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Abstract—With the rapid evolution towards Beyond 5G and
future 6G networks, multi-access edge computing (MEC)-enabled
wireless networks are expected to support massive device con-
nectivity, ultra-low latency, and high network capacity. However,
meeting these stringent requirements in multi-server wireless
multihop networks essentially requires the joint orchestration of
server selection, multihop routing, and interference management.
This paper develops a novel three-stage optimization scheme
named broad learning system with Q-learning (BLSQ), consist-
ing of a broad learning system-based server allocation stage,
a signal-to-interference-plus-noise ratio-driven Q-learning-based
multihop path selection stage, and a consensus transmit power
control stage for adaptive interference mitigation. Furthermore,
a consensus transmit power control mechanism is incorporated
to adaptively adjust the transmit power of user devices, aiming
to balance interference mitigation and throughput enhancement.
The proposed scheme is particularly suitable for various mission-
critical and dynamic scenarios, such as emergency communica-
tion in disaster-stricken areas, multihop data exchange between
rescue teams and command centers, and flexible network de-
ployment in large-scale events using unmanned aerial vehicles.
Extensive simulation results demonstrate that the proposed BLSQ
schemes outperforms existing related approaches in terms of net-
work capacity, task completion time, interference management,
and quality of servers, validating the superiority and robustness
of our design for future MEC-enabled wireless networks.

Index Terms—Wireless multihop networks, server allocation,
path selection algorithm, broad learning system, Q-learning, and
transmit power control.

I. INTRODUCTION

ITH the evolution toward Beyond 5G (B5G) and

future 6G networks, emerging applications demand
unprecedented levels of connectivity, ultra-low latency, and
high network capacity. According to the IMT-2030 framework
proposed by ITU-R [1], future mobile networks are expected to
support connection densities ranging from 10° to 10® devices
per square kilometer, with latency requirements as low as 0.1
to 1.0 milliseconds. Moreover, as 6G aims to support Al-native
services, future wireless systems must be capable of delivering
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real-time Al inference and decision support in addition to com-
munication services [2], [3]. An increasing number of smart
devices, such as autonomous drones, wearable sensors, and
intelligent vehicles, will generate computation-intensive tasks
requiring immediate Al processing. However, most of these
devices are restricted by processing power and battery capac-
ity, making local execution of complex Al models impractical.
These ambitious requirements pose significant challenges to
the design of multi-access edge computing (MEC)-enabled
wireless networks, especially in scenarios with high device
density and dynamic user mobility.

MEC brings computing and storage capabilities closer to
the network edge, enabling real-time data processing and low-
latency services. Task allocation and offloading in MEC has
emerged as a pivotal strategy to alleviate the computational
burden on resource-constrained devices, enabling efficient
processing and reduced latency in various applications [4], [5].
However, conventional MEC systems rely on direct device-to-
server communication, which severely limits the scalability
and performance of wireless networks in high-density en-
vironments [6], [7]. Moreover, future wireless communica-
tions are anticipated to operate at higher frequencies (e.g.,
mmWave and THz) to support massive data transmission,
significantly escalating infrastructure deployment costs over
extensive geographic areas [8], [9]. In this context, multihop
wireless networking provides a cost-effective and scalable al-
ternative by leveraging device relaying and localized commu-
nication. Multi-server wireless multihop networks (MWMNss)
have emerged as a promising architecture, where devices can
communicate through multi-hop wireless links to offload their
tasks to edge servers (ESs) distributed within the system.
This resolution effectively supports massive connectivity and
achieve ubiquitous computing. Multihop networking plays
a crucial role in extending the communication range and
enhancing the reliability of wireless networks, particularly
in scenarios lacking fixed infrastructure [10], [11], such as
the rapid deployment of temporary communication networks
in disaster-stricken zones, multihop relay support for rescue
teams connecting to remote command centers, and flexible
wireless network setups in large-scale events or stadiums
using unmanned aerial vehicles (UAVs) and mobile ESs to
support surveillance, sensing, and emergency communications
[12], [13]. This design enables better load balancing, reduced
latency, and improved network coverage. Nevertheless, the
design of highly efficient MWMNs remains challenging, as
it necessitates comprehensive consideration of application-
specific quality of service (QoS) requirements, efficient data
forwarding strategies, robust wireless communications, as well
as resource restrictions. This includes optimal server selection,



dynamic route planning to accommodate user mobility, and
interference-aware power control, all critical to ensuring robust
performance in complex and time-sensitive environments.

Recently, Al-driven approaches have been widely adopted to
optimize resource allocation and routing decisions in wireless
networks. In the community of MEC, extensive efforts have
been devoted to task offloading, server selection, and resource
allocation by leveraging Al techniques, especially deep re-
inforcement learning (RL). Meanwhile, RL-based algorithms
[14] are widely developed to optimize multihop routing by
considering wireless link quality metrics such as signal-to-
noise ratio (SNR) and signal-to-interference-plus-noise ratio
(SINR). However, deep RL methods often suffer from sample
inefficiency, training instability, and high computational cost,
especially when deployed in large-scale and dynamic multihop
MEC networks [15]. These limitations hinder their real-time
applicability in edge computing environments with stringent
latency and scalability requirements.

To address these challenges, the broad learning system
(BLS) approach [16] has demonstrated its effectiveness in han-
dling large-scale data and adapting to dynamic environments,
making it a promising candidate for resource allocation and
server selection in dynamic MEC networks. BLS offers several
advantages, such as fast training speed without requiring
deep architectures, excellent generalization ability with limited
training samples, and incremental learning capability to adapt
to changing environments. Recent studies have applied BLS
to classification and resource allocation tasks in edge comput-
ing environments, demonstrating better scalability and lower
training latency compared to deep RL-based methods [17]-
[19]. These characteristics make BLS particularly suitable for
large-scale and dynamic MEC scenarios. However, existing
works often treat server selection and multihop routing as
isolated problems, ignoring their mutual coupling in practical
MEC scenarios. Additionally, few studies have addressed
the challenge of adaptive transmit power control in dense
wireless networks to mitigate interference while maintaining
throughput performance.

To bridge these research gaps, this paper investigates the
joint optimization of server selection, multihop routing, and
transmit power control in MWMNs for supporting the reliable
communication and computation of users, as well as optimiz-
ing network capacity. We proposed a three-stage broad learn-
ing system with Q-learning (BLSQ) scheme. We summarize
our major contributions as follows:

e« We design a comprehensive scheme for MEC-enabled
MWMN:Ss, spanning from the application layer down to
the physical layer. The scheme jointly considers user-
server association, dynamic routing, and interference-
aware power control under realistic device mobility,
communication constraints, and QoS requirements. The
proposed scheme addresses the challenges of optimizing
resource allocation and multihop communication under
stringent latency and throughput constraints, which are
critical to ensuring reliable network operation in dynamic
and densely deployed MEC scenarios.

o We transformed the joint network optimization problem
into a three-stage decision process and proposed BLSQ

scheme to jointly solve the problem. In the first stage,
a BLS is employed to efficiently determine the optimal
server allocation. In the second stage, a SINR-based
Q-learning algorithm is proposed to construct multihop
routing paths that adapt to varying network topology and
link conditions. Moreover, we incorporate a transmission
power control algorithm to further reduce interference and
improve link efficiency.

« Extensive simulation results validate the superiority of
the proposed methods over existing algorithms, demon-
strating significant improvements in network capacity,
task completion time, interference power, and QoS. This
research contributes to the development of intelligent,
adaptive, and scalable MEC-enabled wireless networks
for future 6G systems.

The rest of this paper is organized as follows. Section II re-
views the related works. Section III presents the system model
and problem formulation of MWMNSs. Section IV details the
proposed BLSQ schemes. Section V evaluates the performance
of the proposed schemes through extensive simulations under
different network scenarios. Finally, Section VI concludes this
paper and outlines potential future research directions.

II. RELATED WORKS
A. Edge-Enabled IoT Systems

MEC has emerged as a promising solution to overcome
the computation limitations of mobile devices by offloading
tasks to edge servers. Extensive research has been conducted
on task allocation and resource optimization strategies in
MEC and Internet of Things (IoT) environments. Wang et al.
[20] investigated a joint task, spectrum, and power allocation
problem for MEC-based networks with heterogeneous task
requirements, and developed a multi-stack RL algorithm to
accelerate convergence and improve performance. Chen et al.
[21] studied dynamic task allocation and service migration in
edge-cloud IoT systems under highly dynamic user demands
and mobility, proposing a deep deterministic policy gradient-
based algorithm to minimize cloud server load while satisfying
latency and migration constraints. Chen et al. [22] further
explored distributed joint task and computing resource alloca-
tion in heterogeneous edge networks using multi-agent deep
reinforcement learning (DRL) and sigmoidal programming.
Lin et al. [23] addressed AI service placement in multi-
user MEC systems, optimizing CPU frequency scaling and
bandwidth allocation. Moreover, UAV-assisted edge computing
has gained attention for providing computation services in
dynamic environments. Goudarzi et al. [24] proposed an opti-
mization framework for UAV-assisted vehicular edge comput-
ing to minimize age of information, energy consumption, and
rental costs using a soft actor-critic-based RL algorithm. Tran
et al. [25] tackled UAV relay-assisted IoT communication,
optimizing resource allocation and UAV trajectory to serve
more devices under latency and storage constraints.

B. Wireless Multihop Networks

In wireless multihop networks, extensive research has fo-
cused on optimizing task offloading, routing, and resource



allocation. Ahmed et al. [26] proposed a proximal policy
optimization-based RL algorithm to minimize task execution
delay in multihop vehicular task offloading. Nguyen et al. [27]
presented a UAV-assisted multihop edge computing architec-
ture using deep Q-learning for task partitioning and offloading.
Zhao et al. [28] proposed a two-layer DRL framework for
RSU-to-Everything networks, using LSTM-based models to
predict neighbor behavior for offloading decisions. In federated
learning, Chen et al. [29] proposed a framework over wireless
mesh networks with in-network model aggregation and joint
optimization of routing and spectrum allocation. Ji et al. [30]
introduced a GNN-assisted DRL for V2X communications,
modeling V2V interference as graph edges for distributed
resource allocation. Akyildiz et al. [31] proposed a mobility-
driven multihop task offloading and resource optimization
protocol for connected vehicular networks.

C. Broad Learning System

Machine learning (ML) techniques have been widely used
for task allocation and offloading in wireless networks, includ-
ing deep learning-based methods [32], [33]. Recently, BLS has
gained interest, thanks to its non-deep learning framework,
which offers fast learning and low computational complexity.
Xu et al. [34] introduced recurrent BLS for time series predic-
tion, enhancing its ability to handle sequential data. Chi et al.
[17] proposed a BLS-based task offloading scheme (BLSO)
in Industrial IoT networks, demonstrating superior training
efficiency and adaptability to dynamic networks. These studies
highlight the increasing role of DRL and BLS in managing
the complexity and dynamics of modern MEC and wireless
multihop environments.

Although extensive studies have been conducted on server
allocation, resource management, and multihop routing in
MEC-enabled wireless networks, most existing works treat
server selection and multihop path planning as isolated op-
timization problems. In future MWMN scenarios, server se-
lection and routing decisions are inherently coupled due to the
converge of communication and computation, jointly impact-
ing the application QoS and network capacity. However, mak-
ing these decisions remains challenging due to the dynamic
network topology, interference, and device characteristics. In
addition, few existing studies have addressed the adaptive
transmit power control in dense multihop wireless networks to
balance interference mitigation and throughput enhancement.

To address these research gaps, this paper proposes a novel
optimization scheme that jointly considers server selection
and multihop routing in MWMNSs. Specifically, a BLS-based
strategy is utilized to perform efficient server selection, while
a SINR-driven Q-learning algorithm is designed for multihop
path planning. Furthermore, a consensus transmit power con-
trol (CTPC) algorithm is incorporated to dynamically adjust
the transmit power of user devices, aiming to improve network
capacity and reduce interference. These contributions enable
the proposed scheme to achieve superior performance in terms
of network scalability, latency reduction, and interference man-
agement, particularly in dynamic and mission-critical network
scenarios.
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Fig. 1: Illustration of the Envisiones System Model.

III. SYSTEM MODEL
A. Network Model

This paper considers a three-tier MWMN, as presented in
Fig. 1, consisting of user devices (UDs) at the bottom layer,
ESs at the middle layer, and an orchestration system (OS) at
the top layer. UDs (4 = {1,2,---,U}) are randomly dis-
tributed within the network. A set of ESs (£ = {1,2,--- ,E})
are deployed in a grid-based pattern to support task requests
by ensuring resources and services. UDs can connect to ESs
through wireless multihop links established among devices,
enabling real-time data collection and task processing to
support various edge-aware applications.

The ESs are connected to the OS, allowing for the sharing
of gathered information from all UDs within the network. UDs
within the transmission range of others can act as relay de-
vices, receiving and forwarding the data until the data reach the
target ES. ESs serve as computational centers located closer
to UDs. Each ES maintains a real-time database reflecting its
computational resources. All devices in the network operate
follows a unified communication protocol, which enables
them to operate on the same frequency band and share the
same maximum access bandwidth. This assumption simplifies
system modeling and aligns with typical configurations in
standardized wireless communication environments. As for
OS, it is located in the network area and oversees global
network optimization and management. It aggregates network-
wide information, executes sophisticated machine learning
algorithms for optimized ES allocation and multihop path se-
lection, and maintains databases containing historical mobility
patterns, server capabilities, and computational demands.

The UDs are categorized into two types based on their
mobility characteristics and role within the network:

o Predefined-Path High-speed Devices (PHDs): These de-
vices move at high speed along known paths, which
have been pre-recorded and analyzed by the OS. Their
predictable mobility allows preemptive adjustments to
routing and server assignments. Examples include high-
speed delivery UAVs, autonomous vehicles, and mobile
robots deployed for emergency response or automated
industrial inspection.

« Random-Path Low-speed Devices (RLDs): These devices
exhibit relatively slow movement with unpredictable
paths, typically due to human-centric usage patterns.



Their unpredictable mobility requires periodic location
updates and dynamic network adjustments. Examples
include smartphones carried by pedestrians/people, wear-
able health monitoring devices used by medical patients,
and handheld terminals for workers in industrial environ-
ments.

B. Network Operation

The operation of the MWMN is structured into three pri-
mary phases i.e., server allocation, multihop path selection,
and network topology update.

1) Server Allocation Phase: Server allocation refers to
allocating each task to an appropriate ES that can ensure
its QoS requirements; ultimately achieving system-efficiency.
Due to limited resources, each UD offloads its task to an ES.
At the beginning of making a decision, the real-time state of
all UDs is obtained, including their locations, task requests,
and the service delay requirements. Then, the OS makes the
decision for every UD by comprehensively considering tasks’
QoS, ESs’ resource capacity, and the quality of wireless links
established within the system. We use a row vector of binary
indicators z¢(t) = {0,1},u € U,e € & to represent the
decision of server allocation at time ¢. z, = 1 indicates that
the task of UD wu is allocated to be processed by ES e, and
zt, = 0 otherwise. Since each UD’s task can only be offloaded
to a single ES, the following constraint is applied:

Cl:) zyc=1, Yuel. (1)
ecf

After obtaining a server allocation decision, the task es-
timation time tfﬁﬁ of a task offloaded from u to an ES e
can be obtained, which includes the task uploading time, task

processing time, and the resultant downloading time [17], i.e.,
t_p od
A AR e @)

where ¢772¢ is the task processing time and is determined by
its task size (L,,) and processing speed of allocated ES e (F):
L
tproc — ~u . (3)
u,e Fe
Here, Eg{; and fﬁ‘fé“" represent the estimated task upload time
and download time, respectively. Let L7 °* denote the estimated
size of the processed task results for UD u. Then, the estimated
upload and download times can be calculated as
o, = o = A @)

’ Ru,e ’ Ru,e
Here, IR, . is the transmission rate between the UD and the
ES, ie.,

Ru,e =B 10g2 (1 + 'Yu,e) , (5
where B is the channel bandwidth, v, . is the SINR between
u and e calculated by
_ Gu,e - P, u
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where P is the transmit power and 7 is the noise level. /C is the
set of interference UDs. We consider the worst-case scenario,
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Fig. 2: Tllustration of Interference.

where all UDs in the network contribute to interference during
transmission. As shown in Fig. 2, the interference model
considers all transmitting links during an ongoing link between
UDs and ESs. G, . is the power ratio between u and e, as
determined by the log-distance path loss model [35], i.e.,

1

PLuye )\’ @)
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Gu,e =
10( 10

where

du €
PL, . =20-logy(do) +10- ¢ - log;,( d(; )—w+1. (B)

Here, dy is the decorrelation distance and is set to 10 m in
this research. ¢ is an attenuation constant and w is the wall
attenuation. 1) is shadowing attenuation and d,, . is the distance
between UD u and ES e.

To meet QoS requirements, tffé of each task must not
exceed the task tolerable time (7,) defined by each UD:

C2:

est
tu,e < Tu,

Vuel. 9

2) Multihop Path Selection Phase: After the ES allocation,
the OS needs to select wireless multihop paths for efficient
data transfer between each UD and its assigned ES. Specifi-
cally, for each UD, a multihop path consisting of intermediate
UDs is established to connect it to the assigned ES.

To represent the multihop path clearly, we employ an
adjacency matrix defined as

Yo = [Wig(un) < (ui+1€) (10)

where ¢ € U is the transmitting node and j € U U & is the
receiving node. Specifically, the source node is « € U, and the
destination node is e € £. y; ; = {0,1}. y; ; = 1 means the
link between ¢ and j is included in the path. To guarantee the
connectivity and continuity of the multihop path from an UD
to its designated ES, the following constraints are applied:

Zjeuus Yuj =1, ZjeZ/{UE Yju =0,
Zjeuu£ Yje =1, Zjeuus Ye,j =0,
Zjeuus Yij = ZjeZ/{US Yii <1,

where u is the source node (the originating UD), which only
sends information outward, and e is the destination ES, which
only receives information. All intermediate nodes must have

equal in-degree and out-degree (at most 1) to ensure the
continuity and uniqueness of the selected path [36].

C3: an



To ensure high-quality data transmission in MWMNSs, the
path selection strategy should prioritize not only connectivity
but also the efficiency of communication. In this context, av-
erage end-to-end (E2E) throughput serves as a critical perfor-
mance metric that reflects the overall transmission capability of
the selected path [37]. By maximizing the average throughput,
the system encourages the use of high-quality wireless links
with better channel conditions and lower interference, thereby
improving data rate and reducing delay across multiple hops.
The average E2E throughput is defined as the mean of the
transmission rates across all links in the selected multihop
path. The average throughput for a UD, RJY, is

u,e

> icuue Zjeuus Yij - Rij
Zieuue Zjeuus Yi,j

Ry = (12)

For each selected multihop path, the task service time (")
must not exceed the task estimation time (£¢%%). To ensure
the timeliness and reliability of task execution in MWMNSs,
it is essential to guarantee that the task service time for each
task remains within its estimated deadline. This constraint is
particularly important for latency-sensitive applications such
as real-time monitoring, autonomous control, and emergency
communication, where task completion beyond the task tol-
erable time may lead to system failure or degraded QoS.
Therefore, we impose a delay-bound constraint to ensure that
all selected transmission paths and computing assignments
comply with each user’s time requirement, i.e.,

C4: 0 <t

e — Yu,er

Yu €U, (13)

where ¢;°C consists of the task upload time (¢;%.), the task

processing time (t£79¢), and the result download time (t3°%™):

,e u,e

ser __ jup down proc
tu,e - tu,e + tu,e + tu,e .

(14)

tul. and tif’;“”" depend on the actual size of the transmitted

data and transmission rates, which can be calculated by
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where R{V¢ is the average transmission rate across the multi-
hop path established between UD u and the target ES for
supporting the edge computing service procedure of its task
requests. Rﬁf’ew" is the download transmission rate.

In the upload phase, each UD transmits its task to the ES
via a multihop wireless path. Therefore, the average data rate
across the multihop path, Rﬁf’e"‘, is used for calculating the
upload time. In the download phase, ESs transmit the result
directly to UDs via broadcast. Since all ESs may transmit
simultaneously, they introduce mutual interference, and thus,
the individual download transmission rate is used to account
for this effect. In the download phase, the SINR experienced

by UD u when receiving results from ES e is given by:
Gu,e : Pe
UM B+ Ze’ef,e’gée Gu75/ - Per ,

where P, denotes the transmit power of ES e, and the
interference term I8 el te Gy,er - Per captures the total

down

qu,e -

(16)

interference from all other simultaneously broadcasting ESs.
Then, the download transmission rate is calculated as:

Réovm = B log, (1 +~dowm) . (17)

It is worth noting that multihop transmission is adopted pri-
marily due to the practical limitations of wireless coverage and
resource availability in large-scale MEC scenarios. In many
real-world environments (e.g., disaster-affected regions, large-
scale events, or areas lacking direct ES coverage), single-hop
connectivity is typically unavailable or severely constrained.
Therefore, multi-hop offloading becomes not only beneficial
but often necessary. However, for cases where single-hop
transmission can directly achieve lower latency and better
QoS, the proposed scheme naturally prefers single-hop rout-
ing, as reflected by the path selection stage. Hence, constraint
C4 essentially ensures that only feasible multi-hop or single-
hop paths meeting the latency requirements are selected.

If the selected multihop path fails to satisfy constraint C4,
the OS re-executes the path selection algorithm to determine a
feasible path. Moreover, in certain scenarios (e.g., when a UD
is located close to an ES), the single-hop path may offer lower
latency compared to multihop alternatives. In cases where the
OS repeatedly fails to find a feasible multihop path satisfying
constraint C4 after multiple attempts, it will default to the
single-hop link provided that the single-hop service time can
meet tffé To ensure convergence and bounded computational
cost, the OS explores a finite set of candidate paths (limited by
hop count and network topology). If no feasible path satisfying
C4 is found within a predefined number of attempts (e.g., 200),
the system will fall back to single-hop transmission if it can
satisfy the delay constraint. Finally, the allocation and routing
results are disseminated from the OS to all ESs, which then
broadcast this information to respective UDs. UDs adopt their
ES assignments and paths to initiate task transmission.

Constraints C2 and C4 form a hierarchical structure that
governs task latency control in our proposed scheme. To
clearly describe the relationship among the three timing pa-
rameters—task tolerable time, task estimation time, and task
service time—we outline the dependency as follows:

e T, is defined by each UD to represent its maximum
tolerable latency, serving as the initial QoS requirement.

. tffé is computed by the OS in the server allocation stage
based on expected transmission and computation delays.
It is constrained by C2 to satisfy tf;‘fé < Ty.

e t3°c 1s measured after multihop routing and power con-
trol are finalized. It must remain within the previously

estimated value, satisfying constraint C4 as ;%0 < ti‘qé
This layered design ensures that each task execution path not
only adheres to the user’s QoS requirement but also maintains
feasibility throughout network dynamics. The relationship
between C2 and C4 is shown in Fig. 3.

3) Network Topology Update Phase: The third phase is the
network topology update phase. This phase implements peri-
odic network updates to adapt to system dynamics especially
device mobility using two strategies for different types of UDs.

The system works continuously in an infinite time horizon
with discrete slots 7' = {1,2,---,}. At the beginning of



@ C2: t8t <1,
~e) Ca: 657 <tk

Fig. 3: Illustration of the Relationship between C2 and C4.
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each time slot, ESs collect the information from all their
associated UDs. Then, it will upload this gathered information
in addition to their own state information to the OS. To tackle
the mobility of UDs and the dynamics of task requests, as well
as the resources of ESs, the formulated decisions should be
dynamically updated based on the real-time system state.

Due to their predictable movement, ES assignments and
multihop path selections for PHDs were determined and
adjusted by the OS in the previous phase. During transit, PHDs
autonomously execute these path and server adjustments,
incurring manageable migration overheads.

For RLDs, at each time slot, the OS recalculates the
optimal multihop paths and ES assignments based on the
current location information uploaded by these devices. If a
recalculated route differs from the previously assigned route,
the OS proactively notifies the RLD with the updated path
information. Otherwise, the RLD implicitly continues using
the previously assigned route, thus minimizing redundant
signaling overhead and ensuring resource efficiency.

C. Problem Formulation

In MWMN:S, efficiently handling large-scale task offloading
while maintaining reliable communication quality is critical to
ensuring overall network performance. Motivated by these re-
quirements, we formulate a joint optimization problem aimed
at minimizing task service time, maximizing link quality,
and enhancing E2E throughput. OS performs optimization
for two primary objectives: the first objective is to minimize
the task estimation time and maximize SINR to ensure that
each UD’s tasks are processed efficiently while maintaining
reliable wireless communication links. The second objective
is to maximize the average E2E throughput for transmissions
between UDs and ESs to guarantee efficient data delivery, min-
imize transmission delays, and improve the overall network
performance MWMN. The optimization problem in the OS is
formulated as follows:

P1: min Z teSt —9)- %,e]
e ueUd
. ave ]8
P2 yLHJI%Z(W Z R (18)
ueU

s.t. C1,C2,C3,C4,

where 6 € [0,1] is a weighting coefficient that balances
the trade-off between task estimation time and link quality.
The OS performs optimization for two primary objectives
sequentially, where the relationship between P1 and P2 is

clearly structured to ensure optimal network performance. In
the first stage P1, the optimization prioritizes assigning each
UD to an appropriate ES by minimizing task estimation time
and maximizing SINR. This ensures that 7, of each UD is
initially met. In the second stage P2, given the ES assignments
determined by P1, the wireless multihop paths from UDs to
their corresponding ESs are optimized to maximize the sum of
average end-to-end throughput. Specifically, maximizing the
average end-to-end throughput is mathematically equivalent
to minimizing the transmission-related portion of the service
time. For a given task size L,,, the upload delay is expressed
in Eq. (15), which is a monotonically decreasing function of
R'¢. Hence, by choosing the multihop path that yields the
highest ;"7 the algorithm simultaneously drives ¢;°, towards
its minimum feasible value, beyond merely satlsfylng C4. At
this stage, a stricter constraint is applied, ensuring that ¢7°7
is not only within t“t but also seeks to maximize through-
put. Thus, the optlmlzatlon follows a hierarchical approach:
first satisfying latency and connectivity requirements through
server assignment, then further refining network performance
through path optimization.

In practical MWMNSs, the formulated joint optimization
problem presents significant challenges. First, future 6G net-
works will involve extremely dense deployments, resulting
in high-dimensional optimization problems that complicate
global solutions and demand efficient and scalable algorithms.
Second, the problem involves strong coupling among server
assignment, link quality (e.g., SINR), and multihop routing,
as these decisions directly influence each other. Strict QoS
constraints also increase complexity, as they depend on shared
resources and multihop contention.

Computationally, the problem combines discrete and con-
tinuous variables within nonlinear objectives and constraints.
Even simplified versions, such as optimal multihop routing
under delay and SINR constraints, are known to be NP-
hard. Dynamic environments with rapidly evolving network
topologies and task arrivals exacerbate these issues, necessi-
tating adaptive learning-based or heuristic methods capable of
approximating near-optimal solutions with manageable com-
putational overhead. The notations defined in this article are
listed in TABLE L.

IV. BLSQ SCHEME

To effectively address the challenges of optimal server
allocation and path selection in MWMNSs, we propose a three-
stage optimization scheme named BLSQ. The main objective
of BLSQ is to minimize task completion time, enhance net-
work capacity, and reduce network interference in dynamically
changing network environments.

As shown in Fig. 4, the proposed BLSQ scheme consists
of three stages. After receiving information of all UDs from
ESs, the BLS is executed at the OS to assign each UD
to an optimal ES in stage one. This decision accounts for
multiple factors and aims to minimize task estimation time
and maximize SINR. In stage two, after server allocation, a
Q-learning algorithm is applied to discover efficient multihop
wireless routes from each UD to its selected ES. The Q-
agent is trained using the SNR and SINR as a reward signal,
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Fig. 4: Overall Framework of the Proposed BLSQ Scheme.
TABLE I: List of Defined Notations. -
Server Allocation Network Topology
Symbol | Definition U
i @ pdate

u Set of User Devices (UDs) ?

& Set of Edge Servers (ESs) UDs and ESs sond L UD sends updated
u, e Indexes for UD and ES, respectively inf;r;r;ﬁon i;i;s information to OS
Ly Task size of u (bits)

L7es Result data size after task processing (bits) l

est 3 3 3
t;‘éf Edst estlmatl.on time (s) OS applies BLS for || Is the moving
tlﬁﬂoec asx server time (S) server allocation UD an RLD?

e Task processing time (s)

tuh Estimated task upload time from u to e (s)
tdown Estimated task download time from e to u (s)

tﬁ?e Actual task upload time via multihop (s) Is t:;g? a Is the‘ U?
tﬁ?;”" Actual download transmission time via multihop (s) ) moving:

Fe Computation speed of e (bits/s) Yes
Tu Task tolerable time defined by u (s)

Ry,e Transm%ss%on rate betvyeen u and e (bps) ) OS applies BLS future L ,| UDs send tasks to allocated |_
R; ; Transmission rate of link between ¢ and j (bps) server allocation ESs based on the decision
RS Average end-to-end throughput (bps)

Yu,e SINR between u and e

1;7 N(’)IS(? level (W/Hz) £ L,| OS applies Q-learning OS broadcasts decision

u Transmission pOWjﬂ of u (W) for path selection results to UDs

Gu,e Channel power gain between u and e

du,e Distance between u and e (m)

¢ Attenuation constant

(] Shadowing attenuation Apply CTPC to adjust Decision

B Channel bandwidth (Hz) transmit power of UDs changed?

g Weighting factor ) Multihop Path Selection
Tu,e Binary indicator of server allocation from u to e
Yi,j Binary indicator of link selection between 7 and j

while respecting routing constraints to ensure low interference
and high throughput. In stage three, to further reduce the
interference power, a CTPC algorithm is employed. This stage
adaptively tunes each UD’s transmission power based on its
link performance deviation from the average throughput, ef-
fectively achieving energy-aware communication and network-
wide SINR balancing. For mobile UDs, the BLSQ scheme also
incorporates distinct strategies tailored to different mobility
types, ensuring route robustness and task delivery reliability
under dynamic topology conditions. The novelty of the pro-
posed BLSQ scheme lies in its unified optimization of server
allocation, multihop routing, and transmit power control within
a single framework. Compared with existing works, BLSQ
leverages a BLS for scalable server association, incorporates
SINR-driven Q-learning for interference-aware path selection,
and integrates consensus-based transmit power control for

Fig. 5: BLSQ Flowchart.

robust interference mitigation. These features distinguish our
approach and enhance its applicability to dynamic MWMNs.
The flowchart of BLSQ is shown in Fig. 5

A. Broad Learning System-based Server Allocation

BLS is an incremental supervised learning algorithm de-
signed to update and adapt to dynamic environments without
requiring deep network architectures. BLS employs a flat net-
work structure comprising mapped features and enhancement
nodes, enabling efficient training and updating processes. The
illustration of BLS is shown in Fig. 6

As a supervised learning, BLS requires a structured dataset
composed of labeled samples. Each sample consists of input
predicted features and corresponding output labels, which are
used to train the model for accurate predictions. The input
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Fig. 6: Illustration of Broad Learning System.

features include the locations of all UDs and ESs, the task size
of UDs, and the computational capacity of ESs. To generate
the labels, we use the Gurobi optimizer [38] to solve the server
allocation subproblem (P1) defined in Eq. (18), under a variety
of network conditions. The optimal server assignment obtained
for each UD serves as the predefined label in the training set.
Once the dataset is generated, it is integrated into BLS for
training and inference.

The operation of the BLS algorithm consists of the follow-
ing stages:

1) Data Preprocessing and Feature Extraction: Initially,
the datasets are normalized using the min-max normalization
defined as

/ Z = Zmin
Z=—,
Zmaz — “min

19)

where 2 is a sample from the dataset, 2’ is its normalized value,
and Zz,,,5n, and 2,4, are the minimum and maximum values of
the respective feature across the dataset. Normalization ensures
numerical stability and equal importance among features.

To further enhance feature representation, feature extraction
is performed using the Random Forest algorithm. Specifically,
the importance of each feature is quantified using the Gini
impurity metric calculated by:

z STL
7(8,1%) = 3 ||s’l| .
=1 """

where z is the number of branches derived from feature .S,,,
and S, ; represents the [-th sub-branch. The Gini impurity at
the final layer is computed as:

Z(Sna), (20)

Z(Sns) = > p(x)(1 — plar)), (21)
=1

where p(z;) is the proportion of samples belonging to category
l. Features with high importance are retained, effectively
reducing dimensionality, enhancing prediction accuracy, and
mitigating overfitting.

The dataset labels are generated by solving the server
allocation optimization problem Eq. (18) using Gurobi solver.
The optimal server assignments obtained from Gurobi serve
as predefined labels for supervised training. Feature extraction
is then performed using the Random Forest algorithm, which
identifies and retains the most significant features for server
allocation, thereby enhancing model accuracy and reducing
overfitting.

2) Feature and Enhancement Node Construction: Follow-
ing preprocessing, the normalized and extracted data are
mapped into feature nodes through randomly generated weight
matrices and biases, i.e.,

Zi = (X Wei + Bei),

where X denotes the input data, W,; and [.; are randomly
generated weight and bias matrices, respectively, and ¢(-)
represents an activation function.

These feature nodes are further expanded into enhancement
nodes by

i=1,...,n, (22)

H; = &(Z,Whj + Brj)s

where W),; and f3,; are additional randomly generated weights
and biases, and &(-) is another activation function. This wide
structure enhances the learning capability of BLS without
requiring deep architectures.

3) Connecting Weights Calculation: With feature and en-
hancement nodes established, the optimal connection weights
to the output nodes are determined through ridge regression
approximation, formulated as

W=\ +ATA)"1ATY,

j=1,....m, (23)

(24)

where A is the concatenation of feature and enhancement
nodes, Y is the labeled dataset obtained by solving the
optimization problem with a Gurobi solver, and A is the
regularization parameter that mitigates overfitting.

4) Incremental Learning: A significant advantage of BLS
is its incremental learning capability, allowing rapid model
updating in response to network changes, such as new devices
joining the network or changes in device mobility patterns.
This process involves adding new features and enhancement
nodes incrementally, without retraining the entire model from
scratch, significantly reducing computational overhead.

B. Q-learning-based Path Selection

Although BLS determines the optimal ES for each UD
based on network conditions and task requirements, it lacks
the ability to determine the multihop path from UD to ES. This
limitation is because BLS is a supervised learning algorithm
that only maps input features to predefined labels without
considering real-time network dynamics. However, in wireless
multihop networks, path selection is a sequential decision-
making process that depends on dynamic factors such as
interference, device mobility, and SINR. Since BLS does not
incorporate graph-based decision-making and cannot adapt to
real-time network variations, a separate approach is required
to optimize routing.

The multihop path selection problem can be formulated as
a Markov Decision Process (MDP) as the system transition
only depends on the real-time state and employed action. In
this context, the state corresponds to the current transmitting
node, characterized by its position, link quality conditions
such as SINR, and its set of available neighboring nodes.
The action represents the selection of the next-hop relay
node among the neighbors, effectively deciding the subsequent
transmission link. The reward is defined based on the quality



of the selected wireless link, encouraging the selection of
paths with better channel conditions and lower interference,
typically measured by achievable throughput or SINR metrics.
The transition probability captures the dynamics of moving
from one state to another after taking an action, influenced by
factors such as device mobility, environmental variations, and
channel fluctuations. Finally, the policy defines a strategy that
maps each state to an action, aiming to maximize the expected
cumulative rewards over time. By solving this MDP, the
system can determine an optimal routing policy that adaptively
selects high-quality multihop paths in a dynamic network
environment. Accordingly, we apply Q-learning, a model-free
reinforcement learning algorithm, to enable the agent to learn
optimal routing decisions through real-time interactions with
the environment without requiring prior knowledge.

We integrate Q-learning into the BLSQ scheme, enabling an
adaptive multihop path selection mechanism that dynamically
learns and optimizes routing decisions based on real-time net-
work feedback. For any MDP, Q-learning seeks to maximize
the reward from the current state across all iterations. In other
words, given sufficient exploration time and either completely
random or partially random strategies, Q-learning can identify
the optimal policy. In Q-learning, the Q-function calculates the
expected instantaneous reward for taking a specific action in
a given state. The Q-function is typically updated via

Q™" (3m7 am) = (1_04)Q(Sm7 am)"'a (ﬁn"’mear (m+ 1)) ,

(25
where s, is the current state and s,,,1 is the next state. a,,
is the current action. 7, is the immediate reward received
after taking action a,, in state s,,. « is the learning rate. € is
the discount factor, weighting future rewards. Q,,q.(m + 1)
represents the highest estimated future Q-value from the next
state. The Q-values form a Q-table, which is continuously
updated through training. Based on the Q-table, the agent
keeps making decisions and doing actions until the reward
reaches the target value or the reward changes become smaller
than a predefined threshold over multiple iterations.

In our considered scenario, the OS, working as the agent,
needs to select multihop links for each UD, forming paths that
lead to an ES. This scenario perfectly aligns with Q-learning.
Specifically, we design the state, action, and reward for path
selection as

o State (s,,): The state at decision step m is represented
by the currently transmitting node u,,, i.e.,

Um € UUE, (26)

where U is the set of UDs and £ is the set of ESs.
Each state implicitly includes the node’s current network
position and the link quality metric with its neighboring
nodes.

¢ Action (a,,): The action a,, at step m is the selection
of the next-hop receiving node v,,, from the neighbors of
the current node u,,, i.e.,

Sm = Um,

Qm = Um, 27

Um € N(UWL)7

where N (u,,) denotes the set of neighboring nodes
available for transmission from node u,,,.

o Reward (7,,): The reward r,, after performing action a,,
in state s,, is defined as the link quality metric of the link
between nodes u,,, and v,,, i.e.,

(28)

7ﬂm(smv am) = Vtrn Vi *

Higher SINR values directly indicate better channel con-
ditions and lower interference, motivating the agent to
select high-quality communication links.

The transmitting device in a given path represents the
“state,” while the selected receiving device represents the “ac-
tion.” With each selection of a receiving device, the OS makes
decisions based on local network conditions and rewards for
each UD accordingly, thus optimizing network performance.

However, Q-learning evaluates Q-values based only on the
immediate rewards from current actions. This short-sighted
approach may result in sub-optimal overall multihop path
performance because it ignores the quality of subsequent
links. Even if an immediate link choice performs well, all
subsequent links may underperform. Therefore, improvements
to the Q-learning algorithm are necessary to encourage longer-
term, strategic decision-making in wireless multihop networks.
Based on this idea, we propose an enhanced Q-function as

(1 = a)Q(Sm, am)+aTm (Sm, Gm ) +€Q™**(m+1),

it 7 (Smy @m) > Tl

Q =
(1 - Q)Q(vaam) + ATm41 + EQmax(m + 1)1
if 7 (Sm,am) < Tmt1
(29)
where Q' = Q"“($m,a,,) for simplified presentation.

T (Sm, am) is the reward of the current link, and 7,41 is
the reward of the next link, which is the best action that can
be made with the current receiving device as state. 1,41 can
be calculated by

T"m+1 = T'TnJrl(am; a'/(n_i,-l); (30)

where aj, , ; is the best action with the highest Q-value, i.e.,

€29

a’;n+1 = arg (Ilnaff Q(awu am+1)'
The maximum Q-value achievable from the next transmitting
device (Q™**(m + 1)) can be calculated by

Qmax(m + 1) = Q(Clm, Cl;n+1).

According to the enhanced Q-function, when selecting a
path, it is imperative to compare the reward of the current link
with the reward of the link in the next hop and select the larger
one for the Q-value calculation. This approach enables the
OS to prioritize the assessment of the multihop path’s overall
performance, thereby ensuring the maximization of the total
reward upon the selection of a path.

Considering the mobility of UDs, the proposed Q-learning
method integrates dynamic updates to the Q-tables to adap-
tively manage network topology changes. PHDs autonomously
update their routing paths based on pre-calculated future Q-
values, thus reducing the overhead associated with frequent

(32)



recalculations. In contrast, RLDs periodically initiate recalcu-
lations by the OS to refine and optimize their routing paths
based on updated network states. This adaptive capability
ensures robust and efficient network performance, even under
highly dynamic conditions.

To effectively realize this adaptive path selection capability
and ensure the robustness of the multihop routing decisions,
we introduce a two-phase training strategy: the SNR-based
Training stage and the SINR-based Training stage.

1) SNR-based Training: In this phase, we employ SNR as
the reward metric. This phase identifies paths resilient to noise,
laying the groundwork for an interference-aware topology.
During this training, each link’s SNR is calculated and stored
in reward tables. Devices construct Q-tables initialized to zero,
representing all possible state-action pairs. Iterative training
continues until the SNR-based topology stabilizes.

2) SINR-based Training: Using the topology established in
the previous phase, we further refine paths by employing the
SINR as the reward metric. This phase considers interference
effects, thus enhancing the effectiveness of path optimization.
During this training stage, the OS calculates SINR values
for each link by accounting for interference from all active
transmissions and subsequently updates the Q-values based
on these SINR metrics.

In the path selection stage, each device consults its respec-
tive Q-table to select relay nodes that maximize the Q-values
iteratively. Specifically, each transmitting device identifies and
selects the optimal relay device within its transmission range,
continuously adapting its choices in response to dynamic
network conditions. To ensure the learning process termi-
nates efficiently, a convergence criterion is applied during Q-
learning. After each episode of path selection reaching an ES,
the UD evaluates R;'S of the learned path. If the change
in throughput between consecutive iterations falls below a
predefined threshold, the learning process is considered to have
converged. Once convergence is achieved, the corresponding
transmission time is calculated. If this transmission time satis-
fies the time constraint defined in Eq. (13), the path is recorded
as the optimal route for the corresponding UD. Otherwise,
the learning continues until both convergence and constraint
satisfaction are met.

C. Consensus Transmit Power Control

Multihop transmissions can lead to increased network inter-
ference, negatively affecting the overall network performance.
To address this issue, we introduce the CTPC algorithm [39],
which dynamically optimizes the transmit power at each node,
balancing throughput improvement and interference reduction
across the network. While improving individual throughput
often requires increasing transmit power, such local gains can
unintentionally cause global interference escalation, degrading
the performance of nearby links. The core idea of the CTPC
algorithm is to coordinate the transmit power decisions of
all nodes via consensus-based optimization, ensuring that
local throughput improvements do not lead to disproportionate
increases in global interference. The operation of the CTPC
algorithm can be divided into three main stages.

1) Initial Network Simulation: Firstly, after determining
multihop paths using the enhanced Q-learning, an initial sim-
ulation is conducted with uniform default transmit powers at
all nodes. This step yields baseline network metrics, including
the average throughput (denoted as R®“Y and the average
transmit power (denoted as P, which serves as benchmarks
for subsequent optimization.

2) Weight Factors and Normalized Cost Function: To si-
multaneously consider throughput gain (7'G) and transmit
power reduction gain (PG), SG is defined as the ratio of
the average throughput after applying CTPC (R({p.) to the
average throughput:

avg

_ ferpc

TG = Ravg

PG is defined as the ratio of the average transmit power
(P%9) to the average transmit power after applying CTPC

(Porpe):

(33)

pavg
PG - DHavg (34)
CTPC
These gains are normalized using two weight factors:
PG
WI=—+——, WP=1-WT. 35
TG+ PG’ (55)

Subsequently, a normalized cost function is constructed to
balance both metrics:

Cost=WT -TG+ WP - PG. (36)

This cost function facilitates finding an optimal balance be-
tween throughput enhancement and power saving.

3) Optimal Consensus Coefficient via Binary Search: To
determine the best power control strategy, CTPC employs a
binary search for the optimal consensus coefficient, denoted
as u. A search interval for p is first established. For each
candidate value of u, the node transmit power is adjusted by

I T (37)

where P, is the initial power of u, and P'°" is the updated
power after applying the consensus scaling. This approach
allows nodes with higher-than-average throughput to reduce
their power more significantly, thus minimizing their interfer-
ence with other nodes. Conversely, nodes with below-average
throughput retain or slightly increase their transmit power to
ensure reliable communication and throughput.

For each candidate p, a normalized cost function, which
balances throughput gain and power saving, is evaluated. The
binary search process iteratively explores the search space and
records the cost for each candidate value. This optimization
is achieved through an iterative binary search process. In each
iteration, two candidate consensus coefficients are selected
within the current search interval. For each candidate, a com-
plete network simulation is performed using the corresponding
adjusted transmit powers, where each node’s power is scaled
by the current consensus coefficient.

The resulting network throughput and power consumption
are then used to evaluate the normalized cost function. Based
on the comparison of the two cost values, the search interval is
updated by discarding the suboptimal half, and the next pair



of candidates is selected. This process continues iteratively
until the difference between the upper and lower bounds of
the interval falls below a predefined tolerance threshold. In
this way, the algorithm effectively searches for the optimal
consensus coefficient p* that maximizes the cost function.

As a result, CTPC dynamically assigns node-specific trans-
mit power levels in accordance with each node’s relative per-
formance, thereby achieving network-wide interference miti-
gation and performance enhancement.

V. SIMULATION RESULTS AND DISCUSSION
A. Parameters and Settings

To evaluate network performance with more precision, we
redefine task completion time (©) and network capacity (C).
Specifically, © is defined as the average of ¢;°; among all
UDs, which can be expressed as:

1
= tier. 38
w2 o

()

Correspondingly, the network capacity C' is defined as the
ratio of the total amount of transmitted data to the task
completion time. This is mathematically represented by:

2ueu(Lu + i)
5 :

To evaluate the interference mitigation capability of the
proposed scheme, we introduce the total interference power
metric. The total interference power (P™*) is defined as the
cumulative interference power experienced by all receiving
nodes in the network during data transmissions, i.e.,

Pt =3""3"" Gpu-Pr (40)

wEU kEU k#u

C= (39)

where G, denotes the channel power gain from the in-
terfering device k to the receiving device u, and Py is the
transmission power of the interfering device k. This metric
effectively quantifies the level of interference present within
the network, thus clearly reflecting the interference mitigation
capability of our proposed method.

To further assess energy efficiency, we define the total
energy consumption metric in terms of Joules per bit (J/bit),
which reflects the amount of energy consumed per success-
fully transmitted bit. For each wireless link during multihop
communication, the energy consumption is computed by first
calculating the transmission time as the ratio of the transmitted
packet length to the corresponding link transmission rate. This
transmission time is then multiplied by the transmit power
used by the sending device to obtain the consumed energy (in
Joules). The energy is finally normalized by dividing it by the
transmitted packet length to yield the energy consumption per
bit. Formally, the total energy consumption O is computed as

2icuve b
Zieuus Zjeuus Ri,j
where P; is the transmission power of node 7, L; ; is the packet

length, and I; ; is the transmission rate over the link between
i and j. The total energy consumption is then calculated as

O:

(J/bi), (41)

the sum of energy per bit across all successfully transmitted
links. This metric allows a fair comparison of energy efficiency
between different algorithms and network setting.

In order to comprehensively evaluate the service quality of
the proposed algorithms, we introduce a QoS metric, which
measures the proportion of UDs simultaneously satisfying
both latency constraints defined in the ES assignment and
path selection phases (constraints C2 and C4), respectively.
Specifically, QoS represents the ratio of UDs meeting the two
conditions simultaneously. Thus, the QoS is defined as

QoS = WII Z I(u satisfies C2 and C4), (42)

uel

where I(-) is an indicator function that equals 1 when the
condition in parentheses is satisfied and O otherwise. This
metric intuitively captures the algorithm’s ability to meet
latency requirements simultaneously in both ES assignment
and path selection phases, thereby offering a comprehensive
measure of network service quality.

To evaluate the performance of BLSQ, we carried out exten-
sive simulations on an Apple Mac mini (2018) with Intel Core
i7 3.2 GHz and 64GB DDR4 RAM. The emulated network
covers a 500 m x 500 m area where 100-140 UDs move
randomly with a maximum displacement of 0.5 m/s. Between
5 and 9 ESs are uniformly deployed; each UD provides a
maximum transmission range of 80 m. Tasks arrive at UDs
with sizes uniformly distributed between 10 MB and 30 MB,
and the corresponding result size is assumed to be 5% of the
original task. These simulation settings are designed to closely
resemble real-world MEC scenarios involving heterogeneous
device deployments, realistic movement patterns, and dynamic
task generation. All simulation parameters are summarized in
Table II.

TABLE II: Simulation Parameters and Settings.

Parameter Value

Network coverage area 500 m x 500 m
Number of UDs 100 ~ 140
Number of ESs 5~9

Channel bandwidth 40 MHz
Transmission power 200 mW
Attention constant 3.5

Shadowing attenuation 4 dB
Decorrelation distance 1 m

Noise level -174 dBm/Hz
Task size 10 MB ~30 MB
Result data size 5% of original task size
Maximum transmission range 80 m

Maximum UD movement per second 0.5m

Weighting factor 0.9

No. of feature nodes for BLS 160

No. of enhancement nodes for BLS 1000

No. of adding enhancement nodes for BLS | 50

Regularization coefficient for BLS 2 x 10710
Shrink coefficient for BLS 0.9

No. of incremental steps for BLS 5
Percentage of training data for BLS 90 %
Learning rate for Q-learning 0.5
Discount factor for Q-learning 0.9
Maximum iterations for Q-learning 200
Threshold for Q-learning 1 kbps
Transmission power adjustment Range 05~ 10

Search tolerance 0.01
Baseline transmission power 200 mW




Currently, our model assumes a uniform unified communi-
cation protocol, simplifying analysis and simulation complex-
ity. However, practical wireless networks are inherently het-
erogeneous. Devices typically operate on different frequencies
or bandwidths due to hardware constraints or licensing. Our
proposed BLSQ scheme can be naturally extended to handle
such heterogeneity by incorporating these hardware attributes
into the BLS input features. By retraining the BLS model
with heterogeneous parameters in the training dataset (gen-
erated through offline optimization using Gurobi), the server
selection decisions can directly consider these non-uniform
resource constraints. Additionally, Q-learning and CTPC sup-
port heterogeneous networks, as they already rely on node-
specific SINR measurements and transmit power adjustments.
Therefore, our scheme maintains significant flexibility and
scalability for practical deployment in resource-heterogeneous
MEC scenarios.

B. Simulation Results and Performance Analysis

In this section, we evaluate the performance of the proposed
scheme through extensive simulations. To demonstrate the
effectiveness of our approach, we compare our proposed
BLSQ scheme with the Greedy Search (GS) and the existing
reinforcement learning-based multihop relaying algorithm, re-
ferred to as QBMR [14]. The GS algorithm employs a greedy
strategy for server allocation by selecting the server with the
minimum tffé In the routing phase, GS adopts an SNR-based
greedy algorithm for multihop path selection, where each hop
greedily selects the neighbor node that maximizes the imme-
diate reward. In contrast, our BLSQ approach integrates both
intelligent server allocation and optimized routing strategies
to enhance network performance comprehensively.

Simulation results are analyzed based on several key perfor-
mance metrics, including network capacity, average through-
put, QoS, task completion time, total energy consumption,
and total interference power. To provide a comprehensive
evaluation of the proposed algorithms, we consider three
scenarios:

e The number of ESs is fixed, while the number of UDs
varies, in order to evaluate the scalability of the proposed
scheme with respect to user density.

e The number of UDs is fixed, while the number of ESs
varies, to investigate the impact of ES deployment density
on network performance.

o The UDs are mobile, and the impact of periodic location
updates is evaluated to assess the robustness of the
proposed algorithms in dynamic network environments.

Each scenario is simulated 500 times, and the results are
presented as the average of all simulation runs to achieve
statistical reliability.

We first evaluate the impact of varying the number of UDs
on key network performance metrics while fixing the number
of ESs to 5. The evaluation results are shown in Fig. 7.

Fig. 7(a) shows that all three algorithms exhibit an increas-
ing trend in network capacity as the number of UDs grows, due
to more effective utilization of the available server resources.
Among these, our proposed BLSQ algorithm consistently

outperforms both the GS and QBMR algorithms significantly.
On average, BLSQ demonstrates about a 30% higher network
capacity compared to QBMR and approximately 80% higher
than GS. These substantial performance gains by BLSQ can
be attributed to its integrated approach combining intelligent
server allocation with Q-learning-based routing optimization
and transmission power control, which effectively reduces
network interference and enhances resource utilization.

As for average throughput, it is noticeable that all methods
shows a decreasing trend as the number of user UDs increases.
This behavior is expected due to the intensified resource
contention and congestion resulting from a larger number of
devices sharing the same fixed server resources. However,
even under these challenging conditions, the proposed BLSQ
algorithm consistently maintains a higher average throughput
compared to GS and QBMR. Overall, BLSQ achieves an av-
erage throughput approximately 12%-17% higher than QBMR
and 21%-30% higher than GS across the evaluated scenarios.
This improved performance clearly highlights the effectiveness
of the BLSQ scheme in alleviating network congestion through
optimized resource allocation and efficient multihop routing.

As shown in Fig. 7(b), we observe a general upward trend
in total interference power for all three algorithms with in-
creasing UDs. This trend is expected, as higher device density
typically intensifies wireless interference. The proposed BLSQ
algorithm consistently achieves the lowest total interference
power across all scenarios. On average, BLSQ significantly
reduces interference power by about 1-2 dBm compared
to both GS and QBMR. These outcomes highlight BLSQ’s
effectiveness in dynamically controlling transmission power
and selecting optimal routing paths, leading to substantial
interference mitigation, even under dense network conditions.

As for the total energy consumption, all three algorithms
show a clear increase in energy consumption as the number
of user devices grows. This increase is a direct result of the
additional transmission and computational resources required
for handling more tasks. BLSQ achieves approximately 20%
lower energy consumption compared to QBMR and roughly
50% lower than GS. The superior energy efficiency of BLSQ
can be attributed to its integrated optimization scheme that
incorporates transmission power control and efficient path
selection, thereby substantially reducing unnecessary energy
expenditure.

Fig. 7(c) illustrates that the task completion time increases
gradually for all algorithms when the number of UDs grows.
This is expected since additional UDs introduce higher com-
petition for computing and communication resources, con-
sequently increasing delays. However, our proposed BLSQ
algorithm consistently demonstrates significantly lower task
completion times compared to both GS and QBMR. BLSQ
achieves about 30% shorter task completion time compared
to QBMR and roughly 60% lower compared to GS. These
improvements indicate that BLSQ effectively integrates opti-
mized server allocation and efficient multihop routing, signifi-
cantly reducing delays in task processing and communication.

According to the results, QoS increases slightly for all
methods with an increasing number of UDs. Notably, the
proposed BLSQ algorithm consistently achieves the highest
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QoS among the three. When UDs increase from 100 to
140, BLSQ improves from approximately 92.27% to 94.95%,
QBMR increases from 92.24% to 94.86%, and GS rises from
87.45% to 92.56%. Although the performance differences
between BLSQ and QBMR are relatively small (less than 1%),
BLSQ still consistently maintains a slight edge. Compared to
GS, BLSQ demonstrates an evident performance advantage,
achieving around 2%-5% higher QoS. These results reflect that
BLSQ’s enhanced resource allocation and routing mechanisms
effectively support higher QoS guarantees in dense network
scenarios.

To further investigate the impact of ES deployment density
on network performance, we evaluate the key performance
metrics by varying the number of ESs from 5 to 9 while
keeping the number of UDs fixed at 100. The results are
presented in Fig.8.

As shown in Fig. 8(a), we first evaluate how the network ca-
pacity and average throughput performance vary as the number
of ESs increases. From the simulation results, it becomes clear
that the network capacity consistently increases for all three
algorithms. This is because as more ESs provide additional
computational resources, UDs can find closer or better ES,

thus enhancing overall network capacity. Specifically, BLSQ’s
network capacity increases from approximately 7.64 Gbps (5
ESs) to 8.39 Gbps (9 ESs). In comparison, QBMR improves
moderately from 5.47 Gbps to 6.11 Gbps, whereas GS shows
the lowest performance increase, from 3.70 Gbps to 4.95 Gbps.
A similar trend is observed in terms of average throughput.
All three algorithms experience improved average throughput
as the number of ESs increases. BLSQ again demonstrates a
significant advantage, rising from approximately 222.40 Mbps
(5 ESs) to 269.87 Mbps (9 ESs). QBMR and GS increase from
192.76 Mbps to 237.43 Mbps and from 177.12 Mbps to 216.07
Mbps, respectively. Overall, BLSQ achieves roughly 10%-20%
higher throughput than QBMR and around 20%-30 higher
throughput compared to GS. These results underline that
BLSQ effectively leverages the additional ESs to maximize
resource utilization and improve overall network performance.

As shown in Fig. 8(b), for total interference power, an
evident decreasing trend is observed for all three algorithms
with an increasing number of ESs, indicating that deploy-
ing additional ESs effectively alleviates network interference.
BLSQ consistently achieves the lowest interference power,
decreasing sharply from -3.21 dBm (5 ESs) to -5.16 dBm



(9 ESs), reflecting substantial interference mitigation through
optimized routing and transmission power control. QBMR
also achieves interference reduction, improving from -1.90
dBm to -3.31 dBm, while GS starts at positive interference
(0.93 dBm) and only reduces to -1.89 dBm, highlighting its
limited interference management capability. Similarly, energy
consumption consistently decreases for all three algorithms
as more edge servers are deployed, due to reduced trans-
mission distances and improved resource allocation efficiency.
BLSQ demonstrates the lowest energy consumption, declining
from 0.190 nJ/bit (5 ESs) to 0.143 nJ/bit (9 ESs). QBMR
exhibits moderate improvement from 0.221 nlJ/bit to 0.186
nJ/bit, whereas GS achieves the smallest reduction from 0.285
nJ/bit to approximately 0.247 nJ/bit. Overall, BLSQ consumes
around 20%-30% less energy compared to QBMR and roughly
40%-50% less compared to GS, emphasizing its superior
energy efficiency.

Fig. 8(c) presents the QoS and task completion time per-
formance. The QoS for all algorithms gradually improves,
demonstrating the benefit of added computational resources
in reducing latency and improving task completion reliability.
Among the evaluated algorithms, BLSQ consistently delivers
the highest QoS. These results clearly demonstrate that BLSQ
provides superior quality of service guarantees compared
to the baseline methods. Regarding task completion time,
all three algorithms exhibit a clear reduction. The proposed
BLSQ algorithm consistently demonstrates the lowest task
completion time across all scenarios, decreasing notably from
approximately 0.210 seconds (5 ESs) to 0.189 seconds (9 ESs).
QBMR’s completion time decreases moderately from 0.346
seconds to 0.304 seconds, whereas GS’s time declines sharply
from 0.534 seconds to 0.320 seconds but remains the highest
among all methods. Thus, BLSQ reduces task completion time
significantly—by approximately 40% compared to QBMR
and by over 50% compared to GS—demonstrating its robust
efficiency in task execution.

In the third scenario, we focus on the impact of UD mobility
on the network performance. We set the number of ESs
to 5 and the number of UDs to 100. The time slots for
updating location information is varied from 0 to 25 seconds
to investigate its influence on the performance metrics. The
corresponding results are depicted in Fig. 9.

Fig. 9(a) illustrates the impact of periodic location updates
on network capacity and average throughput when UDs are
mobile. As the time slot increases, the network capacity
remains relatively stable across all algorithms with slight
fluctuations due to mobility-induced dynamics. Specifically,
the proposed BLSQ maintains the highest capacity, ranging
from approximately 7.64 to 7.72 Gbps, demonstrating robust-
ness against varying mobility. QBMR achieves intermediate
capacity, fluctuating between 5.43 and 5.50 Gbps, while GS
shows the lowest capacity, consistently around 3.77 Gbps.
These results suggest that the proposed BLSQ effectively
adapts to mobility-induced network changes, maintaining su-
perior resource utilization and performance stability. Similarly,
the average throughput exhibits minor fluctuations due to
mobility, but the relative ranking among algorithms remains
unchanged. BLSQ consistently delivers the highest throughput,

maintaining around 223-226 Mbps throughout the varying
update intervals. QBMR achieves moderate throughput per-
formance, staying around 193-197 Mbps, while GS remains
lowest, varying between 179—192 Mbps. The stable and supe-
rior throughput performance of BLSQ highlights its effective
management of mobility-related variations through intelligent
server allocation and optimized path selection.

Fig. 9(b) shows the results of total interference power
and total energy consumption. The total interference power
fluctuates modestly for all three algorithms due to the dynamic
wireless environment. However, BLSQ achieves the lowest
interference levels, ranging between approximately -1.99 dBm
and -2.72 dBm. QBMR experiences higher interference fluc-
tuations from about -0.81 dBm to -1.65 dBm, whereas GS dis-
plays consistently higher interference power, ranging between
0.47 dBm and 0.61 dBm. These results confirm BLSQ’s ca-
pability to effectively manage and reduce interference through
adaptive power control and optimized path selection strategies,
even under mobility-induced network variations. Regarding
total energy consumption, measured in nJ/bit, the BLSQ algo-
rithm maintains stable and lowest energy consumption across
all scenarios, ranging between approximately 177.98 and
189.21 nJ/bit. QBMR and GS exhibit higher variability and
consumption levels, with QBMR fluctuating between 167.30
to 228.90 nJ/bit and GS varying widely between 190.44 to
296.12 nJ/bit. The clear energy efficiency advantage of BLSQ
highlights its adaptive energy-aware optimization, effectively
handling the extra energy demands typically associated with
device mobility.

As shown in Fig. 9(c), for the QoS, BLSQ shows remarkable
stability across different location update intervals, both con-
sistently achieving around 92%. Specifically, BLSQ remains
stable within a narrow range (approximately 91.99-92.19%),
closely matched by QBMR (approximately 91.79-92.00%).
Conversely, GS exhibits significant variability, with QoS rang-
ing from as low as 80.42% at 0 seconds up to 93.38%
at 20 seconds. These findings reveal that BLSQ effectively
ensures reliable QoS in dynamic scenarios, demonstrating
notable resilience to mobility-induced uncertainties. In terms
of task completion time, BLSQ is consistently better than
other algorithms, maintaining a low and stable completion
time around 0.196 seconds across all intervals. QBMR shows
moderate variations between approximately 0.327 to 0.376
seconds, while GS fluctuates considerably between 0.472 to
0.541 seconds. The significantly lower and more stable task
completion times achieved by BLSQ underscore its robustness
in handling device mobility, effectively mitigating potential
performance degradation through optimized resource alloca-
tion and routing strategies.

Across different scenarios, including varying user density,
ES deployment density, and user mobility, the proposed
scheme consistently achieves higher network capacity, lower
task completion time, better throughput performance, and
higher QoS, and that is in comparison to GS and QBMR.
These findings confirm that the proposed design is well-suited
for large-scale dynamic networks and can efficiently support
reliable and low-latency communications in future wireless
systems.
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Fig. 9: Performance Comparison under UD Mobility with Periodic Location Updates.

VI. CONCLUSION

This paper proposed a novel three-stage optimization
scheme named BLSQ, designed to address the key challenges
of scalability, interference, and energy efficiency in MWMNSs.
The proposed BLSQ scheme integrates three intelligent com-
ponents: a BLS for optimal server allocation, a SINR-based
Q-learning algorithm for multihop path selection, and a CTPC
algorithm for adaptive power adjustment. Extensive simula-
tion results demonstrate that BLSQ consistently outperforms
existing benchmark algorithms, including GS and QBMR, in
terms of various key performance indicators. The proposed
method effectively enhances network capacity, reduces la-
tency, improves QoS, and achieves more stable and higher
throughput in dense and dynamic environments. The proposed
BLSQ scheme presents a scalable and flexible solution for
next-generation wireless networks. Future work will explore
extending the learning models to incorporate real-time mo-
bility prediction, task migration mechanisms, and federated
intelligence across network nodes to enhance the system’s
robustness and responsiveness further. In addition, future stud-
ies will also consider modeling device heterogeneity, such
as variations in frequency, bandwidth, to better reflect real-
world network conditions and improve the adaptability of the
proposed framework to diverse deployment environments.
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