
Submitted to IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 1

Roads Digital Twin: Predictive Situational Awareness using 360° Video
Streaming and Graph Neural Networks

Sotirios Messinis, Oussama El Marai, Nicholas E. Protonotarios, Tarik Taleb, Senior Member, IEEE,
and Nikolaos Doulamis, Member, IEEE

Abstract—As vehicle technologies rapidly advance, video
streaming capabilities emerge as a significant feature of mod-
ern on-board vehicular systems. The integration of 360° video
streaming in vehicles is expected to enhance road situational
awareness, by providing panoramic live streaming and recording
capabilities. This paper introduces the concept of roads digital
twin, combining, for the first time, 360° video streaming with
graph neural networks, in order to enhance predictive situational
awareness in road environments. To this end, we have devel-
oped eGAT, a selective edge-enhanced graph attention network
architecture, that uses graph neural networks with attention
mechanisms. eGAT is capable of effectively predicting road
coverage, considering uplink bandwidth limitations that may
affect video streaming quality and user quality of experience
(QoE). For the evaluation of our novel method, we utilized
four different datasets, considering several vehicular scenarios.
For performance comparison purposes, we employed three met-
rics, namely the overall percentage of the covered region, the
normalized mutual information (NMI), and the precision-recall
scores. In terms of overall coverage percentage, eGAT provided
superior coverage performance against similar studies in all nine
scenarios and for all numbers of streaming vehicles investigated,
reaching an increase of up to 32.3%. In terms of NMI score,
for low values of prediction horizon, eGAT outperformed similar
attention-based algorithms, with an increase of up to 29.6%,
whereas for larger prediction horizons, eGAT presented lower,
however comparable, coverage performance. Our results sug-
gest that eGAT is a promising solution for scenarios involving
streaming vehicles, showcasing its potential for applications such
as autonomous vehicles and traffic management systems.

Index Terms—graph neural networks, bandwidth allocation,
optimal area coverage, 360° video streaming, situational aware-
ness, digital twins

I. INTRODUCTION

VEHICLE technologies are evolving rapidly with growing
complexity, encompassing several new onboard products

and infrastructure-based services [1]. These advancements are
expected to significantly transform vehicle ecosystems in the
future. Among the critical technologies they need to incor-
porate into their functionalities, video cameras have been the
front-runner for several promising applications. In particular,
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360° video streaming enables vehicles to live stream or record
video content, offering panoramic views, thus enhancing their
road awareness [2].

In this direction, the integration of 360° video record-
ing capabilities into vehicles is significantly enhancing road
awareness and functionality. Several of the so-called “dash
cameras” are equipped with these capabilities. Mounted on the
vehicle’s dashboard or windshield, these cameras can capture
video footage from all angles. The recorded video can be
used for insurance claims, documenting road trips, or sharing
driving experiences [3]. In the context of autonomous vehicles,
omnidirectional video streaming can be used for surveillance
and remote control [4]. Multiple cameras placed around the
vehicle may capture a complete overview of the environment,
allowing operators or remote monitoring systems to assess the
driving environment in real-time [5]. Future vehicles may also
use 360° video streaming to help drivers maneuver in tight
spaces, thus enhancing safety. By accurately indicating blind
spots and obstacles, these video cameras may help prevent
accidents and improve overall situational awareness [6].

360° dash cameras play an active role in the emergence
of the concept of smart cities, which is expected to improve
quality of life. The concept of the digital twin for smart
cities has emerged quite recently, combining the advantages
of relevant state-of-the-art technologies with specific function-
alities of smart cities [7]. To this end, a road digital twin is
a dynamic virtual replica of the physical road network that
integrates real-time data from various sensors, including 360°
cameras on vehicles, traffic cameras, weather stations, and
GPS devices [8]. Continuously updated, it reflects current road
conditions, traffic flow, and environmental factors in a three-
dimensional, high-resolution model. Furthermore, road digital
twins enhance situational awareness and decision-making by
providing real-time monitoring and simulation capabilities,
aiding in traffic management and emergency response. In smart
cities, road digital twins support urban planning and integrate
with intelligent transportation systems (ITS) for adaptive traf-
fic control and automated incident detection, thus improving
traffic efficiency and safety [9].

Creating real-time smart city digital twins and enhancing
situational awareness (SA) can be achieved through frame-
works utilizing 360° omnidirectional cameras mounted on
vehicles, as demonstrated by the authors of [10].The cameras
are included in digital twin boxes (DTBs), covering a region
as they pass through a road network. DTBs create a digital
twin of the physical road asset by constantly sending real-
time data to the edge or cloud, including the 360° live stream,
GPS location, and measurements of the temperature, and
humidity, see Figure 1. Optimal area coverage is required
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in several applications, including surveillance and monitoring
[11], search and rescue operations [12] and infrastructure
inspection [13]. The DTBs aim to enable efficient coverage
of large areas while reducing costs, optimizing resource usage
and considering the limited network bandwidth in the area
under investigation. SA involves the optimal selection of a
subset of vehicles that ensures the maximum area coverage,
while preventing the degradation of the user’s Quality of
Experience (QoE) [14].

In this paper, we solve the problem of area coverage
under certain bandwidth allocation constraints by employing
an application-oriented neural network architecture. In par-
ticular, we employ graph neural networks (GNNs) in order
to provide optimal area coverage while considering optimal
bandwidth allocation. Bandwidth allocation corresponds to
specific video qualities in the predicted trajectories of the
vehicles. Indicative vehicle trajectories are illustrated in Figure
2. The key innovation of our study lies in the development
of road digital twins with predictive situational awareness
capabilities based on distributed 360° video streaming sources
for optimal area coverage considering video quality require-
ments. Optimal area coverage is necessary for maintaining the
integrity of digital twin services, while the allocated video
quality directly impacts their performance and enables addi-
tional functionalities such as object detection tasks. We use
GNNs in order to effectively address the corresponding trade-
offs between optimal area coverage and bandwidth allocation.
Unlike previous works that focus solely on video streaming or
GNNs, our work is based on the initial work of [10], in the
framework of the project 6Genesis [15], aiming to develop
a roads infrastructure digital twin. While our GNN-based
architecture does not contribute to graph neural network theory
or standalone video streaming technologies, however it offers
a clear and innovative contribution to the creation of enhanced
digital twin models within the framework of smart cities
and future urban networks. By integrating several optimally
selected 360° video data sources, our architecture provides
richer situational awareness and more accurate predictions than
methods relying on fewer one-dimensional data sources.

To the best of our knowledge, in the context of 360° video
streaming, there is no existing solution that employs area
coverage and bandwidth allocation combined. In this direction,
we aim to enhance predictive situational awareness through the
digital twinning of smart cities and their inclusive connected
mobility. The rest of this paper is organized as follows. In Sec-
tion II, we provide the relevant literature work on bandwidth
allocation and area coverage. In Section III, we present our
system model and its corresponding formulation. In section IV,
we introduce and present our suggested architecture. Finally, in
section V, our proposed solution is demonstrated with specific
vehicular scenarios and our experimental results are discussed.
In Section VI we present our concluding remarks.

II. RELATED WORKS

Recent advancements in vehicular networks have exten-
sively explored bandwidth allocation, trajectory prediction,
and resource allocation, often leveraging deep learning. Band-
width allocation studies have focused on optimizing network

Fig. 1. DTB global system architecture: DTBs create digital twins of roads
and send real-time data to the edge or cloud, including 360° live streams,
GPS locations, and measurements of temperature and humidity [10].

Fig. 2. Vehicles’ trajectories.

resources using blockchain technology and reinforcement
learning to address privacy, authenticity, and efficiency issues
in the Internet of Vehicles (IoV). Research in area coverage
has focused on developing algorithms that enable fleets of
vehicles or drones to efficiently cover designated areas, aiming
to maximize coverage while minimizing energy consumption
or total distance traveled. Trajectory prediction has benefited
from GNNs in modeling interactions among vehicles for
precise forecasting in autonomous driving scenarios. Resource
allocation with GNNs has proposed decentralized solutions
for wireless networks and IoV, optimizing communication,
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computing, and caching resources. However, a gap exists in
integrating these areas to jointly address area coverage and
bandwidth allocation, particularly for enhancing road infras-
tructure digital twins. This paper addresses this gap by propos-
ing a GNN-based approach that simultaneously optimizes
area coverage and bandwidth allocation constraints, thereby
improving situational awareness and efficiency in vehicular
networks.

A. Bandwidth Allocation

In terms of network resource deployment, the authors of
[16] integrate blockchain technology to address privacy and
authenticity issues in the IoV. They propose an intelligent
resource allocation framework, modeled as a Markov deci-
sion process and optimized using the asynchronous advan-
tage actor-critic approach. In [17], the authors address the
problem of supporting multimedia services with ultra-low la-
tency, under extensive computation requirements on resource-
constrained end-user devices.

From a machine learning point of view, the authors of
[18] address the problem of transmission resource allocation
in connected vehicles by proposing a deep reinforcement
learning algorithm. This specific algorithm enables them to
minimize the energy consumption of roadside sensors and
ensure the freshness of high-definition map content in vehi-
cles. A systematic mapping study regarding the deployment
of 5G in modern smart cities is presented in [19], where
several metrics for the evaluation of bandwidth allocation to
specific assets are considered. In addition, in [20], in order
to maximize the communication capacity of the unmanned
aerial vehicle (UAV) edge computing network, the authors
investigate bandwidth allocation and trajectory control by
utilizing multiagent reinforcement learning algorithms. The
problem of resource allocation in the IoV is the main focus of
[21], where deep reinforcement learning (DRL) is deployed to
address the corresponding optimization problem. Furthermore,
to address the bandwidth allocation sub-problem of caching
popular content at the wireless edge, an innovative DRL-
based vehicle mobility model is introduced in [22]. In [23],
a novel channel bandwidth allocation strategy for wireless
ad hoc network systems is proposed; this strategy aligns the
number of control channel time slots with the number of on-
board units (OBUs) to reduce congestion of channel access
demand information. The bandwidth segments are dynamically
adjusted for quickly arriving and leaving OBUs in the coverage
of roadside base stations.

B. Area Coverage

Ongoing research focuses on the development of algorithms
aimed at efficiently covering a given area with a fleet of
vehicles, including drones, robots, and autonomous vehicles
[24]. In multi-agent area coverage, the goal is to find the
optimal trajectories for the vehicles to ensure maximum
coverage while minimizing redundant or overlapping efforts
[25]. Allocating tasks among multiple vehicles is another
important aspect of determining which areas each vehicle must
cover, considering factors like proximity, coverage history,

and workload balancing [26]. In a similar context, coverage
problems are associated with several conflicting objectives,
including the need to maximize coverage while minimizing
either energy consumption or distance [27]. Researchers are
employing a variety of algorithms to address the area coverage
challenges, including graph theory, reinforcement learning,
and several other heuristic approaches [28].

The authors of [29] introduce a distributed and online
heuristic strategy for solving the problem of collaborative cov-
erage using multiple UAVs in target search scenarios. Further-
more, in [30], the authors focus on the coverage path planning
problem for heterogeneous UAVs in large-scale cooperative
search systems with multiple separated regions. The authors
of [31] propose a novel approach for online coverage path
planning in unknown environments using cooperative multi-
robotic agents. The method accelerates coverage by optimizing
distributed multi-agent planning with dynamic programming.
In another study, the authors address the area coverage prob-
lem for multiple capacity-constrained robots [32].

C. Trajectory Prediction with GNNs

Trajectory prediction is a thoroughly researched field that
has recently been enhanced significantly by the employment of
deep learning algorithms. In this direction, GNNs have proven
to be a suitable approach for this type of problem, as they
take into account the graph-related attributes resulting from
the interactions between vehicles and other entities. In [33],
the authors develop GroupNet, a novel multiscale hypergraph
neural network that facilitates comprehensive modeling of
interactions for precise trajectory prediction. The authors of
[34] introduce CRAT-Pred, a novel, map-free trajectory pre-
diction model for autonomous vehicles. By leveraging a graph
convolution method from material science and integrating
multi-head self-attention, CRAT-Pred effectively models social
interactions among vehicles. In [35], the authors introduce a
graph-based spatial-temporal convolutional network, tailored
for forecasting the future trajectory distributions of neighbor-
ing vehicles using historical trajectories. The model employs a
gated recurrent unit network to encode and decode the spatial-
temporal features and generate future trajectory distributions.

The authors of [36] address the challenge of predicting the
motion trajectories of moving agents in complex traffic sce-
narios with the introduction of a directed graph convolutional
neural network. The study [37] presents a novel and scalable
approach (SCALE-Net) based on an edge-enhance graph con-
volutional neural network to address the challenges associated
with predicting the trajectories of surrounding vehicles in
autonomous driving scenarios. In [38], the authors introduce a
three-channel framework incorporating a novel heterogeneous
edge-enhanced graph attention network (HEAT), in order to
discern distinct motion patterns among agents and their inter-
dependencies with surrounding agents and traffic structures.
To the same extent, the authors of [39] focus on the attention-
based interaction-aware trajectory prediction (AI-TP) for self-
driving vehicles. AI-TP employs an encoder-decoder architec-
ture with graph attention networks (GAT) and convolutional
gated recurrent units to predict the trajectories of traffic agents.
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In [40], the authors present GATraj that utilizes attention
mechanisms to capture spatial-temporal dynamics of agents
and employs a graph convolutional network to model their
interactions achieving state-of-the-art prediction performance.

D. Resource Allocation with GNNs

In terms of resource allocation, the authors of [41] propose
a GNN approach for addressing decentralized resource alloca-
tion challenges in wireless networks. In a similar context, the
authors of [42] utilized GNNs to learn the low-dimensional
feature of each node based on the graph information. Accord-
ing to the learned feature, multi-agent reinforcement learning
is then used to make spectrum allocation in a vehicle-to-
everything (V2X) network. In [43], the authors introduce a
cache-aided multi-access edge computing (MEC) offloading
framework that optimizes communication, computing, and
caching (3C) resources within the MEC-enabled IoT. The
authors of [44] propose a regularized unsupervised learning
framework that solves wireless resource allocation problems
by utilizing regularization techniques to minimize the risk of
constraint violations during training. In addition, the authors of
[45] have developed a distributed power allocation scheme for
interference-limited wireless networks with the use of GNNs.
Furthermore, the authors of [46] propose an unsupervised
resource allocation approach, based on GNNs. Acknowledging
the significance of interactions among allocation requirements,
they introduce a method to optimize a global utility function by
autonomously determining how resources should be optimally
allocated. In this paper, we adopt the approach of [46] for
the required bandwidth allocation to the selected vehicles for
video streaming.

III. SYSTEM MODEL AND FORMULATION

The objective of this work is to maximize the SA of a
specific region denoted by Rα, α “ 1, 2, . . . , A. Each such
region contains a random number of vehicles, n, that might
be equipped with mobile DTBs [10]. We denote by Dα,

Dα “ tdp1q
α , dp2q

α , . . . , dpMq
α u, (1)

the set of available DTBs in the region Rα, where M denotes
the number of DTBs in that region. Each DTB, d

pmq
α , with

α “ 1, 2, . . . , A, and m “ 1, 2, 3, . . . ,M , has a specific
GPS coordinate g

pmq
α . The set of GPS coordinates of a given

snapshot of the system, corresponding to the set of DTBs Dα

co-located in the same region Rα, is denoted by Gα, namely:

Gα “ tgp1q
α , gp2q

α , . . . , gpMq
α u. (2)

The input of the model consists of the historical states, St, of
the vehicles, and a map. At time t, each vehicle’s historical
states are represented by St, i.e.,

St “ tSp1q

t ,Sp2q

t , . . . ,SpNq

t u. (3)

Historical states of vehicle i at time t are represented by:

Spiq
t “

!

s
piq
t´Th`1, s

piq
t´Th`2, . . . , s

piq
t

)

, (4)

with Th denoting the traceback horizon. The state s
piq
t is the

vehicle i’s position and velocity, i.e.,

s
piq
t “

´

x
piq
t , y

piq
t , u

piq
x,t, u

piq
y,t

¯

, (5)

where px
piq
t , y

piq
t q and pu

piq
x,t, u

piq
y,tq denote the usual Cartesian

coordinates and velocities in the x and y directions, respec-
tively, computed at time t for the vehicle i. The expected
output, denoted by Ft, will generate predicted trajectories of
l ď M vehicles, namely:

Ft “

!

F p1q

t ,F p2q

t , . . . ,F plq
t

)

, (6)

where F piq
t represents a sequence of the predicted 2D coor-

dinates, pxi, yiq, of vehicle i over a prediction horizon Tf ,
i.e.,

F piq
t “

!´

x
piq
t`1, y

piq
t`1

¯

, . . . ,
´

x
piq
t`Tf

, y
piq
t`Tf

¯)

, (7)

from time t ` 1 to t ` Tf .
We consider 360° video cameras capable of streaming a

spherical view of the environment. For computational and
demonstration reasons, we assume all cameras have the same
lens focal length (LFL). The cameras are able to stream
live using DASH technique at K predefined video qualities,
namely

Q “ tq1, q2, . . . , qKu, (8)

where q1 and qK represent the lowest and highest video
qualities, respectively. It is worth mentioning that we denote
by B the total uplink bandwidth available in the whole region.

Furthermore, we aim to enhance the SA in a region by
covering the area through the field-of-view of the DTBs’
cameras, while taking into account the number of video
sources and the user’s QoE. Due to the limited uplink capacity
B, and in order to avoid QoE degradation, only a subset of
DTBs, namely Lα Ď Dα, referred to as active DTBs, are
allowed to stream. The DTB selection process is followed by
a video quality identification process, performed in order to
assign a video quality qi P Q, i “ 1, 2, . . . ,K, to each DTB
d

pmq
α P Lα.
Our study implements graph neural networks in area cov-

erage and bandwidth allocation. Graph neural networks are
a class of neural network models developed for processing
structured data in the form of graphs. Graphs consist of nodes
(vertices) and edges (links), which connect pairs of nodes, as in
Figure 3. The main idea behind GNNs is to learn embeddings
for each node in a graph by aggregating information from its
neighbors [47], [48]. A graph G is represented as

G “ pV,Eq, with E Ď V ˆ V , (9)

where V and E denote the sets of N nodes and of L edges
of the graph, i.e.,

V “ tv1, v2, . . . , vNu, E “ te1, e2, . . . , eLu. (10)



MESSINIS et al.: ROADS DIGITAL TWIN: PREDICTIVE SITUATIONAL AWARENESS USING 360° VIDEO STREAMING AND GRAPH NEURAL NETWORKS 5

We note that, for computational convenience, instead of the
notation provided by the second of equations (10), we will
denote an edge connecting nodes i and j of the graph by eij .

The connections of the graph are represented as an adja-
cency matrix A P RNˆN , where Aij ‰ 0 if there exists an
edge from node vi to node vj and Aij “ 0 otherwise. The
basic building block of GNNs is the graph convolutional neural
network (GCN). GCNs define a message-passing scheme,
where each node aggregates information from its neighbors
and updates its representation. The aggregation step typically
involves computing a weighted sum or applying a pooling
operation over the neighbor representations. Then, a node-
specific transformation is applied to the aggregated informa-
tion, followed by non-linear activation. In our work, the nodes
represent the vehicles moving in the area, and the edges are
attributed to the distances between them. Subsequently, the
adjacency matrix Aij represents the distances among all the
vehicles at a specific time t.

Fig. 3. A graph neural network (GNN), with nodes and edges denoted by
vn (n “ 1, . . . , N ) and eℓ (ℓ “ 1, . . . , L), respectively.

The availability of labeled nodes and edges in the graph
is crucial for supervised learning tasks. GNNs can also
be used for unsupervised and semi-supervised learning by
leveraging graph structure and node attributes [49]. Among
several variants and extensions of GNNs that have been
proposed, including GraphSAGE [50] and graph isomorphism
networks (GINs) [51], we have selected graph attention net-
works (GATs) [52] as the most appropriate for our system
model, due to their proven applicability in vehicle trajectory
prediction problems [37]. Furthermore, GATs often introduce
additional mechanisms in order to enhance the information
aggregation process. In particular, to highlight the importance
of different nodes in the graph during information aggregation,
GATs utilize attention mechanisms. The key idea of GATs
is to assign attention coefficients to the neighboring nodes
of the target node, indicating their relative importance for
information aggregation, see Figure 4. For a given target node,
the model computes attention coefficients that are typically
calculated using a shared attention mechanism, which involves
a learning-oriented attention weight matrix and a non-linear
activation function, such as LeakyReLU [53], softmax, and
certain others [54].

For the purposes of our study, we model the vehicles
as nodes in a graph, with edges representing the distances
between them. By interconnecting all neighboring vehicles

through edges, we construct a graph that serves as input to
our system model.

Fig. 4. A graph attention network (GAT), assigning attention coefficients to
the neighboring nodes of the target node.

IV. PREDICTIVE SITUATIONAL AWARENESS WITH GNN
AND 360°VIDEO STREAMING

In this section, we describe our proposed GNN architecture
for maximizing SA, based on the predicted trajectories of the
vehicles, and on the selected DTBs along with their 360°
video streaming capability. Our architecture is able to select
the DTBs that enable wider video coverage of a particular
area, maintaining high levels of QoE. It consists of two types
of sequential neural networks that give the trajectory prediction
of the vehicles, and their corresponding coverage with selected
video streaming qualities, respectively, as shown in Figure 5. It
is worth mentioning that the prediction mechanism is deployed
on the server infrastructure and is applied to a specific area for
its digital twin implementation. The corresponding architecture
consists of two phases, namely, one addressing coverage, and
one addressing bandwidth allocation.

TABLE I
eGAT ARCHITECTURE NOTATION

r
piq
t dynamics feature of vehicle i at time t
Rt set of dynamics features of all vehicles at time t

s
piq
t historical states of vehicle i at time t
Ut set of interaction features of all vehicles at time t

u
piq
t interaction feature of vehicle i at time t

Et edge set of the graph of vehicles at time t
eij edge attribute between nodes i and j

e`
ij concatenated edge feature

f
piq
t trajectory features of vehicle i at time t

m
piq
t map selector of vehicle i at time t

hi features of node i
H set of all nodes features i
a attention mechanism
aij attention coefficient from node j to target node i
Wh weighted sum of node features h
hnew
i updated output feature

Ju
enc encoding of the video covered surfaces

Je
enc encoding of the distance between vehicles

Ju
dec final state decoding
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Fig. 5. eGAT architecture for predictive situational awareness using 360° video streaming, consisting of two types of sequential neural networks that give
the trajectory prediction of the vehicles, and their corresponding coverage with selected video streaming qualities, respectively.

A. Coverage Prediction

The first phase of the architecture relies on a multi-agent
trajectory prediction approach, where the vehicles leverage
both their historical states and the layout of the road infras-
tructure considering an adaptive map selector. As the vehicle’s
historical states are represented by a temporal sequence, sev-
eral neural network encoders may be used for the underlying
sequence modeling, namely recurrent neural networks (RNNs),
long short-term memory (LSTM) and gated recurrent units
[55]. In this work, we deploy LSTM as the encoder of choice
for the historical states of vehicles. The dynamics feature of
vehicle i at time t, denoted by rit, is calculated by

r
piq
t “ LSTM

´

s
piq
t

¯

, (11)

with LSTM representing the encoder of its corresponding
historical states. The dynamics features of all vehicles will
then be gathered as:

Rt “

!

r
piq
t , . . . , r

pNq

t

)

. (12)

In order to consider the interactions among the vehicles in
an area, we propose a selective edge-enhanced graph attention
network (eGAT) to extract interaction features from the graph
representation [56]. We denote by Ut the inter-vehicle interac-
tion in global coordinate systems with the dynamics features

(Rt) of the vehicles to be embedded in the corresponding
graph nodes, i.e.,

Ut “

!

u
p0q

t , u
p1q

t , ..., u
pNq

t

)

, (13)

where u
piq
t represents the interaction feature of agent i at time

t. eGAT models the interaction features of all the vehicles
simultaneously, in the sense that:

Ut “ eGATpRt, Etq, (14)

where Et represents the set that contains the edge indexes and
attributes at time t.

Having defined the encoding and interaction processes,
we proceed with the trajectory prediction and the decoding
process by jointly considering the vehicles’ dynamics features
Rt, the interaction features Ut, and the road infrastructure,
represented by a map selector m

piq
t . To overcome the multi-

agent trajectory prediction constraints on local maps, we use
m

piq
t as an adaptive map selector that is computed based on

a shared map across all vehicles in correspondence with their
current positions and velocities.

Considering the vehicle’s speed and the need to cover the
dynamics of all vehicles, our multi-agent prediction method
will share the same map feature across all target vehicles ignor-
ing the fact that different target agents are affected by different
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parts of the map. For these reasons, we adopt the approach of
[38] for selective map sharing based on a convolutional neural
network map feature extraction, exploiting the LSTM gates of
the decoder. Furthermore, we employ an LSTM as the decoder,
in the following manner:

f
piq
t “ LSTM

´”

r
piq
t

ı ”

u
piq
t

ı ”

m
piq
t

ı¯

, (15)

with rr
piq
t sru

piq
t srm

piq
t s representing the concatenation of the

corresponding features. The interaction representation may
be approached with a GNN capable of handling the nodes,
the directed edges, and the continuous edge attributes. By
aggregating information from neighborhoods, several eGAT
layers are employed with each layer updating node features,
denoted by hi, i “ 1, 2, . . . , N , i.e.,

H “ th1, h2, . . . , hNu , (16)

where H represents the set of all nodes features. A layer
first transforms node and edge features accordingly, and then
it aggregates neighboring node features with a multi-head
attention mechanism. This combination allows the eGAT lay-
ers to capture spatial dependencies and the LSTM to model
temporal dependencies. Considering each node’s recent edge
features and the corresponding edge attributes, eGAT gives
updated node features based on the information received by
its neighborhood.

Edge attributes represent the distances between the nodes
of the graph. Regarding the edge-enhanced attention, a con-
catenated feature vector, e`

ij , defined by

e`
ij “ reijsrhjs, (17)

represents the edge feature of node j from node i’s point of
view, which is then forwarded to a shared attention mecha-
nism. The attention mechanism a “ paijq is a single-layer,
feed-forward neural network with LeakyRelu, softmax lin-
earization, and non-linearity attributes. Its attention coefficient,
aij , indicates the importance of the node j to node i, while
jointly considering node and edge features. Traditionally, a
GAT layer applies attention over the neighborhood of node i
utilizing only the structural information of the graph, while
casting away the edges’ features [52]. To this end, and based
on [38], we include the edge features in the computation of
the attention coefficients, namely,

aij “
exp

`

LeakyReLU
`

aT rhisre
`
ijs

˘˘

ř

kPNi

exp
`

LeakyReLU
`

aT rhisre
`
iks

˘˘ , (18)

where Ni is the neighborhood of vehicle i. In order to stabi-
lize the self-attention mechanism, we implement independent
attention mechanisms per node. Specifically, the multi-head
attention mechanism is shaped by k independent attention
mechanisms with their features to be concatenated, resulting
in the following output feature representation:

hnew
i “ σ

˜

ÿ

jPNi

akijW
k
h e

`
ij

¸

, (19)

with σ, W and k representing the sigmoid function, the
weighted sum of node features over its neighborhood, and the
number of attention heads, respectively. For the minimization
of the overlapping effects at the interaction among vehicles
and their 360° video streaming capability, we further adapt
the multi-head attention mechanism considering a minimum
threshold in the distances between the neighboring vehicles,
namely,

eij ě λLFL, (20)

where λ denotes the variable that defines the minimum accept-
able distance in proportion to the LFL of the 360° cameras.

B. Bandwidth Allocation

The second phase of our proposed architecture allocates the
actual bandwidth to the selected vehicles from the previous
phase. The intermediate inputs at this phase are the predicted
coordinates of the selected vehicles, the fixed surface they
cover through 360° video streaming, and the Euclidean dis-
tances between the chosen vehicles that are given in the form
of an adjacency matrix.

We employ a full graph neural network block containing a
global block, a node block, and an edge block. Inspired by the
work of [46], and adopting a set-to-set mapping approach, we
define the resource allocation GNN, denoted by GNNRA, as:

GNNRA “ tJu
enc, J

e
enc, J

u
decu , (21)

where we adopted the following notation: Ju
enc: R2 Ñ Rnu

represents the encoding rates of the video covered surface,
Je
enc: R2 Ñ Rne the encoding rates of the distances between

the vehicles, Ju
dec: Rnu Ñ R the decoding of the final state for

the assignment of the bandwidth resource, and pJe, Ju, Jbq:
Rnu`ne`nb Ñ Rne , Rnu or Rnb represent the updates of
the graph’s edges, nodes, and global values, respectively.
Furthermore, nu, ne and nb denote the hyperparameters that
represent the size of the node encodings, the edges and
the final resource assignments, respectively. All aggregation
operations are implemented via sum-pooling. The notation
involved in our architecture is presented in Table I.

In our approach, we consider a distance-oriented resource
allocation with vehicles that are far distant from the rest
receiving adequate bandwidth for video streaming. As a
consequence, our neural network architecture, illustrated in
Figure 5, provides an end-to-end solution for the trajectory-
based predictive SA with optimal coverage-wise bandwidth
allocation guarantees. Details of the eGAT architecture are
provided in Algorithm 1.

V. EXPERIMENTS

A. Simulation Set Up

For the investigation of the performance of our proposed
framework, we trained and validated our neural network
architecture through extensive simulations, under several urban
vehicular scenarios, with the use of four datasets, namely the
Interaction dataset [57], the Road Vehicle Localization dataset
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Algorithm 1 Enhanced Graph Attention Network (eGAT)

1: Input: Historical states s
piq
t for all vehicles, edge set Et,

map selector mpiq
t , hyperparameters λ and LFL

Phase 1: Coverage Prediction
2: for each vehicle i do
3: Compute dynamics feature r

piq
t “ LSTMps

piq
t q

4: Gather all dynamics features Rt “ tr
p1q

t , . . . , r
pNq

t u

5: Compute interaction features Ut “ eGATpRt, Etq

6: Apply adaptive map selection m
piq
t

7: Compute trajectory features LSTMprr
piq
t sru

piq
t s, rm

piq
t sq

8: end for
9: for each vehicle i do

10: Update vehicle features hnew
i with multi-head attention

mechanisms
11: for each neighboring vehicle j do
12: Apply minimum distance constraint eij ě λLFL
13: Compute concatenated edge feature e`

ij “ reij , hjs

14: Calculate attention coefficient aij
15: Update vehicle feature hnew

i “ σp
ř

jPNi
aijWhe

`
ijq

16: end for
17: end for

Phase 2: Bandwidth Allocation
18: Encode video coverage Ju

enc and distance Je
enc

19: Apply GNNRA “ tJu
enc, J

e
enc, J

u
decu for bandwidth allo-

cation
20: Set video qualities Q “ tq1, q2, . . . , qKu based on vehicle

and edge updates
21: Output: Predicted trajectories and bandwidth allocation

for selected vehicles

[58], the Next Generation Simulation (NGSIM) dataset [59],
and the Highway Traffic Data of the California Department of
Transportation [60]. All datasets were pre-processed in order
to be consistent as inputs in the GNN models. For all four
datasets investigated, we utilized the layouts of the Interaction
dataset, which includes various real-world vehicular scenarios
with diverse traffic conditions. A typical intersection layout
with the expected 360° vehicular video coverage is depicted
in Figure 6.

Fig. 6. Intersection layout: vehicles and their 360° video coverage.

We investigated an intersection, a roundabout and a map-
free layout approach. More particularly, in order to evaluate the
scalability of the proposed framework, we examined several
simulation scenarios, where we varied the number of vehicles
in the region. For smaller numbers of vehicles (up to 30),
we performed our experiments on map layouts of the dataset,
namely the DR_USA_INTERSECTION_GL for the inter-
section layout case, and the DR_USA_ROUNDABOUT_FT
for the roundabout layout case, whereas for larger scales
with more vehicles we considered a map-free approach. We
implemented both the map-based and map-free experiments
and, based on our results, we concluded that the performance
of eGAT is map-independent. The set of video qualities is
defined as Q “ t6, 8, 10u Mbps, with 10 Mbps representing
the highest possible allocated video quality, 8 Mbps a medium
video quality and 6 Mbps the lowest acceptable case. Consid-
ering critical situations, where the uplink capacity is limited
while the number of vehicles in a certain region is large, we
set the uplink capacity B accordingly, in order to test the
bandwidth allocation efficiency. The initial parameters of our
architecture are presented in Table II.

The evaluation process was conducted on a DELL Insp-
iron 3847 with a processor Intel Dual Core i3 1600MHz,
8GB RAM. Regarding software configuration, we ran our
experiments on a Windows 10 OS with Python 3.7.13 using
the NumPy 1.23.0 library and PyTorch 2.0 framework. For

TABLE II
eGAT PARAMETERS

C
ov

er
ag

e

Input size 2 and 720
Input embedding size 64
Encoder size 128
Decoder size 64
Output length Number of Vehicles
In channels node 1
In channels edge attributes 2
Output channels 2
Heads 2
Concatenation True
Edge attribute size 2
Node size 2
Distance threshold (λ = 1 , LFL = 30) 30 meters

B
an

dw
id

th
A

llo
ca

tio
n

Number of input features for node encoding 2
Number of output features for decoding 2
Decoding on nodes True
Number of message-passing steps 5
Layer Normalization False
Number of vertices Number of Vehicles
Number of edges 45
Dimension of the input features 3
Number of hidden layers 100
Use of the edge model False

the evaluation of the performance of our architecture, we
employed three metrics, namely the overall percentage of
the covered region, the normalized mutual information (NMI)
score and the precision-recall. The overall percentage of the
covered region, EP , is calculated by:

Ep “
E

ER
ˆ 100, (22)

where ER represents the total area surface, and E represents
the covered region, namely:
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E “

M
ÿ

m“1

Em ´

M
ÿ

ξ“1

M
ÿ

η“ξ`1

Θξη, (23)

where Em denotes the virtual circular surfaces of the active
DTBs, Lα, and Θξη denotes the overlapping area between Eξ

and Eη . The NMI metric, utilized for the comparison of model
performance, is defined by

NMIpLα, pLαq “
2IpLα, pLαq

HpLαq ` Hp pLαq
, (24)

where Lα represents the set of active DTBs in a region Rα,
pLα denotes the ground truth set of selected DTBs in a region
Rα, IpLα, pLαq represents the mutual information between
Lα and pLα, and H denotes entropy [61]. NMI values range
between 0 and 1; values closer to 1 demonstrate higher model
performance.

In order to test the sensitivity of our model to other GPS
coordinate datasets and their corresponding vehicle speeds per
timestep, we applied the precision metric, i.e., the proportion
of correct positive predictions made by the model, namely:

Precision “
TP

TP ` FP
, (25)

where TP and FP denote true and false positives, respec-
tively. Furthermore, we employed the recall metric, also re-
ferred to as sensitivity or true positive rate. Recall quantifies
the proportion of actual positive cases correctly identified by
the model and is calculated by:

Recall “
TP

TP ` FN
, (26)

where FN denotes false negatives.

B. Predictive Video Coverage

To demonstrate the coverage performance and its corre-
sponding metrics, we consider different vehicular densities, in
both small and large scales. In Table III, we present our video
coverage results under specific bandwidth values and selected
vehicle numbers. The algorithm automatically determines the
number of vehicles selected.

TABLE III
eGAT AREA COVERAGE pEpq FOR PREDICTION HORIZON t “ 5 S

(SMALL SCALE)

Bandwidth
(Mbps) Vehicles Selected

Vehicles
Intersection

Coverage (%)
Roundabout

Coverage (%)

50 10 5 28.2 26.7
120 20 7 63.2 65.6
200 30 14 81.6 80.9

Table IV demonstrates the scalability of our approach in
terms of area coverage, as the number of vehicles increases
considerably in a map-free. The two selected map layouts are
presented in Figure 7, with blue dots representing the vehicles
in a certain indicative prediction horizon, and their surrounding
circles representing the 360° coverage of the chosen vehicles.

TABLE IV
eGAT AREA COVERAGE (Ep) FOR PREDICTION HORIZON t “ 5 S

(LARGE SCALE, MAP-FREE)

Bandwidth (Mbps) Vehicles Selected Vehicles Coverage(%)
250 50 23 62.3
500 100 47 73.6
900 300 109 81.2

1500 500 179 87.7
3000 800 198 92.8
5000 1200 210 93.3
7000 2000 234 95.1
9000 3000 241 97.6

C. Predictive Bandwidth Allocation

Following the video coverage results, and aiming to allocate
bandwidth as effectively as possible, we consider the same
scenarios as in the previous subsection. In order to test the
feasibility of our architecture in critical situations, where
the bandwidth values are limited and disproportionate to the
number of the selected vehicles, we computed the allocated
bandwidth in certain video qualities. Bandwidth allocation and
the corresponding video qualities per vehicle are presented
in Table V. Furthermore, by testing scenarios with a larger
number of vehicles and with several bandwidth values in the
global map, we were able to demonstrate the scalability of
eGAT, see Table VI.

TABLE V
eGAT BANDWIDTH ALLOCATION AND VIDEO QUALITIES FOR

PREDICTION HORIZON t “ 5 S (SMALL SCALE)

Intersection (n=10 Vehicles)
Bandwidth

(Mbps)
Selected
Vehicles

Streaming
Vehicles

Vehicles per Video Quality
High Medium Low

50 5 5 5 0 0
40 5 5 1 3 1
30 5 3 1 2 0

Roundabout (n=10 Vehicles)
Bandwidth

(Mbps)
Selected
Vehicles

Streaming
Vehicles

Vehicles per Video Quality
High Medium Low

50 5 5 5 0 0
40 5 5 2 1 2
30 5 3 2 1 0

TABLE VI
eGAT BANDWIDTH ALLOCATION AND VIDEO QUALITIES FOR

PREDICTION HORIZON t “ 5 S (LARGE SCALE, MAP-FREE)

Bandwidth
(Mbps) Vehicles Streaming

Vehicles
Vehicles per Video Quality Residual

BandwidthHigh Medium Low
250 50 23 9 8 6 40
500 100 47 22 17 8 54
900 300 109 37 44 28 10

1500 500 179 72 60 47 18
3000 800 198 150 28 28 1108
5000 1200 210 158 30 22 3048
7000 2000 234 131 83 20 4906
9000 3000 241 169 26 46 6826

D. Performance Comparisons

The performance of our architecture is compared against
similar studies, presented in [62] and [63], considering a pre-
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diction horizon of t “ 5 seconds. The results of the coverage
performance are shown in Table VII. In [62], the authors
focus on deploying sensors to enhance connectivity among
robots navigating within a designated area. In our experiments,
the cameras are used in a manner similar to the one the
authors of [62] used sensors attached to robots for optimal
area coverage. Furthermore, the authors of [63] proposed
an improved flower pollination algorithm to guarantee the
coverage and connectivity requirements in a specific region.
We suitably adapted their experimental setup for our study
to enable performance comparisons. Specifically, we assumed
that the experiment’s target points correspond to the centers
of our areas, considering the sensor nodes as vehicles in our
scenarios. The algorithm’s output, representing the optimal
node locations, is then adjoining with the nearest randomly
positioned vehicles in our scenario to guide the selection for
video coverage. Our approach allocates bandwidth based on
distance, ensuring distant vehicles receive a sufficient amount
of resources for video streaming. To the best of our knowledge,
no other studies in the recent literature have applied similar
methods to the problem of bandwidth allocation.

TABLE VII
COVERAGE PERCENTAGE (EP ) COMPARISONS

Streaming
Vehicles

Coverage (%)
eGAT [62] [63]

5 28.2 27.8 25.6
23 67.2 65.3 66.8
47 73.6 67.4 66.3

109 81.2 67.8 67.9
179 87.7 68.1 70.0
198 92.8 70.1 72.2
210 93.3 71.9 72.8
234 95.1 75.3 79.2
241 97.6 87.4 87.5

Finally, to demonstrate the combined effectiveness of the
GNN and GAT concepts in our architecture, we conducted
experiments in terms of coverage and bandwidth allocation, as
compared to other state-of-the-art multi-agent attention-based
trajectory algorithms, namely SCALE-Net [37], HEAT [38],
and AI-TN [39]. In these algorithms, the attention mechanism
is adjusted according to the distance threshold, set by the
parameter λ in equation (20), to yield comparable results for
selecting video streaming vehicles within the specified cover-
age prediction horizons. The NMI score results are presented
in Tables VIII and IX. The calculation of the NMI score is
based on the comparison between the expected ground truth
and the actual selection of video streaming vehicles in certain
prediction horizons for optimal video coverage. Considering
the other datasets, we observe that the precision and recall
values maintain the same trend as the coverage prediction
horizon increases, with minor fluctuations among the datasets
for each model case, see Table X.

E. Discussion

Integrating 360° video streaming with GNNs offers signif-
icant benefits over traditional approaches by providing com-
prehensive scene understanding through full-surround views

TABLE VIII
NMI SCORE COMPARISONS FOR n= 100 VEHICLES (LARGE SCALE)

State-of-the-art
Models

Coverage Prediction Horizons
1 sec 5 secs 7 secs 10 secs 15 secs 20 secs

eGAT 0.83 0.72 0.73 0.68 0.61 0.57
SCALE-Net [37] 0.64 0.64 0.70 0.61 0.58 0.51

HEAT [38] 0.79 0.70 0.72 0.70 0.64 0.62
AI-TN [39] 0.76 0.69 0.70 0.71 0.63 0.63

TABLE IX
eGAT BANDWIDTH ALLOCATION: EFFECT OF SCALABILITY IN CRITICAL

SITUATIONS FOR PREDICTION HORIZON T = 5S

Streaming Vehicles (n) 5 23 47 109 179 198
Bandwidth Values 40 200 400 800 1500 1700

NMI Score 0.73 0.63 0.67 0.58 0.56 0.47

and improved contextual awareness. GNNs’ ability to cap-
ture complex dependencies enables more accurate predictive
analytics and modeling of both the spatial and temporal
aspects of 360° video, surpassing methods that treat these
dimensions separately. This allows for efficient data processing
and scalability, ensuring robust performance even with large
datasets, thus facilitating the creation of dynamic digital twins
for road environments.

The results of the implementation of our architecture
demonstrate the feasibility and high-level performance of
predictive situational awareness in smart cities. The eGAT
architecture shows flexibility in providing area coverage for
different scales and under various bandwidth and vehicle
configurations. Furthermore, it efficiently allocates bandwidth,
adjusting the number of the chosen streaming vehicles to
maintain video quality across different scenarios, as indicated
in Table VI. The architecture demonstrates scalability, as it
performs effectively with an increasing number of vehicles
and bandwidth, achieving high area coverage and maintaining
video quality. Table VII emphasizes the efficacy of the eGAT
architecture in achieving high area coverage compared to
certain state-of-the-art architectures. In particular, in all 9 sce-
narios investigated, eGAT consistently outperformed its coun-
terparts achieving higher coverage percentages. The increase in
coverage percentage ranged from 0.5%, for n “ 23 streaming
vehicles, to 32.3%, for n “ 198 streaming vehicles, thus
indicating the superiority of eGAT over the ones employed
in [62] and [63].

Furthermore, our NMI score results indicate that our method
provides comparable, or, in cases with low values of coverage
prediction horizons, superior performance over several state-
of-the-art graph attention methods, namely [37], [38], and
[39], as indicated in Table VIII. In particular, our proposed
method outperformed its counterparts for Th = 1, 5, and 7
seconds, with an increase in the NMI score ranging from
2.8%, for Th = 5 seconds, to 29.6%, for Th = 1 second. This
indicates the superiority of eGAT against the other attention-
based GNN models in low prediction horizons. For larger
values of prediction horizons, namely, Th = 10, 15, and 20
seconds, eGAT presents lower, however comparable, coverage
performance.

Our results suggest that eGAT is a promising solution
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Fig. 7. Visualisation of eGAT predicted coverage on two separate driving scenarios for three prediction horizons, namely, Th = 1, 5 and 10 seconds,
provided by the Interaction dataset [57]. First row: predictive area coverage via the DR_USA_Intersection_GL. Second row: predictive area coverage via
the DR_USA_Roundabout_FT. Dark blue dots represent the vehicles’ current positions, with their IDs indicated by n1 to n10, whereas surrounding circles
indicate streaming vehicles.

TABLE X
PRECISION (P) AND RECALL (R) VALUES IN FOUR COVERAGE

PREDICTION HORIZONS USING FOUR DIFFERENT DATASETS

Models Datasets 1 sec 5 secs 10 secs 20 secs
P R P R P R P R

eGAT

[57]
[58]
[59]
[60]

0.931
0.915
0.926
0.944

0.903
0.894
0.913
0.928

0.892
0.881
0.904
0.915

0.874
0.861
0.886
0.897

0.871
0.862
0.884
0.896

0.847
0.835
0.859
0.873

0.853
0.841
0.867
0.879

0.828
0.812
0.837
0.849

SCALE-Net

[57]
[58]
[59]
[60]

0.921
0.918
0.933
0.945

0.905
0.892
0.919
0.929

0.890
0.882
0.907
0.914

0.878
0.869
0.889
0.894

0.876
0.865
0.887
0.899

0.849
0.839
0.857
0.869

0.858
0.845
0.871
0.882

0.833
0.824
0.846
0.854

HEAT

[57]
[58]
[59]
[60]

0.929
0.915
0.924
0.937

0.906
0.892
0.914
0.922

0.892
0.879
0.899
0.909

0.876
0.864
0.884
0.891

0.871
0.858
0.878
0.885

0.843
0.834
0.855
0.866

0.855
0.844
0.863
0.872

0.834
0.819
0.848
0.857

AI-TN

[57]
[58]
[59]
[60]

0.924
0.912
0.929
0.941

0.908
0.896
0.917
0.927

0.889
0.881
0.902
0.911

0.873
0.865
0.882
0.893

0.869
0.861
0.880
0.891

0.841
0.832
0.855
0.862

0.849
0.836
0.860
0.873

0.825
0.815
0.838
0.847

for scenarios involving streaming vehicles, showcasing its
potential for applications such as autonomous vehicles or
traffic management systems. However, a critical limitation
of our study that requires further explanation is the residual
bandwidth allocation per area. As indicated in Table VI, in
scenarios with high bandwidth availability, there appears an
unexpected inconsistency between the actual and the expected
allocated video qualities with the selected vehicles to stream
at lower qualities. Our contribution differs in that our GNN
architecture allocates bandwidth based on distance, focusing

on resource efficiency while meeting coverage requirements.
The latter highlights the effectiveness of the algorithm, where
bandwidth availability is disproportionate to the number of
vehicles. Especially in critical situations, vehicle selection
may be compromised due to their imbalanced distribution in
the area of interest. To this end, the effect of scalability on
bandwidth allocation is presented in Table IX.

The primary limitations of our study include reliance on
simulation data, which may not capture all real-world com-
plexities, and the use of fixed video quality levels, that
could be further optimized. Furthermore, our approach re-
quires significant computational resources, potentially limit-
ing deployment in resource-constrained environments. Future
work should focus on integrating additional data sources
and improving system robustness in diverse urban scenarios.
Additionally, data privacy and security must be ensured by
implementing end-to-end encryption and anonymizing video
streams. To address ethical considerations, real-time video
processing techniques should be used to blur faces, license
plates, and other identifiable features before any data is stored
or further processed, or to mask sensitive areas to prevent the
identification of individuals. Integrating the eGAT architecture
with existing infrastructure for real-time 360° video stream-
ing involves implementing edge processing to perform local
anonymization and dynamically manage bandwidth, thereby
anonymizing sensitive data at the source.

In computational complexity terms, the time complexity of
multiple (k) GAT attention heads computing W features may
be expressed as k ¨ Op|M |WWin ` |M |W q, where Win, |N |

and |M | denote the number of input features, of nodes, and
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of edges in the graph, respectively [52]. Implementing k-head
attention increases the storage and parameter requirements
by a factor of k, which, in turn, may increase the response
time of our proposed scheme. However, employing certain
hardware acceleration techniques and model optimization al-
gorithms is expected to reduce response delays. Our archi-
tecture demonstrates computational efficiency through several
key aspects. GATs leverage multi-head attention mechanisms
to efficiently aggregate information from neighboring vehicles,
focusing on the most relevant parts of the graph and reducing
computational overhead compared to traditional convolutional
networks. By learning efficient node embeddings, we can
quickly determine the optimal bandwidth allocation for each
vehicle, achieving near real-time performance. Designed for
high scalability, our system is able to accommodate a growing
number of vehicles and increasing data demands in dense ur-
ban areas. Our extensive simulations highlighted the scalability
of eGAT architecture under varying vehicular densities.

A promising direction for future research involves the
weighted selection of vehicles in a specific area, tailored to
meet certain QoE requirements. These requirements originate
from the spatial distribution of the vehicles and the necessity
for high-quality video streaming at specific locations, where
only one vehicle is capable of streaming. Further research is
required in order to understand the trade-off between achieving
targeted coverage and ensuring sufficient bandwidth allocation.
This trade-off impacts the vehicle’s QoE and the efficient cov-
erage of neighboring areas sharing the same uplink capacity.
Integrating fairness-aware resource allocation strategies [64]
and distributed resource allocation over weighted balanced
graphs [65] represent two promising GNN-based approaches
that may yield insightful results. Furthermore, future research
could focus on enhancing data collection by integrating multi-
modal data sources such as LIDAR and on employing crowd-
sourced data from connected vehicles and smartphones. Ad-
ditionally, developing advanced GNN architectures tailored
for 360° video data, including spatio-temporal GNNs and
employing transfer learning, could improve efficiency and
generalization.

VI. CONCLUSION

In this work, we present a novel GNN architecture integrat-
ing, for the first time, 360° video streaming into the digital
twins of smart cities. Our application-oriented architecture,
eGAT, makes a distinct contribution by optimally balancing
area coverage with guaranteed bandwidth allocation, thus
aligning with predictive situational awareness. By integrating
real-time 360° video data with advanced GNNs, our system
develops a comprehensive predictive model of road conditions
and traffic patterns. This enhances the accuracy and reliability
of situational awareness, enabling proactive decision-making
for traffic management and road safety. The experimental
results underscore the effectiveness of our approach in cov-
erage performance and in bandwidth allocation across various
critical scenarios. Furthermore, our results demonstrate the
capability of eGAT to predict the area coverage in smart cities
in several scenarios. The innovative nature of our method

enhances real-time informational capabilities, addressing key
coverage and resource allocation challenges in 360° video
streaming for future vehicle locations. Future work will focus
on expanding the dataset to include diverse weather conditions,
integrating additional data sources like sensor networks, and
deploying the system in real-world scenarios for validation.
Furthermore, we plan to further improve our simulation mod-
els to better capture real-world complexities and validate our
approach through collaborations with industry partners.
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