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Abstract

5G brought an evolution on the network architecture employing the service-based
paradigm, enabling flexibility in realizing customized services across different
technology domains. Such paradigm gives rise to the adoption of analytics and
Artificial Intelligence/Machine Learning (AI/ML) in mobile communications with
the ease of collecting various measurements related to end-users and the net-
work, which can be exposed towards consumers, including 3rd party applications.
AI/ML may influence network planning and optimization considering the service
life-cycle and introduce new operations provision, paving the way towards 6G.
This article provides a survey on AI/ML considering the business, the fundamen-
tals and algorithms across the radio, control, and management planes. It sheds
light on the key technologies that assist the adoption of AI/ML in 3rd Generation
Partnership Project (3GPP) networks considering service request, reporting, data
collection and distribution and it overviews the main AI/ML algorithms charac-
terizing them into user-centric and network-centric. Finally, it explores the main
standardization and open source activities on AI/ML, highlighting the lessons
learned and the further challenges that still need to be addressed to reap the bene-
fits of AI/ML in automation for beyond 5G/6G mobile systems.
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Network Automation.
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1. Introduction

The 5th Generation of mobile communications (5G) and beyond [1] aims to
accelerate the digital transformation across diverse business sectors, including
manufacturing, entertainment, transport, agriculture, retail, logistics and health.
Beyond 5G (B5G)/6G is expected to facilitate further services such as smart cities,
self-sustainable operations in work-sites, drones, biosensors, transferable human
skills over the Internet and allow a mixed-reality experience [2]. Such emerging
business landscape drives new service requirements with extreme capacity and
flexibility, diverse latency (i.e., immediate, bounded and cooperative), tight syn-
chronization and a nearly zero packet loss that is not necessarily coupled with
latency [3]. In addition, the deployment of 5G/B5G/6G may co-exist with 4G/3G,
while introducing various advanced radio technologies (e.g., millimeter Wave
(mmWave), New Radio (NR), massive Multiple-Input Multiple-Output (MIMO))
and a cloud-native core based on softwarization. The support of these diverse
service requirements across heterogeneous networks significantly increases the
operational complexity of B5G [4]. To this end, AI/ML can optimize the network
and service performance, while reducing costs by enabling automation [5, 6].

AI/ML introduces the capability to learn without being explicitly programmed
and can facilitate analytics, which can assist autonomous decisions making. AI/ML
can bring value for Mobile Network Operators (MNOs) during network planning,
optimization and operations. To this end, the reduction of operational costs is only
a short term target. New revenue streams leveraging the service benefits of B5G in
combination with big data are the ultimate goal, where AI/ML can play a signifi-
cant role in differentiating the customer experience as well as creating innovative
services. Indeed, MNOs should explore value generation in relation with new ap-
plications and platforms that offer services based on data analytics and AI/ML [7].
Offering AI/ML services for premium subscribers and towards 3rd party applica-
tions, e.g., for assuring the desired performance, can assist MNOs to enhance
their services beyond connectivity and likewise the earnings [8]. For instance,
autonomous driving applications can benefit from AI/ML services by receiving
proactively network conditions knowledge for future vehicular locations. Hence,
an autonomous driving application can effectively control the level of vehicu-
lar automation considering the expected network performance quality. Similarly,
mixed-reality applications may rely on AI/ML services for assuring proactively
synchronization among distributed application sources leveraging on the benefits
of resource flexibility. In principle, mobile networks can adopt AI/ML services in
different network segments, including:
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• Network management and orchestration with the objective to improve net-
work resource allocation, assure network performance and analyze effi-
ciently failures. The use of AI/ML is expected to assist long-term opti-
mizations, e.g., configuring Network Functions (NF) or scaling up/down
resources [9]. In addition, it can benefit root cause analysis and alarm cor-
relation.

• Radio Access Network (RAN) that relies on real-time or nearly real-time data
for predicting and analyzing user access and radio conditions that are highly
dynamic in nature. The goal is to optimize, e.g., scheduling, interference
control and radio resource sharing.

• Core network provides control plane AI/ML services concentrating on spec-
ified sessions, flows, or User Equipment (UE), with the objective to analyze
or predict users’ communication behavior and mobility, security risks and
assure the desired network performance.

• Application that focuses on optimizations (e.g., re-configuring a video codec),
assessing the Quality of Service (QoS) / Quality of Experience (QoE), pol-
icy negotiation and synchronization of distributed application sources.

Typically, providing analytics is a complex process and may require a com-
bined insight across different network segments. For instance, determining the
level of user plane congestion in an area of interest requires an insight of RAN,
core network resource utilization and UE throughput. The analytics data itself can
also be a significant commercial asset for MNOs provided that the relevant privacy
is respected (e.g., via anonymity). Customer data can be exposed to application
providers or vertical segments, (e.g., for smart grid applications). In addition,
customer data can feed model training and validation.

The compelling role of AI/ML in communication systems and its ability to
provide network optimization and foster service intelligence is captured in several
state of the art contributions. However, the focus is mainly on the algorithmic
aspects considering specific network technologies. The fundamental gap still re-
mains on the AI/ML practice and deployment solutions, especially for beyond 5G
and 6G. Several limitations concentrate on the system architecture that facilitates
data collection and delivery of analytics across different network segments and
towards 3rd parties. Shortcomings also relate to the key AI/ML enablers, which
allow consumers to discover, select, request and control AI/ML services as well
as on the conditions and processes for maintaining an accurate AI/ML model.
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This survey aims to fill these gaps by: (i) elaborating the applicability of
AI/ML data analytics and system-level architecture components in B5G/6G mo-
bile networks; (ii) investigating the adoption of AI/ML algorithms in various prac-
tical user centric solutions and network optimizations; (iii) summarizing the key
enablers and mechanisms to automate the use of of AI/ML allowing a consumer
to discover, request and control analytics services and the MNO to control the
data collection and distribution efficiently; (iv) exploring AI/ML results report-
ing mechanisms; (v) elaborating the configuration and maintainance of AI/ML
models across different vendors’ equipment and among multiple MNOs; and (vi)
overview the current AI/ML Standards Developing Organizations (SDOs) and
open source initiatives and highlighting the potential challenges facing the en-
ablement of AI/ML data analytics in future mobile networks. Table 1 summarizes
the telecommunication network abbreviations used in the article.

The remaining of the paper is organized as follows: Section 2 overviews other
state of the art surveys related to AI/ML. Section 3 elaborates the automation con-
cepts and architecture. Section 4 explores the key AI/ML technologies. Section 5
introduces the main AI/ML algorithms and techniques, while Section 6 details
the adoption of AI/ML algorithms in the 5G and beyond mobile network system.
Section 7 analyses the use cases and business insight related to the adoption of
AI/ML in mobile communications. Section 8 provides the lessons learned and
finally Section 9 concludes this article.

2. State of the Art Surveys

Driven by the anticipated key role of AI/ML in mobile networks, numerous
surveys were conducted covering various aspects in network planning, optimiza-
tion and operations. Wang et al. [10] offers a historic overview of ML providing
an in-depth analysis of various algorithms including heuristics for intelligent de-
cision making in complex heterogeneous networks. Mao et al. [11] detailed an
extensive insight of advanced ML techniques, i.e., Deep Learning (DL), with re-
spect to different network layers, including physical, data link, routing, security
and data compression. In particular, the survey elaborates the use of DL in modu-
lation, coding, error correction and signal detection, channel allocation, schedul-
ing, resource management and routing, flow identification and intrusion detection.
Similarly, Kaur et al. [12], elaborate ML techniques for 5G and beyond detailing
their impact on application and network infrastructure layers.

Preliminary efforts that adopted AI/ML techniques in networking concentrate
on traffic classification, a complex problem considering the plurality of traffic
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Table 1: List of telecommunication network abbreviations used in the manuscript.

Abbreviation Description Abbreviation Description
3GPP 3rd Generation Partnership Project 5G 5th Generation of mobile communications
5GC 5G Core 6G 6th Generation of mobile communications
ADAES Application Data Analytics Enablement Service ADRF Analytics Data Repository. Function
AF Application Function API Application Programming Interface
B5G Beyond 5G CR Cognitive Radio
CSI Channel State Information D2D Device-to-Device
DCCF Data Collection Coordination Functionality DDoS Distributed Denial of Service
EGMF Exposure Governance Management Function ENI Experiential Network Intelligence
ETSI European Telecommunication Standards Institute gNB Next generation NodeB
IDS Intrusion Detection System IoT Internet of Things
KPI Key Performance Indicator LoA Level-of-Automation
LTE Long Term Evolution LTE-U LTE-Unlicensed
MDAS Management Data Analytic Service MDT Minimization of Drive Test
MIMO Multiple-Input Multiple-Output MLFO ML Function Orchestrator
mmWave millimeter Wave MNO Mobile Network Operator
MnS Management Service MOS Mean Opinion Score
NE Network Element NEF Network Exposure Function
NF Network Function NFV Network Function Virtualization
NFVI NFV Infrastructure NIDS Network Intrusion Detection System
NOMA mmWave Non-Orthogonal Multiple Access NRF Network Repository Function
NWDAF Network Data Analytics Function OAM Operations Administration and Maintenance
ONAP Open Network Automation Platform OPNFV Open Platform NFV
ORAN Open RAN PDU Protocol Data Unit
QoE Quality of Experience QoS Quality of Service
RAN Radio Access Network RIC RAN Intelligent Controller
RRC Radio Resource Control RSRP Refrence Signal Receive Power
RSRQ Refrence Signal Received Quality RSS Received Signal Strength
RSU Road Side Unit S2S Sequence-to-Sequence
SBA Service Based Architecture SBMA Service Based Management Architecture
SBRA Service Based RAN Architecture SEAL Service Enabler Architecture Layer
SDN Software Defined Network SDO Standards Developing Organization
SFC Service Function Chaining SINR Signal to Interference and Noise Ratio
SLA Service Level Agreement SON Self-Organized Networks
UAV Unmanned Aerial Vehicle UE User Equipment
VM Virtual Machine VAL Vertical Application Layer
VNF Virtual Network Function WSN Wireless Sensor Network

patterns. Initially, traffic patterns were identified based on supervised and un-
supervised learning via clustering [13], while more complex methods based on
DL followed applied for encrypted traffic classification as presented by Rezaei et
al. [14]. Various ML-based solutions for traffic classification considering the dif-
ferent steps of ML workflow (i.e., data collection, feature extraction, dimensional
reduction, model deployment), are analyzed by Pacheco et al. [15].

Mobility prediction received significant attention from the early AI/ML stages
due to the key role it plays in enabling various optimizations in mobile networks.
An overview of the state-of-the-art AI/ML algorithms pertained to mobility pre-
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diction, including Markov models, artificial intelligence and probabilistic graphi-
cal models is detailed in [16]. Network optimizations are respectively addressed
by introducing AI/ML in traffic control, routing and QoS/QoE, as elaborated by
Fadlullah et al. [17] and combined with mobility prediction as detailed by Us-
ama et al. [18]. Boutaba et al. [19] also extensively investigated ML techniques
for various key areas of networking focusing on traffic engineering, QoS/QoE,
performance optimization and network security. Sun et al. [20] provided a sur-
vey of the recent advancements of ML in wireless communications focusing on
resource management, routing, caching and mobility management, as well as en-
ergy saving and localization. Zhang et al. [21] studied the usage of DL in resource
management, routing, scheduling, security, mobile applications and monetization.
The authors also analyzed how to tailor DL to mobile environments, pointing out
emerging hardware and software enablers for efficient deployments.

Various surveys are devoted to integrating AI/ML techniques into the design of
SON functions (i.e., self configuration, self-optimization and self-healing). Klaine
et al. [22] surveyed the applicability of ML including supervised and unsuper-
vised learning as well as reinforcement learning, transfer learning and heuristics
in SON. Wang et al. [23] reviewed the different AI techniques to devise SON func-
tions in heterogeneous networks, including heuristics, i.e., genetic algorithms, ant
colony optimization and fuzzy system. The use of distributed ML for 5G and
beyond is explored by Nassef et al. [24] aiming to address ultra-low latency re-
quirement and optimize communication, computation and resource distribution,
while assuring privacy and security.

The use of AI/ML for network security has also attracted considerable atten-
tion in the context of risk analysis and anomaly detection. Hodo et al. [25], Xin
et al. [26], Moustafa et al. [27] surveyed ML-based Network Intrusion Detection
Systems (NIDS), considering DL and ensemble learning algorithms. Other sur-
veys focus on the NIDS application on IoT [28] and cloud systems [29], or lever-
age the benefits of Software Defined Networks (SDN) to implement NIDS [30].
Mishra et al. [31] provided an analysis of shallow ML for anomaly, misuse or hy-
brid detection mechanisms, highlighting the attack detection capability. Deep Re-
inforcement Learning (DRL) based security methods have been surveyed in [32],
while Husák et al. [33] surveyed forecasting methods for cyber security.

A number of surveys have attempted to encompass a broad range of potential
AI/ML-driven applications. Chen et al. [34] analyzed the adoption of AI Neu-
ral Networks (NNs) for addressing IoT, considering resource management among
Multiple Radio Access Technologies (Multi-RAT) as well as emerging applica-
tions, including Unmanned Aerial Vehicles (UAVs)-based communication, Vir-
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tual Reality (VR) and mobile edge caching. Jiang et al. [35] delved into the poten-
tial of leveraging ML in 5G for optimizing resource management for smart grids
and Device-to-Device (D2D) networks, SON functions for small cells and energy
harvesting. Jagannath et al. [36] reviewed the usage of ML to tackle key problems
in IoT with respect to wireless communication system layers. Luong et al. [37] fo-
cused on DRL considering decentralized autonomous networks, wireless caching,
data offloading, adaptive rate control/streaming, localization, resource manage-
ment, network security and crowdsourcing. Table 4 summarizes and classifies the
aforementioned surveys according to the main network attributes considered.

Table 2: AI/ML surveys in mobile networks: State-of-the-art summary.
Network Attributes Survey
Clustering [10, 20, 35]
Edge Computing [20, 24, 34, 37]
Energy Saving/Harvesting [20, 35]
IoT [10, 18, 28, 36, 34]
Traffic Classification [13, 14, 15, 17, 18, 19, 21]
Localization [20, 21, 37, 38, 39]
Mobile APPs [21]
Mobility Prediction [16, 20, 21, 34, 38]
NFV & SDN [18, 29, 30]
QoS/QoE [18, 19, 38]
Resource Management [10, 11, 18, 19, 20, 21, 34, 35, 37, 38, 39]
Security & NIDS [11, 18, 19, 21, 25, 26, 27, 28, 29, 30, 31, 32, 33]
SON [17, 18, 22, 23, 35]
Traffic Control & Routing [11, 17, 18, 19, 20, 21, 37, 38]

The state-of-the-art surveys mainly focus on analyzing the AI/ML algorithm
aspects emphasizing how to apply them into the mobile network to optimize a net-
work attribute or resolve a specific problem. An exception is 5GPPP1 [40], which
provides an insight primarily on the network management architecture enhance-
ments related to network planning, orchestration and diagnostics, optimization
and control. However, none of the current works elaborate how to incorporate
AI/ML in the 5G advanced architecture, (i.e., considering the 3GPP mobile net-
work architecture), detailing its use in the core network, management and orches-
tration as well as application plane. The AI/ML architecture enhancements are
related to new NFs, services and interfaces that allow a consumer to discover,
request and obtain AI/ML intelligence in the form of file reports, streaming or

15G Infrastructure Public Private Partnership (5G PPP) is a joint initiative between the Euro-
pean Commission and European ICT industry.
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notifications. In addition, this survey provides an analysis on the adoption of
AI/ML algorithms for providing statistics/predictions or recommendations in both
the model network and the user device considering the data needed, potential loca-
tion limitations and the interaction with other network entities. It also provides a
categorization of the AI/ML algorithms considering the benefits and limitations in
enhancing service quality and resource optimization in 5G systems and provides
an insight on the MNO mechanisms to control and automate AI/ML services.

3. Network Automation Architecture

3.1. Origins of Automation & SON
The use of automation in mobile networks has a long tradition with origins

from SON. SON was introduced as a network management feature for Long Term
Evolution (LTE) to achieve self-optimization, self-healing, and self-configuration.
SON has applicability in various use cases such as load balancing, handover opti-
mization, fault management, equipment configuration, etc., [41]. SON functions
rely on automation, which consists of monitoring, analysis (e.g., using AI/ML),
decision and execution, enabling continuous optimization. SON functions can be
characterized as centralized, distributed or hybrid, i.e., with distributed operation
and centralized coordination. The notion of automation is an integral component
of SON, i.e., only available for use, providing execution actions. Similarly, AI/ML
that assists a SON function is not visible to a consumer nor feasible to control its
logic and operation. Currently, automation and AI/ML have been widely adopted
in 5G with the advent of new services in the 3rd Generation Partnership Project
(3GPP), allowing consumer interaction. A consumer can be a network logical
or physical entity, an automation or assurance function, a service optimization
tool, a human operator, or an application. The applicability of AI/ML spreads
across 5G core focusing on the control plane and application, the Operations Ad-
ministration and Maintenance (OAM) influencing network planning and resource
configuration, and the RAN for optimizing the user experience considering radio
conditions.

3.2. AI/ML & Network Automation
Network automation that relies on automation loops can be broadly catego-

rized into two types, namely: (i) open loops, where a manual or another separate
process intervenes in taking decisions; and (ii) closed loops, which execute all
steps autonomously [42]. Closed loops take decisions based on the limits of a
given goal, which consists of a set of parameter boundaries that can be adjusted
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considering the outcome of the loop. The notion of automation can be applied
into the different life-cycle phases of a communication service, which include:

• Preparation phase focusing on the design, pre-planning, feasibility check,
negotiation of service attributes.

• Commissioning phase that converts the communication service to network
requirements.

• Operation phase allowing run-time operations, maintaining optimization of
the communication service.

• Decommissioning phase de-activating network resources once no longer
needed.

Figure 1: Closed-loop building blocks and operations [43].

Closed loops continuously observe the behavior of the entities in charge. This
enables a closed loop to analyse and detect ongoing or potential deviations from
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a given target goal, and make decisions if actions are needed to adjust the current
state accordingly [44]. A closed loop consists of the following building blocks as
illustrated in Figure 1:

• Data collection observes and gathers data from relevant data sources.

• Analytics formats data before analysing it to orient and derive an insight of
the past, current or future.

• Decision executes algorithms to achieve intelligence, i.e., recognize patterns
before planning different actions (e.g., determining root causes).

• Execution plans to orchestrate and control actions while resolving conflicts
between different goals.

• Data lake maintains the collected data and knowledge derived after each
step is completed.

Closed loops interact with network resources via continuous iterations as well
as with other peers, i.e., upper or lower level closed loops. The configuration
and management of a closed loop is bounded by governance information, which
can assist in configuration adjustments of the closed loop components. Network
automation can be applied at different scopes, also referred to as automation lay-
ers [45], as illustrated in Figure 2. The complexity of network automation is re-
lated with the residing scope. For instance, the domain layer automation is more
complex compared to a corresponding Network Element (NE) layer, since it needs
to coordinate a set of NEs.

Each automation layer provides optimizations that takes place in the respective
operation scope with the capability of interacting with other automation services
in neighboring automation layers. ZSM elaborates the notion of network automa-
tion in GS ZSM 009-1 [46] considering governance and coordination, while it
sheds light into various solutions in GS ZSM 009-2/3 [47] [48] considering re-
source upgrades, service deployment and configuration, as well as coordination
among multi-domain loops. The autonomy scope of different automation layers
may include the following:

• Autonomy in NE layer by introducing an automation mechanism executed
in the NE; e.g., a SON functions at a base station.
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Figure 2: Scope of automation.

• Autonomy in domain layer, an automation mechanism executed in a 5G
system domain; e.g., element manager of RAN or a NF responsible for
automation in 5G core.

• Autonomy in cross domain layer, involving mechanisms for automation ex-
ecuted across different domains, e.g., across the RAN and 5G core.

• Autonomy in communication service layer related, e.g., to the communica-
tion service management function.

Every autonomy level can be applied in both physical and virtual resources and
support distinct AI/ML models, which can be executed independently. Autonomy
in NE, domain and cross-domain layers relate to network automation, while the
autonomy in communication service comprise the business automation enabling
the interaction with the service consumer.

3.3. AI/ML-pipeline
An AI/ML service consists of numerous logical processes or components,

which are combined forming a pipeline [49]. The main components of a typical
AI/ML-pipeline in future mobile networks, as suggested by ITU-T Focus Group
on ML for Future Networks including 5G (FG-ML5G) [49], involve the follow-
ing:
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• Source that generates raw data (e.g., performance measurements or alarms)
to feed into the AI/ML Model.

• Collector, which collects data from various sources.

• Pre-processor responsible for preparing the data to fit the AI/ML model by
performing data processing operations, cleansing, formatting and/or aggre-
gation.

• Model representing an AI/ML logic or algorithm.

• Policy that leverages the output of the Model and apply a suitable set of rules
depending on the corresponding use case.

• Distributor in charge of identifying the Sinks and the distributing Policy to
forward the output of the Model towards the corresponding Sinks.

• Sink is the target node of the Distributor.

The life-cycle management of an AI/ML-pipeline relies on orchestration; i.e.,
provided by ML Function Orchestrator (MLFO), which takes care of the con-
figuration, scale-up/down and re-location of AI/ML-pipeline components. The
MLFO is responsible for AI/ML service composition based on an input request
or Intent by provisioning a flexible AI/ML service chaining. An AI/ML-pipeline
can serve as a sandbox for simulation or can be applied in a real network environ-
ment directly or both. An AI/ML-pipeline deployment may span across multiple
domains, i.e., RAN, 5G core and transport, which may belong to different admin-
istrative entities.

3.4. 5G Network Architecture & Micro-Services
5G architecture adopts micro-services with the advent of Service Based Ar-

chitecture (SBA) in the 5G core [50]. SBA allows NFs to interact via a com-
munication fabric relying on representational state transfer interfaces, also called
RESTful interfaces [51], enabling a consumer-producer paradigm. Such archi-
tecture enables flexibility in service provision and modular upgrade of NFs in a
multi vendor environment. Similarly, the Service Based Management Architec-
ture (SBMA) [52] introduces a Management Service (MnS)2 component toolset

2In 3GPP terminology, a MnS represents a management plane interface.
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for building 5G management and orchestration solutions. Such an MnS com-
ponent toolset consist of: (i) create, read, update and delete (CRUD) operations
related to a MnS, (ii) the Network Resource Model (NRM) that allows MNOs to
control and monitor the configuration of network resources, and (iii) the reporting
format, e.g., related to measurements or analytics.

NSSF AUSF UDM NEF NRF

AMF SMF PCF AF (trusted)

UPFNG-RANUE

N1 N2 N4

N3

N9

NWDAF

Intra-Domain Integration Fabric

5G Core Network

Domain
MDAF

MnS Producer

PM CMFMKPIs MDT

Cross-Domain
MDAF

NE
MDAF

Network Management & Orchestration 

Intra-Domain Integration Fabric

Data 
Network

AF Application Function
AMF Access and Mobility Management 

Function
AUSF Authentication Server Function
CM Configuration Management
FM Fault Management
KPI Key Performance Indictor
NEF Network Exposure Function
NG-RAN Next Generation Radio Access 

Networks
NRF Network Repository Function
NSSF Network Slice Selection Function
NWDAF Network Data Analytics Function
MDAF Management Data Analytics 

Function
MDT Minimization of Drive Test 
MnS Management Service
PCF Policy Control Function
PM Performance Measurements
SMF Session Management Function
UE User Equipment
UDM Unified Data Management
UPF User Plane Function

Inter-Domain Integration Fabric

Figure 3: An integrated micro-services architecture for 5G core and network management.

Both architecture paradigms, facilitate service acquisition, modification and
termination, while enabling access for 3rd parties, e.g., verticals, leveraging the
exposure capability to assure security, service mapping and abstraction [53] [52].
An overview of an integrated micro-services architecture across the 5G core and
network management is illustrated in Figure 3. In 5G core, the main SBA NF
components are shown considering both the control plane and data plane (UE,
NG-RAN, UPF and data network). In the network management and orchestra-
tion the MDA components are shown considering various MnS data producers,
and the applicability of MDAF in the network element, domain and cross-domain
levels. An inter-domain integration fabric facilitates access capabilities for end-
points across the network management and 5G core, following the Zero Touch
network and service Management (ZSM) paradigm [43]. The inter-domain inte-
gration fabric is a logical entity, which represents a functionality responsible for
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controlling the exposure of services beyond domain boundaries and access to ser-
vices exposed allowing each interconnected domain to connect via native domain
interfaces.

The notion of service based can also be extended into the RAN. A service
based RAN architecture may focus on Next generation NodeB (gNB) (i.e., 5G
base station) split scenarios supporting a flexible combination of Distributed Units
(DUs) with Centralized Units (CUs), involving also gNB control functions. AI/ML
can exploit the benefits of micro-services to enrich the quality of analytics, by al-
lowing to collect and combine analytics and observation data from different tech-
nology domains including:

• 5G core: control plane or user-centric data, e.g., user mobility, communica-
tion patters, service experience.

• Radio: near-real time or real time data, e.g., interference, signal strength,
pilot congestion.

• Network management: performance measurements, (e.g., throughput), KPIs,
(e.g., end-to-end delay), fault management (e.g., alarms) and configuration
management.

• Computing and virtualization: Central Processing Unit (CPU) load, storage,
memory.

• Application: QoE, service sustainability, security.

The adoption of a service based architecture enables the discovery, selection
and invocation of AI/ML analytics even across different domains as well as the
delivery of inter domain anayltics results [43].

3.4.1. 5G Core Network Data Analytics Function
The notion of AI/ML in 5G core is introduced with the advent of Network

Data Analytics Function (NWDAF) [54] [55]. NWDAF can leverage the benefits
of knowledge of the UE identity to deliver various types of analytics related to,
e.g., UE mobility, communications patters, positioning, traffic steering and ab-
normal behavior. A NWDAF can be discovered and selected using an identifier,
i.e., an Analytics ID, that indicates the type of analytics. NWDAF collects data
and delivers analytic results from and towards other NFs including 5G repository
functions, Application Functions (AFs) and the OAM as depicted in Figure 4. It
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takes advantage of the 5G core counters related to, e.g., user location, session es-
tablishment/release, QoS flow monitoring, (e.g., packet delay, bit rate) and traffic
volume [50][53] to derive statistics and prediction analytics. In addition, NWDAF
relies on OAM data including performance measurements [56], radio conditions,
(e.g., interference, received signal power), trace data and KPIs such as end-to-end
latency[57], for providing complex analytics, e.g., congestion experience.

NF

Trusted AF

UDR

OAM

Data Sources

Analytics 
Model

NWDAF

Analytics Output

NEF

NF

UDR

OAM

NEF

5G Core NF

Network Management

Application

Proprietary

Untrusted AF

Trusted AF

Untrusted AF

Figure 4: Overview of NWDAF.

NWDAF can also interact with applications, i.e., AFs from untrusted 3rd par-
ties, via the exposure capability of 5G core, i.e., via the Network Exposure Func-
tion (NEF). Applications may provide NWDAF with performance observation
data, e.g., with the Mean Opinion Score (MOS); data that cannot be obtained nei-
ther from the user nor from the network indirectly. NWDAF may correlate such
application data with user analytics, e.g., mobility prediction, and network con-
ditions to estimate for instance the expected QoE or QoS sustainability in future
locations. NWDAF may also assist an AF to re-negotiate a policy based on the ex-
pected network conditions, which may impact, e.g., the background data transfer
or the selection of the optimal edge computing location.

NWDAF is decomposed into the: (i) Analytics Logical Function (AnLF) that
performs inference, derives analytics and provides the output results to subscribers,
and (ii) Model Training Logical Function (MTLF), which is responsible for ML
model training [58] [55]. The AI/ML model that is used in the training process is
typically proprietary and may vary among equipment vendors. Network analytics
has also provided training based on Federated Learning (FL) in [59], where a FL
server MTLF assigns training towards FL client MLTFs handling consecutive iter-
ations. To manage model re-training [59] introduced the notion of accuracy check
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by comparing the ground truth with predicted data including consumer experi-
ence, in both inference phase performed by the AnLF and training that is handled
by MTLF. A comprehensive study on model accuracy considering detection, in-
terpret, and compensation for potential performance drifts is provided in [60].

3.4.2. 5G Management Data Analytics
MDA (Management Data Analytics) enables analytics in the 3GPP manage-

ment and orechstration plane [61] [62]. MDA offers analytics related to resource
optimization, feasibility check, optimal resource re-configuration, average user
performance (e.g., latency, jitter, throughput) and root cause analysis. Unlike
NWDAF that specifies a function, MDA introduces a service, i.e., MnS or inter-
face, called MDA Service (MDAS) or MDA MnS. MDAS can be contained in a
wide variety of management functions introducing deployment flexibility, includ-
ing also dedicated MDA Functions (MDAFs). An overview of MDA, pointing out
the roles of MDAS and MDAF is shown in Figure 5.
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Figure 5: Overview of MDA.

A MDAF contains the respective MnS consumer part, the MDA internal busi-
ness logic that represent the AI/ML model and the MDA MnS producer respon-
sible for feeding analytics results towards other MDA MnS consumers (as shown
in Figure 5). A MDA MnS consumer can potentially be a management function,
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a SON function, an optimization tool or even a 5G core NF. Analytics in the man-
agement plane can be acquired using an identifier, i.e., MDA type, that specifies a
unique MDA capability corresponding to a predefined service. A MDAF collects
OAM performance measurements [56], KPIs [57], trace data including Minimiza-
tion of Drive Tests (MDT) measurements [63], alarm information [64] and con-
figuration management data from other MnS producers. More complex analytics,
e.g., service experience in relation with resource management, can be obtained
from interacting with NWDAF. For instance, NWDAF may provide an indication
of QoE for a group of UEs, i.e., when a certain percentage of UEs experience a
MOS score below a given limit, it may trigger MDA to analyze the resource uti-
lization. MDA on the other hand can feed NWDAF with RAN or network load
analytics to complement estimations of the expected service performance.

Similarly, user location can enhance the MDA quality when correlated with
configuration management or can assist analytics related to resource allocation.
MDAF may use the 5G core conventional SBA interfaces, i.e., Nnwdaf and Nlmf,
to collect core network data, while it provides information towards the 5G core
using MDAS or MDA MnS interfaces. Certain analytics may also benefit from
non-3GPP management data, which may include coverage information related
to different types of networks or even data, e.g., from cameras, to complement
the perception of user behaviour. Unlike NWDAF, which focuses on statistics
and predictions, MDA may additionally provide recommendation options, e.g.,
identify a potential issue or type of problem, e.g., in terms of location, objects
involved, or the optimal network configuration, e.g., endorse the use of too-late
or too-early handover or dual connectivity. MDA may further need to enable
analytics towards 3rd parties, exploiting the service exposure mechanisms in the
management plane, called Exposure Governance Management Function (EGMF).

3.4.3. 5G Application Data Analytics Enablement Service
Application Data Analytics Enablement Service (ADAES) [65] introduces ap-

plication specific analytics, i.e., predictions and statistics, for verticals or edge ap-
plications providing an insight of service parameters. The ADAE client in the UE,
can provide application specific data to the ADAE server, which may also inter-
act with the 5G core and management plane, collecting additional data if needed
through network exposure. The application enablement layer hence, can expose
in a unified manner analytics related to application, 5G core and network manage-
ment towards verticals. ADAES comprises a Service Enabler Architecture Layer
(SEAL) supporting application data analytics towards the Vertical Application
Layer (VAL). Typical SEAL services towards VAL may include location manage-
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ment, group management, configuration management, identity/key management,
network resource management and data delivery, which can be reused among dif-
ferent vertical applications. The ADAES architecture relies on: (i) a data collec-
tion and distribution function to coordinate efficiently the data requested or pro-
vided by ADAE server and (ii) a repository function to store historical data and
analytics for future use. ADAES may support numerous value-add capabilities as
documented in [66] for enabling analytics including the following:

• Application server or session performance analytics proactively identify ap-
plication service adaptations and trigger adjustments at the communication
layer.

• Edge load analytics related to computing and platform load, assist applica-
tions to decide when to scale-in, scale-out or migrate.

• UE-to-UE session performance analytics predict the performance of an ap-
plication, i.e., QoS attributes, among UEs in a service group with VAL ca-
pabilities, allowing the VAL layer to pro-actively adapt.

• Slice-related App performance analytics provide performance insights for
VAL applications utilizing a network slice and recommendations for slice
(re-)configuration.

• Location accuracy analytics related to the deviation of a UE location from
the expected one can assist applications that need positioning to decide if
service adaptation, e.g., automation, is needed.

• Service API analytics including statistics on the successful/failed API invo-
cation or predicted API availability can comprise a tool to be used by the
API provider to help optimizing the API usage.

3.4.4. AI/ML Applications on UEs
The development of AI applications for UEs, which may include, e.g., video or

speech recognition, picture optimization, intelligence assistanceand robot control,
can introduce advanced 5G network requirements for supporting AI/ML opera-
tions [59]. The use of 5G network aims to anticipate UE device limitations as
illustrated in Figure 6 related to storage, computing, energy and privacy, when
handling AI/ML:
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Figure 6: Overview of various scenarios for supporting AI/ML applications in UEs [59].

• Split model inference since UEs may face certain performance or battery
limitations that provide a barrier to run an AI/ML model for inference. In
this circumstances, splitting an AI/Ml model across the device and an edge
cloud to provide inference in a combined manner can resolve this issue as
long as the network service in terms of latency and UL/DL throughput can
satisfy the requirements of model inference. To achieve this a new QoS pro-
file and policy enhancements are introduced to support application AI/ML
operational traffic.

• Multi-model storage, distribution and sharing for UEs that may use differ-
ent models for distinct situations, e.g., peak/off-peak times, on the move
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or at specific locations, but have no capacity to store them. In this case,
UEs may fetch a model when needed without disrupting other services.
To achieve this monitoring support of network resources for timely model
transfer can assist in selecting the time and connectivity link for retrieving
the desired model.

• FL model training performed by different UEs using local data to assure
privacy. An aggregator application server combines local updates to create
a global model which is then distributed towards the subscribed UEs. Se-
lecting the appropriate UEs is the main challenge, since FL training needs
to be performed within a specified short time window in where UEs and
network shall have sufficient resources. A network assisted UE selection is
proposed in [50], in where the exposure function, i.e., NEF, recommends
UEs for FL training considering the network conditions and network ana-
lytics, while the application server checks the UE availability and handles
the consecutive training iterations.

3.5. Edge Computing & Open Platforms
Edge computing [67] can facilitate AI/ML edge services closer to the user

leveraging the low latency benefits of proximity. An AI/ML edge can also pro-
cess data requests providing intelligence at a reduced network cost. For instance,
every time somebody asks Siri or Alexa a question, the voice recording can be
processed by AI/ML edge that translates the voice to text, allowing a command
processor to generate the desired answer. AI/ML edge may enable on-premise
services, e.g., for Industrial IoT, to improve the network performance and provide
application layer services such as camera analytics. An AI/ML edge resides in the
data network and can be an integral part of the 5G core being connected on the
data plane via the User Plane Function (UPF) as shown Figure 7.

UE (R)AN UPF

5G Core SBA (as per 3GPP TS 23.501 / TS 23.502)

Data Network

AI/ML Edge

Figure 7: AI/ML edge within the 5G core SBA.
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The UPF may provide accessibility to the AI/ML edge following the supplied
rules based on user subscription, UE location and application information. The
role of the edge in AI/ML operations can permit the following:

• Enriched data by allowing to collect more raw data closer to the data source.

• Reduced data transfers via pre-processing by filtering out irrelevant data, or
by aggregating data before feeding AI/ML services.

• Real-time data insights by transforming raw data into analytics instantly.

• Local intelligence by enabling the edge to process local data for ultra-low
latency applications without central cloud involvement.

• Federated learning by sharing local learning experience.

Besides its benefits, edge computing may introduce significant challenges in
power consumption, data storage and security/privacy, since the edge may hold
the majority of data and transfer only a small fraction to the cloud. Hence, careful
considerations are needed in the planning phase and deployment of edge AI/ML
services.

Figure 8: ONAP automation management [68].

The rapid development of AI/ML solutions in the mobile edge relies on the
openness of business opportunities, i.e., allowing 3rd parties via open interfaces to
enable and modify services and related features. The Open Network Automation
Platform (ONAP) [69] offers an open-source life-cycle management facilitating
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AI/ML capabilities, policy-aided analytics, information models and an orchestra-
tion layer, which can configure and manage services across legacy and emerging
networks. An overview of automation management, mainly inspired by ONAP
as defined in [68], is illustrated in Figure 8, highlighting the various phases of the
service life-cycle. A de facto standard related to open source NFV platforms is de-
fined by the Open Platform for NFV (OPNFV) [70] project, which aims to shape
the open source community, e.g., OpenStack and Kubernetes. OPNFV introduces
automation solutions driving the adoption of closed loop over NFVI layer and
supports cloud native models and APIs considering various types of closed loops,
e.g., real time, near real time and offline.

3.6. Open RAN
ORAN defines an eco-system that sheds light into open interfaces to enable

multi-vendor deployments, allowing application providers and operators to intro-
duce their own services. ORAN adopts the 3GPP RAN disaggregation paradigm,
which splits a base station into a Central Unit (CU), Distributed Unit (DU), and
Radio Unit (RU) component, with the CU being further split into two logical com-
ponents, i.e., one for control plane and another for the user plane. This logical split
allows a flexible RAN deployment on different cloud platforms and locations,
with the RAN components connected via open interfaces. The O-RAN architec-
ture [71] is the foundation for developing a virtualized RAN on open hardware
introducing programmability into the RAN to optimizing radio components using
closed-loop control. ORAN specifies two type of logical RAN Intelligent Con-
troller (RIC): (i) non-real time RIC that facilitates control and RAN optimization
operations greater than 1 second and (ii) near-real time RIC with control capability
less than 1 second for optimizing RAN elements and radio resources.

The non-real time RIC can also provide policy-based guidance or other fea-
tures in near-real-time RIC and support exposure. Each RIC type enables appli-
cations, i.e., xApp on near-real-time RIC and rAPPs on non-real-time RIC, by
different vendors or 3rd parties, which are used to facilitate distinct radio features
and optimizations. An overview of the ORAN architecture showing the oper-
ation of different RIC types in relation with rAPPs and xAPPs is illustrated in
Figure 9. In the context of AI/ML, different xAPPs and rAPPs can offer micro-
services related to AI/ML models, inference or training functionality, data collec-
tion and preparation, model management, verification and monitoring. Non-real
time RIC receives the performance requirements and provides RAN configuration
and analytics, supporting the deployment, training and update of AI/ML models.
AI/ML models and real-time control functions are then distributed towards the
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Figure 9: ORAN architecture and xAPPs/rAPPs.

corresponding near-real time RIC. The main use cases related to non-real time
RIC including interface are described in [72], while the AI/ML workflow show-
ing the roles and inter-relation of AI/ML comments is elaborated in [73]. The
architecture description of the near-real time RIC is detailed in [74]. The main
requirements related to the network, functional, inter-working, performance and
operations are detailed in [75].

4. AI/ML Enabler Technologies

The AI/ML enabler technologies allows the use of a service considering the
selection criteria, the means to request and receive analytics, the data collection
for determining analytics results and the distribution for circulating the results.
Specifically, the enabler technologies consist of a set of mechanisms that offer:

• a consumer the capability to discover the desired AI/ML service, and then
use and control it throughout the service life-cycle,

• the MNO to control the data collection and distribution efficiently,

• policy and governance mechanisms between the consumer and the MNO to
simplify and automate the use of the AI/ML services.
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4.1. Discovering AI/ML Analytics
A consumer that requests an AI/ML analytics service, needs to know that it can

fulfil its needs. This depends on the AI/ML service capabilities that has two-folds:
(i) the type of AI/ML service, algorithm, location and other potential filtering
options, (e.g., time schedule, reporting modes, target objects) and (ii) the hardware
and software availability on a specific location, e.g., computing power, storage
and queuing. The discovery process can take place in the following two different
ways:

• Centralized repository wherein AI/ML analytics can register the entire range
of its serving capabilities. A consumer can then place a discovery request
towards the repository and receive a set of AI/ML analytics that can fulfill
the request. The consumer can then select the most appropriate one based
exclusively on the information received.

• Hybrid approach where the consumer can request a centralized entity, e.g.,
a Domain Name Server (DNS), to get some basic information like the IP
address of a set of AI/ML analytics. In this case the centralized repository
only holds basic information regarding the AI/ML service. The consumer
can then request the detailed capabilities directly from the entity that offers
the AI/ML service, before making a selection.

It shall be noted that the centralized approach is more simple but can only offer
non-real time information regarding the AI/ML service capabilities. The hybrid
one on contrary, allows the consumer to obtain the AI/ML service capabilities
directly and hence get a real-time perspective. The deployment of the discov-
ery approach depends on the trade-off between the complexity, i.e., including the
singling overhead, and the AI/ML service information accuracy needs.

4.2. AI/ML Service Request & Reporting
AI/ML consumers may request a customized service by fine tuning a number

of different parameters related to timing, location or particular events, shaping in
this way the output reporting [55] [61]. A consumer can subscribe, issue a single
request on-demand, or create a reporting job for an AI/ML service, which may
contain:

• AI/ML service type identifier indicating the desired service, e.g., mobility
prediction, NF load prediction, etc.
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• Target of an AI/ML service that relates to the object(s) involved, including a
UE, group of UEs, session or flow, area of interest, slice, or a combination,
e.g., once a UE enters an area of interest.

• Filter information, specifies the conditions, which should be fulfilled before
triggering an AI/ML service considering timing, i.e., create a report period-
ically or at specific times, or upon a particular event, e.g., exceeding a load
threshold.

• Immediate reporting flag that indicates an urgent notification related to the
current status of the subscribed AI/ML service, provided that it is available.

• Target time duration related to an AI/ML service, indicating the desired
time duration in the past that a statistics report should consider or the future
time duration where a prediction report should be valid for.

• Feasibility time that specifies until when a requested AI/ML service is needed
by a consumer; this parameter limits unnecessary reports.

• Ratio or accuracy, (high, medium, low), related to the sampling ratio of the
target objects, e.g., 60% of the UEs or 50% of the base stations in a given
area of interest; this parameter regulates the cost of the AI/ML report.

• Group reporting indicates that a AI/ML service should be processed or ag-
gregated before being reported to the consumer, specifying the method (e.g.,
average).

• Reporting mode that characterizes whether the reporting type should be con-
tinuous, i.e., streaming, or file based or notifications considering the filtering
information.

• Subscription reporting information that regulates the volume of reporting
by indicating the reporting times, periodicity, duration or the number of
expected reports.

• Notification address that is used to provide the AI/ML report, which can
potentially be different from the one that subscribes or creates the AI/ML
service.

A consumer can modify a request by altering the involved parameters or the
respective values. Since multiple instances of an AI/ML service may be deployed

25



inside a mobile operator’s network, such parameters together with the geograph-
ical context can be used to assist the AI/ML service discovery. A consumer may
subscribe to an on-going or request to set-up a new AI/ML service. In other words,
there are two modes of operation including:

• Synchronous assuming that the AI/ML producer is continuously providing
analytics results using a specific AI/ML model under a regular schedule
based on input data from predetermined sources. AI/ML results are con-
strained in terms of the input data sources, AI/ML model in use and the
regularity schedule of input data. One the other hand, results are always
ready and available immediately towards interested consumers.

• Asynchronous allows a consumer to place a new service request to select
on-demand an AI/ML model and input data providing customization, i.e.,
offering the capability to pick the input data sources with the desired KPIs,
location and time schedule, i.e., real-time or non-real-time. However, the
collection of data and the AI/ML inference may introduce a delay in deliv-
ering results towards the corresponding consumer.

Once an AI/ML service producer prepares the report that contains the re-
quested anylytics, it exposes it towards the consumer including also the following
parameters:

• AI/ML service reporting type, indicating whether the reporting contains: (i)
statistics based on past measurements, (ii) a prediction of future behavior,
or (iii) recommendations of optimal parameters or configuration, with the
final decision remaining at the consumer.

• Validity period that specifies until when a report is useful, e.g., NF load
prediction for the next 20 minutes.

• Timestamp of an AI/ML report that defines a record related to the report
generation time.

• Confidence degree of statistics or prediction indicating the accuracy of data
reported.

• Reporting expiration information, which indicates on the report the corre-
sponding AI/ML service termination in terms of timing or number of re-
maining reports.
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4.3. Data Collection, Preparation & Distribution
Data collection is naturally the first action to take before using an AI/ML ser-

vice. Typically, a consumer may indicate a target that can be a UE or group of
UEs or alternatively a geographical area, network equipment or a network slice.
Potentially a target is related to a network condition or event, e.g., an alarm, or
application. Each analytics service, i.e., Analytics ID or MDA type, consume
as input, data from pre-reconfigured, requested, i.e., customized, or private data
sources. A wide variety of data can be collected using control plane related mea-
surements [55], OAM performance measurements and KPIs [56][57] as well as
user reporting such as Minimization of Drive Tests (MDT) [76] and application
performance. Once data is collated, there is a need to analyze it and prepare it for
use by the respective AI/ML model. Data preparation involves: i) data recovery
and cleaning considering both systematic and random errors, and ii) data format-
ting for specific AI/ML models. The main mechanisms considered for collecting
data are classified into the following categories:

• Counter based data collection focusing on the rate of a network procedure,
e.g., handover success/failure.

• Network resource related data collection considering the access medium,
e.g., RAN, link utilization and VNF processing and memory measurements.

• Packet data collection capturing per packet performance, e.g., latency or
loss [77][78].

• Flow-based data collection related to a cluster of packets with the same
characteristics, e.g., QoS flow [79] [80].

• MDT report based data collection based on individual UE feedback related
to radio conditions, location and service performance.

• Logs based data collection gathering information from logs files stored in
the network entities [81].

The effectiveness of data collection lies in the usefulness of information, the
authenticity of data and trustworthiness of the source. Data collection and dis-
tribution can bring scalability challenges since the same data may be needed by
various AI/ML services. In this case data sources need to handle multiple sub-
scriptions and send multiple notifications containing the same data. To avoid
this, 3GPP has introduced the Data Collection Coordination and Delivery (DCCF)
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function [55] to coordinate the collection and distribution of data. Data consumers
including NWDAF may send a request to DCCF instead of the corresponding NF
data source. Once DCCF receives a data request it first determines the status of
data collection, i.e., it checks prior records or data profile registrations. If DCCF
determines that the requested data is already being collected, it forwards it to the
consumer, or if it is already stored in a data repository it provides information to
retrieve it. Besides the advancement of DCCF in 5G core, the management plane
has also considered to specify an equivalent data coordination service in [82].
Three distinct ways to collect and distribute data are currently considered includ-
ing:

• Real-time data collection and distribution via streaming, can improve the
AI/ML performance and responsiveness to dynamically changing condi-
tions, e.g., related to RAN. Nevertheless, it may prove to be costly in terms
of network resource consumption.

• File based data transfer in conjunction with filtering conditions, i.e., thresh-
old oriented or periodic updates, can regulate the required network resources,
but may impact the AI/ML accuracy [83][84][85].

• Notification based that handles small data, which can be transferred imme-
diately once produced towards the consumer.

Data collected from various sources including analytics results can be stored
for future used in a data repository, referred to as Analytics Data Repository Func-
tion (ADRF) in the context of 3GPP 5G core. AI/ML models can also be stored in
ADRF, which can be transferred using containers, via serialization or by sharing
the address from where an AI/ML model can be retrieved.

4.4. Policy & Intent Based AI/ML Services
When requesting AI/ML services, a consumer may specify certain conditions

either in the form of a policy or as an intent. A policy indicates is a set of rules,
typically modeled around events or conditions related to data collection, process-
ing and reporting, e.g., once a user starts moving. A policy-based framework that
obtains performance and configuration parameters to take decisions, reflecting
dynamic resource alternations and varying service requirements is considered by
ETSI Experiential Network Intelligence (ENI) [86] [75]. The ENI reference ar-
chitecture [87] facilitates automation, service orchestration and security [88]. To
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assure compatibility with other systems and data formats the ENI architecture re-
lies on the Application Programming Interface (API) broker to serve as a gateway
providing translation mechanisms.

On the other hand, the notion of intent aims to simplify the networking envi-
ronment by capturing the business insights. It is defined as a declaration of oper-
ational goals that a network should meet specifying what to accomplish, without
indicating how to achieve them [89]. Since there is a plethora of ways to deliver an
intent across the network, e.g., assuring the desired application performance may
be achieved by various combinations of latency, loss and thought, it is necessary
to plan and assess the effectiveness of actions taken by receiving feedback. To
achieve this, closed loops are employed, which consist of the following functional
building blocks:

• User interaction allows to communicate an intent and receive feedback, en-
abling users to assess whether the imposed intent has the desired effect.

• Translation captures an intent into policies including the relative algorithms,
while it provides feedback abstracting observations to validate compliance
with the intent.

• Operations configures the policies and course of actions across the network
infrastructure and assures the desired performance using AI/ML and orches-
tration is aligned with the desired business outcomes.

Intent-based networking represents a learning system, which is subject to rea-
soning, before implementing changes over the course of time. Such learning abil-
ities can be applied to different tasks such as translation, planning, optimization
and refinement processes, enabling a continuously evolving system. GR ZSM
005 [90] elaborates various mechanisms that enable automation considering the
implications on the ZSM framework architecture [43].

5. AI/ML Algorithms

This section provides an overview of the various AI/ML algorithms consider-
ing the different types of learning and the depth of learning. Table 3 summarizes
the AI/ML algorithms abbreviations used in the article.
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Table 3: List of AI/ML algorithmic abbreviations used in the manuscript.

Abbreviation Description Abbreviation Description
AdaBoost Adaptive Boosting AI Articial Intelligence
ANN Artificial Neural Network ARIMA Auto Regressive Integrated Moving Average
BRNN Bidirectional Deep Recurrent Network CNN Convolutional Neural Network
DAE Deep Auto-Encoder DBM Deep Boltzmann Machine
DBN Deep Belief Network DDPG Deep Deterministic Policy Gradient
DL Deep Learning DM Data Mining
DNN Deep Neural Network DP Dynamic Programming
DQN Deep Q-Network DRF Distributed Random Forest
DRL Deep Reinforcement Learning DT Decision Trees
ELM Extreme Learning Machine EM Expectation Maximization
ESN Echo State Network FDL Federated Deep Learning
FNN Feed-back Neural Network GAN Generative Adversarial Network
GBM Gradient Boosting Machine GMM Gaussian Mixture Model
GNB Gaussian Nave Bayes GNN Graph Neural Network
GWO Grey Wolf Optimization HMM Hidden Markov Model
KNN K-Nearest Neighbors LR Linear Regression
LSM Liquid State Machine LSTM Long Short-Term Memory
MC Monte Carlo ML Machine learning
MLP MultiLayer Perceptron MNN Modular Neural Network
NN Neural Network PBRS Potential Based Reward Shaping
PNN Probabilistic Neural Network PPO Proximal Policy Optimization
PSO Particle Swarm Optimization RBM Restricted Boltzmann Machine
RL Reinforcement Learning RNN Recurrent Neural Network
SVM Support Vector Machine SVR Support Vector Regression
TD Time Difference TL Transfer Learning
XGBoot eXterme Gradient Boosting Trees XRT Extremely Randomized Trees

5.1. Types of Learning
5.1.1. Supervised Learning

Supervised learning refers to ML algorithms trained on labeled data (i.e., in-
puts for which the desired outputs are known) to learn a mapping [91]. Supervised
learning can be used to solve two types of problems, namely:

• Classification problems, where the predicted output is a discrete categorical
value representing the class to which the input sample belongs. Depending on
the number of classes, the classification task can be either binary or multiclass.

• Regression problems, rely on ML algorithms that facilitate learning of a con-
tinuous mapping function, which can be used to predict the output, e.g, the
prediction of the next user’s position based on the previous residing locations.
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5.1.2. Unsupervised Learning
Unlike supervised learning, unsupervised learning operates over unlabeled

data by uncovering hidden patterns [92]. The key problems solved by unsuper-
vised learning include:

• Clustering, which groups data into clusters based on their similarity. Sam-
ples within the same cluster exhibit high similarity, while samples belonging to
different clusters have low similarity.

• Dimensionality reduction, which focuses on compressing the data while main-
taining its structure and usefulness. Dimensionality reduction is the process of
reducing the input’s dimension (i.e., number of features) by retaining salient
and informative features, which can decrease the computational complexity.

5.1.3. Semi-Supervised Learning
Semi-supervised learning exhibits the same usage as supervised learning, but

with the key difference of leveraging partially labeled data for training. In real-
world applications, labeled data may be scarce or expensive, and a fully labeled
data set on large scale may not be feasible [93].

5.1.4. Reinforcement Learning
Reinforcement Learning (RL) allows an agent to learn through trial and error

by interacting with its environment [94]. As illustrated in Figure 5, at each time
step, the agent observes the environment’s state and selects an action based on its
policy. By executing the selected action, the environment transits from the old
state to a new state and generates a feedback in the form of reward. This reward
is used by the agent to determine the optimal policy that maximizes the expected
cumulative rewards. An RL problem is typically modeled either as a Markov
Decision Process (MDP) or as a Partially Observable Markov Decision Process
(POMDP) and can be resolved by three main learning approaches, namely [95]:

• Dynamic Programming (DP) that computes optimal policies given a perfect
knowledge of the environment, i.e., the state transition probabilities and re-
wards. The assumption of a perfect knowledge of the environment dynamics
makes DP algorithms of limited practical use.

• Monte Carlo (MC), assumes no prior knowledge of the environment and re-
quires only experience in the form of sample sequences of states, actions and
rewards from interaction with the environment. MC learns from an episode,
i.e., a complete scenario of states-actions-rewards, that leads to a terminal state.

31



Action

Reward

State

Agent

Environment

RL Algorithm

Policy

Policy 
update

Figure 10: Reinforcement Learning.

• Time-Difference (TD) that allows the agent to learn the model from experi-
ences without necessarily knowing the MDP modeling environment. Unlike
MC, TD learns from an incomplete episode.

5.1.5. Transfer Learning
Transfer Learning (TL) leverages prior knowledge derived from a problem

domain to solve new similar problems [96]. The capability of exploiting previous
expertise enables faster learning for a new model.

5.1.6. Ensemble Learning
Ensemble learning considers multiple models combining their decisions. Com-

mon types of ensemble learning include: (i) bagging, which builds multiple mod-
els, each of them trained on a subset of the training data set; (ii) boosting, in which
a set of models are built sequentially, where each subsequent model learns from
the errors of the previous one; and (iii) stacking, which trains a supervisor model
to aggregate the outcome of a set of models [97].

5.1.7. Online Learning
In online learning, ML models learn from continuous streams of data instead

of the training data set at once, but it may take time before providing accurate
solutions. Online learning is useful when the data is too large to fit into memory
or when new data constantly arrives [98].

5.1.8. Federated Learning
Federated Learning (FL) is a distributed ML approach that aims to train a

model based on local data preserving privacy. Figure 11 illustrates the master-
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slave paradigm that FL follows in which a number of clients or slaves, e.g., mo-
bile devices or base stations, collaboratively train a centralized global model by
aggregating their locally-computed model updates through a central server, i.e., a
master, while keeping their training data localized [99]. Once updated, the new
improved global model is shared with the clients and the procedure is repeated.

Figure 11: Federated Learning.

5.2. Depth of Learning
Considering the model architecture, ML algorithms can be divided into shal-

low learning algorithms and deep learning algorithms.

5.2.1. Shallow Learning
Shallow learning refers to ML methods that involve only one or two layers

of input data transformation to learn the output. Shallow learning requires fea-
ture engineering to identify the relevant input features that improve the model’s
performance [100].

5.2.2. Deep Learning
Deep learning (DL) refers to ML techniques that rely on a multi-layered rep-

resentation of the input data. The main advantages of DL over shallow learning
are its ability to automatically learn useful features from multi-dimensional raw
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data and scale its performance with the volume of data. The popularity of DL in
networking relies on recent computer technology developments (i.e., memory and
processing power) [21].

5.3. Adopting Learning Types in 5G Advanced Mobile Networks
The adoption of the different types of learning in a 3GPP based 5G advanced

mobile network depends on the expected architecture impact of analytics. This
can be reflected on the goal of output results during the model inference and on
the AI/ML model training techniques and data availability. In the 5G core, the
analytics offered by NWDAF complement the decision making of other 5G NFs
by offering statistics and predictions. The use of recommendations in the form
of an embedded the decision logic on NWDAF would make obscure the services
of other 5G NFs, e.g., if the NWDAF can recommend a UPF selection then the
SMF selection service is no longer needed violating the basic consumer-producer
principles of the SBA. ADAES follows similar principles to complement the con-
sumer decisions on the application layer, but the MDA on the other hand offers
additionally recommendations but for the purpose of root-cause analysis.

Table 4: Applicability of types of learning in mobile networks
Types of Learning Inference Training 3GPP Architecture

Element
Supervised Learning Statistics/Predictions Labeled data NWDAF, MDAF,

(MNO/Verticals) ADAES
Unsupervised Learning Pattern recognition Unlabeled data Data preparation
Semi-supervised Learning Statistics/Predictions Labeled/Unlabeled NWDAF, MDAF,

data (MNO/Vertical) ADAES
Reinforcement Learning Recommendations Network state/Reward MDAF

An overview of the applicability of types of learning in mobile network con-
sidering the 3GPP architecture elements is summarized in table 4. 5G advanced is
primarily considering supervised and semi-supervised learning as well as ensem-
ble learning. AI/ML models are based on labeled data provided by the MNO or a
vertical segment to facilitate statistics and predictions. Reinforcement learning is
only applied for MDA recommendations related to trouble shooting, while unsu-
pervised learning can be used in principle for the data preparation phase. Transfer
learning is discussed for the scenario of UE applications, but more work is needed
to identify the appropriate model transfer and the UE target. Currently, online
learning is avoided due to the time it takes to reach a stable performance, but this
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technique may flourish with the advent of digital twins [101], which may train an
AI/ML model before getting online.

The use of FL allows distributed training and data privacy in two scenarios
including the 5G core network and UE AI/ML based application. In the 5G core,
an NWDAF server controls the process by selecting FL clients and aggregating the
updates providing the trained AI/ML model back to the requesting AnLF once the
target performance requirements, i.e., in terms of accuracy or time limits, are met.
For UE AI/ML based application a 3rd party AF acts as a server with the assistance
of NEF, which acts as FL client discovery and selection based on the 3rd party
service requirements as well as model exchange mediator. Using multiple layers
of learning or running an AI/ML model can assist to split a model to accelerate
the performance for both inference and training.

5.4. ML Algorithms
5.4.1. Shallow Algorithms

Several shallow ML algorithms currently exist in literature, including:

• Linear Regression (LR) is adopted by supervised learning to find the relation
between variables to predict the next output [102]. The limitation of LR is its
assumption of linearity between input and output data.

• K-Nearest Neighbors (KNN) is commonly used by supervised learning for
both classification and regression. The core idea of KNN is that similar objects
are close to each other. KNN selects K similar objects to a given item by cal-
culating the degree of similarity, e.g., based on the Euclidean distance. KNN is
easy to interpret, but its speed can be slow especially for large data sets [103].

• Support Vector Machine (SVM) is a supervised learning algorithm that can
deal with both linear and non-linear classification and regression problems.
SVM is defined by an optimal separating hyperplane that can accurately dif-
ferentiate classes. For non-linear problems, kernel methods can be used to map
the original input data into a higher-dimensional space, where it becomes lin-
early separable [104].

• Decision Trees (DT) is a supervised learning technique that uses a divide-and-
conquer strategy, i.e., by selecting attributes of the input data, to construct a tree.
The leaves of the tree represent the data labels or classes, while the non-leaf
nodes represent the decision characteristics that lead to the classification [105].
While DT is robust to noisy data and easy to interpret, it is oversensitive to
small changes in the input data.
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• Random Forest is an ensemble learning technique that combines a set of DT,
where each tree is constructed by randomly selected subset features and train-
ing data. The predictions of different DT are aggregated forming a decision
by averaging the individual tree predictions for regression problems or taking
a majority vote for classification problems [106]. Compared to DT, Random
Forests provide improved accuracy, but at the price of decreased interpretation
due to feature visibility.

• Adaptive Boosting (AdaBoost) is an ensemble learning algorithm, which can
address both classification and regression problems. It combines multiple weak
models to build a strong model. The weak models are used sequentially, where
each subsequent model focuses on samples that are incorrectly classified by
the previous model. To this end, the training data is weighted assigning higher
weights to the incorrectly predicted samples [107].

• Naı̈ve Bayes is a classification algorithm based on the Bayes theorem with a
conditional “naı̈ve” independence assumption between the features given the
output class. A Naı̈ve Bayes model can efficiently handle high-dimensional
input data, thanks to the conditional independence assumption. However, its
accuracy can significantly decrease if the features are not independent [108].

• K-Means is an unsupervised clustering algorithm that separates data into K
groups. K-means tries to minimize the sum of the distance between each item
and the center of the group, i.e., the centroid point [109]. Fuzzy C-means is
a variant of K-means, where a data item can belong to more than one cluster.
K-means is simple and can scale to large data sets forming clusters of different
shapes and sizes. Nevertheless, it is sensitive to the initial selection of centroid
points and may suffer from data outliers.

• Expectation Maximization (EM) is an unsupervised clustering algorithm that
assumes that the data points follow a general probability distribution [110]. EM
starts with a random guess related to the data distribution or clustering, and then
proceeds to improve iteratively by alternating the following two steps. In the
first step called expectation, it assigns each data point to a cluster probabilis-
tically. Then in the consequent maximization step, it updates the hypothesis
using the data generated in the expectation step. EM stops when the expecta-
tion and maximization steps converge.

• Principal Component Analysis (PCA) is an unsupervised learning technique
used for reducing the dimensions of a large data set. The main idea of PCA is to
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identify the most valuables variables and reduce others to simplify the problem
without compromising accuracy [111]. PCA relies on the use of eigenvalues to
transform the original variables into new variables. Despite its benefits, PCA
can lead to low performance if the original data set has a weak or no correlation.

• Artificial Neural Networks (ANNs) consists of multiple interconnected pro-
cessing nodes, called artificial neurons, arranged into an input layer, hidden
layer, and output layer. An ANN is a feed-forward neural network as the in-
formation moves only forward from the input layer, through the hidden layer
towards the output layer. Inputs are real numbers forwarded via edges that typi-
cally have a weight towards an artificial neuron, which performs a computation
mostly based on some non-linear function. ANN may adopt random weights
initially, which can be optimized using the back-propagation algorithm [112].

5.4.2. Deep Learning Algorithms
DL algorithms are based on ANNs with multiple hidden layers between the

input and output layers. The common DL approaches are presented below:
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Figure 12: An MLP structure with three hidden layers.

• MultiLayer Perceptron (MLP), also known as Feed-back Neural Networks
(FNNs), is the quintessential deep form of ANNs. It consists of multiple fully
connected layers, where every neuron is connected to all neurons in the sub-
sequent layer [113]. Figure 12 illustrates an example of MLP with 3 hidden
layers. The output propagated by a perceptron to the next layer is based on an
activation function applied over the weighted sum of the received inputs plus a
bias factor.
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Figure 13: The basic RNN structure.

• Recurrent Neural Network (RNN) is designed to deal with sequential data en-
dowed with an internal memory to keep track of past events. The internal mem-
ory is realized by feeding back the output of a hidden layer at time step t to the
input of the same hidden layer at time t+1 as illustrated in Figure 13. RNNs are
trained using Backpropagation Through Time algorithms and are ideal for time-
series forecasting tasks [114]. RNN suffer from the vanishing and exploding
gradient problems, introducing difficulties in training. Long Short-Term Mem-
ory Network (LSTM) and Gated Recurrent Units (GRU) are popular variants of
RNN with the capability to address gradient issues [115, 116].
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Figure 14: Typical Structure of a CNN.

• Convolutional Neural Network (CNN) is a feed-forward network that has
neurons arranged in three dimensions: width, height and depth. The hidden
layers in CNN are composed of a stack of convolutional and pooling layers, as
depicted in Figure 14. A neuron inside a layer is connected to only a small set
of neurons in the previous layer, called a receptive field. The purpose of the
convolutional layer is to filter and extract the features. The pooling layer aims
to reduce the spacial dimensions (i.e., width, height) of the input, making CNN
less prone to overfitting, which allows better generalization [117]. Despite such
benefits, CNNs incur high computational cost and a slow training speed.

• Generative Adversarial Networks (GANs) are composed of two competing
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NNs, a generator and a discriminator, that are trained by an adversarial process.
The generator learns to generate plausible data, while the discriminator learns
to distinguish the generated and real data. The training process reaches equi-
librium when the discriminator can no longer differentiate the real data from
the one produced by the generator [118]. Figure 15 shows the structure of a
GAN. One prominent application of GANs is the introduction of training data
for cases where training data may be scarce or expensive to acquire.
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Figure 16: A typical structure of an RBM.

• Deep Boltzmann Machines (DBMs) are deep variant of Restricted Boltzmann
Machines (RBMs) with multiple hidden layers. An RBM is a stochastic, undi-
rected graphical model including a visible layer and a hidden layer forming a
bipartite graph. All visible neurons are connected to all hidden neurons (using
weights) and there are no connections between neurons of the same layer as
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shown in Figure 16. In DBMs, the bipartite connections are also established
between adjacent hidden layers. The training of RBMs and DBMs consists in
adjusting the parameters to learn the probability distribution that fits the input
data [119]. Initially, used for unsupervised learning, RBMs and DBMs have
also been successfully applied for automatic feature extraction.
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Figure 17: The structure of three-layer DBN.

• Deep Belief Networks (DBNs) are probabilistic generative models constructed
by stacking multiple RBMs. A DBN is a hybrid graphical model including both
directed and undirected connections [120]. Figure 17 illustrates a three-layer
DBN. Like DBMs, DBNs aim to learn the probability distribution of the input
data. The training of a DBN is performed in a greedy layer-wise manner, where
each RBM is trained independently and the output of its hidden layer serves
as input of the subsequent RBM. The DBNs have shown the potential to solve
time-series forecasting tasks.

• Deep Auto-Encoders (DAEs) are unsupervised deep learning models trained
to reproduce the input at the output layer. A DAE consists of two symmetric
parts, an encoder and a decoder as depicted in Figure 18. The encoder converts
the input into an abstraction, called code, which is then mapped back to the
original input using the decoder. The training process of a DAE model aims
to minimize the reconstruction error [121]. DAEs are suitable for non-linear
dimensionality reduction, feature extraction, and anomaly detection.

5.4.3. Reinforcement Learning Algorithms
RL algorithms may vary depending on applicability and computation require-

ments. RL algorithms are mainly value-based or policy-based, but there is also
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a hybrid approach that combines both methods [95]. Despite the proof of con-
vergence, RL algorithms fail to find an optimal policy within a reasonable time
in practice. Thus, the combination of RL and Deep Neural Networks (DNNs) is
essential to effectively manage scalability issues.

• Value-based RL algorithms estimate the value or the state-action value of be-
ing in a given state. Q-learning is a prime example that uses a simple structure
represented by a table, i.e., Q-table. However, the algorithm in practice is lim-
ited and inefficient [122]. Consequently, Deep Q-Network (DQN) replaces the
static Q-table with a DNN. The DNN computes the quality of each action in a
given state and maps states to actions. DQN relates to various algorithms as-
sociated with the value-based family, including SARSA, Double DQN [123],
Dueling DQN [124], Noisy DQN [125], and DQN with Prioritized Experience
Replay [126].

• Policy-based RL algorithms modify directly the policy instead of computing
an action-state approximation for each state. Policy-based algorithms replace
the value-based ones in high dimensional action-space. These algorithms ad-
dress the exploration/exploitation trade-off problem leveraging stochastic prob-
abilities for each action [127], but may converge on a local maximum rather
than on the global optimum. Policy Gradients (PG) algorithms such as REIN-
FORCE and its variants [128] are examples of policy-based RL algorithms.

• Hybrid RL algorithms combine both value-based and policy-based approaches
[129] facilitating simplicity in selecting an algorithm considering the type of
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problem, learning time, and computational power. The respective agent mea-
sures the quality of actions through value-based methods, while it optimizes
the policy function leveraging the policy-based methods. This category shel-
ters many state-of-the-art algorithms such as Advantage Actor-Critic (A2C),
Asynchronous Advantage Actor-Critic (A3C) [130], Deep Deterministic Pol-
icy Gradient (DDPG) [131], and Proximal Policy Optimization (PPO) [132].

6. AI/ML & Mobile Network Optimizations

This section provides a comprehensive overview related to the applicability
of AI/ML algorithms described in Section 5 in mobile networks elaborating key
procedures and operations.

6.1. Network & Service Optimization Assisting Analytics
Network and service assisting analytics can offer an insight to allow the MNO

or a third party to optimize service and network usage. In mobile networks, the
prediction of user mobility may assist other services and network operations al-
lowing efficient and proactive resource management, service continuity and opti-
mal location-based services [16]. Similarly, user grouping analytics can assist to
improve network scalability and service experience, facilitating optimized alloca-
tion and efficient resource sharing among users.

6.1.1. Mobility Prediction
AI/ML techniques can handle large-scale data suiting the requirements for

mobility prediction [133, 134]. Karimzadeh et al. [135] devised a hybrid Markov
chain model to foresee the user’s future locations. The use of ensemble learning
and adaptive Markov Chain models for predicting users’ position and trajectory
is explored in [136]. Whilst Markov Chain-based models exhibit low comput-
ing complexity, they fail in inferring the long-term correlations between observa-
tions [137].

A dual connectivity mechanism for handover management based on trajectory
prediction is detailed in [138] based on a three-layer LSTM that predicts UE’s
movement trends taking into account historical trajectories. Such predictions are
used to determine whether a handover is required, in order to establish dual con-
nectivity among the serving and target cells, which yields a significant improve-
ment in service experience. Ozturk et al. [139] designed two novel DL-based
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mobility prediction models to enable proactive handover management. The pro-
posed models leverage LSTM and MLP algorithms to predict the user’s location
considering historic data. The experimental results demonstrate the superiority of
the LSTM-based model over MLP in terms of prediction accuracy, which yields
significant benefits in reducing signaling overhead, latency and call dropping.

Mobility-awareness is also exploited to enable smart content caching strate-
gies. Tang et al. [140] proposed a mobility-aware cache policy based on the RNN
model for Information Centric Networks (ICN) with edge computing. The fore-
cast locations based on historical trace are then leveraged to decide whether and
where to cache proactively content, reducing significantly the access delay. Zhang
et al. [137] use LSTM to predict target cells to be visited by a commuting mobile
user. The user’s preferred short video content is then pushed onto the predicted
base station, resulting in enhanced user satisfaction. Hou et al. [141] designed
an LSTM-based model to predict the subsequent moving direction of vehicles in
order to empower effective proactive caching. Gebrie et al. [142] assessed the
mobility prediction performance of four AI/ML models, namely: SVM, Semi-
Markov, DNN, and eXtreme Gradient Boosting Trees (XGBoost). The models
were evaluated with regard to prediction accuracy, training time and inference
time, with the XGBoost model exhibiting the optimal speed-accuracy trade-off.

Wang et al. [143] explored ML methods for predicting both single-user and
multi-user trajectory based on LSTM. The proposed LSTM suffers from poor
generalization and error-accumulation effect for multi-step prediction. To over-
come these issues, the authors proposed a region-oriented multi-user multi-step
trajectory prediction scheme based on Sequence-to-Sequence (S2S) learning. S2S
models use an encoder-decoder architecture to map an input sequence of arbitrary
length into a variable-length output sequence [144]. The devised S2S model con-
sists of an encoder LSTM network to encode the observation trajectory to a fixed-
length vector and a decoder LSTM network that maps the vector to the predicted
trajectory. Different mobility patterns lead to different resource re-allocation trig-
gers, leading eventually to slice mobility when enough resources are to be mi-
grated. A user mobility’s impact on the optimal resource allocation within and
between slices considering RL is analyzed in [145] investigating the applicability
of two Deep RL based algorithms for allowing a fine-grained selection of mobility
triggers that may instantiate slice and resource mobility actions.

Table 5 summarizes the investigated literature, highlighting the key advantages
and limitations of the AI/ML techniques adopted for mobility prediction.
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Table 5: Summary of AI/ML algorithms for mobility prediction.
Learning Algorithm Mobility Issue Ref. Benefits & Drawbacks

Markov Chain Users trajectory and locations [135]
- Pros: Small space/time complexity
- Cons: Fail to infer long-term

correlations

Ensemble Learning Users’ trajectory and locations [136]
- Pros: Enhanced prediction accuracy
- Cons: High time complexity

RNN & LSTM
Proactive handover management [138] [139] - Pros: Effective in capturing long-term

dependencies
- Cons: Poor generalization and error
accumulation for multi-step prediction

Mobility-aware caching [140] [137]
[141]

Multi-user trajectory prediction [143]

XGBoost Mobility-aware caching [142]
- Pros: Optimal speed-accuracy trade-off
- Cons: Fail to predict long-term patterns

S2S Multi-user trajectory prediction [144]
- Pros: Better generalization compared

to LSTM
- Cons: High computational and time costs

RL Slice mobility [145]

- Pros: Effective in capturing the user/
service mobility dynamics

- Cons: Slow convergence time may
hinder real-time prediction

6.1.2. User Grouping
Typical applications that leverage the benefits of user grouping include spec-

trum sharing in NOMA and massive MIMO environments as well as UAV group-
ing [146] and content caching [147]. Establishing the optimal user clustering is a
combinatorial problem, where exhaustive search approaches are computationally
costly due to large number of users [148]. The adoption of AI/ML techniques can
determine near-optimal groupings in a reasonable time.

In [149], a K-means algorithm is elaborated to perform user grouping in a UAV
communication system with MIMO antennas. Users with high channel correlation
are clustered in the same group, allowing other users with low-correlated channels
to be scheduled together. Trifan et al. [150] considered a clustering problem in
a multi-user MIMO environment based on a modified K-means algorithm, where
users are grouped according to the average angle between them. To tackle the
local minima problem of K-means, [151] proposed a genetic algorithm based on
K-means (GAK-means) to perform user grouping for obtaining the optimal UAV
deployment. The aforementioned solutions consider only non-overlapping user
grouping, which may lead to resource waste [152]. Neto et al. [153] exploited
fuzzy C-means algorithm to construct overlapped user groups in mmWave sys-
tems, while [26] [154] investigated clustering techniques for dynamic user group-
ing. Cui et al. [155] proposed a K-means online user clustering to accommodate
newly arriving users in a mmWave NOMA system. Ren et al. [154] developed an
online user clustering based on the EM algorithm.
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Table 6 summarizes the investigated literature, highlighting the key advantages
and limitations of the AI/ML techniques adopted for user grouping.

Table 6: Summary of AI/ML algorithms for user grouping.
Learning User Grouping Issue Ref. Benefits & Drawbacks
Algorithm

K-means Non-overlapping user grouping [149] [150]
- Pros: Simplicity and speed
- Cons: Hard clustering, which

leads to resource waste
[151]

Dynamic user grouping [155]

Fuzzy C-means Overlapping user grouping [153]

- Pros: Soft clustering allowing
cluster overlapping

- Cons: Higher computational complexity
compared to K-means

EM Dynamic user grouping [154]

- Pros: Probabilistic modeling
and soft clustering

- Cons: Higher computational complexity
compared to K-means

6.2. Mobile Communications System Security
A timely detection and prediction of anomalous behaviors due to malicious

actions is of utmost importance to meet the demanding reliability and sustainabil-
ity requirements of 5G. 5G security focuses on both device specific aspects and
network security risks.

6.2.1. Device Security
5G is expected to introduce various connected devices (e.g., IoT, vehicles) that

may be prone to several threats, including spoofing and Sybil attacks, eavesdrop-
ping, jamming, and malware. Thus, a scalable real-time security risk identification
and remediation is desired. An overview of ML-based IoT security focusing on
access control, offloading and malware detection based on supervised, unsuper-
vised and RL is presented in [156]. Authentication and authorization is essential in
preventing attacks and controlling access privileges. The emerging authentication
and authorization schemes are increasingly relying on multiple non-cryptographic
attributes, related to users, resources and environment (e.g., time and location).
ML/AI techniques are recognized as an appealing option to automatically com-
bine these diverse and time-varying attributes to provide authentication and dy-
namically enforce fine-grained access policies [157].
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Moreira et al. [158] propose a cross-layer authentication that considers physi-
cal layer information (i.e., RSS) and KNN to determine the authenticity of mobile
terminals for network slices. In fact, KNN is used to build the authentication vec-
tor. A physical-layer authentication scheme based on Gaussian Mixture Model
(GMM) is proposed in [159], which exploits the channel state information to de-
tect identity spoofing attacks. Similarly, Liao et al. [38] leveraged channel state
information to devise a DL-based multi-user authentication scheme to improve
edge computing security. Hoang et al. [160] applied SVM models to detect active
eavesdropping attacks, which aim at impersonating the legitimate users. To this
end, the proposed SVM models use three features, namely mean, ratio and sum,
extracted from wireless signals.

Fang et al. [161] introduced ML-based intelligent authentication by oppor-
tunistically leveraging physical layer attributes (e.g., carrier frequency offset, chan-
nel impulse response, and receiving signal strength) to achieve continuous and
situation-aware authentication. In [162], a physical layer authentication approach
is devised to deal with spoofing attacks in wireless networks based on adaptive
CNN model, which can attune to time-varying channel attributes. A holistic
authentication and authorization approach relying on online ML and trust man-
agement for achieving adaptive access control in a large-scale and dynamic IoT
environment is proposed in [163]. The proposed access control scheme exploits
time-varying features of the transmitter, hardware-related attributes and user be-
haviors, to refine access policies on run-time.

The high network performance and exposure capabilities of 5G in combina-
tion with the support for massive number of connected devices can speed up the
proliferation of malware and botnets, putting user’s privacy and network security
at risk. In fact, mobile and IoT malware allow adversaries to steal personal data
or carry out network attacks. The authors in [164] built three ML models, based
on random forest, SVM and KNN algorithms, to detect ransomware. The features
fed into the ML models are extracted from the storage access patterns. Sharmeen
et al. [165] surveyed common classification models for detecting mobile malware
in an Industrial IoT environment.

In self-driving vehicles, safety rely not only on high reliability and low-latency,
but also on security and privacy against vulnerabilities. Self-driving vehicles re-
quire cryptographic-based security in order to be protected against an external
threat and an intelligent Intrusion Detection System (IDS) to deal with threats
caused by inside attackers. However, high mobility necessitate fast, reliable, and
autonomous decision making with partial information collected from unknown
vehicles, hence the use of RL, i.e., Q-learning, can stimulate such collaboratively
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report warning environment [166].
GPS spoofing is a serious threat hindering the integration of cellular-connected

UAVs. To tackle this issue, Dang et al. [167] proposed an MLP-based model
trained on the statistical properties of path loss between UAV and nearby 5G base
stations to decide the authenticity of the UAV’s GPS position. To further enhance
the detection accuracy, the authors extended their solution by introducing a multi-
MLP ensemble learning approach that integrates predictions from individual MLP
models deployed at base stations [168]. In the same vein, authors in [169] lever-
aged the potentials of CNN and transfer learning to empower timely detection of
GPS spoofing attack. CNN is used for extracting the deep features of path loss,
while transfer learning is employed to transfer the CNN knowledge between edge
servers during the UAV handovers.

Table 7 summarizes the investigated literature, highlighting the key advantages
and limitations of the AI/ML techniques adopted for device security.

Table 7: Summary of AI/ML algorithms for device security.
Learning Algorithm Device Security Issue Ref. Benefits & Drawbacks

KNN
Authentication and authorization [161] [158]

- Pros: Low computational complexity
on small datasets

- Cons: Cannot handle large datasets
with high dimensionality

Malware detection [164] [165]

GMM Authentication and authorization [159]
- Pros: Ability to handle missing data
- Cons: Unable to extract hidden

features

SVM
Authentication and authorization [160] [163] - Pros: Effective even with small datasets

- Cons: Feature engineering requiredMalware detection [164] [165]

MLP GPS spoofing [167] [168]
- Pros: Optimal speed-accuracy trade-off

compared to other DL algorithms
- Cons: Require labelled training datasets

CNN
Authentication and authorization [162]

- Pros: Ability to extract deep
features from data

- Cons: Overfitting with small datasets
and limited generalization ability

GPS spoofing [169]

Ensemble Learning GPS spoofing [168]
- Pros: Enhanced detection accuracy
- Cons: High time complexity

TL GPS spoofing [169]

- Pros: Knowledge sharing allowing
fast and accurate detection

- Cons: Fine-tuning required to improve
model’s generalization

Q-Learning Trust-based intrusion detection [166]
- Pros: Adapt to time-varying device

behavior dynamics
- Cons: Slow convergence
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6.2.2. Network Security
AI/ML techniques can identify abnormal traffic patterns, which may result in

service disruption or security risks. Indeed, the AI/ML power to unveil hidden
patterns from a large-scale and time-varying data has promoted their adoption for
network anomaly and intrusion detection [32, 33].

Herrara et al. [170] investigated ML techniques for network security in SDN
environments, classifying the solutions broadly into two categories, namely: (i)
ML models built to recognize general anomalies or specific network attacks, and
(ii) IDS frameworks defining the whole cycle of detecting and mitigating at-
tacks. The use of DNN for detecting intrusion in SDN networks is elaborated
in [171, 172]. Mohammed et al. [173] devised a ML-based collaborative DDoS
mitigation strategy in a multi-SDN controller environment. The detection is per-
formed using Naive Bayes classifier based on flow features and upon detection
of malicious behavior, the SDN controller is automatically notified to deny such
IP based flow. Narayanadoss et al. [174] analyzed crossfire attacks [175], where
an adversary coordinates a large number of bots to simultaneously generate low-
intensity traffic in order to disconnect the target hosts or network links from the
rest of the network. To counter this attack, three DL-based models were built
using ANN, CNN and LSTM algorithms with an accuracy of a least 80%.

Typically, DDoS attacks concentrate on the network-layer [171, 172, 173] with
a focus on saturating the network bandwidth by generating a large volume of traf-
fic. However, the current trend in DDoS attacks concentrates on the application-
layer according to Kaspersky’s DDoS Q2 2019 report. An application-layer DDoS
attack aims to exhaust the server’s resources (e.g., CPU, memory, I/O) and dis-
rupt the server from providing services to legitimate clients. The detection of
application-layer DDoS attacks is challenging due to their stealthy nature as they
seek to mimic legitimate behavior with low-bandwidth usage [176]. Siracusano et
al. [177] investigated the capability of ML to identify low-rate application-layer
DDoS using the characteristics of malicious Transport Control Protocol (TCP)
flows. A detection accuracy of over 97% has been achieved using DT, KNN, and
DNN techniques. The authors in [176] built a DL-based application-layer DDoS
detection model that is robust to adversarial examples [157].

Mathas et al. [178] devised the Apache Spot ML framework, which was de-
ployed on an SDN/NFV-enabled testbed evaluating its detection efficiency con-
sidering three different types of attacks, namely: (i) network-layer DDoS attack
(UDP flooding), (ii) application-layer DDoS attack (Slowloris) and (iii) data exfil-
tration attack (DNS Tunneling). The Apache Spot adopts the Latent Dirichlet Al-

48



location (LDA) algorithm [179]; an unsupervised generative probabilistic model
for automatically uncovering a given number of topics (e.g., malicious/benign
traffic) in a corpus of documents (e.g., network traffic within a time slot).

Detecting DDoS attacks solely through the analysis of collected network flow
characteristics may not always be feasible, especially given the rise of stealthy
application-layer DDoS attacks. To overcome this limitation, the work in [44]
builds a LSTM-based AutoEncoder anomaly detection model that leverages re-
source usage (e.g., CPU usage, system load, memory usage, I/O network traffic)
and performance (e.g., HTTP response time) metrics to detect application-layer
DDoS attacks against network slices. The model is trained to reconstruct time-
series for normal behavior; thus, an attack is detected if the reconstruction error
of the observed metrics is above a given threshold.

Differently from the previous solutions that focus on the detection of DDoS
attack, Javadpour et al. [180] devised a proactive mitigation approach that relies
on slice isolation. The solution incorporates an actor-critic RL model that allows
maximizing the number of satisfied slice instantiation requests on the shared in-
frastructure while minimizing the damage of DDoS attacks.

Table 8 summarizes the investigated literature, highlighting the key advantages
and limitations of the AI/ML techniques adopted for network security.

6.3. Comforting QoE/QoS
5G systems aim to enhance the user experience and provide a plurality of

network applications and services. The basis to achieve this, is to support mech-
anisms and operations that can comfort both QoS and QoE requirements, which
are becoming more stringent.

6.3.1. QoE Assurance
QoE can be modeled and assessed depending on the type of service and its

characteristics, the content, device and application, the context of use, and the
user’s expectations [181, 182]. AI/ML techniques can uncover complex nonlin-
ear relationships, fostering their applicability for evaluating QoE [183, 184, 185].
Zheng et al. [186] designed an ANN model to estimate the MOS of video streams
over Long Term Evolution (LTE) using a number of QoS metrics including jitter,
delay, packet loss rate and mean loss burst size. To overcome the local min-
ima problem in NNs and consequently enhance the achievable accuracy, Particle
Swarm Optimization (PSO) [187] is applied to NN’s weights aiming to reduce
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Table 8: Summary of AI/ML algorithms for network security.
Learning Network Security Issue Ref. Benefits & Drawbacks
Algorithm

Naive Bayes Network-layer DDoS attacks [170] [173]

- Pros: Simplicity and support of
incremental learning

- Cons: Assume independence between
traffic features

KNN Application-layer DDoS attacks [174] [177]

- Pros: Low computational complexity
on small datasets

- Cons: Cannot handle large datasets
with high dimensionality

MLP
Network-layer DDoS attacks [171] [172]

- Pros: Optimal speed-accuracy trade-off
compared to other DL algorithms

- Cons: Require labeled training dataset
Application-layer DDoS attacks [176] [177]

RNN Application-layer DDoS attacks [174] [44]

- Pros: Effective in capturing long-term
dependencies among traffic features
- Cons: Unable to jointly capture
temporal and spatial dependencies

CNN Application-layer DDoS attacks [174]

- Pros: Automated extraction of deep
traffic features

- Cons: Overfitting with small datasets
and limited generalization ability

DAE Application-layer DDoS attacks [44]

- Pros: Automated features extraction
and unsupervised learning

- Cons: Need to be combined with other
techniques for attack class identification

DRL Network-layer DDoS attacks [180]
- Pros: Handle large state space and
continuous action spaces compared to RL
- Cons: Computationally expensive

LDA Application-layer DDoS attacks [178]
- Pros: Generative learning
- Cons: Slow convergence and may fail

in capturing complex patterns
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the model’s mean square error between the desired and estimated MOS. Simi-
larly, [188] integrates the PSO with a Probabilistic Neural Network (PNN) [189]
to establish a mapping among IPTV viewing records and QoE. The type and pop-
ularity of TV channels along with network’s QoS metrics are exploited to derive
the QoE. In [190], the QoE prediction is performed by combining ANN with Ad-
aBoost [191], an ensemble learning algorithm. Like PSO, AdaBoost is integrated
to deal with ANN’s overfitting and local optimum problems. The authors intro-
duced a new subjective attribute, namely the viewing ratio, along with network-
level QoS parameters (e.g., jitter, delay, media loss rate, average bitrate) to predict
the QoE.

MLQoE [192] correlates network metrics with user feedback (i.e., MOS) to
train a set of algorithms including ANN, DT, Support Vector Regression (SVR)
machines and Gaussian Naive Bayes (GNB) classifiers and then select the optimal
one. Lv et al. [193] considered the QoE prediction on imbalanced IPTV datasets;
that is datasets exhibiting an unequal distribution between their classes. To this
end, a multi-layer NN model is proposed, where the data’s imbalanced character
is solved by tuning the model’s hyper-parameters (i.e., number of layers, number
of neurons and activation function). The proposed model considers both network-
level QoS and subjective parameters. Mao et al. [194] adopted the LSTM network
to perform IPTV QoE forecast. The devised model considers both objective and
subjective attributes. The objective factors include delay, LPR, media loss rate,
jitter and average bit rate, while the subjective parameters encompass the type
of service (e.g., live TV, video-on-demand) and the viewing time ratio. The con-
ducted experiments showed that the proposed model outperforms KNN, SVM and
CNN algorithms.

Unlike other contributions, [195] estimates the QoE of multimedia services
based on network-level QoS parameters. The prediction is achieved using a Mod-
ular Neural Network (MNN) consisting of heterogeneous DBNs. Each DBN is in
charge of QoE/QoS mapping for a specific multimedia service. The results of dif-
ferent DBNs are then integrated to produce the final QoE prediction. The authors
in [196] focused on online QoE prediction model based on multiclass incremental
SVM, while allowing to handle large-scale non-stationary data.

Table 9 summarizes the investigated literature, highlighting the key advantages
and limitations of the AI/ML techniques adopted for QoE assurance.

6.3.2. QoS Class Prediction
QoS prediction is of utmost importance for improving the network perfor-

mance and fulfill SLA requirements. In fact, QoS prediction is beneficial for
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Table 9: Summary of AI/ML algorithms for QoE assurance.
Learning QoE Assurance Issue Ref. Benefits & Drawbacks
Algorithm

MLP Specific multimedia services [186] [190]
- Pros: Optimal speed-accuracy trade-off

compared to other DL algorithms
- Cons: Require labeled training datasets

PNN Specific multimedia services [188]

- Pros: Enable probabilistic predictions
and memory-based learning

- Cons: Usage limited to classification
tasks

AdaBoost Specific multimedia services [190]

- Pros: Enhanced prediction accuracy
of weak classifiers

- Cons: Very sensitive to noisy data
and outliers

SVR Specific multimedia services [192]

- Pros: Excellent generalization and
high robustness to outliers

- Cons: Computationally expensive on
large datasets

GNB Specific multimedia services [192]
- Pros: Simplicity and speed
- Cons: Assume normal distribution

of data

LSTM Specific multimedia services [194]

- Pros: Effective in capturing long-term
temporal dependencies

- Cons: High computation costs and
complexity

SVM General multimedia services [196]
- Pros: Effective even with small

datasets
- Cons: Feature engineering required

DBN General multimedia services [195]
- Pros: Probabilistic and generative modeling
- Cons: High computational costs
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MNOs to develop efficient network planning strategies, while supporting flexibly
emerging new services. Moysen et al. [197] exploited network data and MDT
reports to feed an ML planning tool for determining an appropriate network de-
ployment layout based on the predicted QoS that should be offered to end-users.
Similarly, [198] focuses on devising a QoS scheme to assist MNOs in future net-
work planning based on MDT reports. To this end, ensemble learning based on
different supervised algorithms, specifically KNN, ANN, SVM and DT, is lever-
aged to predict the physical resource block per offered megabit.

Torres et al. [199] proposed an ML-based approach for forecasting the aver-
age downlink throughput per user for a specific LTE cell. The average through-
put is predicted using a variant of Autoregressive Integrated Moving Average
(ARIMA) and supervised naive persistence model. A QoS forecast based on sig-
nal strength, while considering external information about the weather conditions
is explored in [200] leveraging ARIMA and RNN (i.e., LSTM, CNN-LSTM)
for signal strength prediction. The obtained results show the superiority of the
LSTM model in predicting sudden signal strength changes, thanks to its ability of
capturing non-linear relationships. A smart framework related to radio resource
management, i.e., scheduling, offering high flexibility to reflect dynamic network
conditions and cope with QoS provisioning for heterogeneous traffic is introduced
in [201]. RL and ANN are jointly employed to determine suitable scheduling de-
cisions based on current networking conditions. A DRL-based QoS-aware secure
routing for IoT devices leveraging the benefits of SDN is detailed in [202], guar-
anteeing QoS by extracting knowledge from history traffic demands.

Table 10 summarizes the investigated literature, highlighting the key advan-
tages and limitations of the AI/ML techniques adopted for QoS class prediction.

6.4. Mobile Edge Computing Intelligence
Mobile edge cloud computing in close proximity with the RAN can offer stor-

age and computational capabilities, reducing latency for mobile service while al-
lowing to utilize more efficiently the mobile core network. Knowing where, when
and how to exploit edge computing can bring significant benefits for both end user
and MNOs.

6.4.1. Computational Offloading
Given the high workload demands of emerging applications, UEs may fre-

quently suffer from computation efficiency and energy consumption limitations.
Computational offloading may resolve such performance inefficiencies. However,
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Table 10: Summary of AI/ML algorithms for QoS class prediction.
Learning QoS Class Prediction Ref. Benefits & Drawbacks
Algorithm Issue

SVM Network planning [197] [198]
- Pros: Effective even with small

datasets
- Cons: Feature engineering required

KNN Network planning [198]

- Pros: Low computational complexity
on small datasets

- Cons: Cannot handle large datasets
with high dimensionality

MLP Network planning [198]
- Pros: Optimal speed-accuracy trade-off

compared to other DL algorithms
- Cons: Require labeled training datasets

DT Network planning [198]
- Pros: Simplicity and interpretability
- Cons: Fail to capture complex

patterns from continuous data

ARIMA UE QoS prediction [199] [200]

- Pros: Handle seasonality and trends
patterns

- Cons: unable to capture complex
non-linear patterns

LSTM UE QoS prediction [200]

- Pros: Effective in capturing long-term
temporal dependencies

- Cons: High computational costs and
complexity

CNN UE QoS prediction [200]

- Pros: Automated extraction of deep
features

- Cons: Overfitting with small datasets
and limited generalization ability
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selecting the appropriate UEs and MEC platforms that can maximize these ben-
efits is a complex decision. AI/ML can be used to select UEs eligible to offload,
optimizing both the application quality and network resource usage.

Zhu et al. [203] focused on computation offloading in MEC environments
based on an DRL self-adaptive algorithm. The computation problem was formu-
lated in terms of energy and time optimization considering the user experience.
The authors exploited the users’ position, access points placement, and the work-
flow components to model the state space of the RL problem. Three actions were
defined, i.e., process locally, offload, and change access point before offloading.
A weighted sum of experience related to the workflow execution time and UE en-
ergy consumption is used as a reward function. The challenges of task dependent
offloading towards MEC are addressed in [204] using a DRL-based agent to min-
imize the latency while discovering shared patterns behind various applications.
The state space is represented as a Directed Acyclic Graph (DAG) holding the
complete offloading plan with a vector containing the initial tasks. Tasks can be
offloaded to a MEC server or executed in a local device with the reward function
reflecting the total latency. By using DAG as an input feature, the authors were
able to convert the offloading problem into an S2S prediction where the encoder
and decoder are implemented by RNN and trained using the PPO algorithm.

To overcome computation efficiency and energy consumption limitations when
offloading towards a MEC platform, the work in [205] proposes a DRL-based
agent solution that optimally selects among local processing and task offload-
ing. The authors use the SINR and computational capacity (e.g., CPU cycles per
second) of a UE as the main input features and formulate a reward function as
a weighted sum combining the total overhead related with local and offloaded
computations. Yao et al. [206] provided a comprehensive procedure on detect-
ing whether to execute locally or offload tasks to MEC. The authors designed
and implemented an adaptive algorithm based on data forms with different data
sizes and priorities. The proposed algorithm employs a Deep Q-Network-based
learning method to remedy high dimensional space issues. Liu et al. [207] pro-
posed a vehicle-assisted offloading scheme for UEs, which exploits both vehicles
and MEC nodes to provide smart offloading. The authors initially formulated
the problem as a semi-Markov process model and then designed two distinctive
solutions based on RL and DRL considering the delay of the computation task
and optimal resource allocation. Numerical results showed that the proposed ap-
proaches based on Q-Learning and Deep Q Network outperform both fixed and
vehicular edge server with respect to CPU consumption and latency.

A binary offloading policy regarding wireless powered MEC networks is elab-
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Table 11: Summary of AI/ML algorithms for computational offloading.
Learning Computational offloading Ref. Benefits & Drawbacks
Algorithm Issue

Q-learning Energy and time constraints [207]
- Pros: Adapt to time-varying parameters

of the environment
- Cons: Slow convergence

DRL
Energy and time constraints

[203] [207]
[209] [210]

- Pros: Handle large state spaces and
continuous action spaces compared
to RL

- Cons: High computational cost
Offloading decisions [206] [208]
Task dependency offloading [204] [205]

orated in [208] considering a DRL-based algorithm. The authors introduced an
adaptive procedure to automatically adjust various parameters reducing the com-
plexity and thus allowing to handle large scale networks in a reasonable time.
Aiming to reduce the offloading latency in a joint NOMA and MEC environ-
ments, the authors of [209] launched a DRL-based solution considering the DQN
algorithm. The proposed approach concurrently selects the set of end-users el-
igible to offload without losing the system’s quality. The authors modeled the
set of actions and states based on a matching scheme in which each user finds
its associations (i.e., other users) susceptible to maintain the offloading latency re-
duced. An efficient and adaptive offloading mechanism for time-varying networks
in MEC environments is proposed in [210]. The authors formulate the problem as
a Markov Decision Process, then consider DRL (i.e., Double DQN) followed by
a Q-function decomposition to simplify it and deliver an optimal offloading pol-
icy in reduced computational time. The decomposition method is used to reduce
action-state spaces, constituted initially from task queue state, energy queue state,
and the channel quality between users and base stations.

Table 11 summarizes the investigated literature, highlighting the key advan-
tages and limitations of the AI/ML techniques adopted for computational offload-
ing.

6.4.2. Edge Caching
Edge caching is recognized as a promising solution with the potential to al-

leviate back-haul traffic, boost network throughput, shorten service latency and
improve user experience [211] [212]. However, enabling edge caching introduces
three main challenges including: (i) where to cache (i.e., location); (ii) what to
cache (i.e., content popularity); and (iii) how to cache (i.e., caching objectives,
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such as offloading and QoE) [213]. The success of AI/ML in addressing com-
plex and dynamic problems has fostered its applicability for edge caching with
increasing efforts focusing on RAN vehicular, UAV and D2D.

Bharath et al [214] leverages a transfer learning method to design a caching
strategy in heterogeneous small cell networks. The caching policy is derived with-
out prior knowledge of the time-varying popularity profile of cached contents. In
fact, the popularity profile is estimated using transfer learning by exploiting the
content demand history. A proactively content caching scheme relying on RL is
introduced in [215], targeting an edge node environment where new content is re-
leased and user preferences change over time. Historic data is leveraged to predict
the future content requests using a Grouped Linear Model (GLM), a variant of the
multivariate linear model. A model-free RL approach is then applied to learn the
cache replacement strategy considering both cache hits and replacement costs.

Zhong et al. [216] elaborated a DRL-based framework using the Wolpertinger
architecture [217] for content caching at a single edge node (e.g., a base station).
The Wolpertinger architecture is leveraged to narrow the action space size. The
proposed framework makes appropriate cache replacement decisions based on
users’ requests, maximizing both long-term and short-term cache hit rates while
reducing runtime. Yang et al. [218] proposed a content popularity based cluster-
ing, grouping users that share similar interests, which are served cooperatively
by a set of base stations. The caching strategy is derived using an ε-greedy Q-
learning model, yielding a near-optimal solution. Zhang et al. [219] explored
proactive caching for multi-view 3D videos in 5G using a Markov decision pro-
cess, which jointly considers views selection and local memory allocation. The
proactive caching strategy is determined using a model-free DRL approach. The
reward function is formulated as a combination of cache cost and quality of video
streaming. The proposed solution is shown to be effective in maintaining the de-
sired QoE for high-mobility users in small cell environments.

DeepCachNet [220] is a DL-based proactive caching framework for cellular
networks that estimates the content popularity based on the users and content fea-
tures, which are extracted using auto-encoder and stacked denoising autoencoders.
The predicted popularity is used to cache strategic content to achieve higher back-
haul offloading and user satisfaction. Similarly, [221] presents an online proactive
caching strategy employing a Bidirectional Recurrent Neural Network (BRNN)
model to forecast time-varying content requests and update edge caching accord-
ingly. A deep multi-agent RL-based caching mechanism presented in [222] de-
termines whether to cache a request as well as the cache replacement strategy
taking into account the requests’ priority. The authors in [223] investigate a joint
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communication, caching and computing design problem for edge-based vehicular
networks. A deep Q-learning model is proposed to solve such problem by deter-
mining the subset of Road Side Units (RSUs)/vehicles including the correspond-
ing caching and computing resources to serve a request. To cope with the high
complexity caused by the large action space, a mobility-aware reward estimation
is proposed.

Hou at al. [141] adopted an εn-greedy Q-learning model, assisted by vehicle
movement prediction, for proactive caching at RSUs. The proposed model de-
termines an optimal caching policy to minimize the expected long-term reward
defined as the transmission latency of the requested data. Distributed caching in
D2D-assisted mobile networks has been considered in [211], exploring similarity
learning in caching for maximizing the user satisfaction. The similarity learning
allows to identify the UEs with common content interests before selecting the ones
that can act as edge caches. The accuracy of similarity learning depends on the
availability of large amounts of training data. Li et al. [224] elaborated the D2D
edge caching problem in hierarchical wireless networks leveraging on a double
deep Q-learning network. A cache replacement strategy is proposed to maximize
the hit rate of user-requested content.

Nikham et al. [225] dealt with content popularity prediction in a cache-enabled
network for augmented reality applications. To address the privacy issue that
stems from adopting users’ search history, the authors recommended the use of
federated learning based on AutoEncoders (AE) that improves the user experi-
ence, while preserving privacy. To detect passengers’ preferences and select accu-
rate caching decisions, i.e., on MEC nodes or central data-centers, [226] adopted
DL based on a CNN model. An MLP framework is also used at data centers to
predict the content in specific edge areas. The authors formulated an assembled
optimization problem, whose goal is to minimize the content downloading delay.

Table 12 summarizes the investigated literature, highlighting the key advan-
tages and limitations of the AI/ML techniques adopted for edge caching.

6.5. UAV Assisted Services
The combination of UAV capabilities with edge computing can create new

services for high mobility users, e.g., connected cars, resolving issues related to
connection drop, unavailability of content, or mediocre QoE [227]. Using UAVs
for caching may also bring new challenges related to content prediction and pri-
vacy. Brik et al. [228] adopted FDL for privacy-preserving, which provides an
efficient content caching considering mobility patterns. The proposed solution
predicts content popularity and determines which content should be stored locally
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Table 12: Summary of AI/ML algorithms for edge caching.
Learning Edge Caching Ref. Benefits & Drawbacks
Algorithm Issue

TL Caching policies [214]

- Pros: Knowledge sharing allowing
fast and accurate popularity
profile estimation

- Cons: Fine-tuning required to improve
model’s generalization

Q-learning Caching policies
[215] [218]
[141]

- Pros: Adapt to time-varying popularity
profile dynamics

- Cons: Slow convergence

DRL
Caching policies

[219] [222]
[223] [224]

- Pros: Handle large state spaces and
continuous action spaces compared
to RL

- Cons: High computational cost
Caching locations [216]

DAE Caching policies [220]

- Pros: Unsupervised extraction of relevant
users/contents’ features

- Cons: Need to be combined with other
techniques to predict content popularity

BRNN Caching policies [221]

- Pros: Ability to capture context from both
past and future data

- Cons: Increased computational complexity
compared to RNNs

FDL Caching policies [225]
- Pros: Knowledge transfer while preserving

data privacy
- Cons: Prone to privacy leakage

CNN Caching policies [226]

- Pros: Automated extraction of deep
users’ features

- Cons: Overfitting with small datasets
and limited generalization ability
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in UAV-caches. Practically, this can be seen as a classification problem in which
ANN algorithms are used in a federated way to select whether to store content
locally or not, identifying also the content itself. The authors in [229] studied the
problem of proactive deployment of cache-enabled UAVs for optimized QoE in
centralized RANs. The user context information, e.g., visited locations, requested
contents, gender, job, device type, is leveraged to foresee the content distribution
using an Echo State Network (ESN) model. An ESN is an RNN variant devised
for performing non-linear systems prediction [230].

UAVs can also assist rural and hardly accessible regions with coverage limita-
tion providing cost-effective radio solutions. However, user behavior may differ
from one zone to another inducing complexity in UAV-to-ground channel selec-
tion. To efficiently resolve UAVs deployment in a distributed way, the authors
of [228] leveraged on FDL to assure an improved network coverage considering
ground users as FDL clients and edge or core clouds as aggregators. The proposed
solution attained its objective by observing ground users’ behavior and mobility
patterns, i.e., positions, directions and speed, to enable an optimal placement of
UAVs. The authors used FDL as a hybrid deep CNN algorithm with LSTM deal-
ing with Spatio-Temporal characteristics. Chen et al. [231] considered the prob-
lem of joint caching and resource allocation for cached-enabled UAVs serving
UE in an LTE-Unlicensed (LTE-U) network. The distribution of users’ content
requests is predicted using a Liquid State Machine (LSM) algorithm, which can
effectively deal with time-varying data while reducing the training complexity
compared to e.g., CNN, LSTM, ESN. Indeed, the performance results showed
that LSM outperforms ESN and Q-learning in terms of prediction accuracy and
convergence time, respectively.

Table 13 summarizes the investigated literature, highlighting the key advan-
tages and limitations of the AI/ML techniques adopted for UAV assisted services.

6.6. Network Resource Management
Planning and managing dynamically network resource allocation is a complex

problem that involves various parameters especially in a vitalized 5G environ-
ments, which consider both networking and cloud resources.

6.6.1. Resource Allocation
Optimal resource allocation is essential to improve 5G network utilization ef-

ficiency, while fulfilling the diverse service requirements. Nevertheless, the va-
riety of resources (e.g., spectrum, bandwidth, computing), the service diversity,
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Table 13: Summary of AI/ML algorithms for UAV assisted services
Learning UAV Assisted Ref. Benefits & Drawbacks
Algorithm Services Issue

FDL
UAVs as caches [228]

- Pros: Knowledge transfer while preserving
data privacy

- Cons: Prone to privacy leakage
UAVs as base stations [228]

ESN UAVs as caches [229]

- Pros: Simplify training of RNNs; only
output layer is trained

- Cons: Difficulty to interpret the internal
state

LSM UAVs as caches [231]

- Pros: Reduced training complexity and fast
convergence compared to other RNNs

- Cons: Not suitable for capturing long-term
dependencies

the massive number of devices, the network dynamics, and the multiple con-
flicting objectives (e.g., latency, reliability, fairness, spectrum efficiency) make
the optimization of resource allocation a combinatorial and non-convex prob-
lem [232, 233]. Traditional solutions (e.g., [234, 235]) rely on approximation
techniques to simplify this problem into computationally tractable ones, allowing
a resolution within a reasonable time, but at the price of sacrificing optimality.
AI/ML can optimize the resource allocation owing to the ability of solving com-
plex problems, while achieving the desired performance/complexity balance [34].

A DL based scheme considering DBN to jointly optimize transmission schedul-
ing and time allocation, aiming to maximize the wireless network capacity is
elaborated in [236]. Lei et al. [237] formulated two time-based resource allo-
cation problems with the goal of minimizing, respectively, the total transmission
time and the total energy consumption for content delivery at the network edge.
Both CNN and fully-connected DNN are investigated in solving such optimization
problems. The devised models aim at determining the best strategy for grouping
mobile terminals and share the time resources among the selected groups. Cui
et al. [238] developed a multi-agent RL-based resource allocation framework for
UAV networks allowing each UAV, as a learning agent running a Q-learning al-
gorithm, to independently select the communicating user, power level and sub-
channel. Zhang et al. [239] applied random forest-based ensemble learning to
enable a self-adaptive scheduling of transmission time intervals among coexisting
slices considering the enhanced Mobile BroadBand (eMBB) and Ultra-Reliable
Low-Latency Communication (URLLC).
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A radio resource sharing strategy that can reflect momentary network condi-
tions and QoS requirements based on DRL is detailed in [240]. Huang et al. [241]
proposed a CNN-based cooperative resource allocation scheme to dynamically
allocate spectrum and antennas in 5G ultra-dense wireless networks. The use of
DRL for radio resource allocation is also considered in [242], but with the aim
of guaranteeing fairness between users. Zia et al. [243] developed a distributed
multi-agent RL-based autonomous spectrum allocation mechanism for multi-tier
heterogeneous networks, allowing D2D users to maximize their throughput and
spectral efficiency with minimal cellular interference. To deal with the Q-learning
scalability issues, the authors in [244] introduced a multi-agent DRL-based spec-
trum allocation for D2D underlay networks. A deep transfer RL model based on
RNNs is devised in [245] for wireless resource allocation focusing on virtual re-
ality applications. The proposed model aims to determine the optimal uplink and
downlink resource block allocation strategy that maximizes the users’ successful
transmission probability. The use of transfer learning leads to an increased learn-
ing speed, thanks to its ability of transferring the knowledge from one allocation
policy to another. Chen et al. [246] explored a joint caching and spectrum allo-
cation scheme for UAV-assisted LTE-U networks using a variant of spiking NNs,
namely LSM [247]. The authors in [248] proposed a DRL-based radio resource
allocation strategy to enable high QoS provisioning for live ultra high definition
video streaming in a highly dynamic UAV-based 5G network.

Li et al. [249] highlighted the opportunities of AI to enable intelligent man-
agement and orchestration in 5G considering radio resource management and ser-
vice provisioning. An overview of the recent advances in AI-based network traffic
control is provided in [250], embracing traffic classification, network performance
prediction and resource management. The notion of feasibility check, i.e., assur-
ing resource availability within a future time window, is significant for deciding
whether to allow establishing a network slice [251] [252]. Feasibility check is
a process that can be carried out by a slice broker [253], which can assist re-
source planning, charging and dymanic resource adaptation. A comprehensive
overview of ML, i.e., (un-)supervised learning and RL, embracing traffic and net-
work performance prediction as well as network adaptation and resource manage-
ment is presented in [254]. Bega et al. [255] elaborated an AI framework for slice
management, detailing both feasibility check and dynamic resource allocation for
RAN and 5GC considering dedicated resources and customized NFs. A network
slice framework, named DeepCog, that accommodates future time-varying ser-
vice demands based on DNN is explored in [256]. Unlike conventional traffic
forecasting, DeepCog returns a cost-aware capacity forecast, which can be used
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Table 14: Summary of AI/ML algorithms for resource allocation.
Learning Resource Allocation Issue Ref. Benefits & Drawbacks
Algorithm

DBN
Transmission link and
time scheduling [236]

- Pros: Probabilistic and generative modeling
- Cons: High computational costs

CNN
Transmission link and
time scheduling [237]

- Pros: Automated extraction of deep
communication channel features

- Cons: Overfitting with small datasets
and limited generalization ability

Dynamic resource allocation [241]

MLP
Transmission link and
time scheduling [237]

- Pros: Optimal speed-accuracy trade-off
compared to other DL algorithms

- Cons: Require labeled training datasets
Dynamic resource allocation [256] [255]

Multi-agent
Q-learning Dynamic resource allocation [238] [243]

- Pros: Experience sharing, resulting in
fast learning

- Cons: Curse of dimensionality more
sever than in RL

Ensemble
learning

Transmission link and
time scheduling [239]

- Pros: Enhanced accuracy of transmission
time selection

- Cons: High time complexity

DRL Dynamic resource allocation
[240] [242]
[244] [245]
[248] [257]

- Pros: Handle dynamic environments with
large state spaces and continuous
action spaces

- Cons: Computationally expensive

TL Dynamic resource allocation [245]
- Pros: Fast learning of allocation policy
- Cons: Fine tuning required to improve

model’s generalization

LSM Dynamic resource allocation [246]

- Pros: Reduced training complexity and fast
convergence compared to other RNNs

- Cons: Not suitable for capturing long-term
dependencies

to fine tune the resource allocation maximizing revenues. An intelligent resource
allocation framework leveraging DRL for obtaining the optimal computation and
communication resources for multiple users in a collaborative MEC environment
is proposed in [257].

Table 14 summarizes the investigated literature, highlighting the key advan-
tages and limitations of the AI/ML techniques adopted for resource allocation.

6.6.2. VNF Service Consumption Prediction
Built on softwarization principles, 5G enables flexible virtual NF deployments

supporting VNF service provision assurance. Service assurance is a complex pro-
cess that relies on prediction mechanisms, which can be facilitated by AI/ML
based on historic data collection or via learning experience paradigms. Kim et
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al. [258] proposed a prediction method for VNFs resource demands exploiting
both the flexibility offered by virtualization paradigms and the immense data vol-
ume available from monitoring tools to enable accurate prediction patterns. The
model is built on an ML technique dubbed Context and Aspect Embedded Atten-
tive Target Dependent LSTM (CAT-LSTM), a type of RNNs. Unlike approaches
that enable an individual model for each VNF prediction, CAT-LSTM allows pre-
diction of resource demands for a group of VNFs simultaneously while keeping
the accuracy high.

Mijumbi et al. [259] proposed a supervised based ML technique, named Graph
Neural Network (GNN), to predict and manage VNF resource requirements. Such
technique exploits the VNF Forwarding Graph (VNF-FG) topology information
to achieve a dynamic allocation of resources for each VNF Component (VNFC) in
any given Service Function Chaining (SFC) [260]. In fact, historical local VNFC
resource utilization information is used considering also the data collected from
the neighbors through two different FNNs. Jmila et al. [261] introduced a re-
source management and prediction scheme for VNFs in virtualized environments
emphasizing the inputs features, i.e., processed traffic. The proposed solution
leverages SVR, a supervised ML technique, to estimate VNFs’ requirements in
terms of CPU. A set of experiments using SDN-enabled VNFs and security ap-
pliances showed significant improvements in terms of CPU prediction. A joint
caching and computing service placement for sensing-data-driven IoT applica-
tions is investigated in [262] based on DRL, which can adapt to a heterogeneous
system with limited prior knowledge. A policy network based on the encoderde-
coder model is constructed to address the issue of varying sizes of joint caching
and computing service placement states and actions caused by different numbers
of caching functions related to applications.

Table 15 summarizes the investigated literature, highlighting the key advan-
tages and limitations of the AI/ML techniques adopted for VNF service consump-
tion prediction.

6.6.3. NF and Service Relocation Prediction
5G introduces significant improvements in network flexibility with the adop-

tion of micro-services and has enriched the service capabilities by employing a
virtualized network architecture. However, the variation of UE types, e.g., UAVs,
vehicles, IoT devices, and the corresponding services in conjunction with mobility
patterns and device concentration per unit areas have led to various challenges in
QoS provision and service continuity. In fact, there is a need to extend the notion
of mobility prediction, which is traditionally focusing on user devices towards NF
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Table 15: Summary of AI/ML algorithms for VNF service consumption prediction.
Learning
Algorithm

VNF Service Consumption
Prediction Issue Ref. Benefits & Drawbacks

TD-LSTM VNF resource demands [258]

- Pros: Embedding target-specif context,
resulting in high performance
compared to LSTM

- Cons: ineffective for handling multi-step
prediction

GNN VNF resource demands [259]
- Pros: Capture spatial dependencies in

graph-structured data
- Cons: Higher time and space complexity

SVR VNF resource demands [261]

- Pros: Excellent generalization and
high robustness to outliers

- Cons: Computationally expensive on
large datasets

DRL VNF resource demands [262]

- Pros: Handle dynamic environments with
large state spaces and continuous
action spaces

- Cons: Computationally expensive

and service relocation. AI/ML is a pillar technology which can help devising NF
and service relocation prediction solutions.

Lange et al. [263] designed a mechanism for managing highly dynamic SFC
deployments using various ML-based classification methods, i.e., eXtreme Gra-
dient Boosting (XGBoost), Gradient Boosting Machine (GBM), Distributed Ran-
dom Forest (DRF), Extremely Randomized Trees (XRT), and ANN, to deliver
proactive decisions. The proposed approach relies on classification algorithms to
create accurate deployment, placement, and relocation decisions for VNFs. In-
deed, the authors presented a workflow for generating training data as well as
selecting the best monitoring features, utilizing various metrics during the train-
ing and development phases. Shaw et al. [264] developed a scheme for handling
energy losses within clouds and data-centers leveraging RL to create a consolida-
tion agent responsible for relocating Virtual Machines (VMs) across data-centers.
A reward shaping technique known as Potential Based Reward Shaping (PBRS)
is also employed to cope with the RL limitations. The respective agent uses PBRS
to assist and refine the RL decisions by including experts’ advice.

To settle the resource consumption issue in cloud computing environments, a
Predictive Anti-Correlated VM Placement Algorithm (PACPA) is described in [265].
A three-stage based architecture is introduced where hosts are monitored to pre-
dict which VMs should be migrated towards more suitable hosts. In fact, the
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monitoring phase collects and stores the current and future CPU consumption and
then an algorithm named Local Regression Minimum Migration Time (LR-MMT)
is used to select potentially overloaded hosts identifying the respective VMs to be
migrated. An MLP model forecasts the CPU consumption of VMs in the mi-
gration list and then the PACPA algorithm selects VMs that should be co-located
together based on the aggregated CPU requirements. The authors of [266] tack-
led the virtual networks relocation problem in which one or multiple network re-
sources are scaled in/out to create or extend a certain network deployment. An RL
agent ensures the desired QoS by dynamically selecting virtual resources, among
edge, core and data center networks, and migrating them to assure the perfor-
mance requirements of critical services [267]. The authors define the link selec-
tion between two adjacent nodes as the action space while the reward is based on
users’ QoS satisfaction levels.

Cao et al. [268] proposed an algorithm dubbed “MigRL” for managing cloud
environments leveraging live migration operations. The authors used Q-learning
to reduce the network overhead of inter-cloud systems while minimizing service
costs. Historical access information is used to determine the time and place for
migrating services across different available nodes, thus, meeting the rigid re-
quirements begotten by the upcoming network architectures. A CPU load varia-
tion prediction method to allow efficient live migration in the data-centers scope
is introduced in [269], leveraging the ML shallow algorithm dubbed LR. The pro-
posed approach allows detecting both over-utilized and under-utilized hosts by
approximating the short-time future CPU utilization based on the usage history
within each host. The proposed algorithm allows to obtain forecasting of next
CPU usage, based on the actual CPU load, thus allowing to anticipate migration
decisions. Slice mobility, i.e., a slice that moves between service areas, whereby
the inter-dependent service and resources shall be migrated to reduce system over-
head and minimize communication latency following end-user mobility patterns
is elaborated in [270] considering DRL to optimize bandwidth allocations and to
adjust the network usage to minimize slice migration overhead.

Table 16 summarizes the investigated literature, highlighting the key advan-
tages and limitations of the AI/ML techniques adopted for NF and service reloca-
tion prediction.

6.7. Fault Management
Fault detection and resolution is a complex process especially in 5G. In fact,

a single event may generate a large amount of alarms, since a physical resource
may affect numerous logical NFs. In other words, a lower layer alarm may cause
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Table 16: Summary of AI/ML algorithms for NF and service relocation prediction.
Learning
Algorithm

NF/Service Relocation
Prediction Issue Ref. Benefits & Drawbacks

Ensemble
learning Dynamic deployment [263]

- Pros: Enhanced prediction accuracy
- Cons: High time complexity

MLP
Dynamic deployment [263]

- Pros: Optimal speed-accuracy trade-off
compared to other DL algorithms

- Cons: Require labeled training datasets
Relocation and consolidation [265]

RL Relocation and consolidation
[264] [266]
[268]

- Pros: Effective in capturing the
environment’s dynamics

- Cons: Cannot handle large state spaces

LR Relocation and consolidation [269]
- Pros: Simplicity and speed
- Cons: Unable to capture non-linear

patterns

DRL Dynamic deployment [270]

- Pros: Handle dynamic environments with
large state spaces and continuous
action spaces

- Cons: Computationally expensive

multiple alarms in higher layers or across an end-to-end communication service.
AI/ML can assist the root cause analysis and alarm correlation to identify the
source of a fault.

Kawasaki et al. [271] applied ML to analyze the root cause of failures in NFV
environments. The authors evaluated the ML-based fault classifier considering: (i)
three algorithms, namely MLP, random forest, SVM, (ii) the volume and balance
of training data, and (iii) the number of features. An experimental study showed
that random forest provides the highest performance even with small amounts
of data. Chigurupati et al. [272] built a Bayesian Network to model the cause-
effect relationship between the degradation parameters, i.e., cause, and failure
modes providing an automate root cause analysis. In [273], a method is proposed
for root cause analysis by discovering the alarms relation among network nodes,
i.e., treating clustered groups of alarms instead of specific events, based on data
mining. Shehu et al. [274] explored transfer learning and language modeling for
fault localization, avoiding the need to build knowledge bases from scratch to
account for new services.

Sampaio et al. [275] fostered resilience in SDN by using RL to derive the ap-
propriate policies for dealing with network anomalies. The adopted RL approach,
namely Q-learning, suffers from scalability because of the state-action space re-
lated with the network size, i.e., number of switches. A hybrid model for anomaly
detection in cloud environments is presented in [276] leveraging the Grey Wolf
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Optimization (GWO) and CNN for relevant feature extraction and anomaly clas-
sification. Wang et al. [277] introduced a method of alarm pre-processing and
correlation analysis. The proposed method combines a time series segmentation
and time sliding window to extract the alarm transactions, followed by K-means
and back propagation NNs to evaluate the alarm importance quantitatively.

Table 17 summarizes the investigated literature, highlighting the key advan-
tages and limitations of the AI/ML techniques adopted for fault management.

7. AI/ML Business Drivers

This section provides an overview of the emerging AI/ML use cases consider-
ing the requirements of mobile network operators, new applications with critical
needs and the potential of big data. An overview of a representative set of AI/ML
business drivers summarizing the value creation for MNOs is shown in Table 18.

7.1. Network Operations
The value creation of AI/ML for MNOs is evident in cloud-native environ-

ments by reducing Capital and Operational Expenditures (CAPEX/OPEX), while
enabling efficiently agile operations and assuring service quality. The main use
cases related to AI/ML in networking, as highlighted by MNOs in [278] [279],
include the following:

• Network planning is a complex process that relies on a wide variety of pa-
rameters that influence site location, antenna directivity, links and nodes ca-
pacity as well as service capabilities in terms of QoS and reliability. AI/ML
can assist identifying network infrastructure needs to meet the expected tar-
gets, while minimizing investment costs and evaluating the network effec-
tiveness for the expected user services.

• Network fault diagnosis focuses on troubleshooting complex network issues
based on root cause analysis. AI/ML can provide the means of analyzing
efficiently a wide variety of network and user data in order to identify the
main cause of a fault considering alarm correlation across different network
domains or even to perform a prognosis analysis to prevent it.

• Network optimization predicts the traffic demands and service Key Perfor-
mance Indicators (KPIs) to assist dynamic operations, such as resource al-
location or energy-saving, enhancing network agility and utilization.
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Table 17: Summary of AI/ML algorithms for fault management.
Learning
Algorithm Fault Management Issue Ref. Benefits & Drawbacks

MLP Root cause analysis [271]
- Pros: Optimal speed-accuracy trade-off

compared to other DL algorithms
- Cons: Require labeled training datasets

Random Forest Root cause analysis [271]
- Pros: Simplicity and enhanced detection

accuracy
- Cons: ineffective for real-time predictions

SVM Root cause analysis [271]
- Pros: Effective with small datasets
- Cons: Feature engineering required

Bayesian
Networks Root cause analysis [272]

- Pros: Probabilistic correlation and
causality modling

- Cons: Exponential increase in inference
complexity for large-scale systems

TL Alarms correlation [274]

- Pros: Fast creation of fault knowledge
bases for new services

- Cons: Fine-tuning required to improve
model’s generalization

Q-learning Root cause analysis [275]
- Pros: Adapt to time-varying system’s

dynamics
- Cons: Slow convergence time

CNN Alarms correlation [276]

- Pros: Automated extraction of the
traffic’s deep features

- Cons: Overfitting issues and
limited generalization ability

GWO Alarms correlation [276]

- Pros: Simplicity and better convergence
compared to other optimization
algorithms

- Cons: Limited performances on highly
complex optimization problems

K-means Alarms correlation [277]
- Pros: Simplicity and speed
- Cons: Hard clustering which may lead

to inaccurate alarms classification
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Table 18: Summary of AI/ML business drivers.
Business Driver Business Sector Value Creation
Network Operations Network planning Enable effective network infrastructures

Network fault diagnosis Troubleshooting complex network issues
Network optimization Predict traffic demands and service KPIs
Security Identify effectively abnormal behaviours

Service Assurance Service feasibility check Assurance resource availability for service duration
Tactile communications Assurance of real-time interaction
Virtual and Mixed Reality Merging physical and virtual data seamlessly

Vehicular QoS Switching the LoA Assist in predicting LoA
Platooning Advent automated highway systems
Warning signals Enhanced road safety
Remote data collection Enhanced driving experience
Improving traffic control Managing efficiently city transport

UAV Services Navigation planning Allocate flying path conforming safety and privacy
Machine vision Discover and identify objects
Airborne RAN Identify flying locations for optional coverage
Airborne services Optimal proximity services

Customer Data Services Customer services Customer analysis for service development
Fraud detection Prevent theft, fake profiles and identity cloning
Monetizing data Sell data to 3rd parties for knowledge creation

• Security where the AI/ML can identify abnormal user/device or network
equipment behavior considering the expected user/device communication
and mobility patterns or network equipment load in relation with control
signaling and user plane traffic patterns.

7.2. Service Quality Assurance
Service assurance leverages the benefits of AI/ML to preserve service perfor-

mance by analyzing the expected KPIs, users’ behavior and traffic demands. Ser-
vice assurance is critical for delay sensitive applications that rely on immediate
response or absolute coordination.

7.2.1. Service Feasibility Check
In the context of network slicing, service requirements are translated into net-

work resources with the AI/ML identifying the quantity and location that fulfils
the Service Level Agreement (SLA) with a minimum cost. To this end AI/ML is
used to perform a feasibility check, i.e., check if the network resource available is
sufficient to assure the desired service quality for the duration of the slice request.
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7.2.2. Tactile Communications
Tactile communications [280] involve immediate and highly robust control,

touch, and sensing/actuation services to enable a real-time interaction among par-
ticipating parties in distinct locations. The use of AI/ML can assist towards a
predictable networking environment that can assure the desired delay, jitter and
degree of reliability. Some representative use case may include:

• Teleoperation enables humans to interact with real or virtual objects and
perform tasks such as remote touch and control. It allows a wide variety of
applications, including remote robotic operations, e.g., in Industry 4.0.

• Internet of skills allows transferable human skills to be taught and executed
via the Internet, e.g., remote surgery. It facilitates visual or audio sensory
experiences equivalent to local and leverages the benefits of virtual/mixed
reality for rendering 3D visual representations.

• Autonomous worksites enabling automation and remote operations for e.g.,
harbors, in terms of loading, logistics and traffic control.

7.2.3. Interconnected Virtual and Mixed Reality
Interconnected virtual and mixed reality enable a holographic teleportation

and sound in real time from different locations towards a common physical or
virtual social existence [281, 282, 283, 284]. Merging physical and virtual data
seamlessly requires a coordinated latency to assure synchronization among di-
verse sites. Common virtual and mixed reality use cases may include:

• Enhanced communications allowing conversations, business meetings, and
social opportunities for people with special needs.

• Public events with virtual presence, allowing, e.g., musicians residing in
different physical locations to deliver in real-time a concert together.

• Gaming experience that enhances audiovisual based on virtual and aug-
mented reality with a sense of touch through the correlation of computer-
generated and real-world sensory information.

7.3. QoS Sustainability in Vehicular Communications
Autonomous cars are expected to form 25% of the vehicles on the road by

2035 [285]. This rapid growth and development is mainly supported by the ad-
vances in AI/ML, edge computing and hardware. AI/ML can help maintaining the
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desired performance and safety considering the expected vehicle mobility. Vari-
ous AI/ML based use cases related to vehicular communications are documented
in [286], including the following:

• Switching the Level-of-Automation (LoA), according to the Society of Auto-
motive Engineers (SAE), there are six LoA with gradually different features
starting from manual to full automation [287]. Each LoA requires a differ-
ent network performance, with the higher LoA (i.e., full automation) need-
ing more stringent performance. To assure safety while driving, AI/ML can
assist in predicting the expected network performance and trigger the vehic-
ular application to switch towards a lower LoA once the expected network
requirements cannot meet the desired demands and vice versa.

• Platooning is a method for driving a group of closely distant vehicles, which
are linked electronically, allowing a synchronous behavior; i.e., accelerate
or brake simultaneously. Typically, platooning relies on automated highway
systems; i.e., with marks that act as sensors to assist vehicles to measure the
speed and direction, as well as on a computer control either on-board the
last vehicle or within the network. Such computer control collects traffic
and road data (e.g., speed control) and leverages the benefits of AI/ML.

• Warning signals may vary from roadworks, traffic jam, vehicle approach-
ing, emergency brake and collision risks. Some of these warnings are based
on analysis of local vehicular data via on-board sensors and AI/ML, while
others rely on additional data provided via the network edge or road infras-
tructure.

• Remote data collection from other vehicles or road infrastructure including
sensor data sharing, e.g., speed or direction, or real-time video, e.g., to see-
through for pass maneuver. An AI/ML can coordinate such data acquisition
considering the driving behavior and vehicle position.

• Improving traffic control may assist the city transport system by using AI/ML
to predict and avoid congestion.

7.4. Assurance Control in UAV
UAVs support a wide range of use cases including public safety, inspection,

emergency situations, healthcare, goods delivery and agriculture. Leveraging the
benefits of mobility, adaptive altitude and flexible network connectivity, UAVs can
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offer on-demand communication and computing capabilities, real-time monitor-
ing and control. Although UAVs are navigated autonomously, a real-time control
at any time, which relies on accurate location tracking and low latency high reli-
able communications is a prerequisite. The use of AI/ML should consider such
needs alongside other limitations related to computational and energy resources
to enable automation in:

• Navigation planning allocates the UAV path, speed and altitude by corre-
lating data from various sources: (i) privacy and law that indicate forbidden
flying regions, (ii) weather forecasts, terrain and obstacle data that provides
performance insights for UAV connectivity, and (iii) air operator data re-
garding airway routes and other UAV navigation plans in the region. AI/ML
can correlate such data considering also the expected network and cloud re-
source availability for assuring real-time control and computing capabilities
along the allocated airway route.

• Machine vision and image recognition enables UAVs to identify and label
objects. Thanks to AI/ML, UAVs are not only displaying camera captures
but can perceive and understand the surrounding environment assisting in
terrain recognition, e.g., for emergency situations.

• Airborne RAN on-board UAVs can accommodate connectivity for special
events, or temporary coverage faults in a cost efficient manner. AI/ML
should assist UAVs to determine the optimal flying locations or parking
positions, considering the expected traffic demands, user mobility and the
connectivity with mobile network.

• Airborne services on-board UAVs, including content caching, computing
and other proximity services can assist highly mobile users, e.g., vehicles.
AI/ML can help predicting the content and service popularity with respect
to particular locations.

7.5. Customer Data Services
With the rise of AI/ML, which offers the capability to analyze usage insights in

communication networks, customer data has become a significant asset for MNOs
driving a number of use cases as detailed in [288], including the following:

• Business decisions may rely on AI/ML to extract insights from customers
in order to scale and develop further services, understand customer seg-
mentation and customer lifetime value. These insights can help forming
customers profiles for pricing plans and creating new business services.
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• Fraud detection including illegal access, theft, fake profiles and identity
cloning. AI/ML can detect such frauds and provide alerts.

• Monetizing data allows a MNO to share collected data in order to enable
third parties to perform AI/ML model training or transfer learning, but re-
quires to impose restrictions, e.g., per partner or geographical area.

8. Lessons Learned & Open Challenges

AI/ML is revolutionary technology that introduces intelligence and automa-
tion in every networking layer and within the entire life-cycle of a communication
service enabling an AI native environment. It creates new opportunities for ser-
vice provisioning and brings new technical and business challenges. This section
discusses such AI/ML and network architecture challenges and highlights some
research directions.

8.1. Native AI
Typically, AI/ML algorithms devise the analytics model, which is packaged

together with other capabilities including storage, consumer registration, service
creation, data monitoring/formatting and analytics distribution, comprising a sin-
gle analytics function. Multiple analytics functions should be established in a mo-
bile network architecture for serving different geographical areas. This raises sev-
eral questions on how analytics functions shall be arranged and inter-work within
the network architecture in order to assure scalability on collecting and exchang-
ing data. To address this issue the monolithic AI/ML block should be split into
multiple pieces with a smaller functional scope, which can be flexibly arranged to
reflect particular needs [289] using an AI/ML orchestrator that manages, creates,
composes and relocates analytics services.

Analytics functions follow the consumer-produce paradigm, which is ineffi-
cient for conveying high volumes of data, towards multiple consumers. The main
issue is that the underlying service-based architecture is not designed to carry high
volumes of data and cannot operate to support real-time data collection and dis-
tribution. Alternative mechanisms are needed such as streaming data, e.g., Ama-
zon Kinesis 3, which can handle dynamic data generated on a continual basis.
The emerging mobile networks shall consider to adopt a separate communication
medium to support efficient real-time data collection and distribution. Besides the

3https://docs.aws.amazon.com/streams/latest/dev/introduction.html
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need for a new communication paradigm, the concept of native AI [290], i.e., em-
bedding AI/ML in network elements and equipment, or integrating it in commu-
nication protocols, can further advance the AI/ML operations integrating AI/ML
with the emerging mobile networks.

8.2. Life-cycle of AI/ML Model
The life-cycle of an AI/ML model consists of four phases including the plan-

ning, preparation, operation and decommissioning. The planning phase involves
the model selection and configuration, which can be performed by the mobile
network operator or a 3rd party provided that the appropriate exposure interfaces
are in place to support: (i) model selection and parameter configuration or (ii) 3rd
party model injection either via the means of software uploading or meta-language
description. The support of the aforementioned processes require extensions on
the corresponding exposure interfaces.

The operational phase should then ensure a consistent performance of the
AI/ML model, which requires regular checks that may trigger potential model up-
dates, modifications or even the launch of a new model. Such a process requires
the consumer or another entity to provide feedback regarding the performance of
the AI/ML model, indicating the inaccuracy degree, problematic output range or
inefficiencies of the input data. In addition, there is a need to indicate, which type
of a model is needed by defining model profiles that can be used to serve certain
goals. Once an AI/ML model is characterized as problematic it should be disabled
or certain output should be filtered out depending on the type and the degree of
the problem. An AI/ML orchestration entity should be defined to take care of
AI/ML model health by analyzing the feedback and propose a resolution, e.g.,
re-training and validation, including also potential alternations of the data sources
and/or enriching the type or modifying the time schedule details of the collected
data.

8.3. AI/ML & Architectural Enhancements
Network intelligence stretches AI/ML across the 5GC, RAN, management and

application plane, with the need to exchange knowledge, i.e., analytics, as well as
raw data and KPIs. To achieve this cross system AI [291] in an efficient way, there
is a need to introduce unified AI/ML mechanisms and hosting environments that
merge various types of analytics providing interoperability, while minimizing data
exchange and the response time towards the consumer. Such hosting environment
can be offered in the form of a unified platform across the core, management and
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RAN, allowing a customized assembly of various analytics to assist particular net-
work services or applications. The RAN requires a new data exposure perspective,
which is currently handled via the management plane. Architecture enhancements
should be investigated to reshape the RAN into a service-based architecture where
entities like RIC can share intelligence and knowledge directly with 5GC and ap-
plication plane, enabling innovation in service provision and QoE. A step further
would be the introduction of a new AI plane [292], with common data collection
and distribution mechanisms across 5GC, RAN and OAM, and a logical data lake
to assist the need for holding historical data and providing a unified model training
and transfer learning across different AI/ML entities in an effective manner.

In addition, there is a need to introduce mechanisms enabling a prompt inter-
action between the application layer and analytics, allowing the network layer to
benefit from application data. In fact, application data can provide significant in-
formation for the network, e.g., a closed-circuit television can offer user mobility
information or a factory camera inspection system can alter the service provi-
sion and hence the required network resources for completing a product. Data
translators or new KPIs to capture the application intelligence should be investi-
gated, which map application data into networking “language”. Obtaining user
context information from the application related to the user profile, location, us-
age, time, related events, etc., can further enhance the network performance and
service experience. Finally, there is a need for further architecture enhancements,
i.e., APIs, that would enable interaction with digital twins [101]. Digital twins
support network emulation, i.e., sandbox, and can serve for real-time testing of
AI/ML decision that impact the network configuration and can provide training of
AI/ML models before being applied in the network in a real situation or can assist
training functions with missing data.

8.4. Analytics & Charging
Similarly to other network services, analytics shall introduce charging events

depending on the type of requested service and the number of provided reports
as specified in [293]. Such charging capabilities needs to take into account more
complex scenarios, where an analytics report requires raw data or other analytics,
e.g., service experience requires RAN analytics and QoE measurements from 5GC
and application. Charging can alternatively be coupled with service assurance or
primal user contracts or can be a part of specific applications, e.g., autonomous
driving. Charging records can also provide useful information related to user con-
text for deriving analytics. In fact, charging records can provide rich information
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related to service usage for a specific user or in particular locations and under cer-
tain circumstances. Mobile network operators can use such analytics for figuring
out the usage and popularity of certain services in order to optimize new service
development, edge computing and network resources. Such information is also
useful for evolving charging models taking into account emerging service usage.
Further work is required towards this direction for anlyzing charging records and
correlating service usage data.

8.5. Privacy-preserving in AI/ML
User data forms the foundation for realizing the paradigm shift from network-

centric to user-centric operations in 5G. However, the reliance on AI/ML to au-
tomatically process and derive insights for customizing the user experience raises
privacy concerns. In fact, the use of AI/ML increases the risks of revealing user’s
sensitive information, such as identity, position, personal interests and activities.
Thus, privacy-preserving AI/ML techniques are paramount to reap the benefits
of automation in empowering user-centric networks without infringing the user’s
privacy, with popular approaches including differential privacy, homomorphic en-
cryption and decentralized learning.

Differential privacy withholds data about individuals by adding a controlled
amount of noise during the model training, which prevents an adversary to infer
whether a specific individual input belongs to the training dataset or not. Ho-
momorphic encryption guarantees privacy by enabling training over encrypted
data. The decentralized learning (e.g., federated learning) maintains the privacy
by enabling training on the user’s private data without requiring direct access to
such data. Despite the merit of the aforementioned approaches, their applica-
tion exhibits accuracy, performance and privacy breaching challenges [157]. In-
deed, the use of differential privacy may negatively impact the accuracy due to
the introduced noise. Homomorphic encryption induces significant computational
complexity. Although federated learning protects the privacy by sharing only the
model parameters instead of data, the disclosure of private data is still possible us-
ing; for instance, gradient leakage [294] or membership inference [295] attacks.
Therefore, how to preserve privacy without trading-off performance and accuracy
is still an open question.

8.6. Cost Efficiency and AI/ML
The promise of AI/ML in 5G and beyond is not without an increased cost. In

fact, the noticeable performances exhibited by emerging AI/ML techniques, such
as DL, come at the cost of high computation and operational complexity. The
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computation complexity of AI/ML techniques is proportional to the time required
to process a single sample, the data set size, the model size (i.e., model’s parame-
ters), and the number of experiments needed to tune the model’s hyperparameters
(e.g., number of layers, the number of neurons in each layer, the batch size, the
learning rate) [6]. To empower cost efficient AI/ML solutions, new strategies are
required to develop techniques that rely on reduced amount of data and fewer pa-
rameters to reach the desired accuracy level. For instance, the authors in [296]
discussed different compression approaches that can be leveraged to reduce the
size of a DRL model. Furthermore, it is essential to improve the computation effi-
ciency of hyperparameter tuning; an expensive process requiring several training
and testing trials in order to find the optimal set of hyperparameters yielding the
higher accuracy. Novel hyperparameter optimization methods that can support
parrallelization are desirable [297].

8.7. AI/ML in Roaming Scenarios
The use of AI/ML is considered within a single MNO. However, there are

several cases where a user may move out of such an MNO coverage area. In this
case the user may roam to a mobile network that belongs to a different MNO,
provided that there is a roaming agreement in place. In such a case there is a need
to consider how ongoing AI/ML operations shall be handled or even to share user
analytics. To accomplish this there are several challenges related to data sharing,
since operators need to respect user data privacy and at the same time shall not
reveal network internal information, e.g., related to network load and utilization.
Certainly, data anonymity is needed related to user data, but also mechanisms to
be able to decide when to provide this data and towards which AI/ML entity in
the other MNO network. In terms of sharing network data between MNO, instead
of sharing sensitive data it may be preferable to used FL in where different MNO
can use their local data to train an AI/ML instead of sharing, but still there are
challenges on exchanging the AI/ML model. One solution can be to share a model
only among AI/ML entities that reside on different MNOs but belong to the same
vendor, in order to avoid revealing model information to competitors, but further
work is needed on the security process.

9. Conclusion

This survey provides a comprehensive insight of AI/ML in emerging mobile
communications considering the business perspective, the main concepts and fun-
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damental algorithms as well as their applicability into the control and management
plane. It sheds light on how key technologies related to the network evolution
towards service-based architectures can assist the adoption of AI/ML across dif-
ferent domains, including the RAN, 5GC, and OAM, emphasizing the notion of
AI/ML service request and reporting as well as data collection and distribution.
The adoption of AI/ML in 3GPP networks is elaborated considering the manage-
ment plane with SON and MDA as well as the control plane focusing on NWDAF.
Furthermore, it overviews how the main AI/ML algorithms are used in network-
ing, considering a user-centric and a network-centric insight while pointing out
their adoption in the control and management plane, i.e., NWDAF and MDA,
respectively. Finally, other standardization and open source efforts are reviewed
before documenting the lessons learned and identifying the further challenges that
would shape AI/ML applicability for mobile systems beyond 5G.
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