworks. The following analysis is focusing on
highlighting the relevant orchestration technologies that will
enable the support of nextgen XR services.

It is of paramount importance for Network Services to
be able to dynamically scale up or down in order to meet
the Quality of Service Requirements. In 2012 the Network
Function Virtualization [31] paradigm was introduced by the
ETSI standardization body. The cornerstone of the NFV
paradigm is its inherent ability to decouple the software
implementation of network functions from the resources they
utilize. This decoupling enables the formation of Virtualized
Network Functions which virtualize entire classes of network
functions into building blocks which can form connections
in order to create specific Network Services. These Network
Services are able to dynamically scale up or down in accor-
dance to the utilization of the various network resources. In
order to provide highly reliable and scalable services, it is
essential for the network to be able to instantiate, monitor
and repair the various NFV instances. This process is known
as VNF orchestration. In most cases, NFV Management and
Orchestration (MANO) [32] is the component that acts as the
orchestrator of the entire NFV system. NFV MANO is the core
element in the management of NFV architecture. Its respon-
sibilities include the orchestration of the NFV infrastructure
and the life cycle management of the Network Services. The
orchestration process can be centralized, distributed or hybrid.
The initial perception of NFV was that it should be exclusively
implemented in data centers. Yet it has soon become apparent
that in order to fully exploit the advantages provided by NFV,
it is of paramount importance for a service provider to be able
to freely facilitate NFV in all possible locations.

Each Virtualized Network Function consists of one or more

virtual machines or containers. During the initial conceptual
stages of the NFV network architecture, only virtual machines
were considered to be viable options with regards to im-
plementing this particular paradigm. While it is possible to
support containers in operating systems such as Linux and
Windows, currently a large number of VNFs do not support
these specific Operating Systems. Nowadays, the concurrent
utilization of both virtual machines and containers is widely
considered to be the optimal solution. With regards to manag-
ing virtual machines, Tacker is an Openstack3 project, which is
in charge of providing Virtual Network Function Manager and
VNF Orchestrator functionalities, in a manner which is aligned
with OpenSource MANO. On the other hand, managing con-
tainers requires the use of tools such as Kubernetes4. Regard-
ing the new virtualization technologies such as the ability
to facilitate containerized VNFs and container infrastructure
management, in November 2020, ETSI has published its first
document containing specifications that enable containerized
VNFs to be managed in a NFV framework [33]. The uti-
lization of containerized VNFs provides numerous advantages
such as better service agility and performance. Furthermore,
containerized VNFs present auto-scaling capabilities and can
achieve service elasticity in runtime, due to their light-weight
resource usage [34]. These specifications describe the new
functions required for the management and orchestration of
containers. Both these Virtual Infrastructure Managers (VIMs)
are implemented in the MANO layer.

Cloud-native Network Functions (CNFs) are a successor to
the Virtualized Network Functions. CNFs are containerized
microservices that communicate with each-other via the use of
standardized RESTful APIs. As telecom networks gradually
integrated VNFs, it soon became vital for them to resort
to cloud-native approaches which significantly shorten the
time required in order to conduct various essential opera-
tions. Cloud-native approaches which utilize container-based
network functions provide agility in the launch and upgrade of
services. To enable cloud-native approach, network functions
are decomposed into microservices hosted within different
containers. The CNFs are then able to scale automatically
and communicate with each other via well-defined APIs.
Furthermore, since it is needed to update only specific mi-
croservices at a time, the overall upgrade time is reduced.
The Continuous Integration/Continuous Delivery deployment
model is supported since network functions are decomposed
into smaller chunks. On top of that, through service discovery
and orchestration, systems that utilize CNFs tend to be less
prone to being affected by node failure.

Over the last years, various novel architectural paradigms
that enable the orchestration of cloud-based services and appli-
cations have been introduced. There have been many variations
of these architectural paradigms in order to cover the rather
wide range of requirements that need to be met. Depending
on the number of network domains that are involved in the
orchestration process, it is possible to make a distinction
between single-domain and multi-domain orchestration. Each

3https://www.openstack.org/
4https://kubernetes.io/
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Network Slice consists of heterogeneous network resources
which are combined in order to create virtual networks over a
common infrastructure. In order to facilitate network services
that span over multiple domains, it is essential for network
slices to be properly managed [35].

Software Defined Networking (SDN) [36] is capable of cen-
trally managing Network Slices. SDN is a network manage-
ment technology that enables the creation of dynamic network
configurations [37]. These dynamic network configurations are
deployed in order to keep up with the QoS requirements. This
architecture is based on the disassociation of the control from
the data plane. By treating these two planes as distinct entities,
centralized control over the network’s assets is established. In
the context of delay-sensitive traffic, the QoS requirements
are formulated in accordance with the latency requirements.
The dynamic allocation of resources is based on the latency
requirements and the priority imposed by the specified class
of each traffic flow.

The gradual introduction of 5G and network slicing tech-
nologies have given birth to the necessity to be able to facilitate
fully automated and E2E service management which might
span over multiple distinct domains. The ETSI Zero touch
network & Service Management (ZSM) [38] framework was
introduced in order to solve this issue. The ZSM framework
includes an E2E Service Management Domain which is in
charge of E2E orchestration across different domains, E2E
closed loop management and E2E analytics. Beyond the imple-
mentation of E2E deployments, the ZSM framework heavily
focuses on establishing automation via closed-loop processes
which assist network optimization. The two most notable
paradigms of closed control loops are the OODA (Observe,
Orient, Decide, Act) and the MAPE-K (Monitor, Analyse,
Plan, Execute). Experiential Network Intelligence (ENI) [39]
framework utilizes closed control loops such as these in
order to keep up with the Quality of Service requirements.
More specifically ENI is able to assist or direct network
management systems based on network status and Service
Level Agreements. The ENI entity is responsible for providing
recommendations or commands to an Assisted System (AS),
in order to establish intelligent network management. The
ENI entity communicates with the Assisted Systems via an
Application Programming Interface (API) broker that is able
to perform the required translations. Three classes of Assisted
Systems have been identified based on the degree that the
Artificial Intelligence is incorporated in the management and
orchestration processes of the network. The AS that belong to
the first class do not utilize any form of AI. The second class
consists of Assisted Systems that utilize Artificial Intelligence
but not as part of their operational control loop. The third
class consists of Assisted Systems that incorporate AI tech-
nologies in their operational control loop in order to receive
recommendations or commands.

D. Related Projects

Up to this point, there have been several notable projects,
which utilize various aspects of the technologies mentioned

so far. The ANASTACIA5 project aims to develop a holistic
security framework for IoT infrastructures. Leveraging new
monitoring methodologies and tools, it is able to formulate
autonomous decisions in order to provide dynamic security.
The ANASTACIA platform is implemented by utilizing SDN
controllers, NFV orchestration platforms and IoT controllers.
The use of these technologies enables ANASTACIA to provide
an IoT infrastructure whereby the data streams of IoT devices
can be monitored, processed and routed in a dynamic manner,
thus ensuring security throughout the platform. MiCADOscale
is a multi-functional, cloud-agnostic orchestration and auto-
scaling framework which supports Kubernetes deployments
and is a byproduct of the COLA6 project. MiCADOscale
supports autoscaling functionalities at both virtual machine
and container level.

NSPIRE-5Gplus7 aims to design a zero-touch, end-to-end
smart network and service security management framework.
INSPIRE-5Gplus is able to provide protection when managing
5G network infrastructure across multiple domains. INSPIRE-
5Gplus is aligned with the key principles of ETSI ZSM
reference architecture. MonB5G’s8 purpose is to implement a
framework which facilitates the provisioning, deployment, and
lifecycle management of numerous network slices. Further-
more, it utilizes the MAPE (Monitor-Analyze-Plan-Execute)
paradigm and distributed closed feedback loops, supported by
AI-driven operations, in order to ensure a certain degree of
autonomic network operation. The ACCORDION project [40]
aims to orchestrate the compute & network continuum formed
between edge and public clouds in an intelligent manner. The
derived deployment decisions shall be taken based on privacy,
security, cost and time criteria.

III. ARCHITECTURE DESCRIPTION

In this section, the general architecture of an XR platform
is given. We first present an overview of the architecture
components. We then detail each one, separately.

A. Overview

Figure 1 depicts the general overview of the architecture
of the proposed XR platform. The XR platform follows
both the NFV and ZSM frameworks in order to create self-
managed E2E network slices. It is composed of three planes:
i) the deployment plane, ii) the domain-specific monitoring
and reaction plane, and iii) the E2E conducting plane. The
deployment plane consists of the infrastructure where the
XR services are actually running. It thus hosts the different
Virtual Network Functions (VNFs) that are composing the
different XR services. The main responsibility of this plane is
to manage the computational, network, and storage resources
of the infrastructure. The domain-specific monitoring and
reaction plane is responsible for monitoring the service inside
a technological or administrative domain. This domain level
monitoring helps in detecting issues and mitigating them

5http://www.anastacia-h2020.eu/
6https://project-cola.eu/
7https://www.inspire-5gplus.eu/
8https://www.monb5g.eu/
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Fig. 1. High level architecture of the proposed XR service provisioning platform.

without having to resort to the E2E conducting plane. These
local detection and mitigation mechanisms would accordingly
lessen the burden exerted on the E2E conducting plane. The
E2E conducting plane is responsible for creating the different
sub-slices inside each domain and for monitoring the E2E
KPIs of the XR services. It is also responsible for shifting
the services between the different domains when necessary.

B. Deployment plane
The deployment plane hosts the XR services. It is composed

of different technological and administrative domains. Indeed,
such domains can belong to different entities which may result,
for instance, in different charging schemes and also different
management APIs. These domains can be also different in
the nature of the underlying technology, such as the RAN,
edge and cloud domains. Furthermore, it shall be noted that
an XR service can have different components (VNFs) running
on different domains.

In order to manage the different domains, multiple NFV
MANO instances, one for each domain, exist inside the
deployment plane. Each NFV MANO can be decomposed into
an NFV Orchestrator, a VNF manager, and a Virtual Infras-
tructure Manager (VIM); as per the ETSI NFV architecture.
The NFV Orchestrator is responsible for the onboarding of
Network Services (NS) and VNFs and for performing the life-
cycle management of Network Services. It is also responsible
for the validation and authorization of changes to the resources
allocated to the VNFs. The VNF manager is responsible
for the lifecycle management of one or a group of VNFs.
Finally, the VIM is responsible for managing the infrastructure
resources. Specifically, it manages the computational, network
and storage resources.

The existence of different domains necessitates networks
that connect/stitch all these domains. The component that is
responsible for managing these networks is called the WIM,
WAN - Wide Area Network - Infrastructure Manager. The
WIM is a special case of a VIM. While the latter manages
all of computational, storage and networking resources, the
former is specialized in managing networks. Its main objective
is to connect/stitch the different VNFs within a single domain
or across several technological and/or administrative domains.
The deployment plane can accommodate several WIMs, used
to ”stitch” the different Network Services that are deployed in
different domains.

The virtualization layer offers a unified view of the com-
putational, storage and network resources. This unified view
helps to aggregate and seamlessly run VNFs on top of the in-
frastructure. A Network Service can be composed of multiple
VNFs, able to run either on Virtual Machines (VMs) or on
containers. Up until recently, both VMs and containers could
not be run on the same infrastructure. Recently, ETSI defined
the Container Infrastructure Service Management (CISM) that
enables MANO infrastructure to support containerized work-
loads, and thus, VMs and containers can coexist on the same
infrastructure. The main responsibility of CISM is to manage
the infrastructure’s resources and to perform the lifecycle
management of the containers running on top of the container
cluster. ETSI has proposed different architectures on how the
container cluster can be implemented [41]. For instance, the
containers can be run on bare metal, in VMs, or they can be
distributed between the two.

Monitoring the running VNFs is of utmost importance.
It is the foundation upon which the functionalities of the
domain-specific monitoring and reaction plane as well as the
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functionalities of the E2E conducting plane highly depend.
Indeed, in order to be able to predict service-level agreements
(SLA)s violation, and to promptly react to and mitigate such
events, a thorough monitoring of the infrastructure and the
running software is mandatory. The monitored data can differ
in location and in nature. The monitored data can be service
level information that can be gathered from VNFs. It can be
infrastructure level such as computational, storage and network
data. It can be also data from the end users, such as the QoE.
Thus, besides the VNFs, a myriad of monitoring agents are
deployed across the infrastructure and at different levels.

C. Domain-specific monitoring and reaction plane

The domain-specific monitoring and reaction plane is re-
sponsible for managing only one domain. Its main responsi-
bilities are: i) keep track of the resources consumption and
of the XR services running in the domain; ii) process the
monitored data; iii) perform local analytics, make decisions
and carry out the actuation which are specific to each running
XR service.

This plane keeps track of the domain resource usage and
lists the domain capabilities and the domain running services.
The advantages of recording this kind of information are
manifold. For instance, a ”service registry and discovery”
entity would allow different tenants to reuse and share the
same service. Similarly, prediction mechanisms can use the
evolution of resource utilization to predict eventual SLA
violations and/or service degradations.

One of the responsibilities of this plane is the collection,
filtering, and pre-processing of the monitored data. Data
collection is done by agents located within the infrastructure,
beside the VNFs. There are mainly two types of data collection
agents, namely, the ones using the push method and the ones
using the pull method. The former type reside beside the
monitored entity and send the collected data to a server (i.e., a
corresponding service or micro-service at the domain-specific
monitoring and reaction plane), whilst the latter type sends the
collected data only when instructed/inquired by the relevant
service. Generally, both of these methods coexist in the same
infrastructure. Filtering monitored data helps reducing the data
size to be processed, by filtering out duplicates and unneces-
sary data. The level of filtering can be dynamically adjusted
according to the needs of the monitored XR application. The
pre-processing can have multiple forms. Its main purpose is to
help other entities to seamlessly ingest the monitored data. For
instance, it can be in the form of feature extraction algorithms
that help reduce the feature number and the dimension of
the data which, in turn, reduces the needed bandwidth for
transfering the monitored data. It can be also in the form of
converting the data into a specific format. Pre-processing can
also consist of a distributed ML algorithm whereby the first
few layers of the neural come network are calculated close to
the data source [42].

Following the ZSM framework, this plane implements a lo-
cal automation loop [43]. This loop consists of the monitoring
entity described above, that is shared among all XR services,
an analytics engine, a decision engine, and an actuation engine,

that are dedicated to each XR service. The analytics engine
consists of algorithms that ingest the monitored data and then
produce insights or alerts. For instance, such algorithms can
predict the state of the service, detect misbehaving services and
attacks, and identify optimizations that can greatly enhance
the QoS. These algorithms are mostly designed using ML
algorithms. The decision engine uses the insights gained from
the analytics engine in order to derive its decisions. It can
receive alerts from the analytics engine, as it can directly
ingest low level monitored data. Its main purpose is to make
sure that the running XR services keep meeting their SLAs. It
can carry out decisions such as service re-composition, service
migration, or even slight VNF re-configurations. Finally, the
actuation engine’s role is to decide how to implement the
decisions that were made by the decision engine. Mainly,
it is responsible for translating decisions into actions, and
executing the produced actions within the relevant entities.

D. E2E conducting plane

The E2E conducting plane is responsible for managing
the overall XR framework. It is the entry point for XR
providers/developers from which they launch their services.
It is also responsible for the lifecycle management of XR
services.

This plane keeps track of all the running XR services.
It records, near real-time, information about the resource
consumption of all domains. It also holds information about
domain capabilities and generic XR service blueprints. Thus, it
is the main place where XR service planning is conducted. In-
deed, upon receiving a request from an XR provider/developer,
it translates the request into a blueprint, selects the set of
domains where the service will be split upon, and finally
carries out the negotiation with the respective domains.

Similar to the automation loop in Domain-specific mon-
itoring and reaction plane, this plane also contains a loop.
There is a loop for each XR service and it is responsible for
E2E level service re-composition. The E2E analytics engine
takes inputs from analytics engines of all domains where the
XR service is running. Correlations between monitored data,
produced from different domains, are used to produce alerts
and state predictions of the XR service. The robustness of the
E2E analytics engine algorithms is an important issue since
this engine is responsible for monitoring E2E KPIs.

Even in cases whereby E2E KPIs are monitored by User
Equipment (UE) for reliable detection of service degradation,
the E2E analytics engine is responsible for finding the reason
behind such service degradations. The role of the E2E decision
engine is to decide on the course of action that needs to
be taken in order to keep the XR service up and running.
This means that the E2E decision engine can perform service
re-composition per domain as it can perform an E2E level
service re-composition. Such decisions may consist in VNFs
reconfiguration, scale up and scale down operations, VNFs
migration, or even domains re-selection. There are multiple
reasons why service re-compositions may become required
[44]. For instance, they may be due to security concerns,
to avoid a future service degradation or mitigate an existing
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one, or to optimize the resources utilization by the XR
service. Finally, the E2E actuation engine is responsible for
implementing the decisions made by the E2E decision engine.

During the last few years, the DevOps concept is becoming
highly popular, as there is a growing number of companies
that are embracing that concept. DevOps brings down the
separation between the development team and the production
team, which results in a smaller time to market for new
features and products. One of the main pillars of DevOps
is automation, which consists in automating the build, the
deployment and the monitoring of an application. Therefore,
a CI/CD pipeline is needed in order to automate the build and
deployment of XR services. This pipeline is used to integrate
the service provided by an XR developer with the services
provided by other developers or by the XR platform itself.
Once the new version of the service is thoroughly tested, it can
be deployed. For instance, the pipeline can perform a rolling
update, where the newest version of the service is gradually
deployed, as it can expand testing by performing a canary
deployment, where only a fraction of the XR traffic is routed
to the newest version of the application.

E. Integration fabric

The integration fabric enables the inter-operation and com-
munication between the different functions. Through the in-
tegration fabric, the different functions play both roles of
service consumer and service producer. It allows registration
and discovery of services, which means that services should
be able to register and be added into a catalog. Services
can discover each other by searching the catalog for specific
capabilities. It also allows the invocation of services, either
by a direct request to a specific service or by a request to
a class of services (service mesh concept). The integration
fabric also offers dedicated communication channels between
the different services. All of these features are protected by
an authentication and authorization service.

The integration fabric inside the domain-specific monitor-
ing and reaction plane and the E2E conducting plane helps
the components inter-plane communication. It allows having
default secure communication channels between the different
components. The cross-domain integration fabric helps the
communications between the domains and the communication
with the E2E conducting plane.

F. Use cases

In what follows, we shall show how XR services can
leverage the XR platform to ensure the best performances.
XR services are and will be used in many industries; enter-
tainment and communication will be deeply impacted. One
of the XR use cases will be the organization of remote live
concerts where the musicians are depicted as holograms. In
such a configuration, a band can perform live for a crowd
that is split into several venues across different cities or
even countries. Each venue can have a different type of
holography devices. Also, the holography devices can be set
up in concert halls, amphitheatres, stadiums, and even parks.
The band members can perform from separate locations, while

all different streams are sent to the different venues where they
are synchronized. This use case has very stringent latency and
bandwidth requirements, as the former should be extremely
low, to ensure a good sound quality, and the latter can be in
the realm of many Gbps (and even Tbps) for each hologram.

In order to implement the above scenario within the XR
platform, the cooperation of multiple actors should take place.
The musicians are considered content providers, while the
crowds are content consumers. Both of these can be considered
as end users. An XR provider is responsible for installing the
infrastructure in the end-users places, providing the software
that gathers the input, synchronizes the streams, and converts
the output to the right format, in the case of different hologra-
phy rendering technologies. The XR provider needs multiple
network and service providers in order to run the needed
software and to connect all the actors together. Thus, the XR
provider would need an XR platform in order to deploy and
maintain the smooth running of the service.

G. Procedures for XR services deployment and management

This section presents the procedures of the XR platform that
help in the deployment and maintenance of XR services.

In what follows, we consider the use case of a live XR
concert using holography, where two musicians, present in
two different cities, perform a live show that is projected in
three venues, a music hall, a stadium and a park. Given the
ultra-low latency requirements for music and the extremely
high bandwidth requirement for holography, two network links
would connect each musician to the cloud. Due to the fact
that the synchronization of music happens in the cloud, links
with deterministic latency should be used to carry the sound
from the musicians to the cloud. For the holography links,
some pre-processing can take place in the edge, close to the
musicians, and the rest of the processing takes place in the
cloud where it is also synchronized along with the audio
before streamed to the crowds. Fortunately, due to human
perception, the synchronization between audio and video is not
very restrictive [45]. Finally, the resulting stream is sent to the
three venues, where it is decoded, adapted to the holography
devices and projected. Given the nature of the venues, the
required resources for each venue may differ. Indeed, the
stadium and the concert hall can have a wired connection with
processing power that belongs to the XR provider acting as
an edge, while the park venue would use wireless technology
coupled with edge providers.

1) Launch of an XR service: The instantiation of an XR
service follows the procedure illustrated in Figure 2. An XR
provider can be contacted by an end user in order to launch
an XR service. The XR provider sends a request to the XR
platform detailing the service to be launched. The XR platform
or the E2E conducting plane checks if the service can be
launched in the current state of the platform. This feasibility
check makes sure that the platform has enough resources to
accommodate the new service. Using a Blueprint Template
Repository and an Enabler Repository, the request of the XR
provider is translated into one or multiple detailed blueprints
characterizing the XR service to be deployed. The XR platform
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Fig. 2. Launch of a new XR service.

checks the feasibility of the blueprints and selects one of
them to be deployed. Once a detailed blueprint is selected,
the domains that will host the XR service are selected. To
launch services inside the domains, the E2E conducting plane
uses an entity dubbed Cross-Domain Resource MANO that
offers a unified interface to all administrative and techno-
logical domains composing the XR platform. This interface
first instantiates the required services for the E2E automation
loop, and then initiates the automation loops of the new XR
service within each domain and connects them to the E2E
automation loop. For the MS, this can consist in setting up
a monitoring system (e.g. Prometheus) that is specific for the
XR service. For the AE and DE, it can consist in connecting
them to all the relevant monitoring systems and also publishing
their capabilities so they can be used by other services. The
automation loops can be considered as a platform that can
hold the algorithms for AE and DE. These algorithms can
be dynamically added and removed at runtime. For instance,
in the AE platform, it is possible to have many ML models
for different purposes whereby they can be replaced by newer
versions when needed. While in DEs, it is possible to have
different ML models running in parallel voting on what

would be the best decision, some of these algorithms may
be proposed by the XR platform, XR providers, or even by
third parties. Finally, the E2E conducting plane launches and
configures the Service Function Chains (SFCs) inside each
domain, and uses the WIM to stitch the different SFCs across
the different domains. The VNFs composing the SFCs should
have monitoring agents that report to the domain-specific
automation loop. Once the E2E XR service is up and running,
the E2E conducting plane informs the XR provider that the
XR service is ready, and ultimately the end-user is accordingly
notified.

2) Modification of an XR service: Figure 3 depicts the
procedures to modify slices in order to preserve the good
functioning of an XR service. When an analytics engine
notices or predicts a significant degradation in QoS/QoE in
the near future, it sends alerts to the decision engine of
its own domain. If the domain-specific decision engine can
mitigate the issue inside the domain, it sends its decision to
the respective actuator that will implement the decision within
the boundaries of the domain. If the domain-specific decision
engine cannot resolve the issue at the domain-level, it sends
a modification request to the E2E decision engine. The E2E
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Fig. 3. Multi-domain XR service re-configuration.

decision engine may also receive alerts directly from the E2E
analytics engine. After receiving an alert or a modification
request, the E2E decision engine can decide to gather more
insights and search for a new service re-composition that will
keep the XR service healthy. Once a feasible configuration is
found, it sends it to the E2E actuator. The latter translates the
decision into actions and sends them to the relevant domains
and/or XR device controllers.

IV. OPENRAN FOR XR SERVICES

OpenRAN is an initiative led by most big actors of the
telecom industry towards providing an open RAN solution. It
consists in defining open and interoperable interfaces, virtual-
izing the RAN infrastructures and enabling RAN intelligence
by leveraging AI and ML techniques [46]. Providing open
interfaces and driving their standardization helps opening
the RAN from a single-vendor closed environment to open
multi-vendor deployment, enabling in the same time vendors,
operators and third parties to deploy innovative solutions
and services as RAN applications. RAN virtualization would

maximize the use of common off-the-shelf hardware and
would allow to elastically deploy RAN service on the cloud,
while AI/ML permits the optimization of the (virtual) RAN in
real or near-real time.

The main idea behind OpenRAN is to drive the RAN
to become multi-vendor and to open it to vendors, network
operators, and third parties. This would permit to incorporate
more intelligence at the RAN level. Such openness permits
many small actors to build AI/ML solutions that can greatly
improve performance of the RAN, it would permit also
service providers to customize RAN behavior to better suit
their service needs. In short, OpenRAN can help reduce the
network CAPEX and OPEX, it can improve the efficiency and
performance of the network, and due to the enhanced agility
of its architecture, it can quickly integrate new capabilities.

OpenRAN architecture consists in a Service Management
and Orchestration framework (SMO) that contains the Non-
Real-Time Radio Intelligent Controller (Non-RT RIC), a Near-
RT RIC, and all the interfaces between these and RAN
components such as Remote Unit (RU), Centralized Unit (CU),



11

Distributed Unit (DU) and gNB base stations in the case of
5G deployments for instance. The SMO manages the cloud
resources and the network functions whether being Physi-
cal Network Functions (PNFs) or Virtual/Cloudified Network
Functions (VNFs). The Non-RT RIC enables intelligent RAN
optimizations in non-real-time, i.e., it leverages the services of
SMO in order to provide a policy based guidance leveraging
AI/ML techniques. Near-RT RIC is considered as one of the
radio access network functions. Guided by the guidance of
Non-RT RIC, Near-RT RIC also leverages ML models to offer
a near-real-time optimization of the RAN.

OpenRAN is expected to greatly improve the QoE of
XR services. Leveraging AI/ML techniques, it can achieve
intelligent and proactive traffic steering capabilities which can
offer some performance guarantees in the face of changing
radio conditions. Also, it can help shifting from the current
semi-static QoS framework towards service specific QoE
prediction. This helps ensure proactive network optimization
where the radio resources can be allocated in advance just
before QoE degradation happens. OpenRAN allows dynamic
configuration of the RAN resources, which, for instance, is
changed according to the type of services requested by the
users or by the status of the network. For instance, during
congestion times, when the RAN would not be able to satisfy
the requirements of all users, while by splitting the resources
among all users would lead to poor QoE for them all, it
may be better to re-configure the network to satisfy the
requirements of some prioritized users. The openness of the
interfaces can help XR service providers to improve their
services by implementing mitigation strategies at the service
level according to the information reported by the RAN. For
instance, such mitigation strategies consist in changing the
resolution, frame per second (fps), or the used codecs [47],
[48].

The proposed architecture natively supports the OpenRAN
approach. Indeed, the RAN domain can be regarded as an
instance of a ”Domain-Specific XR Service Monitoring &
Reaction Plane” where the SMO would be forming the closed-
loop that drives the domain. In this particular instance, the
Non-RT RIC would be encompassing all of AE, DE and ACT.
The openness of OpenRAN would permit the XR platform to
dynamically deploy new policies to be followed by the Non-
RT RIC or even replace it by another algorithm if deemed
appropriate. This would allow the RAN to be continuously
and dynamically configured to always support the currently
deployed XR services.

V. NEW IP FOR XR SERVICES

During the last decade, there has been a dramatic change
in the very fabric of the applications produced. Concepts such
as Holography and XR are no longer considered novelties but
actual application features that need to be implemented in a
manner that guarantees that the various QoS requirements are
met. The fact that it is of paramount importance for these
applications to be able to operate in real-time in order to
provide an immersive experience to the end user makes them
extremely latency–sensitive. On top of that, Holography–based

applications, in particular, require by nature huge amounts of
bandwidth to be allocated. In other words, it is imperative
to introduce network mechanisms that are able to provide 1)
guaranteed low end-to-end latency and 2) optimal utilization
of the available bandwidth.

Up to this point, standard TCP and UDP have been consid-
ered the de facto Transport Layer protocols. Unfortunately,
they do not seem to be able to keep up with the ever-
changing landscape of cloud-based XR applications. Both of
these protocols bear two distinct shortcomings that jeopardize
the network’s ability to keep up with the QoS requirements
in regards to XR applications. The first one is their inability
to guarantee low upper bound of end-to-end latency [49],
[50]. The second one is the fact that both of them, in their
original form are not designed to optimally utilize the available
network assets. The New IP initiative was introduced by the
ITU-T Network 2030 Focus group. The New IP initiative is
the study of various technologies that have been identified
as of vital importance for the next evolution of the Inter-
net. These technologies aim to provide advanced flexibility
and deterministic services in the already established network
paradigms. In order to do so, it is essential to reexamine the
modus operandi of certain aspects of the Internet data plane,
the protocols involved and the subsequent architecture. The
backbone of the New IP initiative is the New IP datagram
format. This particular datagram format incorporates offsets
that correspond to advanced functionalities that are crucial to
XR applications. One of them is referred to as the New IP
Payload. The purpose of the New IP Payload is to establish
additional context for each payload. This type of context serves
as a form of representation of the significance of each piece of
information within each payload. That way, information within
payloads can be rearranged in a manner that corresponds to
their significance.

The inclusion of the New IP Contract facilitates a plethora
of services, as well as their operational and administrative
control at a level of packet granularity. Contrary to traditional
QoS, Contracts are assurances that are implemented at packet-
level. Contracts are implemented via various specified Actions.
Via the use of Contract Clauses, it is possible to specify under
which conditions an Action is performed. As an example, let
use a generic operation that selectively removes information
from a payload each time there is not enough available
bandwidth. Generally speaking, holography-based applications
are notorious for being bandwidth-intensive. Thanks to the
New IP Payload, we know the relative position of the bytes of
information that are less significant and thus their removal
would not greatly affect the overall service. Thus, via the
implementation of the New IP, it is possible to choose which
parts of the actual Hologram to deliver/display, in case there
is not available bandwidth for the entire structure. Two ad-
ditional Actions that cater to the latency-related needs of
XR applications are described in [11]. The first one is the
Bounded Latency Action that instructs the router to deliver a
packet within a specified time-horizon. The second one is the
Coordinate Action that allows multi-user applications to adjust
the timing of their corresponding packet deliveries.

The significance of these Actions becomes rather apparent
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when contemplating two distinct requirements that the major-
ity of XR applications share. The first one is the low end-
to-end latency. In addition to that, some XR traffic flows are
temporally correlated to other ones. This fact introduces the
necessity to facilitate synchronization among specific traffic
flows. Due to these issues, the Deterministic Networking
Working Group [51] was established. Although it is clearly
stated that the Deterministic Networking Working Group is
not involved with the modification of transport protocols, like
the variations mentioned above, the study of technologies that
operate alongside them is well within its scope of operations.
The cornerstone of Deterministic Networking is the creation
of deterministic data paths that are able to guarantee bounds
of latency, loss and jitter. The data paths are formulated in the
context of layer 2 bridged and layer 3 routed segments. The
New IP initiative focuses on large layer 3 networks and more
specifically on developing methods of flow identification and
packet forwarding over layer 3.

By classifying data flows, it is possible to establish specific
data paths for the time-sensitive traffic flows. The reservation
of specific network assets for each latency-sensitive service
provides network-layer certainty of information transmission.
Furthermore, by classifying data flows, one may simultane-
ously facilitate time-sensitive and best-effort services. This
takes place by distributing the available transmission medi-
ums between DetNet and non-DetNet flows in a fair man-
ner. DetNet-enabled devices contain ports; each of which is
equipped with a specific number of queues that are utilized by
DiffServ and Best-Effort traffic. Each DetNet-enabled device
in the network can be configured to utilize per-class or per-
flow queuing [52].

The IEEE standard named IEEE 802.1Qch [53] (Cyclic
Queuing and Forwarding) introduced the concept of cyclic
operations in regards to coordinating queue and dequeue
functionalities. The utilization of CQF relies on dividing time
into intervals. Two queues are utilized for each class in order to
perform enqueue and dequeue functionalities in separate time
intervals. That means a traffic flow that arrives in interval x
shall be put in one queue and shall be transmitted via the other
queue during the x+1 interval. Then, the resulting frame shall
arrive to a specified switch during the same time interval. This
sets a harsh bound that dictates that the propagation latency
has to be less than the selected time cycle. As a result, CQF
is not suitable for large scale networks due to the inherent
difficulty of properly choosing a suitable time cycle. In [54],
Cycle Specified Queuing and Forwarding is proposed in order
to solve this issue. CSQF is rather similar to CQF with the
exception of utilizing an explicit description of the various
transmission cycles at every DetNet node present in the path
spanning from source to destination.

Furthermore, the New IP initiative entails another key
concept that needs to be taken into consideration in order
to establish efficient forms of networking that are able to
support next-gen XR applications. This concept is Multipath
Routing. Multipath Routing is the simultaneous management
and utilization of multiple paths in order to transmit streams of
data flows. The implementation of this concept offers certain
benefits such as fault tolerance and increased bandwidth. Each

stream is assigned a separate path. By doing so, multiple trans-
mission queues are created, thus ensuring better utilization of
the available bandwidth. In case the number of streams exceeds
the number of available paths, some of them are chosen
to share the available paths. On top of better transmission
performance, Multipath Routing introduces advanced fault
tolerance by assigning an alternative path to the stream, should
the established one fail.

One way of implementing Multipath Routing is by utilizing
routing strategies that operate in combination with the existing
protocols. Equal-Cost Multipath Routing is the most notable
Multipath Routing strategy. It is implemented by distributing
traffic among various equal-cost paths by utilizing hash func-
tions. One significant drawback of using this routing strategy
is that it does not take into consideration the changes that
are bound to occur in the status of the network status. This
inability to keep up with the dynamic nature of the network
leads to sub-optimal load balancing. In [55], the Internet
Engineering Task Force introduces Multipath TCP which is
a set of extensions to standard TCP. These extensions enable
transport connections to take place by utilizing multiple paths
simultaneously. However, all the solutions explored to this
point fail to provide low upper bound of end-to-end latency.
In [56], Latency-controlled End-to-End Aggregation Protocol
(LEAP) is introduced. LEAP is a multipath transport layer
protocol that provides probabilistic end-to-end performance
guarantees thanks to path multiplexing and inter-flow coding.
The utilization of packet-level encoding enables the informa-
tion of each data flow to be carried through all the available
paths. The information is then retrieved at the destination. In
[57], a rather similar approach is explored in the context of
UDP for video streaming.

VI. TOOLS AND OPEN SOURCES

Recently, we have witnessed an explosion of tools and open-
source components focused on service, network, and infras-
tructure orchestration. ETSI MANO aligned implementations,
such as Open-Source MANO (OSM), ONAP, OpenBaton, or
OPNFV, have been under active development in the last few
years and are increasingly mature (and complex). Driven by
the telecommunication sector, such MANO solutions leverage
the advances of virtualization and containerization technology
to create a more cost-efficient and flexible approach for the
deployment and management of VNFs and NSs on top of
commodity hardware.

For instance, OSM, one of the most popular community-
driven solutions, is an ETSI-hosted project used to model
and orchestrate network services with the support for different
VIMs. In the proposed XR platform, these MANO tools can
fit the XR Service Deployment Plane where distinct domains
(and implementations), both technological and administrative,
might coexist. Moreover, this multi-domain vision requires
an integrated cross-domain resource component such as an
actual ETSI MANO instance with multi-domain support or an
additional tool such as Apache Libcloud or Terraform. The
cross-domain resource component allows abstracting the dif-
ferent infrastructure providers APIs and provides the required
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interoperability across distinct underlying environments. For
instance, Apache Libcloud allows interacting with multiple
popular cloud providers using a unified API, whilst Terraform
can be used to reassemble a single workflow to efficiently man-
age infrastructure and specify different component blueprints
(i.e. compute instances, storage, network) within distinct ser-
vice providers. Additional tools such as the Openslice can also
have an important role into the onboarding and management
of NSs and VNFs.

On the other hand, the implementation and management of
a virtualization infrastructure is a great challenge. It requires a
comprehensive approach to stitch together the ephemeral and
distributed large number of microservices. Multi-domain use
cases require such microservices to be deployed and located
across multiple infrastructure providers. In the same way, the
wide spread of diverse edge/cloud environments impose differ-
ent challenges pertaining to the automation and optimization
of the overall orchestration process, the needed observability
over the infrastructure (both north-south and east-west network
traffic), andr the security and privacy enforcement of the XR
services across these hybrid edge/cloud environments.

In that regard, Kubernetes have become a de facto platform
to support the orchestration of microservices within a Cloud-
Native environment. Kubernetes, a Cloud Native Computing
Foundation (CNCF) graduated project and supported by all
the major cloud providers, is today a popular choice for
the deployment, automation and management of container-
based services and applications. Indeed, many distinct Ku-
bernetes distributions (and platforms built on the top of
Kubernetes) exist like OpenShift, AWS Elastic Kubernetes
Service, Google Kubernetes Engine, Azure Kubernetes Service
or even Kubernetes-based platforms designed with lightweight
environments in mind such as Rancher, K3S, Microk8s, or
KubeEdge. The later ones are more focused on resource-
constrained deployments such as local or edge domains. Thus,
in the proposed XR platform, Kubernetes can be explored to
support the container-based workloads of the envisioned next-
generation applications. Additionally, tools such as KubeVirt
can be also considered to address the inevitable transitioning
from classical Virtual Machine-based workloads through a
common platform.

The myriad of integration approaches and technology op-
tions generates a side effect which results in highly complex
and heterogeneous environments, especially when considering
edge/cloud environments, as mentioned before. Within the
proposed XR platform, this means the possibility to provide
not only the requiring stitching between the provisioned XR
services but also an efficient integration and communication
among all the components of all planes and domains, including
the Domain-Specific XR Service Monitoring and Reaction and
the XR Service E2E Conducting planes.

For Cloud-Native environments, one feasible path is to
leverage the concept of Service Mesh along with different
integration fabrics (i.e., the domain and cross-domain inte-
gration fabrics and the Conductor Integration Fabric). The
underlying Service Mesh concept relies on the usage of
network proxies (the so-called sidecars), together with each
service (or using different arrangements such as one proxy per

node). Then, those network proxies allow to observe, control
and implement security features across all the network traffic
between components. While this provides a more unified
approach to manage network communications within a Cloud-
Native environment, it also brings additional latency (i.e.,
the network traffic needs to go through the proxies) and
complexity (i.e., they also need orchestration). Nevertheless,
the service mesh and the Integration Fabrics concepts might
provide a more flexible communication strategy to support the
network communications among all the XR platform elements.

Numerous Service Mesh implementations have emerged in
the past years like Istio, Network Service Mesh, Linkerd,
Consul, Traefik Mesh, Open Service Mesh or GlooMesh.
Most of these Service Mesh implementations rely on the
Envoy sidecar implementation to realize the Service Mesh
concept. Still, some of them address different use cases
like multi-cluster management or support different network
protocols. For instance, Istio, one of the most widely used
Service Mesh implementations, works at layers 4-7. Amongst
others, Istio provides service discovery, traffic management
capabilities, traffic encryption between services, observability
over the communications, and built-in access control mech-
anisms. Moreover, Istio and Envoy can also delegate the
access control to external policy enforcement tools such as
the Open Policy Agent. Rather than network focused, such an
approach might turn into a more comprehensive approach for
applying different policies across distinct components of the
XR platform by leveraging a common policy-driven strategy
and syntax. On the other hand, Network Service Mesh, another
Service Mesh implementation, working at layers 2-3, is a more
recent attempt to support an additional range of use cases and
network protocols.

Moreover, given the ever-growing Service Mesh ecosystem,
a standard Service Mesh interface was proposed to unify
the consumption of Service Meshes APIs across different
implementations. Such a standard interface plays a relevant
role to allow multi-domain setups, as discussed before. In the
same way, specific tools, such as the GlooMesh, also address
the problem of integrating multiple and different domains
through a single management interface on top of already
existing distinct Service Mesh environments. On the other
hand, given the additional hop in the network communications,
the Service Mesh concept implies a performance penalty in the
already strict requirements of an XR service. Therefore, aside
from the functionalities, the efficiency of different Service
Mesh implementations needs to be considered for the full
realization of the proposed XR platform.

The monitoring and reaction plane and the notion of closed
automated loops are critical characteristics that shall be part of
the XR platform. These loops, as discussed before, rely on the
ability to collect and process different kinds of data as input
for the analytics logic. Such data collection, which shall occur
near real-time, is essential to understand the services provided
by the XR platform, the network communications and the
infrastructure (e.g., edge/cloud resources) where the various
components run. The Service Mesh concept can also support
such monitoring by providing service and network related
insights to the monitoring and reaction plane. Additional
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monitoring related tools, such as Prometheus, can be used
to gather insights from the different components in a more
comprehensive way. Prometheus is a widely used monitoring
solution for collecting and storing metrics from third-party
systems, supported by a growing number of plugins. In the
proposed XR platform, Prometheus can be leveraged and
integrated with the service mesh sidecars up to the integration
fabric components. Other solutions, such as the ElasticSearch
stack, more focused on logs can also fit the overall monitoring
approach.

Likewise, for the feasibility of the integration fabric concept
(which comprises the messaging bus), multiple tools and open-
source components like Apache Kafka, RabbitMQ or Ac-
tiveMQ, amongst many others, can be leveraged. For instance,
Apache Kafka, one of the most widely used messaging sys-
tems, has the notion of a distributed set of messaging brokers
organized within elastic clusters. Kafka brokers are used to
storing and serving messages. Those messages, organized by
topics and partitions, can then be partitioned and replicated,
respectively, ensuring different service levels of performance,
durability, or fault tolerance, and that is according to the needs
of each use case. In the proposed XR platform, Kafka has a
decisive role in providing asynchronous bus communication
channels to interconnect the elements within each domain and
all the XR platform domains. In this way, Kafka messages can
be used to model all the communication functionalities (e.g.,
service registration, discovery, and monitoring messages) and
facilitate the integration with external systems. As a reference
example, OSM follows a similar approach, whereby Kafka has
the role of messaging bus for OSM components.

VII. PERFORMANCE EVALUATION

Whilst the main intention beneath this paper is to demon-
strate the feasibility of the proposed architecture in the real
world and that is by showcasing i) how compliant it is to
ongoing relevant standards, and ii) what open sources and
tools that can be used for each component of the architecture,
in this section, we will carry out two sets of experimentation to
partially demonstrate that the architecture is effectively imple-
mentable. In the first experiment, we present some low-level
implementation details about the proof of concept showing
how the infrastructure would be constructed. We particularly
address the cross-domain orchestration and monitoring issues.
In the second experiment, we propose a smart mechanism that
minimizes resource usage while maximizing the QoS. This
mechanism is realized in a closed-loop fashion with all of
i) the monitoring agents, ii) analytical engine (i..e, prediction
mechanism) that consumes monitored data, and iii) a decision
engine that decides when to ask for new resources.

A. Proof of Concept – Application Deployment Time and
Resource Usage Monitoring

Continuous monitoring can be useful to minimize the re-
sponse time to incidents and to guarantee that the appli-
cations and the infrastructure behave as predicted. Namely,
tracking cluster resources, such as memory, CPU, storage and
bandwidth, facilitates the process of managing cloud-native

environments. As discussed before, through specific moni-
toring agents, those monitoring capabilities, are an integral
part of closed-loops processes. With that in mind, here-under,
we conduct an experiment to demonstrate the monitoring
capabilities on a Cloud Native deployment of the proposed
architecture.

Considering a scenario whereby an XR application is de-
ployed on multiple domains (i.e., having its microservices
deployed on different Kubernetes clusters) through the Cross
Domain Resource MANO, the Rancher tool was used in
the experiment taking into account its multi-cloud provider
support. Rancher enables the creation and orchestration of
multiple Kubernetes clusters, through a cluster agent that is
installed in all Kubernetes nodes. By having the support for
different cloud providers, Rancher can intermediate and facil-
itate the orchestration of different domains. In the conducted
experiment, Rancher is used to set up a two-node Kubernetes
cluster that is used to deploy and monitor distinct micro-
service-based applications. Additionally, a Prometheus and a
Grafana installation are performed. This provides a simple and
efficient way to visualize several natively-supported clusters
and pod-specific metrics. By leveraging this monitoring ap-
proach, and in particular the Prometheus tool, additional XR-
specific instrumentation would be achieved by having addi-
tional libraries and Prometheus Exporters to expose virtually
all kinds of XR-related metrics

In order to thoroughly evaluate monitoring capabilities,
three different (i.e., topology-wise and purpose-wise) appli-
cations were deployed. A 2-tier application fulfils the objec-
tive of generating effective and realistic network traffic and
resource usage, with the use of iperf3 and stress-ng. A 3-
tier application serves the purpose of providing a simple-yet-
realistic standard architecture as a starting point for demon-
stration purposes. A 12-tier application consists of a web-
based e-commerce application to showcase a complex and
realistic application. These different applications were chosen
as reference scenarios of how next-generation XR applications,
composed of numerous microservices and different topologies
as shown in Figure 4, can be effectively monitored on a cloud-
native environment and their orchestration supporting a new
wave of prediction, scheduling and intelligent orchestration
mechanisms.

Availability is a critical factor when providing XR services
in cloud-native environments, since downtime (e.g., due to ser-
vice migrations) can negatively impact overall user experience.
To this extent, it is of the utmost importance to comprise a
mechanism for measuring application deployment time (i.e.,
the time it takes from creation to proper functioning), in
order to properly assess and regulate performance. Also, we
highlight the fact that this deployment time, we commonly
mention, does not account for service availability, i.e., we
measure the time until the pod is running, not until the service
itself is accessible and fully operational (e.g., some databases
need time to migrate, web servers need time to initialize).

In order to evaluate the deployment time of the aforemen-
tioned applications, a component that calculates the deploy-
ment time based on events registered from Kubernetes was
developed, as out-of-the-box metrics reported by Kubernetes
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Fig. 4. Topology of applications, adapted from [58].

(i.e., kube-state-metrics) neither provide such a mechanism nor
account for time spent pulling a container image. Figure 5
shows these time periods per pod and per application.

Fig. 5. Average pod deployment time of each application.

The observed values represent the average of five tests. The
deployment time of an application as a whole is obtained by
taking the maximum deployment time of its pods (i.e., the pod
that took the longest time to be deployed). Values registered
in Figure 5 can be explained by the increasing complexity of
each application. Indeed, the more tiers, the longer it takes to
deploy an application. Additionally, in these tests, the images
were not pulled, since this process was already performed in
the first tests, and thus the images were present locally.

The first application has only two pods and does not show
relevant differences for deployment time between the two
pods. The second one has three pods, which depend on
each other, and this explains the differences between each
pod’s deployment times. The last one contemplates the same
reasoning for the differences in pod deployment time, since
it has twelve pods, with dependencies among them. Such

dependencies between services in cloud-native applications
often exist and might have an impact on numerous operations
(e.g., service migration and scaling). Microservice-based XR
applications are not expected to be different. Indeed, they are
expected to have complex topologies and numerous dynamic
constraints. Thus, their management in (near) real-time is a
fundamental aspect of the envisioned orchestration.

In order to understand the discrepancy in deployment times
across different services and applications, it is important to
dissect the various stages of the deployment process. This
process includes scheduling the pods, pulling the container(s)
image(s), and finally creating and starting it. Figure 6 repre-
sents the three services from application 2 (3-tier) and their
deployment times. Even though the pulling stage depends on
the size of the image, it is the stage that takes the longest. In
order to counteract the image pull time, pods can be configured
in such a way that the pull is only performed if the image is
not present locally (cached) on the node bound to the pod.
In this case, the first time the deployment was performed, the
images were not cached and therefore were pulled, whereas
subsequent deployments of the same pods did not need to pull
the container(s) image(s), thus realizing a short deployment
time

Nevertheless, it is important to debate how such an approach
reflects on fast-paced and rapidly developing environments, as
it raises a multitude of questions regarding node configuration
and cluster management. Maintaining local images across
nodes becomes ever-more difficult when dealing with multi-
node, highly complex cloud-native environments. Prioritizing
deployment time at the expense of complexity is a matter that
demands its proper evaluation, and understanding its impact is
crucial in order to properly adapt cloud-native environments
to specific use-cases. To get around this problem, one of the
possibilities is the use of smart caching techniques. The use
of these techniques during orchestration enables the prefetch
of the required images of XR services and places them in the
nodes or in close vicinity of the nodes.

Fig. 6. Stages included in deployment time (3-tier application case).

In addition to measuring and analyzing deployment time,
it is also important to evaluate and analyze mechanisms that
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allow for the visualization of resources (e.g. CPU and memory
usage) for predictive behaviour of both the application and
infrastructure and thus take pro-active actions to ensure the
effectiveness and efficiency of the platform. In this sense,
Grafana provides out-of-the-box dashboards to visualize such
metric, as Figure 7 and Figure 8 portray.

Fig. 7. CPU Usage graph in case of the 12-tier application.

Fig. 8. Memory Usage graph in case of the 12-tier application.

The graphics show the CPU usage and the memory usage
of the deployed 12-tier application. This application has dif-
ferent pods, each with different functions, which explains why
different containers use the memory differently, depending on
their function. Likewise, a multi-user XR application might
behave differently according to the environment, the number
of instances, users or even different settings of each user.
Monitoring the resource usage at the pod-level (or at the
application-level) as part of the closed loop mechanims, is
useful to detect early deviations that might indicate unhealthy
situations or be used to predict individual service behaviours.

B. Closed Loop Example

In this experiment, we demonstrate the operation of the Do-
main automation loops by introducing a proactive autoscaler
in the ”XR Service Specific Decision Engine” component
interface of the architecture. The key concept is to showcase
the benefits of incorporating Artificial Intelligence in the
Domain automation loops, when considering requirements that
are characteristic of XR applications, such as latency and
throughput.

Off-the-shelf autoscalers for Kubernetes-like nodes are op-
erating mainly based on compute resource utilization metrics.

As such, they are detached from the application-specific
characteristics that are more directly linked to the quality
provisioning levels in comparison to, e.g., CPU and memory
utilization. XR application workflows are such an example,
in which scaling strategies should also consider parameters
that are related to the actual workload of the application.
Furthermore, reactive autoscaling suffers from the inherent
problem of the run-time deployment overhead. Depending on
the technology, scaling operations (in-out or up-down) may
introduce an overhead in time or costs that is sub-optimal.
This is particularly relevant in the XR-application workflows,
where the application components are provided as large VMs
(sometime in the order of dozens of GBs). On the other hand,
proactive scaling mechanisms formulate decisions based on
predictions that are created by a dedicated predictive mech-
anism. Given that each type of computational node requires
a different time to complete its scaling operations, it is quite
useful to perform multi-step prediction to have access to a
wider range of information regarding the expected state of the
resources.

Towards that end, we employed the proposed architecture
that enabled the out-of-the box integration of a model for
proactive autoscaling that considers a richer state-space than
mere runtime compute utilization. The model is based on a
novel multi-step Deep-Learning prediction mechanism [59]
that was originally used to predict network traffic. We con-
ducted an experiment to evaluate this mechanism against a
typical reactive autoscaler. The results have shown that the
architecture facilitated the smooth integration of the model as
a plug-in, maintaining its generic mechanisms for monitoring,
analysis, and actuation.

The experiment is comprised of the following steps:
• A reference implementation of the platform architecture

Domain automation loops is created using the CloudSim
Plus9 environment. The simulation itself is based on
typical requirements of an XR application. The workloads
produced closely resemble the ones that are associated
with XR applications. Furthermore, information regarding
these workloads is extracted from dedicated load-balancer
entities that are in charge of properly distributing the
workloads among the available computational nodes.

• A proactive autoscaling model is trained based on the
characteristics of the XR application. The model is in-
tegrated in the reference implementation to instantiate
the logic of the XR Service Specific Data Analytics and
Decision Engines. The performance of that system in
terms of latency, throughput and computational cost is
then compared against a baseline reactive autoscaler. In
both cases, the action of scaling up or down is conducted
by the XR Service Specific Actuation Engine.

To evaluate a proactive autoscaler as part of a closed-control
loop, described in the proposed architecture, we conducted a
large-scale simulation using the CloudSim Plus environment.
The duration of the simulation was one week and it included
almost 2 million tasks that were produced and sent to the
available computational nodes to be processed. The task

9https://cloudsimplus.org/
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TABLE I
EVALUATION OF STANDARD REACTIVE & INTELLIGENT PROACTIVE

SCALING MECHANISMS.

Standard Reactive Intelligent Proactive
Avg Overall Latency (s) 3.141 0.609
Avg Latency (s) 5.181 0.712
Avg Throughput (tasks) 9489 15219
Avg Resource Usage (VMs) 9.71 10.31

production rate was based on multiple Gaussian probability
distributions in order to simulate various typical periodic
patterns in task production, as well as numerous sudden bursts
in task production that are statistically likely to happen. The
task distribution among the available computational nodes
was conducted using a standard Round Robbin algorithmic
approach. The simulation is based on two distinct time-cycles.
The first one is the production of tasks that take place once
every second and the second one is the measurement of the
tasks that were sent to each computational node during the
last minute. The decision to scale up or down is being made
once per minute independently for each computational node
based on the measurement that corresponds to its number of
tasks. During our experiments there were five computational
nodes that were always operational and fifteen more that could
be allocated if the scaling mechanism decided to do so. It
was decided that the time that is required for the deployment
of a new computational node should be set to 5 minutes in
order to be similar to the one that is required by Virtual
Machines. After extensive research on various use-cases, it
was concluded that each computational node could handle at
most an average of 50 tasks per minute, without showing any
signs of deterioration in its performance. Thus, an upper-bound
threshold of 40 tasks per minute was established. During
the experimental evaluation, two scenarios were explored.
During the first one, a standard reactive scaling mechanism
was used. The reactive scaling mechanism is designed to
allocate additional computational resources every time one
of the working computational nodes receives more than 40
tasks per minute. On the other hand, in order to avoid over-
provisioning of resources, each time a computational node
receives less than 10 tasks, this specific computational node
is de-allocated. A computational node can only be decom-
missioned, after all the tasks that were sent to it, have been
fully processed. The second scenario is based on the use of
an intelligent proactive scaling mechanism. The intelligent
proactive mechanism operates in a similar manner with the
exception that the scaling decisions are being made based on
the predictions that are being produced by our Deep Learning-
based prediction mechanism. Each computational node has a
dedicated prediction mechanism that receives as input the last
six measurements of tasks and produces a multi-step prediction
that corresponds to the next six one-minute time-steps. At
this case, we are only interested in the last time-step of the
prediction since it is vital to gain knowledge regarding the
number of tasks that shall be produced in a time horizon that
surpasses the 5-minute mark that is required to deploy a new
computational node.

When comparing the two experimental scenarios, the results

shown in TABLE I are obtained. The results are as follows:
• he overall average latency that corresponds to each task

was 3.141 seconds during the reactive scenario and 0.609
seconds when using the intelligent proactive scaling ar-
chitecture. That shows an improvement of about 515%.

• The average latency of each task during the 200 time-
steps when the most violent spikes in task production took
place was 0.712 seconds for the proactive scenario and
5.181 seconds for the reactive one. Once again, that shows
an impressive improvement of 728%. Furthermore, these
results show that during times of extreme increase in task
production, the ability of the intelligent proactive scaling
mechanism to guarantee a comparatively low latency is
reduced by about 15%, while the ability of the reactive
scaling mechanism drops by a significant 165%.

• In terms of throughput during the 10 time-steps when
the most violent spikes in task production took place, the
intelligent proactive scaling mechanism and the reactive
scaling mechanism managed to complete 15219 tasks and
9489 tasks, respectively. That means that the incorpora-
tion of AI managed to improve the throughput metric as
well by a margin of about 160%.

• All these significant improvements in the performance
come at a cost. Thankfully, the incorporation of AI
managed to keep this cost to a minimum. During the
simulation, the proactive scaling mechanism utilized 6%
more computational resources. More specifically, the av-
erage allocation of computational nodes during the entire
simulation was 9.71 Virtual Machines for the reactive
scaling mechanism and 10.31 Virtual Machines for the
proactive scaling mechanism.

When taking all these factors into consideration, it be-
comes apparent that the incorporation of Artificial Intelligence
methodologies in closed-control loops such as the ones ex-
plored within the context of this paper can provide substantial
benefits in terms of reduced latency and increased throughput.
Both these metrics are extremely important in the context of
XR applications.

VIII. CONCLUSION AND FUTURE WORKS

There are clear signals that in the near future, XR applica-
tions will challenge the computing and communication infras-
tructures requiring an unprecedented level of QoE, definitely
beyond the one that can be achieved with nowadays technolo-
gies. This work proposes an architecture that puts together
the key enablers to support the challenges for the support
of future XR applications, considering the shortcomings of
existing technologies and the ongoing innovations. The design
of the proposed XR platform follows the approach at the basis
of the ZSM framework to create self-managed E2E network
slices. Such a platform is organized around three planes: i)
the deployment plane (i.e., focused on the management of
the compute, network and storage resources), ii) the domain-
specific monitoring and reaction plane (i.e., responsible for
monitoring the service inside a technological or administrative
domain), and iii) the E2E conducting plane (i.e., working at
the level of services, thus aimed at creating sub-slices in each
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domain and monitoring the E2E KPIs of the XR services
or shifting the services between the different domains, when
necessary).

The proposed architecture is described and contextualized
on XR applications by presenting specific use-case scenarios
dealing with service launch and run-time management. The pa-
per also demonstrated the feasibility of the proposed architec-
ture by mapping the envisioned functionality to existing tools
and open sources. Furthermore, the paper demonstrated that
the architecture was effectively implementable through two
sets of experiments; the first showing the deployment times
of different XR applications on a multi-domain cloud-native
environment along with the necessary monitoring capabilities,
and the second evaluating, based on simulations, a proactive
resource autoscaler mechanism as part of an E2E closed loop
of the envisioned architecture.

In the future, the plan is to validate the overall proposed ar-
chitecture by setting up a test-bed, designed and implemented
based on a selection of the technologies mentioned above.
This will provide the opportunity to validate and evaluate the
approach and, possibly, to improve it on the basis of the results
achieved.
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