
Moving Target Defense for DDoS Mitigation with
Shuffling of Critical Edge(s) Connections

Amir Javadpour, Forough Ja’fari, Tarik Taleb, and Chafika Benzaı̈d

Abstract—Moving Target Defense (MTD) has as a widely
adopted approach to mitigate vulnerability exploitation. It is a
widely adopted approach to mitigate the exploitation of vulner-
abilities. Its dynamic and proactive nature makes it well-suited
for SDNs requiring comprehensive and continuous monitoring. A
core objective of MTD is to minimize the number of hosts shuffled
while maintaining robust security and low scrambling frequency.
This paper introduces a novel approach, the Number of Edge
Connections (NoEC) strategy, aimed at mitigating Distributed
Denial of Service (DDoS) attacks in a resource-efficient manner.
This is achieved by strategically reconfiguring a select group
of highly connected hosts known as ”Edges” to protect critical
assets. This approach enhances analytical clarity and supports
informed selection of defense strategies tailored to specific edge
deployment scenarios. We designed a system utilizing NoEC
and conducted simulations using Mininet. The results show
that NoEC reduces the complexity by 55.12% compared to
previous MTD methods while increasing the security level by
15.72%. Among the techniques, topology randomization and edge
node shuffling show the highest disruption effect, validating the
approach’s practical viability and robustness in defending edge
infrastructures.

Index Terms—Moving Target Defense, DDoS Mitigation, Shuf-
fling Edge, Mininet, Software-defined networks

I. INTRODUCTION

Software-defined networking (SDN) is reshaping computer
networking by improving network services such as manage-
ment, monitoring, virtualization, distribution, and integration.
This advancement is closely associated with the advent of
technologies. In SDN, a centralized unit known as a controller
manages network traffic control. It can enforce and establish
rules on switches to guide detailed network processes and
traffic [1]. Despite these advances, SDNs face several secu-
rity challenges, particularly DDoS attacks. These incidents
represent advanced and damaging types of cyber threats,
known for being widespread and distributed attacks. They have
become more frequent and are often leveraged for various
malevolent purposes [2, 3, 4, 5]. Consequently, developing and
implementing security measures to counter DDoS attacks is
important. MTD is a proactive strategy aimed at safeguarding
critical assets from DDoS attacks by dynamically altering the
attack surface. MTD seeks to thwart attackers by changing
the attack surface through methods like network address
shuffling, rendering any intelligence gathered during network

Amir Javadpour (Senior Cybersecurity Researcher MOSA!C Lab / ICT-
FICIAL Oy, Finland). Forough Ja’fari (Sharif University of Technology).
Tarik Taleb (Faculty of Electrical Engineering and Information Technology,
Ruhr University Bochum, Bochum). Chafika Benzaı̈d (Faculty of Informa-
tion Technology and Electrical Engineering, University of Oulu)

Corresponding author: Amir Javadpour (a.javadpour87@gmail.com)

reconnaissance obsolete [6, 7, 8]. Compared to other security
mechanisms, MTD offers several advantages: (1) scalability,
(2) minimal need for threat detection, and (3) frustration with
adversaries. Hence, creating a network capable of altering
its structure to apply MTD strategies is complex. However,
with the dynamic and manageable framework provided by
SDNs, especially with the advent of 5G/6G technologies,
it becomes a suitable environment for deploying dynamic
security mechanisms such as MTD approaches.

Developing Edge(s) Connections for the DDoS Mitigation
method is critical because of the trade-off between defensive
benefits and associated costs. The main costs for MTD are
driven by the frequency of reconfiguration and the algorithm’s
complexity. Previous research has focused on complex net-
work features to minimize the number of reconfigurations. The
current approaches have mostly failed to simplify the method,
and the runtime tends to increase as the network grows. With
the advancement of 5G/6G technologies, addressing the cost
and complexity challenges for efficient and scalable MTD
solutions is pivotal.[9, 10, 11].

In this paper, we present a novel MTD shuffling method
utilizing Edge Connections for DDoS Mitigation to reduce
costs by targeting and relocating the most cost-effective com-
promised hosts. This strategy depends on identifying low-cost
hosts based on their connections to critical servers, where
these connections are represented as ”edges” in a model.
Our method focuses on key hosts to achieve higher security
effectiveness while reducing costs. In SDN networks, the
NoEC solution effectively addresses unique challenges such
as massive scale, low latency, and dynamic environments. It
manages many connected devices, while minimizing costs and
complexity. NoEC’s prioritizes critical connections, making
it ideal for scalable security mechanisms in these networks.
Its cost-effectiveness also helps mitigate DDoS attacks more
efficiently than traditional methods.

The main contributions are as follows:
1) MTD Framework with Six Shuffling Techniques:

We propose an edge-oriented MTD framework using
six dynamic shuffling strategies to resist DDoS attacks.
This integration improves adaptability and system un-
predictability.

2) Graph-Based Attack Propagation Modeling: A novel
graph model illustrates how each MTD technique alters
attack paths and exposure. This helps quantify disruption
effectiveness in adversarial settings.

3) Visual and Comparative Analysis of MTD Methods:
We provide visual simulations comparing MTD tech-

niques under attack. These help identify the most robust
methods for different scenarios.

4) Lightweight Shuffling Protocols for Edge Systems:
Our protocols ensure minimal latency and overhead,
making MTD feasible in constrained edge environments.
This enhances practical deployability.

5) Simulation-Based Evaluation with Realistic Metrics:
We implement a DDoS simulation and evaluate MTD
with quantitative metrics like attack spread and shuffling
efficiency. Results validate our defense strategy.

6) Foundation for Adaptive and Optimized MTD Poli-
cies: Our work sets the stage for future learning-based
or game-theoretic optimization of MTD decisions. It
enables smarter, adaptive cyber defense systems.

Gaps: Despite a growing body of work on moving-target
and shuffling-based defenses, operators still lack a practi-
cally deployable mechanism that can be plugged into SDN
controllers and reason about which edge hosts to reconfig-
ure under realistic 5G/6G traffic. Existing proposals either
assume simplified topologies, ignore slice heterogeneity, or
focus on address and VM randomisation without providing an
explicit selection logic for high-impact edge hosts. This leaves
a gap between conceptual MTD strategies and a concrete,
connection-driven defence that network operators can use to
tune disruption and overhead in a systematic way.

Motivation: Moving-target and reassignment defenses have
shown that continuously changing the attack surface can
hinder adversaries, but their deployment in SDN-based 5G/6G
networks remains challenging. Existing schemes typically
operate at the level of IP addresses, proxy pools, or VM
migration, which is either too coarse-grained or too costly
when thousands of edge hosts and multiple network slices
coexist. They offer limited guidance on which specific edge
connections or hosts should be reconfigured at each epoch to
maximally disrupt coordinated attacks while keeping collateral
impact on benign traffic low. Furthermore, most current ap-
proaches are not explicitly slice-aware and therefore struggle
to respect the heterogeneous QoS requirements of URLLC,
eMBB, and mMTC services during reconfiguration. These
limitations motivate a defence mechanism that reasons directly
on edge connections, selects a small set of high-impact hosts
to reconfigure at each step, and remains compatible with slice-
specific latency and reliability guarantees. NoEC is introduced
in this work precisely to meet these requirements.

Operationally, our goal is an MTD policy that (i) runs with
near-linear per-epoch overhead, (ii) honors explicit guardrails
on rule churn and QoS (cf. Sec. VIII-E), and (iii) exposes
simple knobs (budget B, cadence Tshuf) suitable for SDN/5G
controllers. From a game-theoretic perspective, the defender
repeatedly chooses a reconfiguration action under budget while
the attacker adapts scanning/targeting. Our cost-normalized
rule Ψ(h) = degS(h)/c(h) acts as a deployable best-response
heuristic: it maximizes structural path coverage per unit cost
without solving a full-information game, and it can be em-
bedded as the defender’s action in repeated or Stackelberg
formulations. Trust/risk signals (Sec. IV-J) serve as priors by

shaping the effective cost c′(h), thereby inducing mixed or ran-
domized strategies when jitter is enabled (Sec. VIII-E). This
bridges practical MTD (guardrails, reproducibility) with game-
theoretic intent (adaptive, budgeted defense) while keeping the
controller footprint small.

The paper is structured as follows: Section II reviews
MTD techniques and their limitations. Section III details the
proposed NoEC method. Section IV discusses implementation
strategies for NoEC in an SDN environment. Section V
presents simulation results comparing NoEC to other MTD
approaches. Finally, Section VI concludes with key findings.

II. RELATED WORK

This section reviews prior research on applying MTD tech-
niques within SDN environments to mitigate cybersecurity
threats. A summary of these studies is provided in Table
Table I.

Steinberger et al. [12] implemented an MTD approach
to demonstrate its effectiveness in reducing the success rate
of DDoS attacks within SDN environments. Building upon
this, Luo et al. [13] proposed an integrated framework that
combines MTD with honeypots to enhance network security
against DDoS threats in SDNs. Aydeger et al. [14] introduced
an optimized MTD strategy modeled as a signaling game to
mitigate DDoS attacks, while Zhou et al. [15] similarly em-
ployed game-theoretic modeling, formulating the MTD mech-
anism as a three-sided game. They developed the Tripartite
Cost-Effective Strategy Algorithm (TGCESA) using Markov
decision processes to balance cost and effectiveness. In large-
scale network scenarios, Narantuya et al. [16] leveraged mul-
tiple SDN controllers to improve the scalability, security, and
performance of MTD strategies particularly relevant in the
context of complex and high-speed 5G networks.

In terms of dynamic response techniques, Liu et al. [17]
introduced a port-hopping strategy where switches dynam-
ically alter packet source and destination ports to mislead
attackers and prevent DDoS attacks. This method is well-
suited for managing the high data rates and dynamic traffic
patterns of 5G networks. Similarly, Chowdhary et al. [18]
employed an MTD-hopping strategy to defend against multi-
stage attacks, aligning well with the evolving threat landscape
in 5G environments. Shi et al. [19] proposed a flexible
MTD framework with adjustable obfuscation levels, enabling
adaptation to varying security requirements. Lastly, Debroy
et al. [20] introduced a frequency minimization-based MTD
approach that secures SDN applications from DDoS attacks
by reducing the frequency of defensive reconfigurations an
essential factor in preserving system performance in fast-paced
5G networks.

Hyder and Ismail [21] applied MTD techniques to
strengthen both the control and data planes within SDN
environments. Their approach involved dynamic port and
IP forwarding to counter reconnaissance attacks in the data
plane an increasingly vital defense mechanism for high-speed,
complex 5G/6G networks. Similarly, Medina-López et al. [22]
leveraged MTD to detect malicious nodes in peer-to-peer

TABLE I
SUMMARY OF RELATED WORK ON MTD METHODS IN SDNS.

Reference Evaluation Metrics Cost DDoS
Mitiga-

tion

Notes on 5G/6G Adaptability

[12] Attack success rate ✗ ✓ Focused on traditional networks; may require adaptation for high-speed
5G/6G environments.

[13] Delay ✗ ✓ Limited in handling high-volume traffic typical of SDNs networks.
[14] Cost, packet loss ✓ ✓ Suitable for scalable networks; performance may vary with the high

dynamics of 6G.
TGCESA [15] Delay, packet loss, CPU

load
✓ ✓ Designed for existing networks; scalability for SDNs needs further

exploration.
[16] Delay, attack probability ✗ ✗ May not address the specific needs of ultra-low latency 5G/6G applications.
[17] Response time, service

rate
✗ ✓ Could be adapted for high-speed scenarios, but lacks focus on SDNs specific

requirements.
[18] Threat score, service risk

value
✓ ✗ The method is less focused on DDoS and may need adjustments for 5G/6G

traffic patterns.
[19] Delay, information

disclosure
✗ ✗ Primarily designed for static networks; might require significant modifications

for 5G/6G.
[20] Packet loss, attack

success rate
✓ ✓ Effective in current environments but may need enhancements for the

high-speed nature of SDNs.
[21] Defender’s success rate ✓ ✗ Focuses on defensive metrics; might be adapted to 5G/6G with additional

optimizations.
[22] Detection probability ✓ ✗ Detection-focused; integration into 5G/6G networks may require adjustments

for latency and speed.
[23] Latency, reconnaissance

cost
✓ ✓ Addresses latency issues but may need refinement to match the ultra-low

latency needs of 5G/6G.
[24] Attack graph generation

time
✓ ✗ Suitable for traditional networks; may face challenges with the complexity of

6G environments.
BAP [25, 26] Delay, complexity,

success rate
✓ ✗ Balances delay and complexity; potential for adaptation to SDNs, though

specifics are not covered.
IP

Shuffling [27]
Detection time, scanning

disruption rate
✗ ✓ SDN-based; scalable and lightweight for integration into network slices or

IoT layers in 5G/6G.
Server

Relocation [28]
Service continuity,
migration latency

✓ ✗ Beneficial in virtualized cloud-native 5G/6G cores; requires orchestration
support.

Topology Ran-
domization [29]

Network entropy,
reachability

✓ ✗ Supports zero-trust in dynamic 6G environments; works well with
intent-based networking.

Route
Mutation [30]

Attack repetition rate,
rerouting overhead

✓ ✓ Secure routing suited for 5G/6G backbones with programmable dataplanes.

Port
Hopping [31]

Port scan success rate,
latency

✗ ✓ Lightweight defense for delay-sensitive SDNs applications; especially
effective in edge environments.

NoEC Complexity, adversary’s
success rate, rate of
compromised servers

✓ ✓ Optimized for low complexity and high security; well-research for dynamic
SDNs environments with scalability in mind.

SDNs by dynamically modifying the destination IP addresses
of exchanged messages, thereby addressing the evolving adap-
tive security requirements of 6G networks.

To manage high-speed demands in SDNs, Chang et al. [23]
proposed a cost-efficient MTD strategy that randomizes IP
addresses and employs hash-based signatures to synchronize
different MTD phases across the network. In a complementary
direction, Chowdhary et al. [24] utilized SDN controller-driven
network reconfiguration to mitigate cloud network attacks
an approach scalable to the sophisticated demands of 6G
infrastructures.

Moreover, Yoon et al. [26] introduced a three-layer model
to reduce MTD’s operational costs in SDNs by identifying a
subset of hosts to shuffle. They proposed a Greedy Backward
Attack Path (BAP) prediction algorithm to trace vulnerable
paths from attackers to critical servers and obfuscate hosts
along these paths. The model employs attack graphs to assess
vulnerability and optimize the shuffling process, making it
particularly suitable for deployment in large-scale SDN and

5G-based networks.

Despite considerable progress, few approaches have effec-
tively tackled MTD’s cost-efficiency and the mitigation of
DDoS attacks, particularly within SDN environments. Existing
solutions often suffer from notable limitations some are tai-
lored exclusively for cloud networks utilizing virtual machines.
In contrast, others rely on complex game-theoretic or hash-
based mechanisms that introduce significant computational
overhead and latency at the SDN controller. To overcome
these challenges, we propose enhancing the method introduced
in Yoon et al. [26] (i.e., the BAP strategy) by incorporating
the number of connections between hosts and critical servers.
This modification is designed to improve the precision of
DDoS attack mitigation while maintaining responsiveness and
scalability in high-speed, dynamic 5G network settings.

Also, the Edge-based approach is one of the simplest
and earliest methods used in modelling attack graphs. It
assumes static connectivity and calculates vulnerability using
edge weights. This technique has been discussed in basic

threat modeling frameworks, including MITRE ATT&CK and
classical attack graph models [32]. The Backward Attack
Propagation (BAP) method builds upon the principles of
graph traversal and recursive impact analysis. It was inspired
by backwards reachability concepts in network security and
appears in works related to malware spread modelling and
vulnerability prioritization [33]. The Edge Shuffling MTD
strategy was introduced to dynamically disrupt attacker recon-
naissance by periodically modifying the network’s edge struc-
ture. Research has demonstrated that shuffling communication
paths significantly delays attack success without major QoS
penalties [34, 35]. IP Shuffling, or IP-level obfuscation, orig-
inated from early intrusion prevention systems and involves
periodic reallocation of virtual address space to hosts, such as
through IP hopping [27]. Server Relocation is another strategic
MTD mechanism used in cloud and virtualized environments,
wherein migrating services across logical nodes helps disrupt
attack persistence [28]. Topology Randomization protects path
prediction by generating stochastic topologies, effectively de-
terring lateral attacker movement [29]. Traffic Route Muta-
tion leverages SDN programmability to reroute flows unpre-
dictably, reducing exposure to repeated attacks, particularly
in multi-tenant infrastructures [30]. Finally, Port Hopping,
inspired by frequency-hopping in wireless communication,
changes service ports periodically to evade predictable scan-
ning tools, serving as a lightweight countermeasure against
fixed-target attacks [31].

a) Positioning within Moving-Target Defenses.:
Client–server shuffling and replica reassignment primarily
leverage endpoint or pool volatility to dilute adversarial
fixation; fast IP/flux switching perturbs addressing
to increase reconnaissance and exploitation costs; live
migration/partitioning remap compute or split flows to isolate
blast radius. In contrast, our NoEC policy ranks hosts by a
cost-normalized edge-impact score, Ψ(h) = degS(h)/c(h),
and executes localized, budget-feasible reconfigurations that
maximally detach host–server incidences per unit cost. This
objective targets structural reachability of attack paths rather
than address churn or workload relocation, yielding stronger
path coverage when degree/cost heterogeneity is present,
while reducing the operational footprint by avoiding global
remapping.

b) Relation to Centrality and Cut-Based Formulations.:
Our selection score Ψ(h) = degS(h)/c(h) can be viewed as
a cost-normalized degree centrality. When costs are uniform
(c(h) ≡ 1), ranking by Ψ coincides with degree centrality
on the host side and thus favors hosts incident to many
server edges. Relative to betweenness-centric views—which
prioritize nodes traversed by many shortest paths—high-Ψ
hosts in sparse or core–periphery bipartite topologies often lie
on a large fraction of simple host–server walks, so detaching
their incidences yields broad path coverage (cf. Fig. 8). From
a cut/min-path perspective, our policy acts as a budgeted,
local heuristic that maximizes edges detached per unit cost
without solving a global cut on evolving demand. This is
attractive when (i) the topology or costs change across shuffle

epochs, (ii) the controller must keep per-epoch work near-
linear, and (iii) path-length sensitivity is secondary to structural
reachability. When path length or link capacity dominates
(e.g., weighted shortest paths, congestion-sensitive defenses),
classical betweenness/flow-based metrics or capacity-aware
cuts may better reflect the operational objective; our frame-
work remains compatible by incorporating such signals into
c(h) or by augmenting Ψ with weights.

III. PROPOSED METHOD (NOEC)

In distributed attacks such as DDoS, adversaries mobilize
many vulnerable hosts and issue commands to synchronize
these hosts to attack a specific target within a specified time
interval. To minimize operational costs, adversaries strategi-
cally identify the fewest hosts needed to launch an attack
successfully. As SDNs technologies offer higher speeds and
better connectivity, adversaries will increasingly adapt their
strategies to exploit these advancements.

The method proposed in this paper, Number of Edge
Connections (NoEC), is designed to minimize implementation
costs while maintaining or even increasing security levels. The
complexity of NoEC algorithms directly affects their cost. To
achieve these goals, NoEC is based on the BAP method of
[26]. The BAP method identifies and disrupts hosts along the
most vulnerable attack paths. However, it does not consider
the distributed nature of modern attacks. In distributed DDoS
attacks, the critical issue is the vulnerability of individual
hosts and their potential role in the adversary’s attack network.
Therefore, NoEC modifies this approach by considering hosts
that play a critical role in the enemy army, ensuring that the
mixing process targets those that have the most significant
impact on attack effectiveness.

a) Notation.: We uniformly use mixing degree di for host
i and discard legacy synonyms (e.g., “clutter degree”). All
figures, captions, and cross-references adopt this terminology
consistently.

b) Reading the Running Example.: Figures 1 and 2
depict the bipartite host–server topology with hosts h1–h6

and servers s1–s5. In Fig. 1, intended adversarial traversals
are highlighted in red. In Fig. 2, the same topology is shown
after applying our policy: detached host–server incidences
are rendered as dashed gray, illustrating how budget-feasible
reconfiguration disrupts the highlighted paths.

We introduce an additional parameter, allowing us to
achieve less complexity while maintaining or improving the
results in many scenarios. Given the adversary’s goal of
amassing the smallest attack force possible and the nature of
distributed attacks, we have designed a low-complexity MTD
approach focusing on hosts with more connections to critical
servers. In distributed attacks, the collective effect of a group
of hosts is greater than that of individual hosts. Therefore, our
approach prioritizes communication between critical hosts and
servers rather than per-host costs.

Figure 3 shows an example that compares the proposed
method (NoEC) and BAP.

(A) Running Example: Topology + Intended Paths

Hosts H

Servers S

h1

s1

s2

s3

h2
s4

h3

s5
h4

h5

h6

Legend

Gray edges Topology incidence

Red edges Intended adversarial paths

04/10/2025, 15:15 graphviz (5).svg

file:///Users/ajavadpour/Downloads/graphviz (5).svg 1/1

Fig. 1. (A) Running-example topology and intended adversarial paths (red).

To illustrate the adversarial threat a three-stage process is
depicted in Figure 4. In the first stage (Fig.4(a)), an external
adversary attempts to reach target servers by leveraging multi-
ple intermediate nodes with varying trust scores. These scores,
typically learned or assigned by the SDN controller, represent
the reliability or historical behavior of each node.

To mitigate the risk of exploitation, the SDN controller initi-
ates a shuffling mechanism (Fig.4(b)), where nodes with lower
trust values (e.g., N5) are removed from the routing graph.
This dynamic reconfiguration aims to reduce the number of
vulnerable paths without disrupting legitimate traffic.

Despite these precautions, the third stage (Fig.4(c)) shows a
scenario in which the adversary successfully bypasses defenses
via a remaining weak node (e.g., N4 with a trust score of 0.1),
eventually compromising the target server s2. This highlights
the importance of adaptive and continuous trust management
to ensure adequate defense in SDN environments.

In our threat model, node values represent the cost of
compromising each host and launching a DDoS attack on
critical servers. While the BAP method focuses on minimizing
the compromise cost of individual hosts, NoEC shifts the
priority to connections between hosts and critical servers. This
fundamental distinction highlights a key advantage of NoEC:
by targeting highly connected nodes, it significantly reduces
the feasibility of successfully executing DDoS attacks across
all critical servers. In contrast, BAP’s emphasis on localized
cost assessments can overlook broader network dynamics,
potentially allowing attacks to succeed. This comparison is
illustrated in Figure 5 and Figure 6, which underscore the

(B) After NoEC: Detached incidences disrupt red paths

Hosts H

Servers S

h1

s1

s2

s3

h2
s4

h3

s5
h4

h5

h6

Legend

Red edges Intended adversarial paths

Dashed gray Detached incidences (NoEC)

04/10/2025, 15:15 graphviz (6).svg

file:///Users/ajavadpour/Downloads/graphviz (6).svg 1/1

Fig. 2. (B) After NoEC: detached incidences (dashed gray) disrupting the
red paths.

superior defensive coverage provided by NoEC.
We consider that the attacker’s goal is to launch a DDoS

attack that targets multiple critical servers simultaneously.
This scenario can be modelled as N = (S, C) , where S
represents the total number of critical servers and C is an
ordered set of host compromises. Specifically, the costs are
C = {c1, c2, . . . , cH} , with ci representing the minimum cost
required to compromise the ith host (hi) by the enemy and H
indicates the total number of hosts.

In this model, each critical server must be protected by
considering individual costs and the network connectivity
structure. The complexity and interconnectedness of these ad-
vanced networks mean that an adversary can exploit multiple
potential entry points and use extensive network connectivity
to power their attack.

We define a clutter degree for each host, denoted by di. Host
mixing degree ith, di, is calculated as the ratio of the number
of servers directly connected to that host to the total number
of servers. This metric provides a measure of host connectivity
within the network. We hypothesize that shuffling hosts based
on this degree performs better in mitigating attacks than
shuffling based on the compromised cost of each host. This
approach leverages SDNs’ ability to manage configurations for
real-time adjustments based on congestion levels dynamically.

An example network,NE , is shown in Figure 5 and Figure 6.
(NE topology with two critical servers and several common
hosts).

For this network, the set of compromised costs is CE =
{∞, 0.7, 0.6, 0.2, 0.1, 0.5}. From this, we can infer that the
first host, h1, is invulnerable to DDoS attacks targeting crit-

Fig. 3. The figure illustrates Host Nodes by cost in the BAP solution and Critical Edge Nodes arranged by connections in the Edge method. Attack Nodes
represent sources of DDoS attacks. Cost-Based Links connect hosts according to the BAP solution, while Connection-Based Links associate critical edge
nodes in the Edge method.

ical servers. Moreover, the compromise costs for hosts h3,
h5 and h6 are equal. The degrees of mixing of the hosts
is {1/7, 2/7, 1/7, 1/7, 2/7}. or in another example, for this
network configuration, the set of compromise costs is defined
as

CF = {∞, 1.5, 1.0, 1.3, 1.0, 1.1}.

Analyzing this data reveals that the first host, h1, is impervious
to DDoS attacks aimed at high-value servers. Additionally, the
compromise costs for hosts h3 and h4 are identical, suggesting
similar levels of vulnerability in these nodes. The shuffling
degrees for each host, based on their connection profiles, are
as follows: {

1

10
,
1

10
,
3

10
,
1

10
,
3

10
,
1

10

}
.

The BAP method suggests selecting the most vulnerable
hosts for shuffling, which include h3, h5 and h6. However,
s1 still has three unblocking connections, which requires
hitting another host connected to s1. Considering that h2 has
the lowest compromise cost, it is selected in the next step.
Therefore, the set of hosts to hit {h2, h3, h5, h6} becomes 3.9
at a total cost. Another example is the BAP method, which
suggests selecting the most vulnerable hosts for shuffling,
which include h2, h4, and h7. However, s2 still has two
remaining unblocked connections, necessitating an additional
selection of a host connected to s2. Since h1 has the lowest
compromise cost, it is chosen in the next step. Consequently,
the set of hosts to target, {h1, h2, h4, h7}, results in a total
compromise cost of 4.2.

In contrast, NoEC selects hosts based on their degrees
of confusion. Therefore, the hosts with the highest mixing
degrees are merged: {h3, h4, h5}. This set of hosts effectively
mitigates the attack because s1 and s2 have fewer than three
unblocking connections. The total cost of this collection is
3.21. As a result, NoEC identifies a set of low-cost hosts for
relocation compared to BAP. Furthermore, in another example,
the Minimum Shuffling Costs (MSC) method of BAP selects
hosts based on their highest shuffling degrees. Thus, the
hosts with the most significant mixing levels are grouped:
{h1, h6, h8}. This group of hosts successfully counters the
attack, as s2 and s4 retain only two active connections each,

falling below the threshold. The total compromise cost for
this group is 2.85. Consequently, the MSC method identifies
a cost-effective set of hosts for reallocation compared to the
BAP approach.

IV. MATHEMATICAL FORMULATION AND PROOF OF
EFFECTIVENESS OF NOEC

The Figure 7 presents a realistic DDoS attack scenario in
a network composed of attacker nodes (A), hosts (h), and a
critical server (s). This structure shows how adversaries can
reach high-value servers by compromising a small subset of
highly connected hosts. The NoEC algorithm aims to identify
and relocate those hosts with the highest number of connec-
tions to critical servers (i.e., with the highest di), thereby
effectively disrupting potential attack paths. In this model, the
objective function minimizes the aggregated compromise costs
ci, subject to a constraint that ensures sufficient disconnection
of critical servers from potential attack vectors.

A. Problem Setting

Let H = {h1, h2, . . . , hn} be the set of hosts and S =
{s1, s2, . . . , sm} the set of critical servers. Define the bipartite
attack graph G = (H ∪ S,E) where edges (hi, sj) ∈ E
indicate connectivity. Each host hi has a compromise cost
ci ∈ R≥0 ∪ {∞}. The adversary aims to compromise a
minimal-cost subset of hosts to reach all critical servers.

The goal of MTD is to identify and shuffle a subset of hosts
H ⊆ H such that the adversary cannot maintain enough access
to attack any server.

B. Key Definitions

• Host Degree: di = 1
|S|

∑m
j=1 ⊮(hi,sj)∈E .

• Server Degree Post-Shuffling: Let δj(H) = |{hi /∈ H :
(hi, sj) ∈ E}|.

• Attack Threshold: τ ∈ Z≥0 is the maximum allowed
number of unshuffled connections per server for security
to hold.

0.7

0.6

0.2 0.1

0.5

S

S

S S

S

A

0.7

0.6

0.2 0.1

0.5

S

S

(a) Initial State

0.7

0.6

0.2 0.1

S

S

S S

S

A

0.7

0.6

0.2 0.1

X

S

S

(b) After Shuffling

0.7

0.2 0.1

0.9

0.9

A

0.7

N2

0.2 0.1

X

0.9

(c) After Attacking

Fig. 4. Three-stage process of trust-based defense in SDN. (a) The adversary
can access multiple paths through intermediate nodes with different trust
scores. (b) The controller removes low-trust paths to mitigate risk. (c) Despite
shuffling, the attacker successfully exploits a remaining vulnerable node.

C. Optimization Objective

We aim to solve the constrained optimization problem:

min
H⊆H

∑
hi∈H

ci, (P1)

s.t. δj(H) ≤ τ, ∀j = 1, . . . ,m. (C1)

The above model (P1) is the foundation of BAP, which
focuses on host cost minimization.

Fig. 5. Illustration of the SDN-based network architecture with internal
and external adversaries. The SDN controller centrally manages OpenFlow
switches and orchestrates data forwarding across connected hosts and servers.
The external adversary attempts to penetrate the network from the internet,
while the internal adversary targets critical assets such as the database server
s2. The controller continuously monitors and updates the forwarding rules to
maintain security and efficiency.

D. NoEC Reformulation

We redefine the selection problem using the normalized
degree di to capture host importance:

max
H⊆H

∑
hi∈H

di, (P2)

s.t. δj(H) ≤ τ, ∀j = 1, . . . ,m, (1)∑
hi∈H

ci ≤ B. (C2)

Here, B is the MTD defense cost. The NoEC strategy
maximises connectivity disruption at the same or lower cost.

E. Theoretical Comparison and Proof

Theorem. Under equal cost constraints, the NoEC strategy
removes more host-server connections than BAP. Therefore,
for any feasible cost B and threshold τ , we have:

|{sj ∈ S : δj(HNoEC) ≤ τ}| ≥ |{sj ∈ S : δj(HBAP) ≤ τ}|.

Proof. Let HBAP and HNoEC denote the sets of hosts
selected by BAP and NoEC, respectively, under the same cost
constraint: ∑

hi∈HBAP

ci =
∑

hi∈HNoEC

ci ≤ B.

Define the connectivity disruption metric:

Ψ(H) :=
∑
sj∈S

[deg(sj)− δj(H)] =
∑
hi∈H

|{sj : (hi, sj) ∈ E}|.

This is equivalent to:

Ψ(H) =
∑
hi∈H

di · |S|.

Three-Stage Trust-Based Shuffling Against DDoS

This figure illustrates an adaptive defense strategy against DDoS attacks using trust-based host shuffling.

- In the Initial State, the attacker can access multiple hosts with varying trust scores.

- During the Shuffling phase, hosts with low trust (e.g., 0.1 or 0.2) are flagged and isolated.

- In the final Attack stage, the attacker attempts to exploit the remaining accessible nodes, but due to reduced

connectivity,

 the risk is mitigated.

This process shows the importance of dynamic trust evaluation and timely reconfiguration in SDN security.

Fig. 6. Three-stage illustration of the trust-aware defense mechanism in SDN. Initially, the adversary (A) can access all intermediary nodes with different
trust scores. In the second stage, the SDN controller applies a shuffling mechanism to eliminate low-trust nodes from routing. In the third stage, the attacker
adjusts its path and successfully exploits a vulnerable connection, demonstrating that dynamic reconfiguration must be coupled with trust evaluation to prevent
successful breaches.

Fig. 7. Network-based formulation of DDoS mitigation using host mixing
degree di and cost ci. Attackers (A) attempt to reach the critical server
(s2) via multiple hosts. The optimization minimizes cost while breaking key
connections.

By construction of HNoEC, we have:

Ψ(HNoEC) ≥ Ψ(HBAP).

Thus, NoEC removes more connections per unit cost. Since
server compromise depends on maintaining more than τ
connections, and NoEC causes a greater drop in δj across
sj ∈ S, it ensures more servers satisfy the condition δj ≤ τ .

Hence,

ANoEC := |{sj ∈ S : δj(HNoEC) ≤ τ}|
≥ ABAP := |{sj ∈ S : δj(HBAP) ≤ τ}|,

which proves that NoEC is strictly more effective or equally
effective under the same cost.

F. Complexity Analysis

Let |E| be the number of edges in G. The complexity of
computing di for all hi ∈ H is O(|E|). Sorting hosts by

Toy Example: NoEC (red) vs. BAP (blue) under equal budget B=3

Hosts H

Servers S

h1
Psi=2, c=3, deg=6

s1

s2

s3

s4

s5

s6

h2
Psi=2, c=1, deg=2

s7

s8

h3
Psi=2, c=1, deg=2

s9

s10

h4
Psi=1, c=1, deg=1

Legend

NoEC selection h1

BAP picks h2, h3, h4

04/10/2025, 13:54 graphviz (4).svg

file:///Users/ajavadpour/Downloads/graphviz (4).svg 1/1

Fig. 8. Toy example where NoEC’s high-Ψ host detaches more edges than
multiple low-cost hosts (BAP) under the same budget B = 3.

di and selecting within cost B yields a total complexity of
O(n log n+ |E|), which is comparable to BAP.

G. Intuition and Toy Example: NoEC vs. BAP

We complement the formal result with a compact, visual
intuition. As illustrated in Fig. 8, under the same budget a
single high-impact host chosen by NoEC—ranked by the cost-
normalized score Ψ(h) = degS(h)/c(h)—can detach more
host–server edges than several low-cost hosts chosen by BAP.
This gap grows in heterogeneous regimes where degree and
cost are skewed.

a) Toy instance.: Consider a bipartite graph G = (H ∪
S,E) with per-host reconfiguration cost c(h) > 0 and
server-degree degS(h). Let H = {h1, h2, h3, h4} and S =
{s1, . . . , s10} with degS(h1) = 6, c(h1) = 3; degS(h2) = 2,

Algorithm 1 NoEC: Cost-Normalized Edge-Detachment Se-
lection
Require: Bipartite graph G = (H ∪ S,E); per-host costs

c(h) > 0; budget B > 0
Ensure: Selected host set Hk; detached incidence set Edet

1: Hk ← ∅, Edet ← ∅, Brem ← B ▷ Initialize
2: for all h ∈ H do degS(h) ← |{(h, s) ∈ E}|; Ψ(h) ←

degS(h)/c(h) end for
3: Build max-heap Q keyed by Ψ(h) over H ▷ O(|H|)

build
4: while Q ≠ ∅ and Brem > 0 do
5: h⋆ ← POPMAX(Q) ▷ O(log |H|)
6: if c(h⋆) ≤ Brem then
7: Hk ← Hk ∪ {h⋆}; Brem ← Brem − c(h⋆)
8: Edet ← Edet ∪ {(h⋆, s) ∈ E} ▷ Detach all

incidences of h⋆

9: else if Brem/c(h
⋆) ∈ (0, 1) and partial detachment

allowed then
10: Detach up to Brem worth of (h⋆, s), ordered by

edge impact; set Brem ← 0
11: return Hk, Edet

Tie-breaking. If Ψ ties, prefer larger degS(h); then
smaller c(h); then a stable ID.
Per-epoch complexity. Discovery/refresh
O(|E|); selection O(|H| log |H|); rule updates
O
(
k +

∑
h∈Hk

degS(h)
)
.

c(h2) = 1; degS(h3) = 2, c(h3) = 1; degS(h4) = 1,
c(h4) = 1; and B = 3. Then

Ψ(h1) =
6
3 = 2, Ψ(h2) = Ψ(h3) = 2, Ψ(h4) = 1.

BAP (cheapest-first) removes {h2, h3, h4} and detaches 2 +
2 + 1 = 5 edges, whereas NoEC selects h1 and detaches 6
edges with the same B (see Fig. 8). The advantage widens as
incidence and costs become more skewed.

Algorithmic Overview and Pseudocode

We now summarize the selection procedure that operational-
izes our cost-normalized objective. The inputs are a bipartite
topology G = (H ∪ S,E), per-host reconfiguration costs
c(h) > 0, and a per-epoch budget B > 0. Each host h ∈ H
is scored by

Ψ(h) =
degS(h)

c(h)
,

where degS(h) is the number of incident host–server edges.
The algorithm returns a selected host set Hk (budget-feasible)
and the detached incidence set Edet = {(h, s) ∈ E : h ∈ Hk}.
We adopt a max-heap keyed by Ψ(·) for near-linear per-epoch
cost (cf. Sec. VIII-D); ties prefer larger degS(h), then smaller
c(h), then a stable ID. An optional “partial detachment” mode
allows using the remaining fractional budget on a subset of
incidences of the last-picked host, ordered by edge impact,
when strict per-host indivisibility is not required.

b) Assumptions and Proof Sketch.: We specify suffi-
cient conditions under which the cost-normalized selection
Ψ(h) = degS(h)/c(h) weakly dominates a cheapest-first
baseline (BAP) in terms of total detached incidences.

Setup. Let G = (H ∪ S,E) be bipartite with per-host
cost c(h) > 0 and server-incidence degS(h). Given budget
B > 0, define for any selection X ⊆ H the value V (X) =∑

h∈X degS(h) and the cost C(X) =
∑

h∈X c(h) ≤ B.
Special case (uniform costs). If c(h) ≡ c0, then max-

imizing V (X) under C(X) ≤ B reduces to picking the
k = ⌊B/c0⌋ hosts with largest degS(·). NoEC ranks by
Ψ(h) = degS(h)/c0 and thus coincides with degree-order
selection, which dominates any cheapest-first policy (since all
are equally cheap). Hence V (XNoEC) ≥ V (XBAP).

Monotone score–cost alignment (sufficient condition). Sup-
pose for any i, j ∈ H ,

c(i) ≤ c(j) =⇒ Ψ(i) ≤ Ψ(j),

i.e., cheaper hosts do not have strictly higher cost-normalized
impact than more expensive ones. Then any cheapest-first
selection can be transformed into a NoEC-prefix selection
without exceeding budget while not decreasing V (·).

Proof sketch (exchange argument). Order hosts by nonin-
creasing Ψ: h1, . . . , hn with Ψ(h1) ≥ · · · ≥ Ψ(hn). Consider
any BAP-feasible set X , and let ht /∈ X be the first (highest-
Ψ) host omitted by X . Since X is cheapest-first and costs
are aligned with Ψ by assumption, there exists h′ ∈ X with
c(h′) ≥ c(ht) and Ψ(h′) ≤ Ψ(ht). Exchanging h′ with ht

keeps cost nonincreasing (C does not increase) and increases
or preserves value:

V
(
(X \{h′})∪{ht}

)
−V (X) = degS(ht)−degS(h′) ≥ 0,

because Ψ(ht) ≥ Ψ(h′) and c(ht) ≤ c(h′). Repeating the
exchange yields a prefix of the Ψ-ordering (the NoEC set)
with V no smaller than BAP’s. Thus V (XNoEC) ≥ V (XBAP)
under the stated condition.

Remarks. (i) The alignment condition is sufficient but not
necessary; in practice, NoEC often outperforms BAP even
when costs and scores are only partially aligned (cf. Fig. 8).
(ii) When costs are uniform, the result is immediate (degree-
order selection). (iii) If partial detachment is allowed, the same
exchange logic applies to edge-level units by selecting highest-
impact incidences first.

H. Approximation Properties

We formalize the structure of our objective and the impli-
cations for greedy selection.

a) Objective as Coverage.: Let Edet(X) = {(h, s) ∈ E :
h ∈ X} be the set of detached incidences induced by a host
set X ⊆ H . Define the (incidence) coverage value

F (X) := |Edet(X)| =
∑
h∈X

degS(h)

−
∣∣overlaps among {Edet({h})}h∈X

∣∣.

Equivalently, when evaluating path coverage, let U(X) =⋃
h∈X P(h) be the union of simple host–server paths inter-

secting detached incidences; then F (X) = |U(X)| up to a
normalization by |P| (Sec. VIII-H).

Proposition IV.1 (Monotonicity and submodularity). The set
function F : 2H → R≥0 defined above is monotone and
submodular. In particular, for any A ⊆ B ⊆ H and h ∈ H\B,

F (A ∪ {h})− F (A) ≥ F (B ∪ {h})− F (B),

and F (A) ≤ F (B).

Proof sketch. F counts the cardinality of a union of per-host
incidence/path sets. Unions of sets yield a classical coverage
function, which is monotone (adding sets does not reduce the
union) and submodular (marginal gains decrease as the union
grows), i.e., diminishing returns.

b) Cardinality constraint.: When costs are uniform
(c(h) ≡ c0) and we select exactly k hosts, the standard greedy
that adds the host with maximum marginal gain ∆(h | X) at
each step achieves a (1 − 1/e)-approximation of the optimal
coverage. This follows directly from Proposition IV.1 and
classical results for monotone submodular maximization under
a cardinality constraint.

c) Budget (knapsack) constraint.: With heterogeneous
costs c(h) and total budget B, we employ the cost-normalized
greedy (ratio-greedy) that repeatedly selects the host maxi-
mizing ∆(h | X)/c(h) while budget remains. A light-weight
guarantee is obtained by comparing the ratio-greedy solution
with the best single host (“best-singleton” patch) and returning
the better of the two; this yields a constant-factor bound
for budgeted coverage while preserving controller efficiency.
Stronger (1− 1/e)-type guarantees are attainable via slightly
heavier variants (e.g., partial enumeration or continuous-
greedy), which we eschew here to keep per-epoch overhead
near-linear (Sec. VIII-D).

d) Practical note.: Our implementation follows the ratio-
greedy with a max-heap keyed by Ψ(h) = degS(h)/c(h) and
incorporates the best-singleton check. Empirically, its coverage
closely tracks stronger baselines while keeping selection time
O(|H| log |H|) and rule activity bounded (Sec. VIII-E).

I. Capacity- and Path-Aware Variants

Our score can incorporate resource and path signals through
either (i) a weighted incidence on the numerator or (ii) an
effective cost on the denominator.

J. Trust Signal and Temporal Decay

We maintain a bounded trust score T (h) ∈ [0, 1] per host
h, where larger values indicate higher confidence in the host’s
integrity. Trust is updated online from alerts/telemetry and
used only through cost shaping to avoid destabilizing the
selection.

a) Evidence and normalization.: Let e(h, t) ∈ [0, 1]
denote the normalized evidence at epoch t from NIDS logs,
rate-limiters, or anomaly scores (0: no concern; 1: strong
concern). We map raw detectors to e(·) by min–max or
percentile normalization per detector and then average across
sources (weights can be uniform unless otherwise specified).

b) Temporal update (EMA with floors/ceilings).: With
decay parameter λ ∈ (0, 1] and bounds 0 < Tmin ≤ Tmax ≤ 1,
we update

Tt+1(h) = clip[Tmin,Tmax]

(
(1−λ)Tt(h) + λ

(
1− e(h, t)

))
,

initialized at T0(h) = Tmax. The EMA smooths bursty signals;
Tmin, Tmax prevent saturation (defaults below).

c) Cooldown to avoid oscillations.: If e(h, t) ≥ θhigh
for C consecutive epochs, we assert a cooldown: mark h as
cooling for Lcool epochs during which T (h) cannot increase
(only decay applies). This avoids rapid flip-flops near decision
boundaries.

d) Integration via effective cost.: We shape the denomi-
nator in the score using

c′(h) = c(h)
(
1 + γ r(h)

)
,

r(h) = β
(
1− T (h)

)
+ η lat sens(h).

with γ, β, η ≥ 0 and lat sens(h) ∈ {0, 1} a policy flag for
ultra-low-latency slices. Selection uses Ψ(h) = degS(h)/c

′(h)

(or d̃egS(h)/c
′(h) for weighted variants). Because c′(h) > 0

and weights are nonnegative, the induced coverage remains a
(weighted) union; the monotone-submodular structure and the
approximation properties in Sec. IV-H continue to hold.

e) Stability and parameter defaults.: We choose λ = 0.2,
(Tmin, Tmax) = (0.1, 1.0), θhigh = 0.8, C = 2, Lcool = 3,
β = 1.0, and η = 1.0 unless stated otherwise. For the jitter
in Sec. VIII-E, we keep γ ∈ {0, 0.25, 0.5} and report sensi-
tivity in the supplement. These values bias the policy away
from persistently low-trust hosts without materially changing
coverage when alerts are rare or weak.

f) Reproducibility.: We log
(λ, Tmin, Tmax, θhigh, C, Lcool, β, η, γ) and the PRNG seeds
for any stochastic detectors. The same trust pipeline
(normalization and EMA) is reused across methods to ensure
fairness.

g) Weighted incidence.: Let whs ≥ 0 encode per-
incidence importance (e.g., capacity-, demand-, or latency-
aware). Replace the server-incidence by

d̃egS(h) :=
∑

(h,s)∈E

whs, Ψw(h) :=
d̃egS(h)

c(h)
.

When whs ∈ [0, 1] are nonnegative, maximizing the
weighted coverage remains a union-of-sets objective (now with
weights), which is monotone submodular; thus, the approxi-
mation properties in Sec. IV-H continue to hold (cardinality:
(1− 1/e); budget: ratio-greedy with the best-singleton patch).

h) Effective cost shaping.: QoS risk or operational fric-
tion can be folded into the denominator by defining

c′(h) := c(h) ·
(
1 + γ r(h)

)
,

where r(h) ∈ [0, 1] aggregates risk (e.g., latency sensitivity,
slice policy, trust factor) and γ ≥ 0 tunes its influence. The
selection then uses

Ψw(h) :=
d̃egS(h)

c′(h)
,

Ψ(h) :=
degS(h)

c′(h)
(if only cost shaping is desired).

This preserves the selection mechanics while biasing the
policy away from high-risk hosts.

i) Practical instantiation.: A typical choice is

whs =
cap(h, s)

max(u,v)∈E cap(u, v)︸ ︷︷ ︸
capacity share

· demand(h, s)∑
(u,v)∈E demand(u, v)︸ ︷︷ ︸

demand norm

· 1

1 + λ hoplen(h→s)︸ ︷︷ ︸
path-length discount

.

with λ ≥ 0. For cost shaping, let r(h) = β
(
1 − T (h)

)
+

η lat sens(h) where T (h) ∈ [0, 1] is a trust score and
lat sens(h)∈{0, 1} flags ultra-low-latency slices.

j) Reporting and ablation.: We report both unweighted
and weighted variants in Sec. VIII-H and sweep λ, γ (and β, η
when enabled); coverage and QoS indices are shown with 95%
CIs. Empirically, moderate capacity/path weighting improves
disruption under congestion while preserving selection run-
time.

V. SYSTEM ARCHITECTURE

We have developed a system within a SDN environment to
implement the NoEC strategy. This system consists of four
primary components: critical servers, typical hosts, network
devices, and an SDN controller. Critical servers represent
high-value assets that network administrators aim to protect
from DDoS attacks. In contrast, typical hosts are vulnerable
endpoints that adversaries may compromise to form a bot-
net for launching such attacks. These hosts and servers are
interconnected via network devices, specifically, OpenFlow-
enabled switches. The SDN controller plays a central role by
issuing forwarding rules and control messages to manage these
network devices, as illustrated in Figure 5.

To operationalize NoEC, the SDN controller incorporates
five functional modules:

• Network Topology Discovery (NTD) – Responsible for
gathering real-time network structure and connectivity
data.

• Shuffling Degree Calculator (SDC) – Evaluates the
number of connections between hosts and critical servers
to determine shuffling priorities.

• Impact Assessment System (IAS) – Estimates the poten-
tial threat each host poses based on connectivity metrics.

Algorithm 2 SDC Module: Computing Shuffling Degrees

1: Initialize ne[i]← 0 for all i ∈ {1, . . . , H} ▷ Connections count per
host

2: Initialize total← 0 ▷ Tracks total host-to-server links
3: for i← 1 to H do ▷ Loop over hosts
4: for j ← 1 to S do ▷ Loop over critical servers
5: if conn(i, j) = 1 then ▷ If host hi connected to server sj
6: ne[i]← ne[i] + 1
7: total← total + 1
8: for i← 1 to H do
9: d[i]← ne[i]/total ▷ Normalize degree

10: return d ▷ Return shuffling degree vector

Fig. 9. The SDC module evaluates the importance of each host by calculating
how frequently it connects to critical servers. This connection count is then
normalized across the network to assign a probability-based shuffling degree
to each host. Hosts with higher connectivity are assigned higher degrees,
making them more likely to be selected for shuffling during an attack.

• Shuffling Impact Determiner (SID) – Determines
which nodes to shuffle based on assessed risk and cost-
efficiency.

• Forwarding Engine (FEG) – Enforces selected shuffling
actions by updating forwarding rules on network devices.

A. Network Topology Discoverer (NTD)

The Network Topology Discovery (NTD) module utilizes
the OpenFlow Discovery Protocol (OFDP) to ascertain the cur-
rent state and topology of the network. This process involves
identifying various network nodes and their interconnections,
thereby enabling the generation of C. The network admin-
istrator provides information regarding host vulnerabilities,
interdependencies, and a predefined list of critical servers.
Based on this input, the NTD module constructs the network
model, denoted as N , and forwards it to the Shuffling De-
gree Calculator (SDC) module. This procedure is triggered
during network initialization, when the complete topology is
discovered and communicated to the SDC module. The NTD
module is designed to accurately capture the network state and
structure, even in high-density and high-speed environments,
thus facilitating effective NoEC implementation and ensuring
robust defense against advanced distributed attacks.

B. Shuffling Degree Calculator (SDC)

The SDC module determines each host’s congestion degree
in the network. It receives the NTD module’s network model
and calculates each host’s entanglement degrees. The mixing
degree, di, is calculated for each host i using the connectivity
information provided in C . The algorithm implemented by
the SDC module is provided in Algorithm 2 and Algorithm 1.
After the calculation, the list of scrambling degrees is sent to
the SID module.

The SDC module adjusts to conditions by providing accu-
rate shuffling degree calculations to help prevent DDoS attacks
and ensure network integrity and performance. It uses OFDP
to assess the network’s state, identifying vulnerabilities and
key server connections. The calculated shuffling degrees help
prioritize hosts at high risk of being targeted.

Algorithm 3 SID Module: Selecting Hosts for Shuffling

1: Initialize Top← top µ+ ρ hosts with highest d[i] values ▷
Pre-selected influential hosts

2: for each shuffling interval do
3: Λ← empty list ▷ Hosts selected for shuffling
4: for i← 1 to H do
5: r ← Random(0, 1)
6: if r < d[i] then
7: Append i to Λ
8: Send Λ to FEG for flow rule updates

Fig. 10. The SID module selects hosts for shuffling based on their previously
calculated shuffling degrees. During each shuffling cycle, a random number is
generated for each host and compared with its shuffling degree. If the random
number is smaller, the host is marked for shuffling. This probabilistic method
ensures dynamic and cost-effective defense by focusing more on high-risk
hosts.

C. Shuffling Implementation and Decision (SID)

The SID module uses the NoEC algorithm to select hosts
for shuffling, based on information from the SDC module.
Reconfiguration and shuffling start at each fixed interval of σ
seconds. Hosts are chosen for shuffling during each scrambling
interval based on their degree. Specifically, each host hi has
a clutter probability di, where di represents its degree. This
probabilistic approach ensures that hosts with higher hybrid
degrees (i.e., those more critical to defending against attacks)
are moved more frequently, aligning with their importance in
mitigating potential DDoS threats.

A flow entry timeout triggers the SID module to detect the
start of a new scrambling interval. This timeout is detected
via the OpenFlow message type OFPT FLOW REMOVED,
indicating the expiration of flow entries. Upon receiving this
notification, the SID module evaluates the type of the current
interval and determines the set of hosts, denoted as λ, that
should be scrambled in this interval.

The set λ is then passed to the FEG (Flow Entry Generator)
module, configuring the flow entries necessary to perform the
blending. This systematic approach ensures that host migra-
tion is performed efficiently and NoEC-compliant, effectively
protecting against evolving DDoS threats in dynamic 5G/6G
network environments. The algorithm of the SID module is
shown in Algorithm 3 and Algorithm 4.

D. IP Address Assignment and Shuffling (IAS)

The IAS module maintains a pool of IP addresses within
the designated network address space, where each address is
linked to a status flag indicating its current availability. During
a shuffling process, when hosts require new IP addresses, the
IAS module selects a random address from the network where
the flag is unset, indicating the address is currently available.
Once selected, this address is assigned to the host, and its flag
is updated to reflect that it is now in use. The newly assigned
IP addresses are then communicated to the FEG (Flow Entry
Generator) module for implementation in the network.

Algorithm 4 Host Evaluation and Shuffling Strategy (NoEC)

Require: Connection matrix C of size H × S, number of hosts H , number
of servers S, shuffling interval σ, total simulation time T

Ensure: List of hosts to be shuffled in each interval
1: Step 1: Calculate shuffling degree for each host
2: Initialize ne[i]← 0 for i = 1 to H ▷ Connection count per host
3: total← 0 ▷ Total number of host-server links
4: for i← 1 to H do ▷ Iterate over each host
5: for j ← 1 to S do ▷ Iterate over each server
6: if C[i][j] = 1 then ▷ If host hi is connected to server sj
7: ne[i]← ne[i] + 1
8: total← total + 1
9: Initialize d[i]← 0 for i = 1 to H ▷ Normalized degree list

10: for i← 1 to H do
11: if total > 0 then
12: d[i]← ne[i]/total ▷ Shuffling degree: relative importance
13: else
14: d[i]← 0
15: Step 2: Identify Top µ+ ρ Hosts Based on Degree
16: Top← list of top µ+ ρ hosts sorted in descending order of d[i]
17: Step 3: Perform host selection and shuffling at each interval
18: for t← 0 to T with step σ do
19: Λ← empty list ▷ Hosts selected for shuffling in this interval
20: for i← 1 to H do
21: r ← random value in (0, 1)
22: if r < d[i] then ▷ Probabilistic selection based on degree
23: Append host hi to Λ
24: Send Λ to FEG module ▷ Trigger shuffling via forwarding updates

Fig. 11. This integrated algorithm represents the core of the NoEC strategy.
It first computes a shuffling degree for each host based on its connectivity to
critical servers. Then, in each interval, hosts are probabilistically selected for
shuffling according to these degrees, prioritizing those with higher potential
impact in mitigating DDoS attacks.

E. Flow Entry Generator (FEG)

When the SID module detects the start of a new scrambled
interval, it activates the FEG module. The FEG module then
retrieves the list of hosts to be scrambled, called λ , from the
SID module. This list contains hosts selected for IP address
changes and subsequent reconfiguration.

The FEG module then requests the required number of
new IP addresses from the IAS (IP Address Assignment
and Relocation) module. The IAS module provides these IP
addresses from a pre-maintained list, ensuring that the selected
addresses are not currently in use to avoid interference. Each
address in this is marked to avoid duplication and ensure
unique allocation. Upon receiving new IP addresses, the FEG
module generates flow rules based on the updated information
from both the SID and IAS modules. These flow rules dictate
new IP assignments and any necessary network routing. This
sequence ensures that the mixing of hosts runs seamlessly,
maintaining network security and performance while minimiz-
ing disruptions.

COMPARATIVE ANALYSIS OF MTD METHODS FOR ATTACK
PROPAGATION

Figure 12 provides a comparative visualisation of eight
MTD methods using graph-based analysis. Each graph models
the influence of an attacker node on five host nodes (H1–H5)

TABLE II
NOTATION USED IN THE NOEC FRAMEWORK

Symbol Description

H = {h1, . . . , hn} Set of hosts
S = {s1, . . . , sm} Set of critical servers
G = (H ∪ S,E) Bipartite graph of hosts and servers
E Set of edges (hi, sj) indicating connectivity
ci Cost to compromise host hi

C = {c1, . . . , cH} Set of compromise costs
di Mixing degree: di = 1

|S|
∑

j ⊮(hi,sj)∈E

δj(H) Active connections to sj after removing H
τ Max server connections
H ⊆ H Selected hosts for shuffling
B Defense budget
Ψ(H) Total disrupted host-server links
N = (S, C) Abstract network model
NE ,NF Example networks
CE , CF Example cost vectors
ANoEC, ABAP Protected servers under NoEC and BAP
A External attacker
⊮(·) Indicator function (1 if true, 0 otherwise)
NoEC Proposed method (based on di)
MSC Minimum Shuffling Cost method
Ni Node i

Ti Trust score of node i

s2 Sample critical server

and two server nodes (S1, S2), with annotated compromise
probabilities PUC ∈ (0, 1).

VI. MATHEMATICAL CONTEXT

The notation summary used in the proposed NoEC method
is presented in Table II. Let G = (V,E) be a directed graph
where V is the set of nodes (including attacker A, hosts hi,
and servers Sj), and E is the set of directed edges representing
potential propagation paths. Each edge eij ∈ E is associated
with a compromise probability PUC(hi). An MTD method
aims to minimize the set of compromised hosts C ⊆ V such
that:

C = {hi ∈ V : PUC(hi) > θ}, θ ∈ (0, 1)

The total compromise risk is then:

Rtotal =
∑
hi∈H

PUC(hi) · I(hi)

where I(hi) is an indicator function (1 if host is compromised,
0 otherwise).

A. Edge METHOD

A baseline strategy analyzing direct edges from the attacker.
Evaluate the compromise potential based only on edge proba-
bilities. Hosts H2 and H5 were selected due to PUC(h2) = 0.4
and PUC(h5) = 0.5 > θ = 0.3.
Let Aatt be the attack adjacency vector. Then:

PUC(hi) = Aatt(i) ·Wedge(i)

where Wedge is the vector of weights for edge vulnerabilities.

B. BAP METHOD

Backward Attack Propagation traces potential paths of in-
fluence from targets to sources, identifying H3 and H4. This
method improves detection accuracy through reverse traversal:

PUC(hi) =
∑

p∈P (hi→A)

∏
e∈p

Pe

where P (hi → A) is the set of backward paths from hi to the
attacker.

C. IP Shuffling

Periodically randomizes IP addresses, making attack paths
volatile. Let IP (hi) denote the address of host hi. If reassign-
ment occurs every ∆t:

IP (hi, t+∆t) = R(IP (hi, t))

then PUC(hi) depends on attacker re-identification delay δ.

D. Server Relocation

Relocates servers across the network. If Sj is associated
with host set Hj , relocation implies:

Sj → S′
j ⇒ H ′

j = {hk : reachable from S′
j}

This redefines PUC(hi) via updated reachability metrics.

E. Topology Randomization

Alters the entire topology T through randomization function
f :

T ′ = f(T, r), r ∼ U(0, 1)

This approach minimizes structural predictability but may
disrupt QoS.

F. Traffic Route Mutation

Changes routing paths with mutation probability ρ. Let R
be the original route:

R(hi, Sj)→ R′(hi, Sj) with P = ρ

Higher ρ reduces repeated exposure but adds latency.

G. Port Hopping

Port transitions follow a time-based schedule:

p(t) = (p0 + ωt) mod N

where p0 is the initial port, ω is hopping rate, and N is port
count. PUC depends on attacker synchronization capability.

From the visual analysis in Figure 12 and mathematical
evaluations, it is evident that the Edge METHOD provides a
solid balance between computational efficiency and effective
risk identification. It highlights critical hosts (H2, H5) without
excessive complexity. For systems requiring rapid decisions
with constrained resources, Edge METHOD is preferable.
However, Edge Shuffling and Traffic Mutation may offer better
long-term resilience for advanced adaptive networks.

P_U
C = 0.

3
P_

UC
 =

 0
.4

P_UC = 0.8

P_UC = 0.9
P_UC = 0.5

Attacker

h1 h2 h3 h4 h5

S1 S2

Edge METHOD

P_U
C = 0.

3
P_

UC
 =

 0
.4

P_UC = 0.8

P_UC = 0.9
P_UC = 0.5

Attacker

h1 h2 h3 h4 h5

S1 S2

BAP METHOD

P_U
C = 0.

3
P_

UC
 =

 0
.4

P_UC = 0.8

P_UC = 0.9
P_UC = 0.5

Attacker

h1 h2 h3 h4 h5

S1 S2

Edge Shuffling

P_U
C = 0.

3
P_

UC
 =

 0
.4

P_UC = 0.8

P_UC = 0.9
P_UC = 0.5

Attacker

h1 h2 h3 h4 h5

S1 S2

IP Shuffling

P_U
C = 0.

3
P_

UC
 =

 0
.4

P_UC = 0.8

P_UC = 0.9
P_UC = 0.5

Attacker

h1 h2 h3 h4 h5

S1 S2

Server Relocation

P_U
C = 0.

3
P_

UC
 =

 0
.4

P_UC = 0.8

P_UC = 0.9
P_UC = 0.5

Attacker

h1 h2 h3 h4 h5

S1 S2

Topology Randomization

P_U
C = 0.

3
P_

UC
 =

 0
.4

P_UC = 0.8

P_UC = 0.9
P_UC = 0.5

Attacker

h1 h2 h3 h4 h5

S1 S2

Traffic Route Mutation

P_U
C = 0.

3
P_

UC
 =

 0
.4

P_UC = 0.8

P_UC = 0.9
P_UC = 0.5

Attacker

h1 h2 h3 h4 h5

S1 S2

Port Hopping

Fig. 12. Vector-based comparative graph of eight MTD methods in attack scenarios.

TABLE III
COMPARISON OF MTD METHODS BASED ON GRAPH OUTCOMES

Method Compromised Complexity Adaptability

Edge METHOD H2, H5 Low Low
BAP METHOD H3, H4 Medium Medium
Edge Shuffling H2, H5 Medium High
IP Shuffling H3, H4 High High
Server Relocation H1, H2 Medium Medium
Topology Randomization H4 High Medium
Traffic Route Mutation H2, H3 Medium High
Port Hopping H5 Low Medium

VII. EVALUATION

We have performed a comparative analysis of NoEC against
two approaches: BAP (Backward Attack Path) [25, 26] and
TGCESA (Tripartite Game Cost-Effective Mixed Algorithm)
[15], both of which are suitable for comparison due to their
focus on mitigating DDoS attacks through MTD strategies.
However, the primary emphasis of our comparison is on
evaluating NoEC versus BAP. This is because it pertains to
our methods, and we are expanding on this approach. We de-
scribe the key features of the simulated network environments
used for evaluation and provide detailed simulation results
to demonstrate the performance of NoEC relative to other
approaches. It includes an analysis of the cost-effectiveness,
security improvements, and efficiency of NoEC compared to
other methods.

Targeted/Adaptive Adversary.: To capture attackers that
preferentially compromise structurally and resource-central

hosts, we augment the model so that the probability of
compromising host h scales as

p(h) ∝
(
b(h) degS(h)

)α
, α ∈ [0, 2],

where b(h) proxies available bandwidth (or service capac-
ity) and degS(h) is the host–server incidence. As α in-
creases, compromises concentrate on high-impact hosts. Be-
cause NoEC ranks candidates by the cost-normalized score
Ψ(h) = degS(h)/c(h), it continues to prioritize these same
high-impact nodes, preserving (and often widening) its edge-
detachment advantage under targeted attacks. In near-uniform
regimes (α ≈ 0), the advantage diminishes and NoEC ap-
proaches BAP, which we confirm in our sensitivity discussion.

A. Sensitivity Protocol: Load, Selection Cap, Complexity, and
QoS

We standardize sensitivity experiments along four axes:
offered load ρ, a load-aware selection cap k(ρ), con-
troller/runtime complexity, and a composite QoS index.

a) Offered load and windowing.: Let ρ ∈ [0, 1.2] denote
the normalized offered load (utilization factor). We estimate
ρ over fixed windows of Wρ seconds using link counters
and path-level probes, averaging across active paths. Unless
stated otherwise, Wρ = 5 s and the sweep grid is ρ ∈
{0.2, 0.4, 0.6, 0.8, 1.0, 1.2}; each point aggregates R runs with
distinct seeds and we report mean and 95% CIs.

b) Load-aware selection cap.: To bound disruptive
changes under stress we apply

k(ρ) = max
(
kmin, ⌊k0 ·max(0, 1− ρ)⌋

)
,

where k0 is the nominal selection size at low load and kmin

enforces a minimum defensive cadence. This cap is applied
after enforcing the budget constraint B and before rule staging;
at ρ↑, fewer hosts are reconfigured per epoch.

c) Complexity metrics.: We quantify controller/runtime
cost per epoch as: (i) selection wall-time (heap-based NoEC,
cf. Sec. IV-H, O(|H| log |H|)), and (ii) rule activity Crule, i.e.,
the number of rule commits, upper-bounded by

Crule ≤ k(ρ) +
∑

h∈Hk(ρ)

degS(h).

Both metrics are reported as means with 95% CIs over R
runs. We additionally include the token-bucket admission trace
when the commit limiter (Sec. VIII-E) is enabled.

d) QoS index and early-stop guard.: We monitor a
composite QoS index

Q = w1 thr− w2 lat− w3 loss, wi≥0,
∑

wi = 1,

evaluated over WQoS-second windows (default WQoS = 5 s).
If Q drops by more than δ for U consecutive windows we
trigger a rollback to the last stable ruleset and pause selection
until recovery (defaults: δ = 0.1, U = 3).

e) Plotting conventions.: Unless specified otherwise: (i)
solid curves show means, shaded bands show 95% CIs; (ii) the
x-axis is ρ; (iii) left y-axis reports coverage (Sec. VIII-H) and
QoS, right y-axis (secondary) reports Crule or selection time;
(iv) markers denote budget points B ∈ {1, 3, 5, 8}.

f) Discussion.: This protocol stresses the system from
underload to overload while bounding reconfiguration impact
via k(ρ) and enforcing QoS safety through an explicit early-
stop guard. It also makes the complexity reporting comparable
across methods by normalizing windowing and confidence
intervals.

B. evaluation criteria

We use several key metrics to effectively measure NoEC’s
success in minimizing defense costs while maintaining robust
network security. The primary criteria used for evaluation are
as follows:

1) algorithm complexity: Scalability is critical for any
defense mechanism, especially in dynamic environments such
as SDN, where network size and complexity vary. Therefore,
the complexity of the NoEC algorithm must be evaluated.
Time complexity assesses the duration an algorithm takes
based on network size, with lower complexity indicating better
efficiency as the network expands. Space complexity measures
the memory requirements of the algorithm in relation to
network size. Efficient memory use is essential to scale the
system without consuming too many resources. By analyzing
these complexities, we determine the feasibility of NoEC for
deployment in current and emerging network environments,
including those using 5G and future 6G technologies.

2) Enemy Success Rate: The adversary’s success rate serves
as a key metric for evaluating the effectiveness of the NoEC
strategy in mitigating attacks. It is defined as the ratio of
successful compromises of critical assets to the total number
of attack attempts:

Success Rate =
Nsuccess

Ntotal
(2)

where Nsuccess denotes the number of attempts in which the
adversary successfully compromises a critical asset, and Ntotal
represents the total number of attack attempts. A lower success
rate implies that NoEC is more effective in defending against
attacks. This metric is particularly useful for assessing NoEC’s
performance across a range of attack scenarios, including
DDoS attacks in both traditional and next-generation 5G/6G
networks.

To evaluate the cost-efficiency of NoEC, we define the
System Overhead Rate as the proportion of hosts shuffled
during a shuffling interval:

System Overhead Rate =
Nshuffled

Nhosts
(3)

where Nshuffled is the number of hosts that were selected for
shuffling in a given interval, and Nhosts is the total number of
hosts in the network. A lower overhead rate indicates a more
efficient implementation with reduced reconfiguration costs,
which is critical in maintaining performance in large-scale and
high-speed SDN/5G/6G environments.

3) Vulnerable servers: The rate of compromised servers,
calculated as the ratio of successfully breached servers to the
total servers, offers important insights into a network’s secu-
rity. Monitoring this metric helps assess the attack’s impact
and the effectiveness of the NoEC defense mechanisms.

C. Simulation Environment

We conducted a series of simulations to evaluate the per-
formance of our NoEC implementation under various network
scenarios using the Mininet emulation environment. In these
simulations, hosts are connected via Open vSwitch instances,
while network control is managed by a centralized POX
controller.

The simulation was configured to run for a total duration
of 1000 seconds. Throughout this period, shuffling intervals
were set to occur every 5 seconds, i.e., σ = 5. A DDoS
attack on a critical server is deemed successful if the attacker
compromises at least one-third of its connected hosts.

The adversary adopts a randomized scanning strategy across
the network address space to locate potential targets. Each host
is compromised with a probability inversely proportional to its
associated cost, simulating the attacker’s preference for less
costly targets. Once compromised, a host becomes part of the
attacker’s botnet and begins to generate traffic floods directed
at the critical servers, thereby contributing to the execution of
the DDoS attack.

We created network topologies for simulations with the
adversary node directly connected to all host nodes. To ensure

H=Number of Hosts , S = Number of Servers

0

50

100

150

200

250

300
T

im
e

C
om

pl
ex

ity
 (

m
ic

ro
se

co
nd

s)

NoEC

BAP, K=1

TGCESA

(H=10 ,
S=1-5)

(H=15 ,
S=1-7)

(H=20
,S=1-10)

(H=25 ,
S=1-12)

(H=30 ,
S=1-15)

(a) Time complexity

 H=Number of Hosts , S = Number of Servers
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

S
pa

ce
 C

om
pl

ex
ity

 (
K

B
)

NoEC

BAP, K=1

TGCESA

H=30
S=1-15

H=25
S=1-12

H=20
S=1-10H=15

S=1-7
H=10
S=1-5

(b) Space complexity

Fig. 13. An in-depth comparison of the complexities of NoEC and BAP,
highlighting their respective strengths and weaknesses in various scenarios.

(a) Schematic for complexity analysis

10 20 30 40 50 60 70 80

Number of Hosts

0

0.5

1

1.5

2

2.5

S
pa

ce
 C

om
pl

ex
ity

 (
K

B
)

NoEC
BAP, K =1
BAP, K =2
BAP, K =3
BAP, K =4
BAP, K =5
BAP, K =6

(b) Space complexity

Fig. 14. Comparing the complexity of NoEC, BAP, and TGCESA.

[0-8] [9-13] [14-18] [19-23] [24-28] [29-33] [34-38] [39-43] [44-48]

Number of Hosts

0

10

20

30

40

50

60

70

80

90

A
dv

er
sa

ry
's

 S
uc

ce
ss

 R
at

e
(%

)

BAP
NoEC
Normal

(a) Success Rate of the Adversary

[0-8] [9-13] [14-18] [19-23] [24-28] [29-33] [34-38] [39-43] [44-48]

Number of Hosts

0

10

20

30

40

50

60

70

80

90

C
om

pr
om

is
ed

 S
er

ve
rs

 R
at

e
(%

)

BAP
NoEC
Normal

(b) Rate of compromised servers

Fig. 15. We compare the performance of NoEC against two baseline
scenarios: the BAP method and a defenseless network configuration (referred
to as Normal). The comparison focuses on two key security metrics: the
adversary’s success rate and the compromised servers rate. These metrics
provide insight into each method’s effectiveness in mitigating DDoS attacks
and protecting critical infrastructure under identical simulation conditions. .

fairness when comparing NoEC to other methods, we fixed
the number of host shuffles across all scenarios, allowing
performance differences to reflect the methods’ effectiveness
rather than inconsistencies.

D. Simulation Results

The results from each metric are presented in this section.

1) Algorithm complexity: The complexities of the BAP and
NoEC algorithms are shown in Figure 13. NoEC consistently
shows lower complexity than BAP across all scenarios. The

variable k indicates the number of hosts shuffled per interval.
BAP’s time complexity rises sharply with increasing k and
network size, whereas NoEC’s complexity remains stable, as
seen in Figure 13(a).

We executed these algorithms under varying network con-
ditions to compare the complexities of NoEC, BAP, and
TGCESA. Notably, BAP’s complexity escalates with larger k
values; therefore, we only present results for k = 1 to ensure
clarity. In contrast, TGCESA primarily focuses on shuffling
servers rather than hosts, which causes its complexity to rise
as the number of servers increases (Figure 13(b)).

The time and space complexities of BAP and TGCESA
are shown in Figure 14. Both algorithms exhibit increased
complexity with larger numbers of servers and hosts. For
TGCESA, this increase is particularly pronounced because
it requires migrating hosts connected to shuffled servers to
alternative servers, justifying the rise in complexity with
growing host counts.

In comparison, NoEC’s space complexity remains relatively
modest, as it utilizes only a simple array of size H + S to
manage its operations. Its time complexity shows near-linear
growth with respect to network size. Overall, NoEC’s average
complexity is found to be 54.38 % lower than that of both
BAP and TGCESA, demonstrating its efficiency in handling
shuffling operations with a lower computational burden.

2) Adversary’s success rate: Figure 15(a) shows the adver-
sary’s success rate across various network topologies. Clearly,
in a network without any defensive measures, referred to as the
”Normal” scenario, the adversary’s success rate is significantly
higher compared to networks employing defensive strategies.
Furthermore, within the defensive scenarios, networks utilizing
BAP exhibit a higher adversary success rate than those using
NoEC. This indicates that NoEC is more effective in mitigating
the adversary’s success, thanks to its approach of prioritizing
the number of edges as the primary shuffling criterion.

The average results demonstrate that NoEC reduces the
adversary’s success rate by 15.72 % more than BAP. This
enhanced performance underscores NoEC’s effectiveness in
decreasing the likelihood of a successful attack by strategically
considering host connections to critical servers.

3) Compromised Servers Rate: The percentage of com-
promised servers is depicted in Figure 15(b). As observed,
a network without any defensive mechanisms, referred to as
the ”Normal” network, shows a significantly higher number
of compromised servers than the networks utilizing defensive
strategies.

Interestingly, while reducing the number of compromised
servers is not NoEC’s primary objective, it still performs
better than BAP. The data indicates that NoEC leads to fewer
compromised servers than BAP, highlighting its effectiveness
in reducing the adversary’s success rate and mitigating server
compromises.

E. Computing Attack-Path Coverage: Enumeration vs. Sam-
pling

Recall that P denotes the set of simple host–server paths
considered for coverage (Sec. VIII-H). Given a budget-feasible
selection Hk, let

U(Hk) := { p ∈ P : p ∩ Edet(Hk) ̸= ∅ },

COV(Hk) :=
|U(Hk)|
|P|

.

a) Exact enumeration (small instances).: If |P| ≤ Pmax,
we enumerate all simple paths by BFS without node revisits
up to length Lmax and compute COV exactly.

b) Candidate-pool sampling (large instances).: Other-
wise, we construct a fixed candidate pool P̂ by the same
bounded-length BFS from every host (parameters Lmax and
Pmax are recorded) and uniformly sample m paths without
replacement: p1, . . . , pm ∼ Unif(P̂). Define indicator Zi =
1{pi ∈ U(Hk)}. The pool coverage is estimated as

p̂ :=
1

m

m∑
i=1

Zi, ĈOV(Hk) := p̂,

which is an unbiased estimator of the pool proportion p =
|U(Hk)∩P̂|/|P̂|. Its variance under sampling without replace-
ment is

Var[p̂] =
p(1− p)

m

(
1− m

|P̂|

)
,

where the multiplicative term is the finite-population correc-
tion. We report 95% CIs by normal approximation:

p̂ ± 1.96

√
p̂(1−p̂)

m (1− m

|P̂|
).

c) Sample-size guidance.: For Bernoulli observations
Zi ∈ [0, 1], Hoeffding’s inequality yields

P
(
|p̂− p| ≥ ε

)
≤ 2 e−2mε2 .

Thus it suffices to take

m ≥ 1

2ε2
ln
2

δ

to guarantee |p̂−p| ≤ ε with probability at least 1−δ. Unless
stated otherwise we target (ε, δ) = (0.03, 0.05).

d) Protocol and reproducibility.: We fix
(Lmax, Pmax,m) and random seeds for the candidate-
pool construction and for sampling. The same P̂ and seeds
are reused across methods within each experiment to ensure
fairness. When exact enumeration is tractable for a scenario,
we switch to the exact computation and mark figures
accordingly.

e) Remarks.: (i) If importance sampling is desired (e.g.,
to oversample long paths), an unbiased Horvitz–Thompson
variant uses p̂IS = 1

m

∑
i

Zi

q(pi)

/∑
i

1
q(pi)

, where q(·) is the
sampling distribution over P̂; we did not require it in our
experiments. (ii) In all cases, confidence intervals aggregate
over R independent runs (§IX).

F. Robustness to Cost Misestimation and Topology Errors

We study the stability of our selection under (A) mises-
timated per-host costs and (B) discovery noise that perturbs
host–server incidence counts.

a) (A) Cost misestimation.: Let ĉ(h) = c(h) (1 + εh)
with |εh| < 1. The perturbed score is

Ψ̂(h) =
degS(h)

ĉ(h)
= Ψ(h) · 1

1 + εh
.

For two hosts i, j, the ordering is preserved if

Ψ(i)

Ψ(j)
>

1 + εi
1 + εj

.

In the worst case with maxh |εh| ≤ ϵ, a sufficient condition
for global order preservation is

Γ := min
i̸=j

Ψ(i)−Ψ(j)

Ψ(j)
>

2ϵ

1− ϵ
.

Thus, larger score margins tolerate larger estimation error.
When this margin test fails, the policy remains near-optimal in
coverage because exchanges can only occur between near-tied
hosts.

b) (B) Degree perturbations from discovery noise.: Let
d̂egS(h) = degS(h)+δh. The score becomes Ψ̂(h) = Ψ(h)+
δh/c(h). The pairwise order between i and j is preserved if

Ψ(i)−Ψ(j) >
|δi|
c(i)

+
|δj |
c(j)

.

This highlights that higher-cost hosts (large c(·)) are intrinsi-
cally less sensitive to the same additive degree error.

c) Guardrails in practice.: We deploy two light-weight
safeguards:

• Temporal smoothing. Maintain an exponential moving av-

erage of incidences: d̃eg
(t)

S = (1−λ) d̃eg
(t−1)

S +λ deg
(t)
S

with λ ∈ (0, 1], and rank by Ψ̃(h) = d̃egS(h)/c(h) to
suppress one-off spikes.

• Score shrinkage. Apply a conservative shrink Ψα(h) =
degS(h)

c(h)(1+α) with small α > 0 calibrated to anticipated cost
error, which widens effective margins when several hosts
are nearly tied.
d) Ablation.: In Sec. VII-A, we sweep

ϵ ∈ {0, 0.05, 0.1, 0.2} and bounded |δh| ∈ {0, 1, 2},
reporting the relative coverage change and selection swaps.
We observe modest degradation until the score-margin bound
above is violated broadly, after which the coverage gracefully
decays rather than collapsing.

VIII. SIMULATION ARCHITECTURE AND EVALUATION
RESULTS

A. Simulation Setup

The SDN-based defense simulation framework was con-
structed to assess different MTD strategies’ practical viability
and effectiveness in mitigating cyberattacks. As in Figure 16,
the simulation environment integrates a programmable Open-
Flow controller with a dynamic flow-table mutation engine.

Attack emulation modules generate diverse DDoS and persis-
tent compromise events to evaluate each method’s resilience
and cost trade-off.

 Fig. 16. Simulation diagram for SDN-based MTD defense evaluation.

TABLE IV
COMPREHENSIVE QUANTITATIVE COMPARISON OF MTD METHODS

MTD Method DDoS Compromised Events Cost

Edge Shuffling 1134 7 1141 0.048
Server Relocation 969 6 975 0.154
IP Shuffling 960 4 964 0.060
Randomization 1210 40 1250 0.080
Traffic Mutation 1315 60 1375 0.105
Port Hopping 1215 30 1245 0.072
NoEC 845 2 847 0.071

B. Attack Families and Traffic Models
We evaluate three representative DDoS families under a

shared fairness protocol (Sec. VIII-I) and paired statistics
(Sec. VIII-J). Offered load ρ controls aggregate intensity; per-
bot rates scale with ρ so that scenarios are comparable across
families.

a) Volumetric UDP flood.: Bots send fixed-size or mildly
jittered datagrams to targeted services (randomized ports
within the service set). Each bot follows an ON/OFF pattern
with geometric ON/OFF lengths to induce burstiness. The per-
bot rate rudp is drawn from a lognormal distribution and scaled
by ρ.

b) TCP SYN state-exhaustion.: Bots issue SYNs with
source spoofing disabled (to allow SYN/ACK reflection
checks) and do not complete handshakes, stressing SYN
backlogs. Retransmission timers use OS defaults; half-open
timeout is set by the server stack. The per-bot SYN rate
rsyn scales with ρ; legitimate connection attempts follow an
independent Poisson process.

c) HTTP request floods (application layer).: Bots open
keep-alive TCP connections and issue short HTTP/1.1 requests
at controlled inter-request gaps; header templates are random-
ized to bypass trivial caching. We vary concurrency per bot
and the think-time distribution; the per-bot request rate rhttp
scales with ρ.

d) Parameterization and seeds.: All families share the
same random seeds across methods. Unless noted, we sweep
ρ ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 1.2} and budgets B ∈ {1, 3, 5, 8},
averaging over R runs (mean ±95% CI). QoS is reported
via Q (throughput/latency/loss) with the early-stop guard
(Sec. VIII-E); security via COV and collaboration metrics
(Sec. VIII-H).

e) Reporting.: We present family-specific plots (NoEC
vs. baselines) under identical axes and annotations, enabling
like-for-like comparison across UDP, SYN, and HTTP attacks.

C. Comparative Evaluation of MTD Methods

The quantitative evaluation focuses on three criteria: the
total number of DDoS attacks, system compromise events,
and the operational cost per method. Figure 17 and Figure 18
visualize the frequency and distribution of attack events, while
Figure 19 illustrates the corresponding cost overhead for each
strategy.

Table IV summarizes the numerical results. Below, each
method is briefly analyzed based on its strengths and weak-
nesses.

a) Edge Shuffling.: Edge Shuffling, a lightweight and
cost-efficient solution, recorded 1,134 DDoS events and 7
compromises. Its low cost per event (0.048) makes it ideal for
real-time SDN-based deployments. However, it lacks diversity
in mutation paths, which reduces long-term unpredictability.

b) Server Relocation.: Despite moderate effectiveness
(975 events), Server Relocation incurs the highest operational
cost (150 units). Migration delays and complex VM transitions
make it impractical under frequent attack conditions.

c) IP Shuffling.: With the lowest event count (964), IP
Shuffling is efficient against reconnaissance but moderately
expensive (0.060 per event). Its weakness lies in address reuse
and limited entropy range.

d) Topology Randomization.: This method had 1,250
events for 100 units. It performs well in dynamic topologies
but introduces routing instability and temporary exposure
during re-convergence.

e) Traffic Route Mutation.: Recording 1,375 total events
and costing 145 units, this method showed poor security
efficiency and increased packet delay due to constant path
remapping.

f) Port Hopping.: Moderately effective with 1,245 events
and a cost of 90 units, Port Hopping is better suited for session-
based protocols but has limitations against volumetric DDoS.

g) NoEC: Our method integrates adaptive sensing and
entropy-based decision-making, achieving only 847 events
with a cost per event of 0.071. It reduces exposure windows
and avoids unnecessary mutations, efficiently outperforming
all baselines.

Figure 20 provides a visual comparison of the network-
level impact of eight MTD strategies under a SDN topol-
ogy. The topology includes ten hosts (H0–H9), five switches
(SW0–SW4), a central controller, and a destination server
(S0). Each method was subjected to 1000 simulated attack

DDoS

Com
pro

mise
d

0

10

20

30

40

50
Co

un
t

Edge Shuffling

DDoS

Com
pro

mise
d

0

10

20

30

40

50

60

70

80

Co
un

t

Server Relocation

DDoS

Com
pro

mise
d

0

5

10

15

20

25

30

35

40

45

Co
un

t

IP Shuffling

DDoS

Com
pro

mise
d

0

10

20

30

40

50

60

Co
un

t

Network Topology Randomization

DDoS

Com
pro

mise
d

0

10

20

30

40

50

60

70

Co
un

t

Traffic Route Mutation

DDoS

Com
pro

mise
d

0

10

20

30

40

50

Co
un

t

Port Hopping
Event Counts for Different MTD Methods

Fig. 17. Event counts per method including DDoS and Compromised events.

Edge Shuffling IP Shuffling Network
Topology

Port
Hopping

Server
Relocation

Traffic Route
 Mutation

MTD Method

0

20

40

60

80

100

Nu
m

be
r o

f E
ve

nt
s

Distribution of Events Across MTD Methods
Event Type

Compromised
DDoS
Edge Shuffling
IP Shuffling
Network Topology Randomization
Port Hopping
Server Relocation
Traffic Route Mutation

Fig. 18. Stacked event distribution across all MTD techniques.

Edge Shufflin
g

Server Relocation

IP Shufflin
g

Topology Randomization

Traffic
Route Mutation

Port H
opping

NoEC (Proposed)

MTD Methods

0

20

40

60

80

100

120

140

160

To
ta

l C
os

t

40

160

100

130
120

80

30

Total Cost per MTD Method (Dark Theme)

Fig. 19. Cost analysis for MTD implementations.

scenarios consisting of DDoS attacks, host compromise, and
switch compromise attempts [36].

The attack propagation paths are highlighted in red, while
infected hosts and switches are marked in red and orange. The
figures reveal varying levels of vulnerability mitigation across
MTD methods. The Edge METHOD consistently limits the
spread of attacks while maintaining minimal complexity and
cost, thereby offering a substantial trade-off between defence
effectiveness and operational overhead.

The quantitative results of these simulations are summarized
in Table V. Key performance indicators such as the number

of infected hosts, the number of infected switches, the attack
success rate, and the estimated relative cost are reported.
Among all evaluated methods, the Edge METHOD achieves
the lowest number of compromised nodes and one of the
lowest attack success rates (24%) while also incurring the
lowest implementation cost. This demonstrates the superior
performance of the Edge METHOD in securing network
infrastructure without imposing a significant resource burden.

Collectively, visual and numerical analyses confirm the
practicality and efficiency of the Edge METHOD in dynamic
cyber defense, outperforming several more complex MTD
strategies such as Port Hopping or Topology Randomization.

For a detailed overview of all methods, the visual compar-
ison is shown in Figure 20 and the descriptions are presented
here:

In the Edge METHOD simulation, the attack propagation
remains localized, primarily affecting nodes connected through
SW0 and SW1. Compromised hosts (H1, H4, H5, H6, H9) can
be directly reached via early stage switches. Crucially, SW2 to
SW4 exhibit structural immunity with no red-edge penetration,
indicating successful segmentation. The method achieves low
compromise density and path redundancy suppression by
dynamically adapting switch-host edge links, thus increasing
attack entropy and minimizing latera...

The BAP METHOD exhibits a wider distribution of attack
paths than the Edge METHOD, with multiple red edges emerg-
ing from SW0 and SW1. Hosts H0 to H5 are compromised,
indicating that behaviour-based path adaptation alone may not
effectively isolate vulnerable nodes fully. SW2 receives some
penetration from the red edge, showing a moderate spread of
the lateral attack. While this method dynamically learns from
previous attacks, its adaptation rate may lag in rapidly evolving
scenarios, leaving critical sectors.

In the Edge shifting scenario, randomized reassignment
of switch host edges leads to a complex web of attack
paths. Red connections extend into SW2 and reach hosts H1,
H2, H4, and H6, revealing multiple accessible vectors for
attackers. Although unpredictability is introduced, the lack
of strategic filtering results in exposure of mid-tier switches.
Randomness increases entropy, but may weaken deterministic

shielding around key nodes such as S0, reducing containment
effectiveness.

The IP Shuffling graph shows compromised hosts spread
over a larger area, including H1, H2, H4, H5 and H6. Multiple
red edges emanate from SW1 and SW2, indicating repeated
attacker success via address mutation. While IP variation
complicates reconnaissance, the lack of physical topological
change allows adversaries to reorient and adapt quickly. The
compromised switches suggest that shuffling is insufficient
in isolating core routing paths, particularly under persistent
scanning.

In the Server Relocation strategy, the target S0 is topo-
logically repositioned, thus altering the attacker’s objective
mapping. Compromised hosts (H0, H2, H3, H4) are observed
mainly through SW0 and SW2, while SW3 remains clean.
This partial segmentation limits propagation depth. However,
red edges reaching SW4 indicate that dynamic reassignment
may lag behind attack vectors or follow predictable patterns.

Topology Randomization reconstructs the entire network
layout at intervals. In the visualized result, red edges are
mostly constrained to SW0 and SW1, with minimal entry
into SW3 or SW4. Hosts H1, H4, and H6 are affected,
but the distribution remains narrow. The method introduces
high entropy and reduces graph symmetry, confusing attacker
heuristics. Nevertheless, this comes at the cost of high syn-
chronization overhead and temporary performance degradation
during reconfiguration cycles.

The Traffic Route Mutation method varies the active paths
between source and target without altering topological con-
nections. Red edges show that attackers often reach SW2
and SW3, compromising hosts H2, H3, H4, and H7. Despite
partial redirection, lack of topological enforcement allows
attack persistence across rotated paths. This method reduces
predictability in routing tables but limits attack depth when
underlying edge connections remain static.

Port Hopping achieves one of the most compact attack
spreads. Only three hosts are compromised (H1, H4, H7),
and red paths are largely limited to SW1 and SW2. This
method disrupts session continuity and reconnaissance success
by dynamically changing service ports. While topological
structure remains fixed, the temporal mutation layer provides a
lightweight yet potent deterrent, especially against automated
exploit frameworks.

TABLE V
COMPARISON OF MTD METHODS ON ATTACK CONTAINMENT AND COST

Method Infected H Infected S Success rate Cost

Edge METHOD 2 1 24% Low
BAP METHOD 4 2 41% Low
Edge Shuffling 5 2 52% Medium
IP Shuffling 4 2 46% Medium
Server Relocation 3 1 38% High
Topology Random 2 1 29% High
Traffic Mutation 3 2 33% High
Port Hopping 1 0 21% High

D. Projected Scalability and Controller Overhead

We characterize the controller-side work per shuffle epoch
to clarify feasibility at larger scales. Let H and S denote hosts
and servers, E the discovered host–server edges, k the number
of selected hosts per epoch, and Tshuf the shuffle period.

a) Per-epoch complexity.: (1) Topology discovery and
metric refresh require a single pass over controller state and
links, costing O(|E|). (2) Host scoring and selection maintain
cost-normalized scores Ψ(h) = degS(h)/c(h) and retrieve the
top-k via a heap, costing O(|H| log |H|). (3) Rule installation
is bounded by the affected flows incident to the chosen hosts,
i.e.,

O
(
k +

∑
h∈Hk

degS(h)
)
.

For sparse fabrics where |E| = Θ(|H|) and practical k≪|H|,
the per-epoch work is near-linear.

b) Memory footprint.: The controller maintains (i) the
bipartite incidence (or equivalent) with Θ(|E|) entries, and
(ii) host-local metrics and scores with Θ(|H|) entries, plus
transient state for rule staging.

c) Amortization and scheduling.: We amortize the above
costs over Tshuf and pipeline three phases: (i) metric refresh,
(ii) selection, and (iii) rule commit. Batching updates reduces
TCAM churn; commits are rate-limited under load and can
follow blue–green staging to ensure lossless path transitions.

d) Scaling notes.: When degree or demand is highly
skewed,

∑
h∈Hk

degS(h) dominates; we cap k and prioritize
high-Ψ hosts to preserve QoS. For dense topologies, incremen-
tal maintenance of Ψ(·) and partial recomputation on changed
edges limit refresh cost. The design is compatible with multi-
controller or hierarchical SDN deployments where selection
runs per domain and aggregates into a global budget policy.

Switch-Rule Semantics, Priorities, and Conflict Handling:
Layout. Single ingress table with prioritized matches (un-
affected traffic via default); optional post-ingress QoS table.
Affected hosts install per-host match entries.
Templates & priorities. Blue (baseline), Green (staged), QoS-
guard, Limiter, Default. Priority order: Pguard > Pblue >
Pgreen > Plimit > Pdef.
Cutover/rollback. Stage green with Pgreen < Pblue; promote
via an atomic priority swap after readiness (green counters
over threshold, next-hop liveness, commit tokens). Rollback
restores Pblue > Pgreen on QoS drop.
Invariants (conflict-free). (i) Match coherence: green re-
fines/equal blue; (ii) Ordering: blue>green during staging,
green>blue after swap; (iii) No dangling next-hops; (iv) Batch
atomicity for all hosts in Hk.
Budgets/churn. Instant TCAM: |Rblue| + |Rgreen| ≤ Cmax;
per-epoch commits Crule ≤ k +

∑
h∈Hk

degS(h) (shaped by
the token-bucket limiter).
Telemetry gate. Green rules must accumulate a minimum
packet/byte count over ∆tprobe before swap; otherwise marked
stale and retried.
Remark. Controller-agnostic; needs only priorities, counters,
and atomic batched commits.

Edge METHOD — Simulated Attacks: 1000

ContrelН SWO SW1 SW2 SW3 SW4 SO

BAP METHOD — Simulated Attacks: 1000

ContrelН SWO SW1 SW2 SW3 SW4 SO

Port Hopping - Simulated Attacks: 1000

ContrelН SWO SW1 SW2 SW3- SW4 SO

Fig. 20. Visualization of simulated network attack propagation under eight different MTD strategies on a fixed topology. The network includes ten hosts
(H0–H9), five switches (SW0–SW4), a central controller (Control), and one destination server (S0). Each method was evaluated under 1000 combined attacks
involving DDoS, host compromise, and switch compromise. Attack paths are illustrated in red, with compromised hosts and switches highlighted in red and
orange. Among all strategies, the Edge METHOD demonstrates superior performance in containing attack spread while maintaining lower complexity and
implementation cost. This figure provides a comparative view of the network-level resilience achieved through each defense mechanism.

E. Practical Deployment Considerations
We outline guardrails and operational policies that keep

reconfiguration safe under load while bounding controller and
switch overhead.

a) Shuffle window and cadence.: Let Tshuf be the shuf-
fle period. Larger Tshuf amortizes controller work but reacts
slower; smaller Tshuf adapts faster but increases rule activity.
We select Tshuf so that the expected per-epoch rule commits
Crule remain below a switch-specific budget Cmax.

b) Batching to cap TCAM churn.: We coalesce per-
switch updates into batches of size at most Bmax and apply
them in windows of ∆t to reduce churn and controller–switch
handshake overhead. Batches are ordered to avoid transient
conflicts (e.g., remove low-priority rules before installing new
high-priority entries).

c) Blue–green staging and rollback.: We stage new paths
as “green” rules with lower priority while keeping the existing
“blue” rules active. After counters indicate readiness, a priority
swap atomically promotes green and demotes blue, achieving a
lossless cutover. If telemetry degrades post-swap, we rollback
by restoring blue priorities.

d) QoS guard and rate limiting.: We use a composite
QoS index

Q = w1 thr− w2 lat− w3 loss, wi≥0,
∑

wi = 1,

computed over moving windows. If Q drops by more than δ
within W consecutive windows, we pause reconfiguration and
revert to the last stable rule set.

e) Commit limiter (token bucket).: To bound instanta-
neous churn, commits are gated by a token bucket with refill
rate r = Cmax/∆t and capacity Cmax. A commit that requires
u updates consumes u tokens; when tokens are exhausted,
remaining updates queue until refill. This ensures∑

τ∈[t,t+∆t)

updates(τ) ≤ Cmax.

f) Load-aware selection cap.: Let ρ ∈ [0, 1.2] denote the
measured utilization factor. We cap the number of selected
hosts k via

k(ρ) = max
(
kmin, ⌊k0 ·max(0, 1− ρ)⌋

)
,

so under high load (ρ↑) the system performs fewer disruptive
changes while preserving a minimum defensive cadence kmin.

g) Telemetry and safety checks.: Each epoch pipelines
(i) metric refresh, (ii) selection, and (iii) commit. Before the
priority swap, we verify (a) rule installation success, (b) per-
path loss/latency against slice-specific guards, and (c) token
availability. Violations trigger rollback and a backoff on k and
commit rate.

h) Adversary Knowledge and Anti-Predictability.: We
additionally consider gray-/white-box adversaries that know
the budget B and the scoring rule Ψ(h) = degS(h)/c(h). To
mitigate predictability without sacrificing coverage, we employ
light stochasticity and cadence jitter:

Score jitter. We rank hosts by

Ψ̃(h) = Ψ(h) + ξh, ξh ∼ subG(0, η2),

with i.i.d. zero-mean sub-Gaussian noise of scale η > 0. Let
the (empirical) score margin be

Γ := min
i ̸=j

|Ψ(i)−Ψ(j)|
max{Ψ(i),Ψ(j)}

.

Choosing η ≤ Γ
4 · medianh{Ψ(h)} keeps flips between

well-separated hosts exponentially unlikely (by standard sub-
Gaussian tail bounds), so the expected detached-incidence
coverage is preserved while the exact prefix is harder to
predict. In practice we set η = 0.05 · median(Ψ) unless
otherwise noted.

Cadence jitter. We add a small randomized offset U ∼
Unif[−J,+J] to the shuffle trigger time per epoch (J in the

range [50, 200]ms) so that commits do not occur at perfectly
periodic instants, reducing timing side-channels.

Tie-breaking and reproducibility. Ties in Ψ̃ are resolved by
larger degS(h), then smaller c(h), then a stable ID, which
we document for reproducibility. All experiments fix and
report PRNG seeds for jitter sources; figures remain exactly
reproducible under the logged seeds.

Discussion. These measures reduce predictability under
gray-/white-box knowledge with negligible impact on cover-
age (Sec. VIII-H); aggressive noise is unnecessary and avoided
by the above margin-based bound.

i) Discussion.: These guardrails keep per-epoch work
near-linear (Sec. VIII-D) while capping instantaneous TCAM
activity and preserving QoS during transitions. They also com-
pose with multi-controller deployments by enforcing budgets
per domain and aggregating global pause signals when any
domain’s Q breaches its threshold.

j) Limitations and Scope.: Our controller assumes visi-
bility of host–server incidences and per-host reconfiguration
costs c(h) per epoch; we do not explicitly model stateful mid-
dleboxes, inter-switch pipeline hazards, or application-specific
stickiness beyond the operational guardrails in Sec. VIII-E.
The cost-normalized score Ψ(h) = degS(h)/c(h) captures
structural reachability rather than path length or capacity;
when link capacities or shortest-path structure dominate the
objective, capacity- or path-aware scoring may be preferable
and can be integrated by redefining c(h) or weighting degS(·).
Our evaluation focuses on epochic shuffling with near-linear
per-epoch complexity (Sec. VIII-D); in highly dynamic en-
vironments with fast-changing demand, a shorter Tshuf in-
creases rule activity and should be paired with stricter commit
budgets. Finally, in near-uniform degree/cost regimes NoEC’s
advantage over cheap-first baselines diminishes, which we
make explicit in our targeted-adversary discussion; conversely,
heterogeneity in degree or cost is where NoEC provides the
largest edge-detachment per unit cost.

F. QoS Monitoring Module and Tri-Objective Comparison
We evaluate {NoEC, BAP, TGCESA} along three

axes—Security, Complexity, and QoS—under the com-
mon fairness protocol (Sec. VIII-I) and paired statistics
(Sec. VIII-J).

a) QoS monitoring module.: Per epoch, we collect path-
level throughput (thr), latency (lat), and loss (loss) over
fixed windows of WQoS seconds (default 5 s) and compute
windowed averages thr, lat, loss. Each metric is normalized
using reference baselines from pre-attack operation:

thrnorm =
thr

max(thrref , ϵ)
,

latnorm =
lat

max(latref , ϵ)
,

lossnorm =
loss

max(lossref , ϵ)
.

We form a composite QoS index

Q = w1 thrnorm−w2 latnorm−w3 lossnorm, wi≥0,
∑

wi = 1,

and apply the early-stop/rollback guard from Sec. VIII-E:
if Q drops by > δ for U consecutive windows, we pause
reconfiguration and restore the last stable ruleset.

b) Security and collaboration metrics.: Security is cap-
tured by attack-path coverage COV and collaboration metrics
from Sec. VIII-H: union-based gain GAIN and redundancy
ratio RED.

c) Complexity metrics.: We report (i) selection wall-time
per epoch and (ii) rule-commit count Crule, upper-bounded by
k +

∑
h∈Hk

degS(h) and shaped by the token-bucket limiter
(Sec. VIII-E).

d) Protocols and reporting.: All methods share seeds,
budgets B ∈ {1, 3, 5, 8}, and load sweep ρ ∈ [0.2, 1.2]
(Sec. VIII-I). We present tri-objective plots: (a) Secu-
rity–Complexity scatter (color-coded by Q), (b) Q vs. ρ with
95% CIs, and (c) bar charts of Crule with paired differences.
Significance uses Wilcoxon signed-rank with Holm correction;
we also report Cliff’s δ (Sec. VIII-J).

e) Observations (brief).: Across loads and budgets,
NoEC attains higher COV at comparable or lower Crule than
BAP; vs. TGCESA, NoEC maintains similar Q while reducing
churn due to budget-aware selection. Under high ρ, the load-
aware cap k(ρ) preserves Q with modest security trade-offs
(Sec. VII-A).

G. Slice-Aware Evaluation (5G/6G)
We evaluate NoEC in a sliced setting with L =
{eMBB, URLLC, mMTC}. Each slice ℓ ∈ L has hosts Hℓ,
services Sℓ, budget Bℓ, and a per-epoch commit cap C

(ℓ)
max;

commits are gated by per-slice token buckets while respecting
a global TCAM limit

∑
ℓ C

(ℓ)
max ≤ Ctotal.

a) Per-slice selection and costs.: Selection is performed
per slice (independently) using

Ψℓ(h) =
degSℓ

(h)

c′ℓ(h)
, c′ℓ(h) = cℓ(h)

(
1 + γℓ rℓ(h)

)
,

with optional trust/risk shaping inherited from Sec. IV-J.
Cross-slice arbitration only applies to TCAM admission when∑

ℓ C
(ℓ)
max approaches Ctotal (URLLC priority first).

b) QoS guards and URLLC latency thresholds.: For each
slice we track a composite QoS index

Qℓ = w1,ℓ thrℓ − w2,ℓ latℓ − w3,ℓ lossℓ.

URLLC has an explicit latency guard: if latURLLC > τURLLC
for U consecutive windows, selection on URLLC pauses and
reverts to the last stable ruleset; eMBB/mMTC continue under
their own guards. Default τURLLC and window lengths are
reported with CIs.

c) Cross-slice isolation metric.: We quantify isolation by
the worst normalized spillover from reconfiguration on slice ℓ
to any other slice ℓ′ ̸= ℓ:

ISOℓ→ℓ′ :=
Qafter

ℓ′ −Qbefore
ℓ′

max{|Qbefore
ℓ′ |, ϵ}

,

and report maxℓ̸=ℓ′ ISOℓ→ℓ′ . We target |ISO| ≤ εiso (e.g.,
0.05); violations trigger reduced C

(ℓ)
max and/or kℓ in subsequent

epochs.

The URLLC slice evaluation uses a strict latency guard with
a default threshold of τURLLC = 1 ms; the choice of this value
and its 3GPP-based justification are detailed in Appendix B.

d) Massive-host regime.: We scale |Hℓ| and |Sℓ| while
keeping per-slice work near-linear: discovery/refresh O(|Eℓ|),
selection O(|Hℓ| log |Hℓ|). Global overhead aggregates across
slices; TCAM admissions are shaped so instantaneous foot-
print remains within Ctotal.

H. Coverage and Collaborative Defense Metrics

Let P denote the set of simple host–server paths under
consideration. For a host h ∈ H , we define

P(h) := { p ∈ P : p contains an incidence (h, s) ∈ E },

that is, P(h) is the set of paths that traverse at least one edge
incident to h. Given a budget-feasible selection Hk ⊆ H , we
define the set of detached incidences

Edet = {(h, s) ∈ E : h ∈ Hk},

and the corresponding union of covered paths

U(Hk) :=
⋃

h∈Hk

P(h) = { p ∈ P : p ∩ Edet ̸= ∅ }.

Intuitively, U(Hk) collects all paths that are “touched” by at
least one detached edge in Edet, and coverage metrics (e.g.,
COVℓ) are derived from the size of this set relative to P .

a) Attack-Path Coverage.: The primary metric is the
fraction of paths disrupted by the selection:

COV(Hk) :=
|U(Hk)|
|P|

∈ [0, 1].

For single hosts we write COV(h) := COV({h}) =
|P(h)|/|P|.

b) Collaborative Coverage Gain.: To separate synergy
from mere averaging, we compare the union coverage with
the mean single-host coverage of the selected hosts:

GAIN(Hk) := COV(Hk) −
1

k

∑
h∈Hk

COV(h).

Positive GAIN indicates that the joint selection covers dis-
proportionately more paths than the average of its constituents
(synergy), whereas values near zero suggest limited collabo-
ration.

c) Redundancy Ratio.: We also report a normalized
overlap indicator:

RED(Hk) := 1 − |U(Hk)|∑
h∈Hk

|P(h)|
∈ [0, 1],

which is the fraction of per-host covered paths that are
redundant due to overlaps. Lower RED means the selection
covers diverse (less-overlapping) path sets; higher values sig-
nal duplication.

d) Reporting.: Unless stated otherwise, we compute
COV, GAIN, and RED over R randomized trials and report
means with 95% confidence intervals. When path enumeration
is large, we approximate P via bounded-length simple paths
or a fixed-seed random walk sampler; the same sampler is
reused across methods to ensure fair comparison.

I. Baseline Configuration and Fairness Protocol
To ensure comparability across methods, we standardize the

following protocol.
a) Aligned budgets and cadence.: All methods operate

under the same per-epoch budget B and shuffle period Tshuf.
When a method internally selects k hosts, k is constrained by
the same budget and (when enabled) the load-aware cap k(ρ)
(Sec. VII-A).

b) Shared randomness and traffic.: Unless stated oth-
erwise, we evaluate with the same random seeds and traf-
fic profiles across methods: (i) offered-load sweep ρ ∈
{0.2, 0.4, 0.6, 0.8, 1.0, 1.2}; (ii) DDoS profiles (volumet-
ric, state-exhaustion, application-layer); and (iii) targeted-
adversary exponents α ∈ {0, 0.5, 1, 1.5, 2}.

c) QoS guard and rollback.: We apply an identical com-
posite QoS index Q = w1 thr−w2 lat−w3 loss and the same
early-stop/rollback policy: reconfiguration pauses if Q drops
by > δ for U consecutive windows (defaults: δ = 0.1, U = 3),
after which the last stable ruleset is restored (Sec. VIII-E).

d) Hyperparameter tuning.: We use a common grid for
each family and report best-validation settings under the fair-
ness guard: budget points B ∈ {1, 3, 5, 8}, batch size Bmax ∈
{50, 100, 200}, batch window ∆t ∈ {100, 200, 500}ms, and
(when applicable) weightings (λ, γ) for capacity/path-aware
variants (Sec. IV-I). Tuning uses the same seeds and traffic as
testing, with folds partitioned by seeds.

e) Complexity reporting.: We report (i) selection wall-
time per epoch and (ii) rule-commit count Crule, both as means
with 95% CIs over R runs. When a commit limiter is enabled,
we include its token-bucket trace for all methods.

f) Stopping and plotting conventions.: Runs terminate
early on QoS rollback or after a fixed horizon. Plots show
means (solid) with 95% CIs (shaded); markers denote budget
points. Table captions state (B, Tshuf, R, seeds) explicitly.

J. Statistical Analysis: Significance and Effect Sizes
We assess statistical significance and practical relevance for

each metric under comparison (e.g., coverage COV, composite
QoS Q).

a) Paired setup and aggregation.: All methods are eval-
uated on the same random seeds and traffic profiles. Let
{(xA

r , x
B
r)}Rr=1 denote paired outcomes for methods A and B

(e.g., NoEC vs. a baseline) under identical runs r = 1, . . . , R.
We analyze the paired differences ∆r = xA

r − xB
r .

b) Confidence intervals (paired bootstrap).: We form
a 95% CI for the mean paired difference ∆ = 1

R

∑
r ∆r

via a paired bootstrap with B = 10,000 resamples: draw
index multisets Ib of size R with replacement, compute
∆

(b)
= 1

R

∑
r∈Ib

∆r, and take the (2.5, 97.5) percentiles of

{∆(b)}Bb=1.

c) Significance testing (nonparametric).: We apply the
Wilcoxon signed-rank test over {∆r} (two-sided) to obtain
a p-value without assuming normality. When normality is
indicated by Shapiro–Wilk (p > 0.05), we may additionally
report a paired t-test result for reference.

d) Multiple comparisons.: Across M simultaneous hy-
potheses (e.g., multiple baselines and budget points), we
control family-wise error using Holm–Bonferroni: sort p(1) ≤
· · · ≤ p(M) and compare p(i) to α/(M − i + 1) at level
α = 0.05.

e) Effect size (Cliff’s δ).: To complement p-values, we
report Cliff’s δ for the paired differences:

δ =
#{(r, s) : ∆r > ∆s} − #{(r, s) : ∆r < ∆s}

R2
,

interpreting |δ| as: negligible (< 0.147), small (< 0.33),
medium (< 0.474), large (≥ 0.474). We also report the
median difference median(∆r).

f) Reporting and plots.: Tables list ∆ (± 95% CI), p
(Holm-adjusted), and δ. Plots show means (solid) with 95%
CIs (shaded). Significance is annotated with ∗p < 0.05, ∗∗p <
0.01, ∗∗∗p < 0.001 (adjusted). Captions state (R, seeds) and
the test used.

K. Topologies and Workload Generation

We evaluate on bipartite host–server graphs synthesized
with controlled degree structure and on matched workloads.
The generation is driven by explicit distributions and fixed
random seeds to ensure reproducibility.

a) Bipartite degree specification.: Let |H| and |S| be
the numbers of hosts and servers with target mean degrees
dH and dS such that |H|dH = |S|dS = |E|. We sample host
and server degrees from user-chosen families:

dH ∼ DH ∈ {PL(ζH , dmin, dmax), ER(λH), CP(µ, ρ)},
dS ∼ DS ∈ {PL(ζS), ER(λS), CP(·)}.

where PL is a truncated power law, ER is a Pois-
son/Erdős–Rényi-like degree, and CP denotes a core–periphery
mix with core fraction ρ and core mean µ. Degrees are
adjusted to satisfy

∑
H dH =

∑
S dS by a minimal rounding

step.

L. Optimal (Oracle) Baseline on Small Instances

To contextualize greedy selection, we compute an optimal
baseline on small instances via a 0–1 knapsack over hosts.
Let binary variables xh ∈ {0, 1} indicate whether host h ∈ H
is selected. With per-host cost c(h), budget B, and server-
incidence degS(h), the incidence-detachment objective is

max
x∈{0,1}|H|

∑
h∈H

degS(h)xh s.t.
∑
h∈H

c(h)xh ≤ B.

This is a classical knapsack MILP that we solve exactly on
small/medium graphs using an off-the-shelf solver with default
settings and a <1% MIP gap tolerance. For the capacity-/path-
aware variant (Sec. IV-I), replace degS(h) with d̃egS(h) =∑

(h,s)∈E whs.

a) Optimality gap.: Given the oracle value F ⋆ and the
method value F (e.g., NoEC), we report the relative gap

GAP :=
F ⋆ − F

F ⋆
∈ [0, 1].

We aggregate GAP over seeds/runs and show means with
95% CIs (Sec. VIII-J). When GAP is near zero, greedy
closely tracks the oracle; positive values quantify the room
to optimality at that budget.

b) Scope.: Because knapsack is NP-hard, oracle runs
are restricted to small/medium instances (e.g., |H| up to a
few hundred depending on cost/degree distributions). Larger
scenarios use greedy only; where both are feasible, we include
the oracle line/marker in the plots and the gap in table captions.

M. NoEC vs. BAP: Coverage and Multi-Host Collaboration

We compare NoEC against BAP under the fairness protocol
(Sec. VIII-I) and paired statistical analysis (Sec. VIII-J).
Security is quantified by attack-path coverage COV(Hk) and
collaboration metrics (Sec. VIII-H): union-based GAIN and
RED (redundancy ratio). Unless stated otherwise, we sweep
budgets B ∈ {1, 3, 5, 8} and offered loads ρ ∈ [0.2, 1.2],
averaging over R seeds with 95% CIs.

a) Results overview.: Across all B and ρ, NoEC im-
proves COV relative to BAP while exhibiting lower RED,
indicating less overlap among selected hosts’ covered paths.
The collaboration gain GAIN is consistently positive for
NoEC (synergy beyond the average single-host coverage),
whereas BAP often shows near-zero GAIN due to selecting
cheaper but overlapping hosts.

b) Significance and effect sizes.: We report paired CIs for
∆ = COVNoEC−COVBAP and Wilcoxon signed-rank p-values
with Holm correction across budgets. Effect sizes (Cliff’s δ)
are included alongside median differences (Sec. VIII-J).

IX. CONCLUSION

This paper introduced NoEC, a novel MTD strategy for
DDoS mitigation. The core idea of NoEC is to prioritize the
shuffling of hosts with a higher number of connections to
critical servers, thereby maximizing defensive effectiveness.
Experimental results show that NoEC achieves significantly
lower computational complexity than BAP and other MTD
approaches, with its complexity largely independent of the
attack pattern. This makes NoEC a cost-effective and scalable
solution, particularly suited for large-scale networks such as
SDNs and next-generation networks (e.g., 5G/6G). For future
work, we plan to incorporate ML techniques to identify critical
edges and dynamically guide the shuffling strategy

ACKNOWLEDGMENT

This research is partially supported by the European Union’s
Horizon Europe research and innovation program under the
RIGOUROUS project (Grant No. 101095933).

REFERENCES

[1] A. Javadpour, F. Ja’fari, T. Taleb, and C. Benzaı̈d, “Re-
inforcement learning-based slice isolation against ddos
attacks in beyond 5g networks,” IEEE Transactions on
Network and Service Management, vol. 20, no. 3, pp.
3930–3946, 2023.

[2] A. Javadpour, A. K. Sangaiah, F. Ja’Fari, P. Pinto,
H. Memarzadeh-Tehran, S. Rezaei, and F. Saghafi, “To-
ward a secure industrial wireless body area network
focusing mac layer protocols: an analytical review,” IEEE
Transactions on Industrial Informatics, vol. 19, no. 2, pp.
2028–2038, 2022.

[3] Z. Abdelhay, Y. Bello, and A. Refaey, “Toward zero-
trust 6gc: A software defined perimeter approach with
dynamic moving target defense mechanism,” IEEE Wire-
less Communications, vol. 31, no. 2, pp. 74–80, 2024.

[4] A. Javadpour, P. Pinto, F. Ja’fari, and W. Zhang,
“Dmaidps: a distributed multi-agent intrusion detection
and prevention system for cloud iot environments,” Clus-
ter Computing, pp. 1–18, 2022.

[5] A. Javadpour, F. Ja’fari, T. Taleb, F. Turkmen, and
C. Benzaı̈d, “Beyond reinforcement learning for network
security: A comprehensive survey and tutorial,” Journal
of Information Security and Applications, vol. 96, p.
104294, 2026.

[6] J.-H. Cho, D. P. Sharma, H. Alavizadeh, S. Yoon, N. Ben-
Asher, T. J. Moore, D. S. Kim, H. Lim, and F. F. Nel-
son, “Toward proactive, adaptive defense: A survey on
moving target defense,” IEEE Communications Surveys
& Tutorials, vol. 22, no. 1, pp. 709–745, 2020.

[7] Y. Cao, K. Liu, Y. Lin, L. Wang, and Y. Xia, “Deep
reinforcement learning based self-evolving moving target
defense approach against unknown attacks,” IEEE Inter-
net of Things Journal, 2024.

[8] A. H. Abdi, L. Audah, A. Salh, M. A. Alhartomi,
H. Rasheed, S. Ahmed, and A. Tahir, “Security control
and data planes of sdn: A comprehensive review of
traditional, ai and mtd approaches to security solutions,”
IEEE Access, 2024.

[9] A. Javadpour, F. Ja’fari, T. Taleb, M. Shojafar, and
C. Benzaı̈d, “A comprehensive survey on cyber deception
techniques to improve honeypot performance,” Comput-
ers & Security, p. 103792, 2024.

[10] A. Javadpour, F. Ja’Fari, T. Taleb, and C. Benzaı̈d, “A
mathematical model for analyzing honeynets and their
cyber deception techniques,” in 2023 27th International
Conference on Engineering of Complex Computer Sys-
tems (ICECCS), 2023, pp. 81–88.

[11] A. Javadpour, F. Ja’fari, T. Taleb, and C. Benzaı̈d, “En-
hancing 5g network slicing: Slice isolation via actor-critic
reinforcement learning with optimal graph features,” in
GLOBECOM 2023-2023 IEEE Global Communications
Conference. IEEE, 2023, pp. 31–37.

[12] J. Steinberger, B. Kuhnert, C. Dietz, L. Ball, A. Sperotto,
H. Baier, A. Pras, and G. Dreo, “Ddos defense using

mtd and sdn,” in NOMS 2018-2018 IEEE/IFIP Network
Operations and Management Symposium. IEEE, 2018,
pp. 1–9.

[13] X. Luo, Q. Yan, M. Wang, and W. Huang, “Using mtd
and sdn-based honeypots to defend ddos attacks in iot,” in
2019 Computing, Communications and IoT Applications
(ComComAp). IEEE, 2019, pp. 392–395.

[14] A. Aydeger, M. H. Manshaei, M. A. Rahman, and
K. Akkaya, “Strategic defense against stealthy link flood-
ing attacks: A signaling game approach,” IEEE Transac-
tions on Network Science and Engineering, 2021.

[15] Y. Zhou, G. Cheng, S. Jiang, Y. Zhao, and Z. Chen,
“Cost-effective moving target defense against ddos at-
tacks using trilateral game and multi-objective markov
decision processes,” Computers & Security, vol. 97, p.
101976, 2020.

[16] J. Narantuya, S. Yoon, H. Lim, J.-H. Cho, D. S. Kim,
T. Moore, and F. Nelson, “Sdn-based ip shuffling moving
target defense with multiple sdn controllers,” in 2019
49th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks–Supplemental Volume
(DSN-S). IEEE, 2019, pp. 15–16.

[17] Z. Liu, Y. He, W. Wang, S. Wang, X. Li, and B. Zhang,
“Aeh-mtd: Adaptive moving target defense scheme for
sdn,” in 2019 IEEE International Conference on Smart
Internet of Things (SmartIoT). IEEE, 2019, pp. 142–
147.

[18] A. Chowdhary, A. Alshamrani, D. Huang, and H. Liang,
“Mtd analysis and evaluation framework in software
defined network (mason),” in Proceedings of the 2018
ACM International Workshop on Security in Software
Defined Networks & Network Function Virtualization,
2018, pp. 43–48.

[19] Y. Shi, H. Zhang, J. Wang, F. Xiao, J. Huang, D. Zha,
H. Hu, F. Yan, and B. Zhao, “Chaos: An sdn-based mov-
ing target defense system,” Security and Communication
Networks, vol. 2017, 2017.

[20] S. Debroy, P. Calyam, M. Nguyen, R. L. Neupane,
B. Mukherjee, A. K. Eeralla, and K. Salah, “Frequency-
minimal utility-maximal moving target defense against
ddos in sdn-based systems,” IEEE Transactions on Net-
work and Service Management, 2020.

[21] M. F. Hyder and M. A. Ismail, “Securing control and
data planes from reconnaissance attacks using distributed
shadow controllers, reactive and proactive approaches,”
IEEE Access, vol. 9, pp. 21 881–21 894, 2021.

[22] C. Medina-López, L. Casado, V. González-Ruiz, and
Y. Qiao, “An sdn approach to detect targeted attacks in
p2p fully connected overlays,” International Journal of
Information Security, pp. 1–11, 2020.

[23] S.-Y. Chang, Y. Park, and B. B. A. Babu, “Fast ip hop-
ping randomization to secure hop-by-hop access in sdn,”
IEEE Transactions on Network and Service Management,
vol. 16, no. 1, pp. 308–320, 2018.

[24] A. Chowdhary, S. Pisharody, and D. Huang, “Sdn based
scalable mtd solution in cloud network,” in Proceedings

of the 2016 ACM Workshop on Moving Target Defense,
2016, pp. 27–36.

[25] A. Javadpour, F. Ja’fari, T. Taleb, M. Shojafar, and
B. Yang, “Scema: An sdn-oriented cost-effective edge-
based mtd approach,” IEEE Transactions on Information
Forensics and Security, vol. 18, pp. 667–682, 2023.

[26] S. Yoon, J.-H. Cho, D. S. Kim, T. J. Moore, F. Free-
Nelson, and H. Lim, “Attack graph-based moving target
defense in software-defined networks,” IEEE Transac-
tions on Network and Service Management, vol. 17,
no. 3, pp. 1653–1668, 2020.

[27] J. Jafarian et al., “Openflow random host mutation:
Transparent moving target defense using software defined
networking,” in HotSDN, 2012.

[28] H. Okhravi et al., “A survey of moving target defenses,”
IEEE Communications Surveys & Tutorials, 2014.

[29] E. Al-Shaer et al., “Towards intelligent moving tar-
get defense using software defined networking,” in Se-
cureComm, 2013.

[30] Y. Liu et al., “Secure routing with route mutation for
preventing repeated attacks in sdn networks,” in IEEE
ICC, 2018.

[31] H. Hu et al., “Lightweight port hopping for defeating
scanning attacks,” Computer Networks, 2015.

[32] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M.
Wing, “Automated generation and analysis of attack
graphs,” Proceedings 2002 IEEE Symposium on Security
and Privacy, 2002.

[33] S. Noel and S. Jajodia, “Measuring the impact of network
security using attack graphs,” Journal of Network and
Systems Management, 2004.

[34] S. Hong et al., “Towards dynamic network reconfigura-
tion for moving target defense,” in IEEE CNS, 2016.

[35] L. Zhang et al., “Mitigating reconnaissance attacks via
dynamic network topology,” IEEE Transactions on In-
formation Forensics and Security, 2019.

[36] A. Javadpour, F. Ja’fari, C. Benzaı̈d, and T. Taleb, “An
optimized reinforcement learning based mtd mutation
strategy for securing edge iot against ddos attack,” Jour-
nal of Information Security and Applications, vol. 93, p.
104138, 2025.

Symbol Meaning
H,S Sets of hosts and servers
E Host–server edges in the bipartite graph
c(h) Cost to reconfigure/shuffle host h
degS(h) Server-incidence (degree) of host h
Ψ(h) Cost-normalized score degS(h)/c(h)
B Budget per shuffle epoch
k Number of selected hosts under budget B
Tshuf Shuffle period (epoch duration)
b(h) Bandwidth/capacity proxy for host h
α Targeting exponent in the adversary model

APPENDIX A: SYMBOLS AND NOTATION

APPENDIX B: EXPERIMENTAL SETTINGS AND
REPRODUCIBILITY

a) Evaluation protocol.: Unless specified otherwise, re-
sults are averaged over R = 10 independent runs with distinct
seeds; we report mean and 95% confidence intervals (CI)
via normal approximation. Each run comprises: (i) topology
discovery and metric refresh; (ii) selection under budget B;
(iii) rule staging/commit (Sec. VIII-E); (iv) QoS probing over
a fixed horizon. For load-sweeps we vary ρ over a grid; for
targeted adversaries we sweep α ∈ {0, 0.5, 1, 1.5, 2}; for trust-
decay ablations we sweep λ ∈ {0.6, 0.8, 0.95} (Sec. IV-J).
Reconfiguration is paused if the QoS index Q drops by more
than δ for W consecutive windows (Sec. VIII-E); runs that
trigger a pause continue after rollback with the last stable
ruleset.

b) Randomization and CI reporting.: We fix a base seed
of 42 for figure reproducibility and cycle over {41, . . . , 50}
for CI bands unless stated otherwise. For discrete metrics
(e.g., selection size k) we additionally report the empirical
distribution in the supplement.

c) Early-stop guard.: During reconfiguration, if the com-
posite QoS index Q dips by > δ for W consecutive windows,
we rollback to the last stable rule set and pause selection
until the index recovers, after which selection resumes with
a reduced k (Sec. VIII-E).

d) Artifacts.: Configuration files for all parameter grids,
seeds, and figure scripts are bundled with the supplementary
material; path names and environment variables are docu-
mented in a single launcher script.

e) URLLC Latency Threshold.: For URLLC slices, we
adopt a default latency guard of 1 ms. This value is directly
based on the 3GPP URLLC service requirements specified in
TS 22.261, which define an end-to-end latency target of 1 ms
for ultra-reliable low-latency communications. This threshold
is also widely used in experimental 5G/6G testbeds and prior
studies on slice-oriented anomaly detection and dynamic MTD
policies. The 1 ms guard is therefore selected as a realistic and
standards-compliant baseline for evaluating slice adaptability
and latency-sensitive reactions in our framework.

f) Code Availability (Planned Release).: The main
Mininet scripts, NoEC controller implementation, and con-
figuration templates used in our experiments are currently
undergoing internal review and packaging. Upon completion,
they will be publicly released through the official repository of

Parameter Default Explored range / notes
Budget per epoch B 3 (toy), app.-specific in eval {1, 2, 3, 5, 8, 10}
Shuffle period Tshuf 5 s {1, 2, 5, 10, 20} s
Selection size k budget-feasible implicit from B and c(h)
Per-host cost c(h) measured/assigned heterogeneous vs. uniform cases
Score Ψ(h) degS(h)/c(h) cost-/capacity-weighted variants (Sec. VIII-D)
Targeting exponent α 1 {0, 0.5, 1, 1.5, 2}
Bandwidth proxy b(h) link capacity share normalized to [0, 1]
Trust decay λ 0.8 {0.6, 0.8, 0.95}
Trust coupling β 0.5 {0.2, 0.5, 1.0}
QoS weights w (0.5, 0.3, 0.2) simplex with wi≥0,

∑
wi = 1

QoS drop thresh. δ 0.1 {0.05, 0.1, 0.2}
QoS window W 3 {2, 3, 5} windows
Commit budget Cmax switch-specific scaled with TCAM capacity
Batch size Bmax 100 rules {50, 100, 200}
Batch window ∆t 200ms {100, 200, 500}ms
Load factor ρ 0.6 grid in [0.2, 1.2]
Repetitions R 10 {5, 10, 20}
Random seed 42 (base) seeds {41, . . . , 50}

TABLE VI
DEFAULT SETTINGS AND EXPLORED RANGES USED ACROSS EXPERIMENTS.

our research lab at http://www.mosaic-lab.org/. The repository
will also include a concise README describing software
dependencies, topology initialisation, and step-by-step instruc-
tions for reproducing the experimental results presented in
Section IV.

http://www.mosaic-lab.org/

	Introduction
	Related Work
	 Proposed Method (NoEC)
	Mathematical Formulation and Proof of Effectiveness of NoEC
	Problem Setting
	Key Definitions
	Optimization Objective
	NoEC Reformulation
	Theoretical Comparison and Proof
	Complexity Analysis
	Intuition and Toy Example: NoEC vs. BAP
	Approximation Properties
	Capacity- and Path-Aware Variants
	Trust Signal and Temporal Decay

	System Architecture
	Network Topology Discoverer (NTD)
	Shuffling Degree Calculator (SDC)
	Shuffling Implementation and Decision (SID)
	IP Address Assignment and Shuffling (IAS)
	Flow Entry Generator (FEG)

	Mathematical Context
	Edge METHOD
	BAP METHOD
	IP Shuffling
	Server Relocation
	Topology Randomization
	Traffic Route Mutation
	Port Hopping

	Evaluation
	Sensitivity Protocol: Load, Selection Cap, Complexity, and QoS
	evaluation criteria
	algorithm complexity
	Enemy Success Rate
	Vulnerable servers

	Simulation Environment
	Simulation Results
	Algorithm complexity
	Adversary's success rate
	Compromised Servers Rate

	Computing Attack-Path Coverage: Enumeration vs. Sampling
	Robustness to Cost Misestimation and Topology Errors

	Simulation Architecture and Evaluation Results
	Simulation Setup
	Attack Families and Traffic Models
	Comparative Evaluation of MTD Methods
	Projected Scalability and Controller Overhead
	Practical Deployment Considerations
	QoS Monitoring Module and Tri-Objective Comparison
	Slice-Aware Evaluation (5G/6G)
	Coverage and Collaborative Defense Metrics
	Baseline Configuration and Fairness Protocol
	Statistical Analysis: Significance and Effect Sizes
	Topologies and Workload Generation
	Optimal (Oracle) Baseline on Small Instances
	NoEC vs. BAP: Coverage and Multi-Host Collaboration

	Conclusion

