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Covert Communications for Intelligent Reflecting
Surface-Enabled D2D Networks

Yihuai Yang, Bin Yang, Shikai Shen, Yumei She, Xiaohong Jiang and Tarik Taleb

Abstract—In this paper, we explore covert communications
in a device-to-device (D2D) network consisting of an intelligent
reflecting surface (IRS), a base station, a cellular user, a D2D pair,
and an adversary warden. With the help of the IRS, the D2D pair
attempts to perform covert communication, while the warden
also tries to detect the very existence of such a transmission. To
investigate the covert performance under the scenario, we derive
the detection error probability at Warden, the optimal detection
threshold for minimizing the probability, and the transmission
outage probabilities for D2D and cellular communications, re-
spectively. We further jointly optimize the transmission powers
of the cellular user and the D2D transmitter, the reflection phase
shifts, and the amplitudes of the IRS reflecting elements to
improve covert communication performance. Finally, we provide
numerical results to reveal the impact of system parameters on
the covert performance and also to exhibit the merits of IRS-
enabled D2D networks for achieving covert communications.

Keywords-D2D network, IRS, covert communications, perfor-
mance analysis.
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I. INTRODUCTION

In device-to-device (D2D) networks, proximity terminals
can utilize the spectrum resources of the cellular system to
realize direct communication without traversing the base sta-
tion (BS). D2D networks exhibit many promising features such
as improving spectrum efficiency, increasing transmission rate,
extending cellular coverage, and offloading BS traffic [1]–[4],
which have been identified as a key technology satisfying the
ever-increasing traffic demands for massive mobile terminals
in the next generation mobile communication systems [5].
Because of the openness and broadcast nature of the wireless
medium, D2D networks are facing great security challenges in
the wireless transmission of various confidential and sensitive
data (e.g., e-health records, financial details) [6].

In the past two decades, traditional cryptographic techniques
have been widely adopted to provide protection against eaves-
dropping. However, such cryptographic techniques are likely
to become ineffective when an adversary has high computation
capabilities. In recent years, it has been shown that secure
communication techniques leverage the randomness and noise
of wireless channels to prevent adversaries from eavesdropping
on the content of wireless transmissions. However, these tech-
niques do not guarantee protection against malicious detection
of signals. As an alternative, covert communication techniques
are emerging as a new security paradigm that aims to conceal
the very existence of signal transmissions. This approach holds
great potential for applications in military and government
contexts [7].

Covert communications have been extensively studied since
the pioneering work in [8], with subsequent contributions in
[9]–[18]. Previous works often rely on relays and jammers,
which can lead to high energy consumption and interference,
degrading communication performance. To address these chal-
lenges, the intelligent reflecting surface (IRS) has emerged
as a promising solution. An IRS is composed of low-cost
reflecting elements that adjust their amplitudes and phase
shifts to dynamically reconfigure the wireless environment.
This capability allows IRS technology to enhance legitimate
signals and suppress interference [19], [20]. The potential of
IRS to improve covert communication performance has been
demonstrated in studies such as [21]–[26]. By manipulating
signals through IRS, these systems can obscure both the
source and nature of communications, significantly enhancing
security and privacy. This is especially valuable in military and
governmental contexts, where protecting sensitive information
and concealing the identities and locations of personnel is
critical. While D2D networks have been extensively studied in
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TABLE I
COMPARISON BETWEEN THE PROPOSED WORK AND THE BASELINE [32]

Feature This Work [32]
Channel Fading Model IRS-related links follow Rician fading; terrestrial links fol-

low Rayleigh fading (hybrid model)
All channels modeled as Rayleigh fading

IRS-Assisted Paths Includes additional reflection paths: the cellular user → IRS
→ the warden and the cellular user → IRS → the D2D
receiver.

The cellular user is positioned far from the IRS; thus, no
reflected signals from the cellular user are considered

System Model All receiving nodes capture both direct and IRS-reflected
signals; general multi-path model

Reflected signals only from the D2D sender; IRS reflection
considered only for partial paths

IRS Beamforming Strategy Jointly optimized using a hybrid analytical and gradient
descent algorithm to avoid local optima

No global optimization of IRS phase shifts

Detection Modeling Non-central chi-square distributions; the exponential integral
function Ei(·)

Central chi-square assumption; simpler exponential-based
expressions

Optimization Algorithms Introduces three iterative optimization algorithms: IRS phase
shift (Algorithm 1), cellular power (Algorithm 2), and over-
all covert rate (Algorithm 3)

No iterative optimization process proposed

Realistic Fading Models Hybrid Rayleigh & Rician fading modeling Degrades under strong LoS conditions due to the exclusive
use of Rayleigh fading modeling

Simulation Cases Compared Six scenarios, including additional Rician K-factor settings,
a relay, and the baseline from [33]

Only three basic scenarios

prior works [27]–[31], research has primarily focused on spec-
trum and power resource allocation, sum rate maximization,
and secrecy rate. Covert communications in D2D networks
remain largely unexplored. Recently, we conducted a study
on covertness and secrecy in an untrusted relay-assisted D2D
network [27]. In this scenario, a user seeks to covertly transmit
a confidential message to a BS with the help of an untrusted
relay, while avoiding detection by a warden and preventing
the relay from eavesdropping.

However, covert communication within IRS-assisted D2D-
enabled cellular networks remains largely unexplored. Moti-
vated by this gap, our work specifically addresses the unique
challenges of covert communication in networks where D2D
and cellular systems coexist, with a particular emphasis on
leveraging IRS to enhance the covertness of D2D communi-
cation. Furthermore, we adopt a more realistic channel model:
the IRS-to-node channels are assumed to follow a Rician
distribution, which captures line-of-sight (LoS) conditions,
while the terrestrial channels adhere to Rayleigh fading. This
combination of channel models ensures that our approach
more accurately reflects real-world scenarios. Building on the
foundation of our previous conference paper [32], this work
further explores this critical area. Specifically, our previous
conference paper [32] only considered a scenario where the
cellular user was positioned far from the IRS, making his
signal undetectable by the IRS and therefore unable to generate
any reflected signals to other nodes. Additionally, it assumed
that all channels followed a Rayleigh distribution. In contrast,
this paper presents a more general system model where all
receiving nodes can capture both the reflected signals from the
IRS and the direct signal from the transmitters. We assume
that IRS-to-node and node-to-IRS channels follow a Rician
distribution. The communication channels between terrestrial
nodes continue to follow a Rayleigh distribution, which better
reflects real-world conditions. Under these new assumptions,
we have re-derived all the relevant formulations in this paper.
Table I presents a comparison between our work and the
previous study [32].

The main contributions of this paper are summarized as
follows.

• We first derive the detection error probability at Warden,

Kevin, which is the sum of the false alarm probability and
missed detection probability. Based on this probability,
we further derive the corresponding optimal detection
threshold.

• We then derive the transmission outage probability from
the D2D source Carol to its destination Ethan and that
from the cellular user Alex to the BS, respectively. With
these probabilities, we develop a theoretical model of the
covert rate for the D2D pair.

• We further model the maximization of covert rate as
a constrained optimization problem with the constraints
given by the covert requirement, the maximum outage
probability, and the transmission powers of Carol and
Alex. By solving the optimization problem, the maximum
covert rate is obtained for the D2D pair.

• Finally, we provide extensive numerical results to il-
lustrate the impact of system parameters on the covert
rate performance and also to demonstrate performance
enhancement through deploying IRS in D2D networks.

The remainder of the paper is structured as follows: In
Section II, we provide a review of the related work. Section
III introduces the system model for IRS-aided D2D networks.
The derivation of exact expressions for false alarm and missed
detection probabilities at warden, along with the optimiza-
tion of the detection threshold to minimize detection error
probability, is presented in Section IV. Section V focuses
on the analysis of transmission outage, while Section VI
formulates and solves a constrained optimization problem
aimed at maximizing the covert rate, including the relevant
algorithms. Numerical results are presented in Section VII,
and the paper concludes in Section VIII.

II. RELATED WORKS

A. Covert Communication

Covert communication emerged with the pioneering work
in [8], which introduced the square root law for covert
communications in additive Gaussian white noise (AWGN)
channels. According to this law, the achievable covert rate
diminishes to zero as the number of channel uses increases
indefinitely, highlighting the fundamental trade-off between
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communication efficiency and undetectability. This result has
since been extended and verified across various other chan-
nel models, including the Binary Symmetric Channel (BSC)
[9], which models error-prone communication, the Discrete
Memoryless Channel (DMC) [10], which encompasses a
broad range of communication systems, and the Multiple-
Input Multiple-Output (MIMO) AWGN channel [33], which
leverages multiple antennas for spatial diversity. In addition,
the Poisson Packet Channel (PPC) [34], a model for bursty
packet-based networks, has been analyzed, with the covert
rates consistently approaching zero as the number of channel
uses increases, further reinforcing the implications of the
square root law in diverse settings. Building on this foun-
dational work, researchers have explored various techniques
to enhance covert communication. In [11] and [12], jam-
mers have been utilized to generate artificial noise, which
introduces additional uncertainty to the warden, enabling the
achievement of positive covert rates even as the channel
usage increases. This method helps to mask the legitimate
communication by creating ambiguity for any eavesdropper.
Further advancements are seen in [13], which investigates
covert communications within a multi-channel slotted ALOHA
system, where covert users attempt to access the channel
without being detected by the warden. This model introduces
an additional layer of complexity, as users must contend with
not only the channel conditions but also the slotted access
scheme, which helps to mitigate detection. Additionally, [35]
delves into the integration of covert communication within
Mobile Edge Computing (MEC), addressing the potential for
information leakage when offloading computational tasks. By
leveraging edge computing resources, covert communication
can be further protected from external observation. Moreover,
the application of covert communication has extended into
relaying networks, with studies examining both two-hop [14]–
[16] and multi-hop [17], [18] scenarios, where the signals are
relayed across multiple nodes, further complicating the de-
tection process and enabling improved covert communication
performance in large-scale networks.

B. IRS-assisted Covert Communication

A variety of studies have explored IRS-aided covert com-
munication in wireless networks, even without the support of a
BS [21]–[26]. The authors in [21] focus on jointly optimizing
transmission power and IRS reflection properties to improve
covert performance, while [22] achieves the maximum covert
rate by optimizing the source transmission power and the IRS
phase shift.

The work in [23] examines covert performance improve-
ment through IRS-assisted multi-antenna technologies, and
[24] investigates the impact of IRS deployment under both
scenarios with and without global channel state information
(CSI). Additionally, [25] aims to maximize the covert rate
by jointly optimizing transmission probability, power, and the
IRS reflection matrix. Meanwhile, [26] explores covert rate
maximization in a MIMO system with the aid of IRS. In our
previous work [32], we examined a scenario where Alex was
situated at a distance from the IRS, causing his signals to be

undetectable and preventing the generation of reflected signals,
with all channels modeled using a Rayleigh distribution.
This work highlighted the challenges of maintaining covert
communication in low-reflection scenarios.

Further advancements are seen in [36], which seeks to
maximize effective covert throughput by considering different
transmit prior probabilities. The study in [37] examines a UAV-
IRS-assisted system where randomized IRS phase shifts and
a full-duplex legitimate receiver act as a jammer to deceive
the warden, enabling covert communication. Additionally, [38]
employs a friendly jammer with random power levels to
confuse the warden, while [39] explores IRS-aided covert
communication based on LoS channels, eliminating the need
for instantaneous CSI of IRS channels.

While IRS-aided covert communication has garnered sig-
nificant attention, the role of IRS in enhancing D2D networks
has also been explored extensively. For instance, the authors
in [40] propose using IRS to maximize the system’s sum rate
while minimizing interference from D2D pairs. The work in
[41] introduces IRS for offloading computation tasks in a
D2D cooperative computing network, and [42] extends this
by using IRS to offload tasks from active users to idle ones.
The study in [43] introduces a two-timescale optimization
scheme for improving the performance of IRS-aided D2D
networks, while [44] maximizes the achievable rate in an IRS-
aided D2D network with hardware impairments and phase
noise. In [45], a finite blocklength covert NOMA scheme is
proposed that leverages IRS/intelligent omni-surfaces (IOS)
switching to enhance covertness, with joint optimization of
power allocation and blocklength to maximize ECT. The study
in [46] explores IRS deployment to improve covert throughput
by increasing the detection error probability, again utilizing a
Gauss–Poisson process for spatial modeling. In [47], aerial
IRSs are deployed to support covert IoT communication,
where deep reinforcement learning is employed to jointly
optimize UAV trajectories and IRS phase shifts, aiming to
balance the trade-off between information freshness and com-
munication covertness. Further, the maximum transmission
rate in distributed IRS-aided D2D networks is explored in [48],
and throughput maximization is addressed in [49], with [50]
focusing on secrecy rate maximization.

III. SYSTEM MODELS AND PERFORMANCE METRICS

A. Network Model
As illustrated in Fig. 1, this paper considers an uplink

cellular network, where there is a cellular user Alex, a D2D
pair with a source Carol and a destination Ethan, a warden
Kevin, and an IRS. In the network, Carol intends to covertly
transmit sensitive messages to Ethan with the help of the IRS,
while Kevin attempts to detect whether the transmissions from
Carol and the IRS occur or not. The direct link from Carol to
Ethan is blocked by obstacles(e.g., buildings), and thus Carol
can only receive the sensitive message reflected by the IRS.
The IRS includes N passive reflecting elements, each of which
can dynamically adjust its phase shift and amplitude to fit the
current propagation environment. The BS is equipped with
multiple antennas; however, only one of them is involved in
our system.
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Fig. 1. System Model

B. Channel Model

In our concerned network, there exist ten wireless links,
namely, the IRS-to-Ethan link, IRS-to-BS link, IRS-to-Kevin
link, Carol-to-IRS link, Carol-to-Kevin link, Carol-to-BS link,
Alex-to-BS link, Alex-to-Ethan link, Alex-to-IRS link, and
Alex-to-Kevin link, which are represented as hIE, hIB, hIK,
hCI, hCK , hCB , hAB , hAE , hAI, and hAK , respectively. In
this work, the instantaneous CSI of all links, excluding those
associated with Kevin, is assumed to be perfectly known at the
corresponding nodes via pilot-based estimation and channel
reciprocity. For the links involving Kevin (i.e., hIK, hCK ,
and hAK), only the statistical CSI is assumed to be available,
since Carol, Alex, and the IRS do not transmit pilot signals
toward Kevin to avoid exposing covert transmissions.

For the IRS-to-node and node-to-IRS links, such as the
IRS-to-Ethan, IRS-to-BS, and Alex-to-IRS links, the channel
fading adheres to a Rician distribution. This is because the
IRS is typically deployed on the outer wall of a high building,
providing a strong LoS link between the IRS and the nodes.
The channel characterization for these links is given by:

hXY =

√
KXY

1 +KXY
hLoS +

√
1

1 +KXY
hNLoS, (1)

where X,Y ∈ {I, A,B,C,E,K}. In this expression, KXY

represents the Rician factor, hLoS denotes the LoS component,
and hNLoS represents the non-line-of-sight (NLoS) component.

The LoS component, hLoS, is determined by the direct,
unobstructed path between the transmitter and receiver. It is
typically modeled as a deterministic or fixed value, which can
be expressed as:

hLoS = exp (jϕXY ) , (2)

where ϕXY is the phase shift associated with the LoS path,
often related to the distance and relative motion between the
transmitter and receiver. And, the NLoS component, hNLoS,
typically follows a complex Gaussian distribution, denoted as
CN (0, σ2

XY ).

On the other hand, the channel fading follows a Rayleigh
distribution for the terrestrial node-to-node links, such as
Carol-to-Kevin, Carol-to-BS, and Alex-to-BS. Besides, we use
σ2
X to denote the variance of the additive white Gaussian

noise at node X . Under this model, each channel remains
unchanged within a single time slot but varies independently
across different time slots [51] [52].

C. Transmission from Carol to Ethan

We use PC and PA to represent the transmission powers
of Carol and Alex, respectively. x(i) and z(i) represent
the transmission signals of Carol and Alex, respectively.
These signals are independent Gaussian random variables with
mean zero and unit variance, i.e., x(i), z(i) ∼ CN (0, 1).
Both E

[
x(i)x†(i)

]
and E

[
z(i)z†(i)

]
are equal to 1. Here,

i ∈ {1, 2, . . . , L}, and the number of wireless channel uses
L→∞.

When Carol transmits a message at time slot-i, the signal
received by Ethan at the i-th channel use is expressed as:

yE(i) =
√
PC hIE

TΘhCIx(i)+√
PA

(
hAE + hIE

TΘhAI

)
z(i) + nE(i),

(3)

where, Θ is a diagonal matrix with N × N dimension,
storing the IRS’s reflection phase and amplitude information.
Θ equals to diag

(
q1e

jθ1 , q2e
jθ2 , · · · , qNejθN

)
, where the

reflection amplitude of the n-th element qn belongs to [0, 1],
and the phase shift belongs to [0, 2π).

In equation (3), the first term represents the signal from
Carol to Ethan via the IRS. The second term includes both
the direct and IRS-reflected signals from Alex to Ethan. The
third term is the additive white Gaussian noise (AWGN) at
Ethan, where nE(i) ∼ CN (0, σ2

E).
Then, the SINR, κE , at Ethan can be expressed as:

κE =
PC

∣∣∣hIE
TΘhCI

∣∣∣2
PA

(∣∣∣hAE + hIE
TΘhAI

∣∣∣2)+ σ2
E

, (4)

where σ2
E represents the noise variance at Ethan.

We consider that a received signal at Ethan can be decoded
successfully if and only if the rate from Carol to Ethan
log2 (1 + κE) is no smaller than some threshold value RCE .
This means that an outage occurs if the rate is smaller than
RCE . In this paper, we use outage probability to represent the
probability that the outage occurs.

D. Transmission from Alex to BS

When Alex transmits messages at some time slot-i, the
received signal yB(i) at the BS can be expressed as:

yB(i) =
√

PA

(
hAB + hIB

TΘhAI

)
z(i)+√

PC

(
hCB + hIB

TΘhCI

)
x(i) + nB(i),

(5)
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The term
√
PA

(
hAB + hIB

TΘhAI

)
z(i) represents the

signal received from Alex, which includes both the di-
rect and IRS-reflected components. This is the desired sig-
nal at the BS for cellular communication. Meanwhile, the
term

√
PC

(
hCB + hIB

TΘhCI

)
x(i) represents the signal

received from Carol, also including both the direct and IRS-
reflected components; however, it acts as interference for the
BS in cellular communication. Additionally, nB(i) denotes
the additive white Gaussian noise (AWGN) at the BS, where
nB(i) ∼ CN (0, σ2

B).
Then, we express the SINR κB at BS as

κB =
PA

∣∣∣hAB + hIB
TΘhAI

∣∣∣2
PC

∣∣∣hCB + hIB
TΘhCI

∣∣∣2 + σ2
B

, (6)

where σ2
B represents the noise variance at BS.

We consider that an outage will not occur when the rate
from Alex to BS log2(1 + κB) is no smaller than some
threshold value RAB .

IV. DETECTION PERFORMANCE AT KEVIN

In this section, we analyze the hypothesis test at Kevin and
derive the probabilities of false alarm and missed detection.
We then determine the optimal detection threshold to minimize
the detection error probability.

A. Hypothesis Testing at Kevin

At each time slot, the warden Kevin detects whether or not
Carol transmits messages to Ethan. Thus, Kevin needs to do
a binary hypothesis testing [52]. We use H1 to represent the
alternative hypothesis, corresponding to the case that Carol
transmits messages. On the other hand, we use H0 to represent
the null hypothesis, which means that Carol does not transmit
messages. Under these two hypotheses, the received signal at
Kevin can be expressed as

yK(i) =



√
PA

(
hAK + hIK

TΘhAI

)
z(i) + nK(i), H0√

PC

(
hCK + hIK

TΘhCI

)
x(i)

+
√
PA

(
hAK + hIK

TΘhAI

)
z(i) + nK(i),

H1

(7)

where nK(i) represents the AWGN at Kevin.
Based on Kevin’s observation of the received signals with

vector yK = [yK(1), yK(2), . . . , yK(L)], He can decide
whether or not Carol should transmit messages at each time
slot. Since each element of yK is independent and identically
distributed, each yK(i) obeys the following distribution:



CN
(
0, PA

∣∣∣hAK + hIK
TΘhAI

∣∣∣2 + σ2
K

)
, H0

CN

0, PC

∣∣∣hCK + hIK
TΘhCI

∣∣∣2
+ PA

∣∣∣hAK + hIK
TΘhAI

∣∣∣2 + σ2
K

 , H1

(8)
where σ2

K represents the noise variance at Kevin. Thus, the
average received signal power Q at Kevin can be expressed as

Q =


PA

∣∣∣hAK + hIK
TΘhAI

∣∣∣2 + σ2
K , H0

PA

∣∣∣hAK + hIK
TΘhAI

∣∣∣2 +
PC

∣∣∣hCK + hIK
TΘhCI

∣∣∣2 + σ2
K , H1

(9)

A radiometer is adopted as Kevin’s detector [53] [54] [23],
and then the decision rule at Kevin is expressed as

Q
D1
>
<
D0

γ, (10)

where D1 and D0 represent that Carol transmits message or
not, respectively. γ is a threshold value.

We use PFA to represent the false alarm probability (i.e.,
P {D1 |H0 }) that Carol did not transmit, but Kevin judged
that he was transmitting. We use PMD to denote the missed
detection probability (i.e., P {D0 |H1 } that Carol conducted
transmission, but Kevin judged that he did not transmit. Then,
the detection error probability ξ at Kevin can be determined
as

ξ = PFA + PMD. (11)

Then, we say that Carol can achieve covert communications
if ξ ≥ 1 − ε for any small ε > 0. From Kevin’s perspective,
he needs to conduct an optimal selection of γ to reach the
minimum value ξ∗ of ξ.

B. Probabilities of False Alarm and Missed Detection

Lemma 1. The false alarm probability PFA is determined as:

PFA =

{
exp

[
− 2(γ−σ2

K)
PAλAK

]
, γ > σ2

K ,

1, otherwise.
(12)

The missed detection probability PMD follows:

PMD =
0, γ < σ2

K ,
2

λCK

[
1− 2

λAK
· Ei

(
− γ−σ2

K

PAλAK

)]
, σ2

K < γ < V + σ2
K ,

1, otherwise.
(13)

where V =
∣∣hT

IKΘhAI + hAK

∣∣2, and Ei is the exponential
integral function.

Proof: The detailed proof is provided in Appendix A.
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C. The Optimal Detection Threshold of Kevin
To achieve the minimization of the detection error probabil-

ity ξ defined in equation (11), Kevin has to select the threshold
of his detector. Based on this optimal strategy for Kevin, we
next derive the optimal detection threshold γ∗ to minimize ξ.

min
γ

ξ = PFA + PMD. (14)

Lemma 2. The optimal detection threshold γ∗ of Kevin is
determined as

γ∗ = σ2
K − PAλAK ln

(
2

λCK

)
. (15)

Proof: The detailed proof is provided in Appendix B.

V. TRANSMISSION OUTAGE ANALYSIS

This section first calculates the transmission outage prob-
abilities from Carol to Ethan, which relies solely on the
reflection path aided by an IRS due to obstacles, and from
Alex to BS, which includes both direct and reflection paths.

A. Transmission Outage Probability from Carol to Ethan
Lemma 3. We use δE to denote the transmission outage
probability from Carol to Ethan. Then

δE = 1−
PCλAE exp

(
−λCEγEσ2

E

2PC

)
PCλAE + λCEγEPA

, (16)

where γE = 2RCE − 1.

Proof: The detailed proof is provided in Appendix C.

B. Transmission Outage Probability from Alex to BS
Lemma 4. We use δB to denote the transmission outage
probability from Alex to BS. Then,

δB = 1−
PCλAB exp

(
−λCBγBσ2

B

2PC

)
PCλAB + λCBγBPA

, (17)

where γB = 2RAB − 1.

Proof: The detailed proof is provided in Appendix D.

VI. COVERT RATE ANALYSIS

A. Formulation of the Optimization Problem
Our objective is to maximize the covert rate by jointly

optimizing the transmission powers of Carol and Alex, and
the IRS’s reflection coefficient. To this end, the optimization
problem is given by

P1 max
PC ,PA,Θ

RCE (1− δE) (18a)

s.t. ξ∗ ≥ 1− ε, (18b)
δB ≤ δmax, (18c)
0 ≤ qn ≤ 1,∀n = 1, 2, · · · ,N, (18d)
0 ≤ θn ≤ 2π,∀n = 1, 2, · · · ,N, (18e)
0 ≤ PC ≤ PC max, (18f)
0 ≤ PA ≤ PAmax, (18g)

where, (18b) represent the constraint of the covert requirement,
(18c) represents the constraint of the transmission outage
probability from Alex to BS, (18d) and (18e) represent
the constraints of the amplitudes and phase shifts of IRS’s
reflecting elements, respectively, and (18f) and (18g) represent
the constraints of the maximum transmission powers of Carol
and Alex, respectively. RCE is a constant representing a
desired covert rate value. Thus, we can maximize RCE(1−δE)
by minimizing δE .

Problem P1 is feasible if and only if the transmission
powers PC and PA, the power limits PC max and PAmax,
and the IRS constraints {qn, θn} allow for configurations that
simultaneously satisfy the covert requirement ξ∗ ≥ 1− ε and
the outage probability constraint δB ≤ δmax.

B. Optimal IRS Configuration, Θ

In this subsection, we derive the optimal IRS coefficients
by combining the phase analysis method [24], [36] with the
Gradient Descent (GD) approach.

We express |hIEΘhCI|2 as

∣∣∣∣∣
N∑

n=1

|hIEn | |hCIn |qnej(θn+arg(hIEn )+arg(hhIn ))

∣∣∣∣∣
2

, (19)

where arg(·) represents the argument of the principal value.
In equation (19), we aim to determine the optimal IRS phase

shifts θ∗n to align the reflected signals from the IRS with the
direct signal at the receiver, thereby maximizing the signal
strength at Kevin. The optimal IRS phase shifts θ∗n are given
by:

θ∗n = − [arg (hIEn
) + arg (hCIn)] . (20)

Substituting θ∗n into equation (19) allows us to rewrite the
expression as: ∣∣∣∣∣

N∑
n=1

|hIEn | |hCIn | qn

∣∣∣∣∣
2

. (21)

This design maximizes the squared magnitude of the com-
bined signals by ensuring that all individual signal contribu-
tions are perfectly in phase, leading to constructive interfer-
ence and enhanced signal strength at the receiver.

Although the phase analysis method provides a theoretically
optimal solution, practical systems often encounter noise, in-
terference, and other non-ideal conditions that may prevent this
solution from being globally optimal. In such cases, Gradient
Descent (GD) can be employed to further fine-tune the phase
shifts. This hybrid approach offers a comprehensive opti-
mization strategy, blending theoretical precision with practical
robustness. The specific algorithm is detailed in Algorithm 1.
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Algorithm 1 Hybrid Analytical-Gradient Descent Optimiza-
tion Algorithm for IRS phase shift, θ
Input: PC , PA, hIE, hCI, initial q,θ, learning rate η, thresh-

old ϵ, max iterations max iter
Output: Optimized θ∗

1: Initialize:
2: θ

(0)
n = − arg(hIEn)− arg(hCIn), ∀n

3: k ← 0
4: while k < max iter do
5: Compute gradient: g(k)n = ∂δE(θ(k))

∂θ
(k)
n

, ∀n
6: Update: θ(k+1)

n = θ
(k)
n − η · g(k)n , ∀n

7: if ∥θ(k+1) − θ(k)∥ < ϵ then
8: break
9: end if

10: k ← k + 1
11: end while
12: return θ∗ = θ(k)

Since in the optimization problem P1, the objective func-
tion in (18b) has RCE as a preset constant, maximizing
RCE(1− δE) can be transformed into minimizing δE . Thus,
the optimization problem P1 is reduced to P1.1.

P1.1 min
PC ,PA,q

δE(PC , PA,q) (22a)

s.t. ξ∗ ≥ 1− ε, (22b)
δB ≤ δmax, (22c)
0 ≤ qn ≤ 1,∀n = 1, 2, · · · ,N, (22d)
0 ≤ PC ≤ PC max, (22e)
0 ≤ PA ≤ PAmax, (22f)

where, the expression for δE is given in (16) of Lemma 3.
The reflection amplitude vector of reflecting elements q is
represented as [q1, q2, ..., qN ]

T .

C. Optimal transmission power of the D2D Transmitter Carol,
PC

We first determine the monotonicity of δE with respect to
PC and find:

∂δE
∂PC

= −
λ2
AEλCEγE exp

[(
PA−σ2

E

2

)
λCEγEσ2

E

2PC

]
(PCλAE + λCEγEPA)2

. (23)

Since (23) is less than zero, δE is a monotonically decreas-
ing function of PC . Therefore, to find the optimal PC , denoted
as P ∗

C , within the interval 0 ≤ PC ≤ PCmax while ensuring
the constraint ξ∗ ≥ 1 − ε is satisfied, we should identify the
largest value of PC that meets this constraint and maximizes
performance.

From Lemma 2, we have:

ξ∗ = exp

(
−γ∗ − σ2

K

PAλAK

)
+ 1−

exp
(
− γ∗−σ2

K

PCλCK

)
λAK − PA

PCλCK

≥ 1− ε.

(24)

Rearranging the constraint:

1−
exp

(
− γ∗−σ2

K

PCλCK

)
λAK − PA

PCλCK

≥ 1− ε− exp

(
−γ∗ − σ2

K

PAλAK

)
. (25)

Simplifying gives:

exp
(
− γ∗−σ2

K

PCλCK

)
λAK − PA

PCλCK

≤ ε− exp

(
−γ∗ − σ2

K

PAλAK

)
. (26)

Let ∆ = ε− exp
(
− γ∗−σ2

K

PAλAK

)
.

So the constraint becomes:

γ∗ − σ2
K

PC
≥ −λCK ln

(
∆

(
λAK −

PA

PCλCK

))
. (27)

Isolating PC , we get:

PC ≤
γ∗ − σ2

K

−λCK ln
(
∆λAK − ∆PA

PCλCK

) . (28)

Thus, the optimal PC is:

P ∗
C = max

PC max,
γ∗ − σ2

K

−λCK ln
(
∆λAK − ∆PA

PCλCK

)
 .

(29)

D. Optimal Transmission Power of Cellular User Alex, PA

To determine the monotonicity of δE with respect to PA,
we compute the partial derivative of (16) with respect to PA

and obtain:

∂δE
∂PA

=
PCλAE exp

(
−λCEγEσ2

E

2PC

)
· λCEγE

(PCλAE + λCEγEPA)
2 . (30)

Thus, the objective function of P1.1 is a monotonically
increasing function of PA. This implies that to minimize
δE , PA should be set to its minimum value, subject to the
constraints given in (22b), (22c), and (22e).

For constraint (22b), we derive the monotonicity of ξ∗ with
respect to PA by taking the partial derivative of ξ∗ in the
interval σ2

K < γ < V + σ2
K . We have:

∂ξ∗

∂PA
=exp

(
−γ∗ − σ2

K

PAλAK

)
· γ

∗ − σ2
K

P 2
AλAK

+
exp

(
− γ∗−σ2

K

PCλCK

)
(
λAK − PA

PCλCK

)2 ·
1

PCλCK
> 0.

(31)

Thus, ξ∗ is an increasing function of PA. The minimum op-
timal value of PA, denoted as P 1∗

A , must satisfy the condition:

ξ∗(P 1∗
A ) = 1− ε. (32)

We cannot obtain a closed form of P 1∗
A because P 1∗

A appears
in both the regular and exponential terms. However, it can
be determined using numerical methods such as the Newton-
Raphson method.
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Meanwhile, PA must also satisfy the constraint in (22c) to
ensure non-outage transmission from Alex to the BS. Next, we
analyze the monotonicity of δB with respect to PA. To analyze
this, we compute the partial derivatives of β with respect to
PA and δB with respect to β, and obtain:

∂β

∂PA
= −λAB

2RAB − 1

P 2
A

< 0, (33)

and

∂δB
∂β

=
λCB exp(−βσ2

B)
(
σ2
B(λCB + βPC) + PC

)
(λCB + βPC)2

> 0.

(34)
Thus, β decreases with increasing PA and δB increases with

increasing β, so δB is a decreasing function of PA.
We can then determine another minimum optimal value of

PA, denoted as P 2∗
A , which must satisfy the condition:

δB(P
2∗
A ) = δmax. (35)

Substituting (17) into (35), P 2∗
A can be determined as:

P 2∗
A = λABσ

2
B

(
2RAB − 1

)
·LamW−1

[
λCBσ

2
B(P

∗
C + λCB)

1− δmax

]
,

(36)
where LamW is the Lambert W-function, defined as the
function W satisfying the equation W exp(W ) = x.

Considering the above analysis and the non-negativity con-
straint (22e), the optimal P ∗

A is given by:

P ∗
A = min{P 1∗

A , P 2∗
A , 0}. (37)

The above solution process is summarized in Algorithm 2.

Algorithm 2 Optimal Transmission Power for Cellular User
Alex, P ∗

A

Input: RAB , δmax, σ
2
B , λAB , λCK , γ∗, σ2

K , P ∗
C

Output: Optimal transmission power P ∗
A

1: Step 1: Compute P
(1)∗
A by solving equation (32).

2: Step 2: Compute P
(2)∗
A by solving equation (36).

3: Step 3: Determine final optimal power P ∗
A using equa-

tion (37).
4: return P ∗

A

E. Optimal IRS Reflection Amplitude Vector, q

To determine the optimal q, we use a one-dimensional
search method [21]. Let A represent the received power at
Kevin from Carol. Since ξ∗ is always a decreasing function
of A, we rewrite (22b) as A ≤ L(ε) for a given η to ensure
ξ∗ ≥ 1− ϵ, where L(η) is the upper bound of A.

Then, the optimization problem in P1.1 is reduced to
P1.2:

P1.2 min
P∗

C ,P∗
A,q

δE(P
∗
C , P

∗
A,q) (38a)

s.t. A ≤ L(η), (38b)
δB ≤ δmax, (38c)
0 ≤ qn ≤ 1,∀n = 1, 2, . . . , N. (38d)

Since both the objective function (38a) and the covert-
ness constraint (38b) are non-convex, the optimization prob-
lem P1.2 is non-convex. It can be transformed into
a convex optimization problem by reformulating equa-
tion (21) as qTHI and transforming constraint (38b)
into σ2

K (P ∗
Cq)

T
TCI (P

∗
Cq) ≤ L(η). Here, HI =

[|hIE1 | |hCI1 | , |hIE2 | |hCI2 | , . . . , |hIEn | |hCIn |]
T and TCI =

diag
{
|hCI1 |

2
, |hCI2 |

2
, . . . , |hCIN |

2
}

. We use a MATLAB-
based modeling system (such as CVX) to solve this convex
optimization problem [55] [56].

So far, we have analyzed the optimization of PC , PA, and
Θ. Next, we present the iterative hybrid analytical-gradient
descent optimization algorithm 3, designed to avoid local
optima and achieve more accurate results.

Algorithm 3 Iterative Covert Rate Optimization
Input: PC max, PAmax, initial q,θ, learning rate η, threshold

ϵ, max iterations max iter
Output: Optimized θ∗, P ∗

C , P
∗
A,q

∗

1: Initialize k = 0
2: Set θ(0)n = − [arg(hIEn) + arg(hCIn)] ,∀n
3: Initialize P

(0)
C , P (0)

A , q(0)

4: repeat
5: Step 1: Update θ

(k+1)
n = θ

(k)
n − η · g(k)n

6: Step 2: Update P
(k+1)
C via closed-form

7: Step 3: Compute P
(k+1)
A = min{P 1∗

A , P 2∗
A , 0}

8: Step 4: Update q(k+1) via 1D search to satisfy A ≤
L(η)

9: Step 5: Check convergence:
10: if ∥θ(k+1)−θ(k)∥ < ϵ and similar for q, PC , PA then
11: break
12: end if
13: k ← k + 1
14: until k ≥ max iter
15: return θ∗, P ∗

C , P
∗
A,q

∗

VII. NUMERICAL RESULTS

This section conducts a simulation study to illustrate how
system parameters affect the covert rate performance. The sys-
tem parameters used in this simulation are listed in TABLE II.
We propose two sets of Rician K-factors for simulation. Set
1 aims to maximize the covert D2D rate, particularly for
Carol-to-Ethan communication. It assigns a high KIE value
(15 dB) to ensure strong LoS between the IRS and Ethan,
thereby enhancing covert signal delivery. KCI is set to a
moderate-to-high value (8 dB) to support the primary D2D
transmission path while maintaining acceptable interference
levels. Meanwhile, KAI is kept moderate (6 dB) to balance
cellular benefits and avoid excessive interference with Ethan,
and KIK remains low (1 dB) to suppress signal leakage to
Kevin for better covertness. Set 2 emphasizes a balanced
enhancement of overall D2D-enabled cellular performance. It
increases KAI to 10 dB and KIB to 12 dB, thereby improving
IRS-assisted cellular transmission. Although KIE and KCI

remain relatively high (13 dB and 5 dB, respectively), they
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Fig. 2. Covert rates versus the power of D2D transmitter Carol

are slightly reduced compared to Set 1, resulting in a mod-
erately strong D2D rate. KIK is set slightly higher at 2 dB,
allowing limited IRS influence on Kevin without significantly
compromising covert communication. This comparison high-
lights the inherent trade-off between maximizing D2D covert
communication and enhancing cellular performance in IRS-
assisted Rician channels.

TABLE II
SYSTEM PARAMETERS

System parameters Values
Maximum transmission powers of Carol and Alex

(PC max, PAmax) 1.0 W
Noise variance at Ethan, BS, and Kevin

(σ2
E , σ2

B , σ2
K ) 0.01 W

Noise variances over channel hXY

(σ2
XY ) 0.005 W

Pre-determined rates for hCE and hAB

(RCE , RAB) 1 Mbit/s
Covertness requirement (ε) 0.01

K-factor for IRS related channels Set 1: 6, 8, 15, 10, 1
(KAI , KCI , KIE , KIB , KIK ) Set 2: 10, 5, 13, 12, 2

A. Covert Rate

Figure 2 illustrates the impact of Carol’s transmission
power, PC , on the covert rates across different scenarios: With
IRS, ε = 0.05 (Set 1); With IRS, ε = 0.01 (Set 1); With IRS,
ε = 0.01 (Set 2); With a Relay; Without IRS-aided; and With
IRS, ε = 0.01 (as referenced in [33]).

In scenarios without IRS or relay assistance, the covert rate
remains consistently zero due to obstacles that completely
block the transmission from Carol to Ethan. In the scenarios
aided by IRS, the covert rates initially increase as PC rises be-
cause the signal strength received by Ethan improves, leading
to a higher covert rate. However, this trend only continues up
to a certain point. Once PC exceeds a critical threshold, the
transmission becomes strong enough to be detected by the war-
den, Kevin. At this point, the covertness constraint is violated,
and the covert rate drops to zero. This threshold represents
the maximum transmission power that Carol can use while still

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.1
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0.1

0.2
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0.4

0.5

0.6

0.7

Fig. 3. Covert rates versus the power of cellular user Alex

maintaining undetectable communication. If the power exceeds
this threshold, Kevin can detect the transmission, resulting in
the failure of covert communication.

Additionally, the scenarios with different values of ε, which
adjust the strictness of the covertness constraint, show that
a higher ε relaxes this constraint, permitting a higher covert
rate before the threshold is reached. This means that Carol
can transmit at a higher power without being detected, as the
system tolerates a slightly higher probability of detection.

The scenario with relay assistance shows an increase in
covert rate, but it reaches a lower peak compared to the IRS
scenarios before leveling off. This trend results from the relay’s
ability to amplify and retransmit signals, providing a boost to
the signal strength received by Ethan. However, the relay’s
amplification is less effective than the IRS’s reflection and
beamforming capabilities. As PC continues to increase, the
relay scenario reaches a plateau and does not achieve the same
maximum covert rate as the IRS. This is because the relay
amplifies noise and interference along with the signal, limiting
its overall effectiveness. Ultimately, while the relay improves
the covert rate compared to the no-assistance scenario, its
performance is consistently lower than that of the IRS-aided
scenarios.

Among the IRS-aided configurations, Set 1 achieves higher
covert rates than Set 2 under identical conditions, primarily
due to its Rician K-factor configuration that prioritizes covert
D2D links. In contrast, Set 2 embodies a trade-off between
maximizing covert communication and enhancing overall cel-
lular performance in IRS-assisted systems. The subsequent
simulation results reflect the same design rationale.

Fig. 3 illustrates the impact of cellular user Alex’s transmis-
sion power, PA, on the covert rates under various scenarios:
with IRS, with a relay, without any aid, and using the method
in [32]. In the scenario without IRS or relay assistance, the
covert rate remains at zero as PA increases because the direct
transmission from Alex to the base station is completely
blocked by obstacles. In the IRS-aided scenario, the covert rate
initially stays at zero when PA is low due to communication
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Fig. 4. Covert rates versus number of reflecting elements, N

outages. As PA increases, the IRS enhances the signal through
reflection and beamforming, enabling a non-zero covert rate.
This rate continues to rise until PA reaches a critical threshold,
beyond which the increased power leads to higher interference
at Ethan, which the IRS cannot fully mitigate. Consequently,
the covert rate starts to decline as the IRS’s ability to optimize
signal reflection and maintain covertness becomes limited.
In the scenario with relay assistance, the covert rate also
starts at zero but achieves a non-zero value more quickly
due to the relay’s active signal amplification. The relay al-
lows the covert rate to increase rapidly but it plateaus at
a lower level compared to the IRS because the relay lacks
the IRS’s precision in optimizing signal direction. As PA

continues to increase, the relay’s amplification of both the
desired signal and the accompanying noise and interference
leads to a gradual decrease in the covert rate. However, this
decline is smoother than with the IRS, owing to the relay’s
more consistent amplification capabilities. Ultimately, the IRS
demonstrates superior performance in optimizing the covert
rate by intelligently reflecting and directing signals, achieving
a higher peak covert rate. The key thresholds in both the
IRS and relay scenarios highlight the delicate balance between
enhancing signal strength and maintaining covertness. In the
IRS scenario, the covert rate declines more sharply beyond
the threshold due to the IRS’s limited capacity to control
interference, whereas the relay’s performance declines more
gradually but at a lower overall covert rate.

Fig. 4 shows the impact of the number of reflecting elements
N on the covert rates under different scenarios, including
with IRS, without IRS, with a relay, and using the method
in [32]. We can see from Fig. 4 that as N increases, the
covert rate increases with each IRS-aided scenario while it
remains at zero without an IRS-aided scenario. This is because
increasing the number of reflecting elements N enhances
the reflection performance of the IRS, thereby improving
covert rate performance in IRS-aided scenarios. In contrast,
the scenario that assisted by a relay maintains a constant
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Fig. 5. Maximum covert rates versus the maximum power of D2D transmitter
Carol

covert rate regardless of N . This is because the relay operates
independently of the IRS and provides a steady covert rate
through active signal amplification, unaffected by changes in
the number of reflecting elements.

B. Maximum Covert Rate

Fig. 5 explores the impact of the maximum transmission
power PC max of the D2D covert transmitter Carol on the
maximum covert rates under different scenarios. We can see
from Fig. 5 that as PC max increases, the maximum covert rate
first increases and then remains unchanged with each IRS-
aided scenario, while it remains at zero without an IRS-aided
scenario. This phenomenon occurs because an increase in the
transmission power PC can improve the covert rate perfor-
mance from Carol to Ethan and also increase the transmission
outage probability from Alex to BS. Thus, there exists an
optimal transmission power PC to maximize the covert rate.
As PC max is relatively small, PC cannot reach the optimal
value, and thus the covert rate increases with PC max. As
PC max continues to increase, PC reaches the optimal value,
and thus the maximum covert rate remains unchanged. Without
an IRS-aided scenario, the reason is the same as that in Fig.
2.

In the scenario with a relay, the maximum covert rate
initially increases as PC max grows, but the increase is more
gradual compared to IRS scenarios. This is because the relay
provides active amplification of signals but lacks the reflective
optimization that IRS offers. IRS technology leverages its
ability to intelligently reflect signals towards desired paths
and adjust phases to minimize interference and maximize
signal strength at the receiver, thus enhancing the covert rate
more efficiently. In contrast, a relay amplifies both the desired
signal and noise, which can introduce additional interference,
reducing its effectiveness. Consequently, the covert rate with
a relay plateaus at a lower value than with IRS. The relay
is effective in boosting signal strength but does not match
the precise signal control and efficiency provided by IRS,
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Fig. 7. Maximum covert rates versus number of reflecting elements, N

which results in a lower optimal covert rate level. As with
the IRS scenarios, the covert rate reaches a steady state once
PC achieves its optimal value, illustrating the relay’s limited
capability to further enhance the covert rate beyond this point.

Fig. 6 depicts how the maximum covert rates vary with the
maximum power of cellular user Alex, PA, under different
scenarios. We observe from Fig. 6 that when PAmax increases,
the maximum covert rate without an IRS-aided scenario keeps
at zero, which is due to the fact that the transmission from
Carol to Ethan is completely blocked by obstacles. We also
observe that as PAmax increases, the maximum covert rate un-
der each IRS-aided scenario first stays at zero, then increases
up to a constant and keeps unchanged. It can be explained
as follows. When PAmax is relatively small, the constraint
that the transmission from Alex to BS is not outage cannot
be satisfied, and thus the maximum covert rate is zero. When
PAmax further increases, the constraint is satisfied, and thus
maximum covert rate reaches a maximum constant.

Fig. 7 explores how the maximum covert rates vary with the
number of reflecting elements, N , under different scenarios. It
can be observed from Fig. 7 that as N increases, the maximum
covert rate without an IRS-aided scenario remains at zero,
while it increases monotonically with each IRS-aided scenario.
The maximum covert rate under each IRS-aided scenario
improves as N increases because the additional reflecting
elements enhance the IRS’s ability to direct and focus the
signal, thereby improving covert rate performance. In contrast,
the scenario with relay assistance maintains a constant covert
rate regardless of the number of reflecting elements. This is
because the relay operates independently of the IRS and does
not benefit from the increased reflection capability, instead
providing a steady level of signal amplification.

VIII. CONCLUSION

This paper examined the covert communication of a D2D
pair in an IRS-enabled D2D network. We derived funda-
mental results concerning detection error probability, optimal
detection thresholds, and transmission outage probabilities.
Based on these findings, we developed a theoretical model for
covert rate and formulated its maximization as a constrained
optimization problem. We achieved covert rate maximization
through the joint optimization of the IRS reflection coefficients
and the transmission powers of both the cellular user and the
D2D transmitter. Numerical results demonstrate that the IRS
can significantly enhance covert rate performance.

Future studies will emphasize practical implementations on
real hardware, addressing the imperfections and challenges
associated with IRS technology. Furthermore, building upon
foundational efforts in areas such as inter-UAV collision avoid-
ance, efficient resource allocation, and advanced handover al-
gorithms will be essential for managing the growing complex-
ity and demands of covert communication systems [57]–[59].
In addition, incorporating a multi-antenna BS into covert com-
munications within IRS-assisted Vehicle-to-Everything (V2X)
networks, combined with, matrix-based analysis, and DRL-
driven joint beamforming, represents a promising direction for
future research.
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