
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX XXXX 1

Deep Reinforcement Learning based Deterministic
Routing and Scheduling for Mixed-Criticality Flows

Hao Yu, Tarik Taleb, Senior Member, IEEE, and Jiawei Zhang

Abstract—Deterministic networking (DetNet) has recently
drawn much attention by investigating deterministic flow schedul-
ing. Combined with artificial intelligent (AI) technologies, it can
be leveraged as a promising network technology for facilitating
automated network configuration in the Industrial Internet
of Things (IIoT). However, the stricter requirements of the
IIoT have posed significant challenges, that is, deterministic
and bounded latency for time-critical applications. This paper
incorporates deep reinforcement learning (DRL) in Cycle Spec-
ified Queuing and Forwarding (CSQF) and proposes a DRL-
based Deterministic Flow Scheduler (Deep-DFS) to solve the
Deterministic Flow Routing and Scheduling (DFRS) problem.
Novel delay aware network representations, action masking and
criticality aware reward function design are proposed to make
Deep-DFS more scalable and efficient. Simulation experiments
are conducted to evaluate the performances of Deep-DFS, and
the results show that Deep-DFS can schedule more flows than
the other benchmark methods (heuristic-based and AI-based
methods).

Index Terms—IoT, Industrial Internet of Things (IIoT), de-
terministic networking, deep reinforcement learning, mixed-
criticality flows, 6G, and artificial intelligence.

I. INTRODUCTION

THE Industrial Internet of Things (IIoT) adopted in man-
ufacturing and factory automation is typically imple-

mented by a specialized network for data exchange among
sensors, actuators and other production equipment. To facil-
itate information exchange, industrial networks have evolved
over the years and are expected to satisfy the emerging and
challenging requirements of the new operation contexts [1].
On the one hand, conventional network technologies could
not provide deterministic and efficient communications for the
industrial needs. To support critical data flows generated by
IIoT applications with bounded low latency and low jitter,
the IEEE Time-Sensitive Networking (TSN) and the IETF
Deterministic Networking (DetNet) work group have been
initiated to study timing guarantee for critical traffic. On
the other hand, with the huge amount of the ever-increasing
IIoT connectivity, the network administrators need to rely
on humans to design, configure and manage sophisticated
and dynamic industrial scenarios, which is not efficient and

This research work is partially supported by the European Unions Horizon
2020 Research and Innovation Program through the Charity and Accordion
projects under Grant No. 101016509 and 871793, respectively; the Academy
of Finland 6Genesis project under Grant No. 318927 and the Academy of
Finland IDEA-MILL project under Grant No. 352428.

H. Yu and T. Taleb are with the Center of Wireless Communications, The
University of Oulu, Finland. Email: firstname.familyname@oulu.fi.

Jiawei Zhang is with the State Key Laboratory of Information Photonics
and Optical Communications, Beijing University of Posts and Telecommuni-
cations, China. E-mail: zjw@bupt.edu.cn.

sustainable. Next-generation network automation represented
by artificial intelligence (AI) based technologies is proposed
to tackle this challenge. Along with the advent of the network
programmability of 5G networks, the AI-enabled paradigm
will carry out the intelligent automated network configuration,
optimization and management in the Industry 5.0 era.

Recently, the IETF DetNet working group has been study-
ing deterministic data transmission by incorporating Segment
Routing (SR) in Layer 3 to extend TSN technologies for queu-
ing and scheduling, in order to support deterministic bounded
latency and jitter for time-critical traffic [2]. In particular,
regarding the strength of programmability of SR, the working
group is currently specifying a Cycle Specified Queuing and
Forwarding (CSQF) mechanism [3] to schedule the flows in
a more flexible and scalable way, where the forwarding time
slot can be specified for the packets, which will increase the
bandwidth efficiency. In CSQF, multiple queues in the output
port open in a round-robin way and transmission cycles repeat
periodically at each port. By defining the segment routing
identifiers (SIDs) in IP packets, it can determine the packet
routing and forwarding at each hop, specifically, deciding the
routing and transmission time slots along the selected path
for all packets of time-critical flows, so that the end-to-end
latency is controlled in a deterministic way. We refer to it
as the Deterministic Flow Routing and Scheduling (DFRS)
problem in this paper. To this end, a network controller is
required to collect the overall network information for deciding
the proper scheduling for flows.

Different kinds of solutions have been proposed to solve the
flow scheduling problem: solver-based methods, e.g., an ILP
tool [4] or heuristic-based methods, e.g., list-based methods
[5]. Nevertheless, due to the fact that the high computational
complexity of solver-based methods and heuristic-based meth-
ods are usually handcrafted with certain expertise, scalable
and intelligent scheduling approaches are desired to solve
the flow scheduling problem. Therefore, the authors in [6]
leveraged deep reinforcement learning (DRL) to solve the
time-triggered (TT) flow scheduling problem incrementally.
However, the agent trained in [6] was only used to make
routing decisions, the transmission cycles for time-critical
packets were determined by a heuristic-based method, which
would choose the earliest time slots along the path for packet
forwarding to minimize the end-to-end (E2E) delay of the TT
flow. Nevertheless, the users of time sensitive networks only
care about the delay bound guarantee, any earlier delivery of
any particular packet is not necessary. In addition, it will cause
network congestion to always choose earliest available time
slots to minimize the E2E delays without considering different

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX XXXX 2

© MOSA!C LAB 2021

Output
port 1

Round Robin Scheduler

1
Cycle 3 Cycle 4 Cycle 3 Cycle 4

Queue 1 Queue 2 Queue 3 Queue 4

Cycle 5

Queue 1

Cycle 2

Arrival time

Queue 4

Max offset = 3 cycles
Queue 1

Queue 2

Queue 4

Queue 3
Input
port

PR
SF

1
1

Offset = 2 cycles

1 Output port 1 node B 2 Cycle 4 Queue 2
Packet Routing and Scheduling Function (PRSF)

Bandwidth resource
reserved for other packets

1 2 3 4 5

1

Source
node A

Intermediate
node B

1

Destination
node D

Intermediate
node C

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

2

2 3

Cycle 9

E2E delay of packet 1: 7 cycles

CQF offset: 1

Arrival time

Link delay: 1

Link delay:2

Link delay: 1

1
CSQF offset: 2

High load in cycle 3 t

t

t

t

CSQF offset: 1

1

Fig. 1: CSQF-based cycle scheduling of a DN flow.

deadlines of flows.
In this paper, we will investigate on the routing and

scheduling problem of mixed-criticality DetNet (DN) flows
for deterministic performance guarantee and propose a deep
reinforcement learning (DRL) based deterministic routing and
scheduling approach to solve this problem. Note that, minimiz-
ing E2E delay is not the objective of this paper, the proposed
approaches schedule the flows with the derived E2E delays
near the deadlines without exhausting network resources. In
addition, we will also consider the multiple criticalities of
the timing requirements of DN flows, i.e., Hard Real-Time
(HRT), Soft Real-Time (SRT), and train the DRL agent to
make the decision on flow routing and scheduling with the
objective of maximizing the number of HRT flows scheduled
and the utilities of SRT flows. The contributions of this paper
are shown as follows:

• A DRL based-Deterministic Flow Scheduler (Deep-DFS)
is devised based on a Markov decision process (MDP)
approach for the flow routing and scheduling problem and
a branching dueling Q-network (BDQN) is introduced
into the framework to derive the optimal policy of the
MDP model.

• We propose several methods to enhance the efficiency
and schedulability of Deep-DFS: 1) we divide a complete
flow schedule into multiple simple actions to increase the
scheduling scalability; 2) we use a latency aware network
representation method to better extract key information
for flow routing and scheduling; 3) we introduce action
masking to filter invalid actions to avoid too many neg-
ative rewards; 4) we design a criticality aware reward
function to schedule the flows with different criticalities.

• Finally, an extensive performance evaluation is carried
out with both single path and multipath scheduling. The
results show that, in an incremental scenario, the Deep-
DFS scheme can schedule more DN flows than other
benchmark methods and multipath scheduling has better
performance than single path scheduling.

We introduce some related work in Section II. The system
model and problem formulation are presented in Section III.
Section IV illustrates the details of BDQN based deterministic
flow routing and scheduling methods. The evaluation of the
proposed method is discussed in Section V. Finally, we draw
some concluding remarks in Section VI.

II. RELATED WORK

In the context of TSN, most studies in the literature focus
on the static scheduling and dynamic reconfiguration of gate
openings and closings at output ports to satisfy a certain
traffic matrix. In this case, routing information is generally
given by the spanning tree protocol operating at layer 2. For
802.1Qbv, the disadvantages of the flow-based Time-Aware
Shaper (TAS) are limitation of the gate control list (GCL)
synthesis solution space and the long time it takes to solve
the GCL synthesis in the case of large-scale networks. To
solve this problem, the authors in [7] proposed a stream-
based, class-based TAS without per-flow scheduling, which
relaxes the assumption that gate openings for multiple ST
queues are enforced to be mutually exclusive. Furthermore,
the authors in [8] proposed a more general flexible window-
based scheduling model, i.e., besides the above constraint
relaxation, windows do not have to be aligned and can be
placed at any time slot on nodes in networks. For network
reconfiguration under dynamically changing requirements, the
concept of multi-stream gate control for TAS was proposed by
[9]. The proposed idea enabled runtime reconfiguration of the
GCL to avoid reduction in bandwidth utilization irrespective
of the burst size and the number of streams.

In case routing can be also decided, e.g., in layer 3, the
joint routing and scheduling problem remains a challenge to be
tackled. The authors in [10] present a formulation in the integer
linear programming (ILP) framework which models the joint
routing and scheduling problem for flows of periodic real-time
transmissions in converged TSN networks. Network calculus-
based flow routing and bandwidth allocation in IP-over-WDM

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX XXXX 3

architecture is also investigated to achieve the deterministic
data delivery in metro-aggregation networks [11]. The authors
in [3] also focus on the joint routing and scheduling problem
in large-scale deterministic networks using CSQF to maxi-
mize traffic acceptance for network planning and online flow
admission. Joint routing and network resource allocation for
the deterministic service function chaining (SFC) problem was
also investigated in [12], where a novel Deterministic SFC
Deployment algorithm (Det-SFCD) and an SFC Adjustment
algorithm (Det-SFCA) were proposed to ensure deterministic
performance during the SFC lifetime.

To the best knowledge of the authors, limited work has
been done on AI-based methods for deterministic flow routing
and scheduling and the problem of deterministic latency (not
minimizing the E2E latency) provisioning upon the mix-
criticality flows has been solved. Therefore, we use DRL to
solve the deterministic flow routing and scheduling problem
from this perspective, which is different from the above-
mentioned work.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A DetNet system refers to a network comprised of DetNet
nodes (i.e., routers), whereby the packet forwarding delay
inside a node is deterministic and known through a centralized
flow scheduling scheme. In a DetNet system, the delay induced
by forwarding a packet comprises of four parts: (i) propagation
delay, which is decided by the physical distance between two
nodes; (ii) processing delay, which is related to the procedure
of receiving the packets and sending them to the upper layers
for routing and scheduling decision; (iii) transmission delay,
which is the time for putting the packet on the physical link;
and (iv) queuing delay, which refers to the waiting time in
the queue of the output port because of the accumulation of
packets from different input ports to the same output port [13].
If the topology information (i.e., distance between any nodes
and bandwidth of physical link) is given, the propagation,
processing and transmission delay can be assumed to be
constant. Thus, to make the overall forwarding delay to be
deterministic, the queuing delay should be determined properly
in advance, ensuring the sum of delays along the path (end-
to-end delay) equal to a constant and is within the latency
requirements.

A. CSQF enabled DetNet system

Initially, Cycle Queuing and Forwarding (CQF [14], i.e,
IEEE 802.1Qch) is proposed as a peristaltic shaper which
considers 2 queues on ports to be open and closed alternatively
in a cyclic fashion. It divides the time into different cycles
with an equal duration T . A packet sent from the precedent
node in cycle c must be received during the same cycle in the
subsequent node and then transmitted in cycle c+1. Although
CQF can control well the delay over each hop (at most two
cycles), the scalability of this mechanism is not enough since
it only works well for small networks and assumes perfect
synchronization between nodes.

To improve scalability and flexibility, the Cycle Specified
Queuing and Forwarding (CSQF) mechanism [15] has been
devised as an emerging standard draft from the IETF DetNet

working group as the evolution of the CQF mechanism. CSQF
is proposed to delay packets with more queues and specify
a certain cycle to transmit packets. Inside a CSQF-enabled
router, N queues will be equipped in each output port and
ND queues out of N (ND ≤ N) queues are reserved for
time-critical traffic, while the remaining Non-critical (NC)
queues are for best effort (BE) traffic. These N queues transmit
packets in a round-robin fashion, that is, during each cycle,
only one queue is active for emitting a packet to the physical
link, the other (N−1) inactive queues are closed and enqueue
packets for future transmissions. Note that the number of
packets that are enqueued in each inactive queue is related
with the buffer size of each queue, and improper enqueuing
will incur packet loss. The ND time-sensitive queues are
dedicated to the time-critical flows by resource reservation.
The assignment of packets to specific queues actually decides
their transmission cycle, and a packet can be delayed by at
most (N − 1) cycles. This assignment can be determined
by a centralized controller in advance, while the BE flows
without critical timing requirements will not be scheduled in
advance by the controller. When the packets of BE flows
arrive at each node, they will be directly inserted into the
(N−ND) NC queues, whose queuing delay is not controllable
or deterministic. Note that unlike CQF, CSQF operates at layer
3 [15], as it allows to specify the routing and cycle scheduling
of packets (e.g., with Segment Routing).

B. DetNet and Flow model

Network topology in this paper is modeled as a directed
graph G = (V, E), where V is the set of nodes representing
DetNet enabled routers. The nodes are connected with data
links represented by the directed edge set E ⊆ V ×V . If there
exists a physical link between u, v ∈ V , then (u, v), (v, u) ∈
E . Each edge ei = (u, v) ∈ E induces a delay dei which
comprises its propagation delay, transmission delay as well
as processing delay. Time is partitioned into cycles of equal
duration T , and T represents the set of cycles. One cycle is
the minimal scheduling unit that packets can be inserted into
and defines the granularity of latency calculation.

A DetNet (DN) flow is defined as a periodic unicast
traffic from a source node to a destination node. We de-
note the set of DN flows as F to be scheduled within
the network G. A DN flow fk ∈ F is defined as a tuple
(srck, dstk, prdk, bwk, D

max
k , Dmin

k), where
• srck and dstk represent the source and destination nodes

of flow fk.
• prdk denotes the period of flow fk, which means the

source node sends the packets every prdk cycles.
• bwk is the total traffic that the source node emits in one

cycle.
• the delay experienced by packets should be larger than a

minimum delay bound Dmin
k and smaller than a max-

imum delay bound Dmax
k , as then the jitter does not

exceed (Dmax
k −Dmin

k).
Since flows are featured with the different period prdk, we

define an overall scheduling cycle, which is referred to as
hypercycle, so that all network behaviors are the same in each
hypercycle. The hypercycle prds of all flows can be calculated

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX XXXX 4

TABLE I: Notation and variables

Notation Description

Topology
G Substrate networks
V, E Set of nodes and edges in substrate networks
u, v Physical nodes in the network G
ei Physical links in the network G
dei Link delay of edge ei
T Set of cycles
T, cap Cycle duration & Cycle capacity

Service requests
F Set of DN flows
fk DN flow k
srck, dstk Source and destination node of flow k
prdk Period of flow k
bwk Traffic load of flow k within one cycle
Dmax

k , Dmin
k Maximal & minimal delay bound for flow k

Uk(t) Utility function of a SRT flow k with t
Hk If HRT flow k is scheduled successfully
prds Least common multiple of periods of all flows

Decision Variables
ok,ei Transmission offset of flow k on edge ei
eki Edge on which flow k is routed
tki Index of cycle of edge ei on which the packets

of flow k are transmitted

DRL-related notations
st Network state at time t
aki The ith sub-action for flow k
R(aki) Reward of the ith sub-action for flow k
Uei Link utilization rate of ei
Us Global link usage of topology
Qt

ei
Whether cycle t on ei is fully occupied

Itei Cycle utilization rate of t on ei
Iei Overall cycle utilization rate of edge ei
P t
ei

Traffic load in cycle t of edge ei
nd Number of sub-actions of the dth dimension
Ad(st, a

k
i) Advantage of the dth dimension

V (st) Common state value
M Action dimension

System Parameters
α, β, η Reward coefficients
γ Discount factor
N,ND The number of total and time-sensitive queues

within a node

as the least common multiple of the periods of all flows. Hence,
we will discuss the flow scheduling problem in one hypercycle.
Actually, the starting time of the hypercycles at different nodes
may be not synchronized and there exists an offset between
two nodes due to clock drift, which can be measured and
known by the controller. For the sake of simplicity and without
loss of generality, we assume there is no offset so that all
hypercycles are aligned across the networks.

Furthermore, considering criticalities in terms of latency
requirements, the DN flows can be further classified into:
hard real-time (HRT) flows which have strict deadlines, and
soft real-time (SRT) flows whose QoS can be downgraded
due to deadline violation. Best effort flows, which have no
timing requirements, will be also considered in this paper as
background flows. Both HRT and SRT flows have the delay
bounds Dmax

k and Dmin
k . However, the HRT delay bound

is hard, and if the delay bounds are violated, it may result
in catastrophic consequences. The scheduling policy must
guarantee that all HRT flows in the networks are transmitted

within the delay bounds. The SRT deadline is soft, that is, the
performance of the SRT flow will degrade if the delay bounds
are missed. Similar to [16] [17], a positive utility function is
introduced to evaluate the performance of SRT flows, denoted
with Uk(t), whereby t is the actual experienced E2E delay. If
the packets of a SRT flow arrive within the delay bounds, the
utility keeps on a predefined positive value (maximal value).
The utility function decreases to zero with an actual E2E delay
when it goes beyond the delay bounds, as specified by the
definition of the utility function Uk(t).

C. Deterministic Flow Routing and Scheduling (DFRS): an
example

To ensure that no collision or congestion can happen, the
controller needs to decide, for each packet, where and when
it will be transmitted in each node, i.e., if a packet is sent in
the first available cycle or delayed by one or more additional
cycles before transmission.

In Fig. 1, we show an example of how a packet is propagated
from node A to node D through node B and C. We assume
that 1) the link delays of dA,B , dB,C and dC,D are one cycle,
two cycles and one cycle, respectively; 2) the period of the
flow of interest (FOI) is 2 cycles. Once the packets of FOI
are sent from A, they are received at B in the next cycle (e.g.,
packet 1 is sent in cycle 1 at node A and received in cycle
2 at node B), since the link delay between node A and B is
one cycle. Upon receiving packet 1 in cycle 2, the controller
can decide to forward packet 1 in the next cycle (cycle 3).
However, considering the high traffic load in cycle 3 of Node
B, it is better to choose to delay the packet forwarding by
2 cycles (i.e., CSQF offset), that is, packet 1 is forwarded
in cycle 4. Then it is received at cycle 6 due to two cycles
delay between node B and C. The E2E delay of a packet is
calculated as the number of cycles it costs along the path. For
example, the E2E of packet 1 is 7 cycles (cycle 8 - cycle 1).
What the controller should accomplish is, on the one hand,
to ensure that the E2E delay of packets are within the delay
bounds of this flow; on the other hand, to avoid the network
congestion on certain cycles or edges.

© MOSA!C LAB 2021

A

B

C

1

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

1.2

1.1

1.2

Offset = 1

Offset = 3

Offset = 2

𝒅𝑨𝑩: 1

𝒅𝑨𝑪: 1 𝒅𝑩𝑪: 1

Arrival time 𝑫𝒎𝒂𝒙𝑫𝒎𝒊𝒏

1 Overlap

A

B

C

𝒇𝟏,𝟏

𝑯𝒐𝒔𝒕𝟏

𝑯𝒐𝒔𝒕𝟐

𝒇𝟏,𝟐
𝒇𝟏

Fig. 2: CSQF-based multipath scheduling.

D. DFRS: Multipath Case

For more efficient flow scheduling and higher load bal-
ancing, Multipath TCP (MPTCP) technology [18], which
allows multiple paths in a single TCP connection by spreading
traffic data across multiple parallel sub-flows, has shown great
advantages in emerging scenarios where heavy traffic needs to
be transmitted. Different from the single-path flow scheduling
in Fig. 1, flow splitting and multipath routing are considered
in this scenario, where one single communication path is not

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX XXXX 5

sufficient to transmit the DN flow and multi communication
paths become needed. As shown in Fig. 2, we assume that a
TCP connection f1 is upcoming between Host 1 and Host 2,
whose maximum and minimum deadline are 5 and 3 cycles.
If the scheduler fails to find a valid schedule along the single
path, for example, there is not enough bandwidth for flow
1 within cycles 4-6 in node B, multipath scheduling will be
applied to this flow by splitting it into multiple sub-flows
evenly. For instance, there are two candidate routing paths
{(A,B)} and {(A,C), (C,B)} which can be leveraged for
two sub-flows, i.e., f1.1, f1.2. Eventually, the end-to-end delay
of these two sub-flows are 4 and 5 cycles separately, and
packets of sub-flows will be reassembled at Host 2 without
violating the deterministic delay requirement of flow f1.

E. DFRS modelling

For a flow fk to be scheduled, the controller needs to
determine a unique feasible scheduled path P , i.e. a sequence
of edges (e1,e2,...,en) where edge e0 starts from srck and edge
en ends at dstk. ei and ei+1 are adjacent edges. We should
have the constraints:

e0.src = srck. (1)
en.dst = dstk. (2)

ei.dst = ei+1.src. (3)

However, at each edge ei, it is impossible to determine the
transmission cycles for every packet of this target flow due to
the high scheduling complexity. We define an integer variable
ok,ei to represent the offset at edge ei for all packets of flow
fk, that is, all packets of flow fk arrived at edge ei will be
delayed by ok,ei cycles. If we assume that the first packet of
flow fk leaves the source node srck at tk1 , then it will arrive
at the next node on the cycle t1+de1 , and will be transmitted
again on cycle tk1 + de1 + ok,ei , denoted by tk2 . Therefore,
the cycle determination for flow k can be represented by an
integer sequence (tk1 , t

k
2 , ..., t

k
n), where tki ∈ Z+ indicates the

index of cycle that the first packet is supposed to be forwarded
at the corresponding node ei. The transmission cycles of the
remaining packets can be calculated by tki + l ∗ prdk, l ∈
{0, 1, ..., n} easily.

Thus, the schedule Sk of a DN flow fk from source
node srck to destination node dstk can be denoted as
{(ek1 , tk1), (ek2 , tk2), · · ·, (ekn, tkn)}. An Sk is valid for flow fk
if the following two conditions hold.

(1) E2E latency constraint:
The E2E delay of all packets of HRT flow fk must not

exceed the maximum and minimum end-to-end delay bounds
Dmax

k and Dmin
k .

C1: Dmin
k ≤ tkn − tk1 ≤ Dmax

k . (4)

(2) Cycle capacity constraint:
If the packets of flow fk are decided to be transmitted at

edge ei at cycle t, denoted by xt
k,ei

, the bandwidth capacity
bwk in the corresponding cycles will be reserved. Since the
bandwidth capacities of cycles are shared among the scheduled
flows, the traffic load at any edge ei during any cycle t
must not exceed its capacity cap, which is the value of cycle

duration T multiplied by link data rate G. This condition is
ensured by the constraint:

C2:
∑
fk∈D

xt
k,ei ∗ bwk ≤ cap, ∀ei ∈ E ,∀t ∈ T . (5)

F. Problem formulation

The flow scheduling problem can be formulated as: given
the network topology and DN flows, finding valid schedules
(route and cycle allocation) for all flows so that all HRT flows
are scheduled and the utility of SRT flows are maximized.
We define the variable Hk to indicate if the HRT flow fk
is successfully scheduled: Hk = 1 when HRT flow k is
successfully scheduled, 0 otherwise. The Deterministic Flow
Routing and Scheduling (DFRS) problem can be defined as
follows:

max
∑
fk∈F

{
Hk if fk is HRT flow
Uk if fk is SRT flow

s.t. C1,C2.

(6)

G. Markov Decision Process Based Model

The learning process of Reinforcement learning (RL) is
usually modeled as a Markov Decision Process (MDP), with
the state space S, the action space A, and the reward R devised
as follows.

1) State space: A system state st represents all the infor-
mation of the whole network that the RL agent can observe
and use to generate a schedule Sk for a flow fk. We denote
network state st by extracting the network features from
three aspects: 1) topology information, 2) flow information,
and 3) network load information. st can be divided into
st = {st,e1 , st,e2 , ..., st,ei , ei ∈ E} and each st,ei consists of:

• If the edge ei is adjacent to the edge of the former action
or to the source node srck.

• The distance between this edge and destination node
dstk.

• The difference between the current selected cycle and
dmin
k , (i.e., minimum delay requirement-passed delay).

• The difference between the current selected cycle and
dmax
k .

• The traffic load of this edge, which is denoted as the ratio
of the number of available cycles to the total number of
cycles. Generally, choosing an edge with lower network
load can maintain load balancing and avoid bottleneck
links.

• The list of cycle load (in percentage). The state st will
be updated each time after the agent selects a sub-action.

2) Action space: Deep-DFS improves the scalability
by dividing the schedule of a flow into a set of sub-
actions. That is, the schedule Sk = {ak1 , ak2 , ..., akn} =
{(ek1 , tk1), (ek2 , tk2), ..., (ekn, tkn)}, where aki = (eki , t

k
i), of flow

k is derived from a sequence of edges and cycles. Specifically,
each aki = (eki , t

k
i) acts as a sub-action, eki denotes the edge

that a flow needs to go through, and tki represents the cycle
that packets are transmitted on eki . A valid path should satisfy
the following conditions: 1) the edges in sub-actions should
connect in head-to-tail; 2) the constraint tki+1 > tki +dei should

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX XXXX 6

be kept, where dei is the link delay of ei, to ensure a valid
timing. Combined with constraint (4) and (5), a valid schedule
for flow fk should meet these four constraints.

3) Reward Function: After receiving a sub-action aki , the
agent will obtain a reward value R(aki) from the environment
based on the effect that this sub-action causes.

The reward of a sub-action aki will comprise of two parts: 1)
how much congestion it brings to the network; 2) whether this
sub-action will finalize a complete schedule of a flow, which
is also valid.

We define the link utilization rate Uei as the number of
cycles which are not available for flows divided by the number
of all cycles on link ei

Uei =

∑
t∈T Qt

ei

|T |
. (7)

where Qt
ei represents whether cycle t on ei is fully occupied,

|T | and |E| are the total number of cycles considered in
one hypercycle and the number of edges in the topology.
Furthermore, the global bandwidth utilization ratio Us over
all cycles and edges in the network is defined as

Us =

∑
ei∈E

∑
t∈T Qt

ei

|T ||E|
. (8)

Besides evaluating the impact of a selected sub-action on
the link utilization rate, the cycle utilization rate Itei should be
also considered, which is defined as

Itei =

∑ prds
prdk

−1

l=0 P t+l∗prdk
ei

prds

prdk
∗ cap

. (9)

where P t
ei denotes traffic load in cycle t of edge ei. Thus, the

overall cycle utilization rate of edge ei can be defined as

Iei =

∑
t∈T P t

ei

|T |cap
. (10)

In order to make the training converge fast, we use α, β, η to
adjust the weight of each part making the reward value within
(−1, 1), and then the reward of the sub-action ai is denoted
as

R(aki) = α(Us − Uei) + β(Itei − Iei). (11)

Note that if the usage Uei is larger than the global usage Us

after mapping the flow to edge ei, it means a negative reward
for this sub-action ai. The same applies for cycle usage Iei
and Itei .

The second part takes effect only if the sub-action aki is the
last edge of a valid path for a flow. If the agent finalizes the
scheduling of a flow, Hk or Uk will be calculated according
to the flow types.

After selecting the last action akn of a valid route, we
will check if this flow is scheduled successfully (i.e., if the
latency, capacity and routing requirement are all satisfied), and
then the rewards for the sub-actions R(ak1),R(ak2), ...,R(akn)
will be updated by adding an extra reward for the second
part in a decayed way. Intuitively, earlier sub-actions have a
larger exploration space, and thus pose less impact on a valid

schedule, while the latter sub-actions are more significant for
constituting a valid schedule.

R̂(aki) = R(aki) + η{Hk,Uk} ×
i

n
,∀i ∈ {1, ..., n}. (12)

H. Optimization formulation

This paper aims to obtain the optimal deterministic flow
routing and scheduling policy, denoted by π∗, to maximize the
long-term rewards of mapping flows into networks. The DFRS
problem can be transferred to the optimization problem which
maximizes the expected future discounted rewards as follows:

max
π

E

 ∑
fk∈F

n∑
i=0

γiR(aki)]

 . (13)

where R(aki) is the reshaped reward under the policy π from
(12), and the discount factor γ indicates how much the current
rewards are valuable than later rewards.

To solve the optimization problem in Eq. (13), we propose a
branching dueling q-network based deterministic flow routing
and scheduling algorithm which will evaluate each action
dimension (i.e., edge and cycle selection) separately, and also
use action masking to improve the training efficiency.

IV. BRANCHING DUELING Q-NETWORK BASED
DETERMINISTIC FLOW ROUTING AND SCHEDULING

To facilitate the learning process for a MDP problem, deep
Q-Network (DQN)-based methods are widely leveraged in
the literature. For example, Dueling DQN is proposed to
eliminate overestimation in the learning process and improve
the performance of the double deep Q-network (Double DQN)
algorithm [19] [20]. By applying a primary neural network
Qnet as a nonlinear function approximator to select an action,
and using a target neural network Qtarget to estimate the
target Q-value of the taken action, Double DQN stabilizes
the training process of the RL agent. Dueling DQN further
improves Double DQN by using two separate neural networks
to estimate the state value and the action advantage, and then
the state values and the action advantages are aggregated at the
output layer. By doing this, Dueling DQN can perform more
robust estimations on state values, which lead to significant
improvements on convergence rate and the stability of the
learning process.

However, in order to solve the DFRS problem defined in
this paper using the Dueling DQN method, several challenges
still remain to be tackled:

• Unlike other simple scheduling tasks where the action
space is featured with only single dimension, the action
space of DFRS problem is with two dimensions, i.e.,
edge and cycle selection, which are independent from
each other. However, these two dimensions are synergistic
when scheduling DN flows for deterministic performance.
The edge selection should consider the cycle utilization of
network and cycle selection also depends on the selected
edge/path, which brings a huge challenge to deterministic
flow scheduling;

• To avoid a large amount of invalid actions for scheduling
a DN flow and improve learning efficiency, the size of

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX XXXX 7

© MOSA!C LAB 2021

Target networks

Primary networks

Positive
Experience

Negative
Experience

Prioritized Experience
Replay Memory

Mini‐batch
<𝒔, 𝒂, 𝒓, 𝒔 >

Update 𝜽

M
SE

𝑸 𝒔𝒕, 𝒂𝒊
𝒌,𝒅

Update 𝜽

𝜸 · 𝑸 𝒔 , 𝒂∗

𝒓

Environment
（DN router）

Epsilon‐Greedy +
Action Masking +

Observation
<𝒔, 𝒂, 𝓡, 𝒔 >

Action 𝒂∗

state 𝒔𝒕

Criticality aware
Reward reshaping

𝒔𝒕

𝒔𝒕

𝒔𝒕

State‐action Masking

𝒂∗ 𝒂𝒓𝒈𝒎𝒂𝒙𝒂 𝑸 𝒔 , 𝒂

𝓡, 𝒔𝒕

G
radient descent

loss

𝐚𝐫𝐠𝐦𝐚𝐱
𝒂

𝑸 𝒔, 𝒂

𝑨𝒅 𝒔𝒕, 𝒂𝒊
𝒌,𝒅

𝑽 𝒔𝒕

𝒔𝒕

BDQN

𝒂𝒊
𝒌,𝟏, 𝒂𝒊

𝒌,𝟐

𝒂∗

Action m
ask

a

c

bb

𝑸𝒅 𝒔𝒕, 𝒂𝒊
𝒌,𝒅

𝓡 𝒂𝒊
𝒌 𝓡 𝒂𝒊

𝒌 𝑹 ·
𝒊
𝒏

Fig. 3: Branching dueling Q-networks based learning process.

the action space, which is proportional with the amount
of the edges in the topology and cycles considered in a
hypercycle, can be further reduced;

• Specialized rewards for flows with different criticalities
should be designed so that the DN flows are scheduled
with different priorities.

Therefore, as shown in Fig. 3, three approaches or tech-
niques are proposed in this section to respond to the chal-
lenges mentioned above. Generally, two neural networks are
employed, the Primary network for selecting an action, and the
Target network for estimating the target Q-value of the taken
action. The parameters θ of target networks will be updated
from primary networks every certain number of iterations.
The experience replay technique is also adopted to stabilize
the learning process. In addition, to improve the learning
efficiency and accuracy, we carry out the following:

• We incorporate the advances of action branching with
dueling deep Q-network (Dueling DQN) [21], which is
referred to as a branching dueling Q-network (BDQN),
to solve the action selection with multiple dimensions;

• We use the action masking to block a large amount
of invalid actions. A delay-aware masking method is
designed to reduce the size of the action space while
ensuring enough exploration space;

• We design a criticality-aware reward function to entitle
different priorities for DN flows with different types, e.g.,
high priority for HRT flows.

A. Branching Dueling Q-Network

The action branching methods proposed in [22] improve
the conventional deep Q-network to solve MDP with multi-
dimensional discrete action space. The main idea is to evaluate
the individual action dimension ak,di ∈ Ad, d ∈ {1, ...,M},
e.g., edge and cycle selection in the DFRS problem, while
keeping a common state-value estimator between multiple
dimensions. Each dimension has a certain degree of auton-
omy. The structure of BDQN is illustrated in Fig. 3(a), the

BDQN further splits the advantage branch into two advantage
branches based on Dueling DQN, while keeping a shared
representation of the input state. Specifically, the advantage
branches correspond to the two dimensions of action in this
study, i.e., ak,1i = eki , a

k,2
i = tki , each dimension has nd sub-

actions. For example, the nd of the edge dimension is |E|. As
shown in Fig. 3(a), a network state st is input into a shared
neural network (yellow block), which will then compute a
latent representation which is used for the evaluation of
the state value (blue block) V (st) and the factorized (state-
dependent) action advantages (green block) Ad(st, a

k,d
i) on the

subsequent independent branches. The dimensions of action
advantages and state value are aligned, i.e., max{n1, ..., nM}.
Then state value V (st) and the factorized advantages are
combined to output the Q-values for each action dimension.
Note that, in order to filter the Q-values for the valid sub-
action of each action dimension, action masking is applied
here to accelerate the learning processing. Finally, the sub-
actions with maximal Q-values of each action dimension are
selected for the generation of a joint action tuple.

The advantage of each dimension, i.e., Ad(st, a
k,d
i) is

trained with the common state value V (st), and then the Q-
value of each dimension Qd(st, a

k,d
i) is obtained by aggregat-

ing the value branch and the corresponding advantage branch
as follows.

Qd(st, a
k,d
i) = V (st)+(Ad(st, a

k,d
i)− 1

nd

∑
âk,d
i ∈Ad

Ad(st, â
k,d
i)).

(14)
Then, the action selection follows the ϵ-greedy policy,

that is, select a random action with probability ϵ and with
probability (1− ϵ) to select:

a = {argmax
ak,1
i

Q1(st, a
k,1
i ;θ), ..., argmax

ak,M
i

Qd(st, a
k,M
i ;θ)}

(15)
The TD-target of BDQN is similar with that in dueling DQN

to avoid maximization bias, but it is derived by averaging

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX XXXX 8

across all dimensions of the action

y = R̂(aki) + δ
1

M

∑
d

Q̂d(s
′
t, argmax

âk,d
i ∈Ad

Q′d(s′t, â
k,d
i)) (16)

We use Mean Square Error (MSE) to update the parameter
θ by the gradient descent method.

B. Action Masking

At the early stage of training, the agent learns to find a
valid schedule of a flow in an exploring way. The sub-action is
selected by the agent for the action space |E|×|T |, most edges
and cycles in the action selected at this stage are not valid for
constituting a feasible path, which will slow down the learning
efficiency. To avoid the sparse rewards induced by the invalid
actions in the training processing, action masking is proposed
in this section to block the actions which are obviously invalid
to improve the learning efficiency.

Action masking will be applied in two phases of the whole
training processing: 1) the action selection phase and 2) the
Q value updating phase. We maintain binary lists [ai], [cj],
where i ∈ E and j ∈ T to filter the invalid actions each time
the agent selects a sub-action. ai = 1 if ith edge is adjacent
to the edge selected by the former action, otherwise ai = 0.
When selecting valid cycles along the path, two aspects should
be considered: 1) maximum delay (offset) in each switch and
2) residual available latency budget. Since the queues in a
router transmit the packets in a round-robin way, which means
each queue transmits packets every N cycles, the packets will
be delayed at most (N − 1) cycles in a switch, that is cj = 1
for j ∈ (t, t+N − 1) should be satisfied, where t is the cycle
selected for the former sub-action.

Besides the constraint of maximum offset in one node,
the cycle selection should also satisfy the end-to-end latency
requirement. Therefore, each time the agent selects an action,
the actual latency that this flow consumes should not exceed
the maximum latency bound Dmax

k . That is, cj = 1 for
j ∈ (t,Dmax

k), otherwise, cj = 0. The list [ai], [cj] is
recalculated and multiplied by original Q values each time
when making a sub-action decision. This narrows down the
scope of action selection, the agent chooses an edge and cycle
from valid actions that have the highest Q value, which can
produce more positive experience and improve the sample
efficiency in the training process.

Action masking is also applied in the process of Q-value up-
dating. During the learning period, to avoid the overestimation
of the actual Q-value, action selection is based on the Q value
of policy network Q(s, a) in the TD-error calculation as (16).
In this section, we modify the Qd(s

′, âk,di) by multiplying it
with [ai], [cj], that is, Q′

d(s
′, âk,di).

C. Criticality-aware reward function

Although the controller can schedule the real-time flows
by assigning the cycles for packet transmission along the
path with the CSQF mechanism, it cannot always guarantee
all real-time flows are scheduled successfully because of the
resource competition. Therefore, Deep-DFS should learn the
criticalities of different DN flows, so that all HRT flows are
scheduled successfully and the total utility for SRT flows is

TABLE II: Flow types with different criticalities

Flow type Size Period Delay Bounds
FHRT {1,2,4} DUs {2,4,8,16} cycles {(8,10),(18,20)}

cycles
FSRT {1,2,4} DUs {2,4,8,16} cycles {(6,8,10,12),

(16,18,20,22)}
cycles

FBE {2} DUs {2} cycles —-

maximized. Besides Hk, which can represent if a HRT flow is
scheduled, Uk can be defined by a linear function, starting at
a maximum utility of 1, linearly decreasing after breaking the
delay bounds, reaching a zero utility at a certain value, e.g.,
Uk = 1, when 8 < t < 10, Uk = 0 when t < 6 or t > 12.
Therefore, the soft delay bound of a SRT flow is denoted as
(6, 8, 10, 12).

V. EVALUATION

A. Evaluation Settings

By conducting simulation experiments of Deep-DFS, we
demonstrate the effectiveness of Deep-DFS in maximizing the
number of scheduled flows under different network scales as
well as flow distributions by comparing it with two benchmark
methods.

We evaluate the performance of Deep-DFS on a Ladder
Network Topology introduced in an Ethernet Consist Network
[23], which is an international standard of train communication
network. In this paper, the size of the ladder topology is varied
from 6 nodes to 10 nodes. Besides the network topology, the
DN flows for training and evaluation are both generated as
per Table II with the probabilities of 40%, 40% and 20%
on the HRT, SRT and BE types, respectively. Note that the
flows of FBE are considered as background traffic which has
no deadlines. Within each flow, srck and dstk are randomly
selected from all nodes in the networks. The packet length
(in data units, DUs), period (in cycles) and delay bounds (in
cycles) are selected randomly from the set in Table II. In
addition, we also set the data rate of all physical links to
1 Gbit/s, and the capacity of each cycle is 100 DUs. The
hypercycle is 16 according to periods of all flows.

For the configuration of the BDQN, the parameters are
employed based on the common settings for designing neural
networks [19], i.e., two-fully connected hidden layers are
together deployed with input and output layers. The size of
the hidden layers is 128, the size of the output layer is 2,
which represents the index of the selected edge and cycle.
The mini-batch size is 32 and the discount factor γ is set to
0.5. The initial value of ϵ is 1.0 and decays to its final value
0.01. The agent will be trained and evaluated on the same
topology but with different flows, separately.

B. Baseline Methods Compared

To evaluate the effectiveness of Deep-DFS, we compare it
with the following baseline methods. 1) DRLS: The DRL-
based TTEthernet Scheduler [6] outputs edge action step by
step to constitute a complete flow schedule, but use a heuristic
method to select the earliest available cycles with low degree.
2) HLS: heuristic list scheduler (HLS) selects [5] a time slot

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX XXXX 9

which leads to the minimum end-to-end delay on the shortest
routing path between the source node and the destination node
of a flow. If this minimum delay exceeds the deadline of fk,
the scheduler fails to schedule this flow.

C. Incremental Scheduling Scenario

In this scenario, we randomly generate the flow one by
one and insert the flow to the network incrementally. If the
agent fails to schedule a HRT flow then it stops, and then
we compare the maximum number of successfully scheduled
HRT flows and the utility of the SRT flows of each solution.

As shown in Fig. 4(a), Deep-DFS can schedule more HRT
flows than the other two methods in general, specifically,
14.8% more on average than DRLS, 32.1% more on average
than HLS in ladder networks. Since HLS always selects the
first available time slot to transmit the packets on the shortest
path, it will derive the minimum latency for all flows regardless
of the flow criticalities and their delay bounds. Therefore,
HLS will saturate the cycles and edges soon, and increase
the probability of flow blocking by some fully occupied
cycles. DRLS takes into account the cycle usage on the edge,
it avoids selecting the cycles with high degree in order to
save more bandwidth for the flows with different periods.
However, DRLS still tries to select the first available cycle
for packet forwarding and minimizes the E2E delay of the
flow, which is in conflict with the long-term objective of
maximizing the number of flows scheduled in this system. To
this end, Deep-DFS redesigns the network state representation
and reward function to make delay-aware decisions on edge
and cycle selection, so that the HRT flows are prioritized and
no bandwidth resources are wasted on minimizing the E2E
delay. When the size of the ladder topology becomes larger,
Deep-DFS schedules more flows (39.1% more than HLS on
average) in the ladder topology with 10 nodes than with 6
nodes (29.3% more than HLS on average). This is because
Deep-DFS has more exploration space in a larger topology,
while HLS only selects the shortest paths to route the flows
regardless of topology size.

We also evaluate the average utility of SHR flows with the
percentage of BE traffic. We set the probability of generating
BE traffic from 0.2 to 0.36, with HRT and SRT flows are
generated with the same probability. As we can see in Fig.
4(b), it is obvious that the average utility will decrease with
more BE traffic inserted in the network. With the increasing
BE traffic, the network bottleneck will come earlier and the
utility of SRH flows in the HLS case will decrease a little
faster than the other two methods due to the selection of
shortest paths, as discussed above. The link and cycle usages
are also shown in Fig. 4(c) and Fig. 5(a). The results show
that although the HLS method will lead to more cycles with
high traffic load (≥60%), the link usage induced by HLS is
lower than the that of Deep-DFS, which is not intuitional. This
is because, on the one hand, the resources are exhausted in
earlier cycles by minimizing the E2E delay with HLS, though,
HLS also stops to schedule flows earlier than Deep-DFS. That
makes the overall link usage of HSL lower than Deep-DFS by
21.3% on average in the ladder topology. We also find that the
link usage decreases slightly with more nodes in the ladder

topology for Deep-DFS, as it prefers to choose a longer route
to balance the link load and avoid the bottleneck.
D. Multipath Scheduling Scenario

As shown in Fig. 6, to implement the multipath scheduling
with a DRL solution, flow splitting module is needed in the
DRL agent. The flow splitting and tagging function and the
flow recovery function should be also deployed to map the
multipath selection. Upon receiving the request information
of flow fk from the host, the DRL agent calculates the action
for this flow. If the agent fails to find a valid schedule for flow
fk, the flow split module modifies the request information by
dividing the size of the flow into 1/q, e.g., 1/2 while keeping
other requirements unchanged. Then the q sub-flows are fed
into the action selection module again. If they are scheduled
successfully, in other words, the q sub-flows are scheduled
with different paths while the delay requirements of all sub-
flows are satisfied, the corresponding flow splitting information
will be tagged on the packets of this flow, and they will be
reassembled in the destination host. Once the agent fails to
schedule one of the q sub-flows, it stops.

We set the topology with 10 nodes and generate the flows
with an average packet size (in DUs) from 1.5 to 3.5. We
also assume that q = 2 and 1 DU is the minimal transmission
unit that cannot be split any further in this case. From Fig.
5(b), we can observe that the number of scheduled HRT flows
decreases with the increase of average packet size, as high-
size packets consume more bandwidth resources. However,
compared with a single path schedule, multipath scheduling
has better performance in finding valid schedules for HRT
flows. In addition, the number of scheduled flows in multipath
scheduling decreases more slowly than that of single path
scheduling for the reason that the HRT flows have more chance
to be scheduled after they are split into multiple sub-flows.
We also evaluate the performance of multipath scheduling in
terms of the jitter of the SRT flows, as shown in Fig. 5(c).
As there is no hard deadline for the SRT flows, the jitter
of the SRT flows is usually higher than that of the HRT
flows. Because once a HRT flow fk is scheduled, the delay
jitter of this flow ought to be within (Dmax

k − Dmin
k). We

find that multipath scheduling also outperforms single path
scheduling in terms of jitter performance. Furthermore, the
jitters of the SRT flows with multipath scheduling can be well
controlled within three cycles on average, while the jitters with
single path scheduling are much larger, due to the more severe
competition for resources in case of only one transmission
path.

VI. CONCLUSION

In this study, we proposed a deep reinforcement learning
based deterministic flow scheduler (Deep-DFS) to solve the
scheduling problem of DetNet (DN) flows with multiple crit-
icalities. We leverage Deep-DFS to determine the routing and
cycle selection for DN flows with the Cycle Specified Queuing
and Forwarding (CSQF) mechanism, where 1) the timeline is
divided into multiple cycles with equal duration and 2) the
controller can specify the cycles for packet forwarding so that
the end-to-end delay of DN flows can be controlled effectively.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX XXXX 10

6 nodes 8 nodes 10 nodes
Nodes in Ladder Topology

400

450

500

550

600

650

Nu
m

be
r o

f H
RT

 fl
ow

s s
ch

ed
ul

ed

Deep-DFS
DRLS
HLS

(a)

0.20 0.24 0.28 0.32 0.36
Percentage of BE traffic

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
ea

n
Ut

ilit
y

of
 S

RT
 F

lo
ws

Deep-DFS
DRLS
HLS

(b)

6 nodes 8 nodes 10 nodes
Nodes in Ladder Topology

0.60

0.65

0.70

0.75

0.80

0.85

Lin
k

Us
ag

e

Deep-DFS
DRLS
HLS

(c)

Fig. 4: (a) Number of HRT flows scheduled; (b) Utility of SRT flows; (c) Link Usage with different nodes in ladder topology.

6 nodes
Nodes in Ladder Topology

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Pe
rc

en
ta

ge
 o

f c
yc

le
 w

ith
 lo

ad
>6

0% Deep-DFS
DRLS
HLS

(a)

1.5 2 2.5 3 3.5
Average Packet Size

580

600

620

640

660

680

700

Nu
m

be
r o

f H
RT

 fl
ow

s s
ch

ed
ul

ed

Single-Path
Multi-Path

(b)

1.5 2.0 2.5 3.0 3.5
Average Packet Size

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Av
er

ag
e

jit
te

r o
f S

RT
 F

lo
ws

 (c
yc

le
s) Single-Path

Multi-Path

(c)

Fig. 5: (a) Percentage of cycles with traffic load over 60%; (b) Number of HRT flows scheduled under single and multi-path
scheduling; (c) Average jitter of SRT flows under single and multi-path scheduling.

© MOSA!C LAB 2021

DRL agent

Flow
split

modulesub-flows

Host Flow Splitting
& Tagging Forwarding Flow

recovery Host
flow

Sub-flows
with tags

flow

Action
selection
module

Flow splitting
configuration

Scheduling failure

Fig. 6: DRL-based flow splitting and multipath scheduling.

To make the proposed Deep-DFS schedule the flows with
multiple criticalities, several technologies were proposed to
increase scalability and performance. Compared with the other
AI-based and heuristic-based methods, Deep-DFS can increase
the scheduled flows by 14.8% and 32.1%, respectively. How-
ever, it is worth noting that the proposed centralized scheduling
approach is merely suitable for scenarios with small network
scales, e.g., within a factory network. If the network scale is
large, the round-trip time of the signaling between the source
node of a flow and the controller becomes also too large, which
makes no sense to a time-sensitive flow. Furthermore, runtime
re-configuration is also a challenge for a centralized controller.
Large-scale deterministic flow scheduling requires a disparate
solution, e.g., distributed learning and distributed scheduling
approaches, which can facilitate the learning process and
network configuration locally. Therefore, the way to design a
distributed learning architecture and train distributed learning
agents for flow scheduling with segment routing efficiently
will be considered in our future work.

REFERENCES

[1] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial
communication: Automation networks in the era of the internet of things
and industry 4.0,” IEEE industrial electronics magazine, vol. 11, no. 1,
pp. 17–27, 2017.

[2] H. Yu, T. Taleb, and J. Zhang, “Deterministic service function chaining
over beyond 5g edge fabric,” in 2021 IEEE Global Communications
Conference (GLOBECOM). IEEE, 2021, pp. 1–6.

[3] J. Krolikowski, S. Martin, P. Medagliani, J. Leguay, S. Chen, X. Chang,
and X. Geng, “Joint routing and scheduling for large-scale deterministic
ip networks,” Computer Communications, vol. 165, pp. 33–42, 2021.

[4] N. Wang, Q. Yu, H. Wan, X. Song, and X. Zhao, “Adaptive scheduling
for multicluster time-triggered train communication networks,” IEEE
Transactions on Industrial Informatics, vol. 15, no. 2, pp. 1120–1130,
2018.

[5] M. Pahlevan, N. Tabassam, and R. Obermaisser, “Heuristic list scheduler
for time triggered traffic in time sensitive networks,” ACM Sigbed
Review, vol. 16, no. 1, pp. 15–20, 2019.

[6] C. Zhong, H. Jia, H. Wan, and X. Zhao, “Drls: A deep reinforce-
ment learning based scheduler for time-triggered ethernet,” in 2021
International Conference on Computer Communications and Networks
(ICCCN). IEEE, 2021, pp. 1–11.

[7] D. Hellmanns, J. Falk, A. Glavackij, R. Hummen, S. Kehrer, and F. Dürr,
“On the performance of stream-based, class-based time-aware shaping
and frame preemption in tsn,” in 2020 IEEE International Conference
on Industrial Technology (ICIT). IEEE, 2020, pp. 298–303.

[8] M. Barzegaran, N. Reusch, L. Zhao, S. S. Craciunas, and P. Pop,
“Real-time guarantees for critical traffic in ieee 802.1 qbv tsn networks
with unscheduled and unsynchronized end-systems,” arXiv preprint
arXiv:2105.01641, 2021.

[9] Y. Nakayama and D. Hisano, “Multi-stream gate control of time aware
shaper for high link utilization,” in 2021 IEEE International Conference
on Communications Workshops (ICC Workshops). IEEE, 2021, pp. 1–6.

[10] J. Falk, F. Dürr, and K. Rothermel, “Exploring practical limitations of
joint routing and scheduling for tsn with ilp,” in 2018 IEEE 24th Inter-
national Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA). IEEE, 2018, pp. 136–146.

[11] H. Yu, T. Taleb, J. Zhang, and H. Wang, “Deterministic latency bounded
network slice deployment in ip-over-wdm based metro-aggregation

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX XXXX 11

networks,” IEEE Transactions on Network Science and Engineering,
vol. 9, no. 2, pp. 596–607, 2022.

[12] H. Yu, T. Taleb, and J. Zhang, “Deterministic latency/jitter-aware service
function chaining over beyond 5g edge fabric,” IEEE Transactions on
Network and Service Management, pp. 1–1, 2022.

[13] A. N. Abbou, T. Taleb, and J. Song, “Towards sdn-based deterministic
networking: Deterministic e2e delay case,” in 2021 IEEE Global Com-
munications Conference (GLOBECOM). IEEE, 2021, pp. 1–6.

[14] “Ieee standard for local and metropolitan area networks–bridges and
bridged networks–amendment 29: Cyclic queuing and forwarding,”
IEEE 802.1Qch-2017, pp. 1–30, 2017.

[15] M. Chen, X. Geng, and Z. Li, “Segment routing (sr) based bounded la-
tency,” Internet Engineering Task Force, Internet-Draft draft-chendetnet-
sr-based-bounded-latency-00, 2018.

[16] V. Gavriluţ and P. Pop, “Traffic class assignment for mixed-criticality
frames in ttethernet,” ACM Sigbed Review, vol. 13, no. 4, pp. 31–36,
2016.

[17] G. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo, Soft Real-Time
Systems. Springer, 2005.

[18] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “Tcp extensions
for multipath operation with multiple addresses,” Tech. Rep., 2013.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[20] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 30, no. 1, 2016.

[21] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
International conference on machine learning. PMLR, 2016, pp. 1995–
2003.

[22] A. Tavakoli, F. Pardo, and P. Kormushev, “Action branching architectures
for deep reinforcement learning,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 32, no. 1, 2018.

[23] I. E. Commission et al., “Electronic railway equipment—train commu-
nication network (tcn)—part 3-4 (s): Ethernet consist network (ecn),”
International Electrotechnical Commission, pp. 61 375–3, 2014.

Hao Yu received the B.S. and Ph.D degree in com-
munication engineering from the Beijing University
of Posts and Telecommunications (BUPT), Beijing,
China, in 2015 and 2020. He was also a Joint-
Supervised Ph.D. Student with the Politecnico di
Milano, Milano, Italy. He is currently a Postdoctoral
Researcher with the Center of Wireless Communica-
tions, Oulu University, Oulu, Finland. His research
interests include intelligent edge network, time sen-
sitive networks, 6G deterministic networking.

Tarik Taleb is currently a Professor at the Cen-
ter of Wireless Communications, The University of
Oulu, Finland. He is the founder and director of
the MOSA!C Lab (www.mosaic-lab.org). Between
Oct. 2014 and Dec. 2021, he was a Professor at the
School of Electrical Engineering, Aalto University,
Finland. Prior to that, he was working as Senior
Researcher and 3GPP Standards Expert at NEC
Europe Ltd, Heidelberg, Germany. Before joining
NEC and till Mar. 2009, he worked as assistant
professor at the Graduate School of Information

Sciences, Tohoku University, Japan, in a lab fully funded by KDDI. From Oct.
2005 till Mar. 2006, he worked as research fellow at the Intelligent Cosmos
Research Institute, Sendai, Japan. He received his B. E. degree in Information
Engineering with distinction, M.Sc. and Ph.D. degrees in Information Sciences
from Tohoku Univ., in 2001, 2003, and 2005, respectively.

Prof. Taleb’s research interests lie in the field of telco cloud, network soft-
warization & network slicing, AI-based software defined security, immersive
communications, mobile multimedia streaming, and next generation mobile
networking. Prof. Taleb has been also directly engaged in the development
and standardization of the Evolved Packet System as a member of 3GPP’s
System Architecture working group 2. Prof. Taleb served on the IEEE
Communications Society Standardization Program Development Board.

Prof. Taleb served as the general chair of the 2019 edition of the IEEE
Wireless Communications and Networking Conference (WCNC’19) held in
Marrakech, Morocco. He was the guest editor in chief of the IEEE JSAC
Series on Network Softwarization & Enablers. He served on the editorial board
of the IEEE Transactions on Wireless Communications, IEEE Wireless Com-
munications Magazine, IEEE Journal on Internet of Things, IEEE Transactions
on Vehicular Technology, IEEE Communications Surveys & Tutorials, and a
number of Wiley journals. Till Dec. 2016, he served as chair of the Wireless
Communications Technical Committee, the largest in IEEE ComSoC.

Prof. Taleb is the recipient of the 2021 IEEE ComSoc Wireless Commu-
nications Technical Committee Recognition Award (Dec. 2021), the 2017
IEEE ComSoc Communications Software Technical Achievement Award
(Dec. 2017) for his outstanding contributions to network softwarization. He
is also the (co-) recipient of the 2017 IEEE Communications Society Fred
W. Ellersick Prize (May 2017), and many other awards from Japan. Some
of Prof. Taleb’s research work have been also awarded best paper awards at
prestigious IEEE-flagged conferences.

Jiawei Zhang received the Ph.D. degree from
the State Key Laboratory of Information Photonics
and Optical Communications, Beijing University of
Posts and Telecommunications (BUPT), China. He
currently is an associate Professor with BUPT. Dr.
Zhang has authored and co-authored more than 30
OFC/ECOC papers and top journal papers in optical
communication and networks. His research interests
include the collaboration of optical networks with
IP, wireless and cloud/edge, currently with an em-
phasis on the advanced technologies for providing

deterministic connections for future network applications. He served on the
Technical Program Committees for the IEEE DRCN 2018-2020, IEEE ICNC
2017-2018, ACP2020, and for the Workshop on Cloud Computing Systems,
Networks and Applications at the IEEE GLOBECOM 2014-2016, ICC 2015-
2016, and INFOCOM 2017-2018 conferences. He also severed as a Guest
Editor of the special issue on Resilience in future 5G Photonic Networks of
Photonic Network Communications journal (Springer).

