
Intelligent Multi-Domain Edge Orchestration for
Highly Distributed Immersive Services: An

Immersive Virtual Touring Use Case
Tarik Zakaria Benmerar∗, Theodoros Theodoropoulos†, Diogo Fevereiro‡, Luis Rosa‡, João Rodrigues§,

Tarik Taleb¶, Paolo Barone∥, Konstantinos Tserpes†, and Luis Cordeiro‡
∗ICTFICIAL Oy, Finland; †Harokopio University of Athens, Greece; ‡OneSource, Portugal; §Cyango, Portugal;

¶University of Oulu, Finland; ∥Hewlett Packard Enterprise, Italy
Emails: tarik.benmerar@ictficial.com, ttheod@hua.gr, duarte.fevereiro@onesource.pt, luis.rosa@onesource.pt,

joao.rodrigues@cyango.com, tarik.taleb@oulu.fi, paolo.barone@hpe.com, tserpes@hua.gr, cordeiro@onesource.pt

Abstract—Edge cloud technologies in tandem with AI-enabled
solutions can contribute to overcoming the challenges that pertain
the distributed execution of immersive services and contribute
towards providing a positive experience for the end-users. Intelli-
gent resource management, orchestration, and prediction systems
can optimize the deployment of services, adapt to changing
demands, and ensure that the services are running smoothly. This
paper introduces a novel architectural paradigm capable of fa-
cilitating multi-domain edge orchestration for highly distributed
immersive services by incorporating a plethora of AI solutions
and technological enablers that can support multi-domain edge
deployments. The proposed architecture is designed to operate on
the basis of multi-level specification blueprints, which decouple
the simple high-level user-intent infrastructure definition from
the AI-driven orchestration and the final execution plan. The
Application Management Framework (AMF) offers a visual
language and tool that can be used as an alternative to a formal
method for creating the intent blueprint. In the frame of this
work, the latter is validated by an immersive virtual touring
use-case scenario.

Index Terms—Edge cloud, immersive service, orchestration,
cluster, Kubernetes, centralized management, and decentralized
management

I. INTRODUCTION

Highly distributed immersive services have the potential
to revolutionize different industries by providing new and
innovative ways of experiencing and interacting with the
world. For instance, Virtual Reality (VR) and Augmented
Reality (AR) can provide students with interactive and en-
gaging learning experiences. Likewise, VR simulations can
help train professionals in various industries, such as health-
care and aviation. In entertainment, immersive services have
transformed the gaming industry by allowing players to fully
immerse themselves in virtual worlds, while AR can enhance
live events by overlaying interactive digital elements on real-
world environments.

Unfortunately, to maintain a high level of Quality of Service
(QoS), immersive services depend on extremely low latency
and high bandwidth services [1]–[4]. Scientific literature sug-
gests that for an end-user to have a satisfactory experience, the
end-to-end latency should not exceed 15ms, and the available
bandwidth should scale up to 30 Gbps [5]–[7]. In addition,
faults in task processing can potentially disrupt service deliv-
ery and compromise the integrity of immersive experiences.

Therefore, it is crucial for applications of this nature to
possess fault tolerance capabilities. Furthermore, immersive
applications are computationally intensive, requiring complex
3D models and high-quality graphics. Incorporating essential
computational resources into end-user equipment would result
in bulky and expensive setups, which goes against the princi-
ples of immersive applications that require end-user devices to
be portable and cost-effective [8]. Cloud computing can shift
the computational burden to remote resources, allowing end-
user devices to remain mobile and affordable. However, cloud
topologies cannot fully cope with the ultra-low latency and
high bandwidth requirements of immersive services, since ar-
bitrary complex networks intervene between end-user devices
and cloud servers.

Edge computing aims to reduce the amount of data trans-
mitted to remote clouds and allows data processing near
the data sources. As a result, edge topologies provide faster
response times, higher transfer rates, and better scalability and
availability. Thus, running immersive services in a distributed
manner across the cloud-edge fabric would benefit application
developers and help maintain high-level QoS provisioning [9].

On the downside, the optimal allocation of distributed tasks
across the network and compute resources of the cloud-
edge continuum remains an open challenge, especially under
the latency, bandwidth and fault tolerance constraints of the
distributed immersive applications. Machine Learning (ML)
/ Deep Learning (DL) can help address these challenges by
providing intelligent resource management and orchestration
systems that can adapt to the changing demands of the end
users. For example, Artifical Intelligence (AI)-powered load
balancing and resource allocation algorithms can optimize the
deployment of services across the cloud-edge fabric, taking
into account factors such as network conditions, computational
resources, and users’ demands. Moreover, AI-powered predic-
tive analytics can be used to anticipate future demand and
proactively allocate resources accordingly, avoiding potential
bottlenecks or service disruptions. AI-powered monitoring and
fault detection systems can also help ensure that the services
are running smoothly and identify any issues before they
affect the end-users’ experiences. On top of the aforemen-
tioned AI solutions, Application Management Frameworks
(AMFs) are an essential tool for deploying applications on



edge computing. AMFs provide a structured approach to
designing, documenting, and managing an application and
deploying it on an edge computing system. The importance
of AMFs lies in their ability to provide a common language
and framework for stakeholders to collaborate on the design,
implementation, and management of applications. By using
a standardized approach, AMFs can help ensure consistency,
interoperability, and scalability across the system, while also
enabling stakeholders to make informed decisions about trade-
offs between cost, performance, and other factors. Finally, it
is essential to incorporate the required technological enablers
that are capable of facilitating the orchestration & manage-
ment of highly distributed immersive services. This type of
deployments typically spans across multiple domains. To that
end, it is of paramount importance for these technological
enablers to focus on multi-domain edge orchestration. In this
vein, this paper showcases a novel architectural paradigm
that facilitates intelligent multi-domain edge orchestration for
immersive services.

The remainder of this article is organized in the following
manner: Section II explores some research work relevant
to intelligent multi-domain edge orchestration. Section III
introduces the architecture of the envisioned intelligent multi-
domain edge orchestration system. Section IV describes an
Application Management Framework (AMF) which provides
a visual language and tool alternative to the formal approach
for the intent blueprint, as well as an immersive virtual
touring use-case scenario that is used to validate the proposed
architectural paradigm. Finally, Section V summarizes the
merits of this work.

II. RELATED WORK

Edge computing is geared towards addressing the growing
demands and requirements of the next generation of highly
distributed applications [10]. Each cluster of edge nodes is
responsible for processing data from multiple applications
and is designed to handle the specific processing needs of
these applications, with the aim of reducing latency, improving
data privacy, enabling real-time decision-making, achieving
high scalability and resilience, and allowing better resource
utilization. In [11], 3GPP SA6 proposes an edge computing-
based architecture for enabling Edge Applications (EdgeAPP).
EdgeAPP is built on principles of application portability, ser-
vice differentiation, flexible deployment and interworking with
the 3GPP network. EdgeAPP specification discusses aspects
such as service provisioning, registration, Edge Application
Server (EAS) discovery or Service Continuity (i.e., maintain-
ing a service in case of user mobility or migration).

ZSM (Zero-touch network and Service Management) is an
end-to-end management reference architecture developed by
ETSI to provide a flexible and automated [12] approach to
managing services and infrastructure in a 5G network. It com-
prises six building blocks: Management Services, Management
Functions, Management Domains, E2E Service Management
Domain, Integration Fabric, and Data Services. The ZSM
Management Services provide a standardized and consistent

way to expose different management capabilities across a
multi-domain deployment. Management Functions combine
multiple capabilities to form broader management features.
The Management Services are organized into Management
Domains, where services can either be internal or exposed
outside the domain. The ZSM framework also allows for a
hierarchy of Management Domains, where multiple domains
can be stacked on top of each other. Integration Fabrics
facilitate communication between management functions. The
Domain Integration Fabric connects services within the same
domain, while the Cross-Domain Integration Fabric facilitates
communication over different domains. Both fabrics are used
as a communication bus and to register, discover, and invoke
different supported services. Data Services allow for the de-
coupling and reusing of the same management data across
distinct management services. Ultimately, ZSM can be seen
as a strategy to move from automatic to autonomous (A2A)
orchestration architectures considering mechanisms such as
policy-driven, intent-based, network governance, network sta-
bility, reinforcement learning, and transfer learning [13]. In-
deed, following the advancements in AI methodologies, there
have been numerous attempts [14], [15] at incorporating them
to build further ZSM developments in different aspects, such
as multi-tenancy management, traffic monitoring, and archi-
tecture coordination. In [16]. ETSI details a list of relevant
AI-enabling areas for AI-driven network management, such
as Trustworthy Machine Learning, Decentralized Machine
Learning, AI/ML model validation, Anomaly Management
using AI/ML-based closed loops, ML model cooperation and
federated Learning.

Multi-Domain E2E service lifecycle management can be
split into three categories of processes: onboarding, fulfilment
and assurance [17]. The first two deal with the aspects of
the service bootstrapping (e.g., service onboarding, service
activation, reconfiguration, decommissioning), whereas assur-
ance processes are used to continuously (in a close-loop)
monitor and guarantee processes are running as supposed and
according to the expected Service Level Agreement (SLA)
and QoS [18]. Likewise, Intent-driven architectures provide
manifold benefits, including the promise to help to simplify
the management of complex infrastructures such as 5G multi-
vendor deployment scenarios as described in 3GPP specifica-
tions [19], [20]. Intents focus on what needs to be achieved
regardless of the actual implementation or the underlying
infrastructure details [21]. ETSI created the Experiential Net-
work Intelligence (ENI) framework to enable networks to
leverage the benefits of AI methodologies while ensuring they
meet Quality of Service requirements [22]. The ENI Cognitive
Architecture model involves a set of hierarchical closed control
loops based on the Observe-Orient-Decide-Act model, with
extensions to accommodate collaborative decision-making,
learning, and policy management. These enhancements enable
the system to adapt its behaviour according to changes in
user needs, business goals, and environmental conditions. It
operates in two modes: recommendation and command. The
former functions as an assistant recommending actions, and



the latter functions as an actual governing other management
components.

There is also now a plethora of emerging tools and enablers
focused on supporting the management of containers, Virtual
Machines (VMs) and services across the edge and cloud
environments. Open Network Automation Platform (ONAP)
[23] is designed to automate the composition and creation
of network services. Akraino Edge Stack [24] is a Linux
Foundation project focused on creating a framework for edge
computing, providing a set of blueprints and reference archi-
tectures that help developers build and deploy edge applica-
tions. ClusterAPI [25] is a Kubernetes project that aims to
provide declarative APIs for cluster creation, management,
and lifecycle management, simplifying the creation and man-
agement process of Kubernetes clusters in multiple cloud
providers, on-premises data centres, and hybrid environments.
Open Source MANO (OSM) [26] is an ETSI project that
aims to provide a platform for deploying, managing, and
monitoring virtual network functions (VNFs) and network
services. Cloudify [27] is a multi-cloud management platform
designed to automate and manage the deployment of complex
applications and services across multiple clouds and data
centres with support for hybrid and multi-cloud environments.
OpenShift [28] is a container application platform built on
top of Kubernetes that provides developers with an integrated
environment for building, deploying, and scaling containerized
applications.

III. INTELLIGENT MULTI-DOMAIN EDGE
ORCHESTRATION

This section discusses the key strands of the proposed
intelligent multi-domain edge orchestration, namely the ref-
erence architecture, the blueprints to express applications and
infrastructure, the service planning and deployment steps, the
role of Native AI and AI-based mechanisms to fulfil the needs
of immersive services, the monitoring and the core metrics
and finally, the concept of inter-cluster peering to facilitate
distributed application deployments.

A. Native AI and Intent-driven Multi-domain Orchestration
Architecture

Edge computing and multi-domain architectures are two
emerging technologies meant to disrupt how immersive ser-
vices are built and delivered. Amongst others, they enable
service deployments closer to users, a more efficient and,
therefore, sustainable edge-cloud continuum utilization, and
last but not least, heterogeneous infrastructure composition
(i.e., no restrictions to a single provider or single cluster
deployments). Nevertheless, there is a gap between immersive
application developers’ intentions and the expertise needed to
maintain and orchestrate a (complex) multi-domain environ-
ment. Apart from the infrastructure, a deep understanding of
cloud-native architectures, tools, mechanisms and protocols is
needed. Managed solutions provide a step towards alleviating
such complexity. Still, they typically fail to deliver an intuitive
way of expressing the developer’s intentions or do not include

Fig. 1. Intelligent Multi-Domain Edge Orchestration architecture.

advanced features such as autonomous service deployment and
lifecycle management, which are increasingly relevant in these
scenarios.

Figure 1 depicts the proposed native AI and intent-driven
multi-domain orchestration architecture conceived to support
the service provisioning and life-cycle management of highly
distributed immersive services across a distributed edge-cloud
infrastructure. Such architecture aims to empower immersive
application developers with tools for (visually) expressing and
composing their applications. Later, the proposed architecture
aims to translate application blueprints into orchestration and
execution blueprints, which are used to ensure the expected
lifecycle of the application’s components.

Such architecture was designed to: i) take into consideration
immersive service expectations and intents; ii) abstract the
virtualized physical infrastructure from applications-specific
deployments; iii) take advantage of multi-domain, multi-
stakeholder environments and exploit the full Edge-Cloud
continuum; iv) incorporate the concept of Native AI orches-
tration capabilities (c.f. Section III-E; v) energy efficiency and
QoE optimization (e.g. by deciding the most suitable location
for allocating resources, on-demand resource provisioning -
including the cluster creation, or by continually monitoring and
reacting to resource patterns) vi) service lifecycle automation
leveraging the concept of Zero-Touch and automated closed
loops.

The proposed architecture is composed of five key substrates
as follows:

• Application Management Framework - a user-friendly



front-end UI for immersive application developers to
compose their applications. Automatically translates com-
ponent composition and definitions provided by develop-
ers into application intent blueprints in TOSCA format
(c.f. Section III-B). Provides the means to trigger appli-
cation deployments via human interaction or via API (for
deployments triggered by devices).

• AI-Driven Provisioning and Life-cycle Manager -
includes the Native AI mechanisms for intelligently de-
vising applications’ best scheduling plans based on in-
frastructure characteristics (e.g., place services requiring
GPU support on GPU-enabled locations) or based on op-
timization criteria (e.g. user-proximity, energy efficiency,
security constraints). This substrate is also responsible
for continuously predicting resource utilization to support
proactive service and infrastructure management (e.g.
scale-in/-out clusters and components on-demand, antic-
ipate service migration needs).

• Infrastructure and Application Monitoring comprises
the set of monitoring agents responsible for gathering and
exposing application, cluster and infrastructure metrics.

• Orchestrator and Resource Manager - comprises the
building blocks and primitives which allow enforcing
the decisions (i.e., orchestration blueprints) into an ex-
ecution plan (i.e., the execution blueprint). Orchestrator
and Resource Manager allows seamless integration with
different cloud and infrastructure providers by providing
the means to create clusters across numerous domains
transparently to end-users. Such clusters form a co-
hesive edge-cloud computing continuum, providing the
flexibility to leverage multiple locations and select the
most suitable one for each service component, allowing
optimal resource utilisation and enhancing the deployed
services’ overall efficiency.

• Multi-Domain Virtualized Infrastructure is formed by
aggregating available infrastructure providers and a list
of existing clusters and application services.

B. From Application intents to infrastructure blueprints

Our proposed orchestration solution is built around three
types of blueprints: User Intent, Orchestration and Infras-
tructure Blueprints. Together, they define different layers of
details related to the application deployment. This allows the
separation of concerns between what the end-user intends at
a high level from the actual implementation and execution,
including the AI-driven optimized decisions and the low-level
infrastructure deployments and configurations.

1) User Intent Blueprint: At a high level, users describe
their intention regarding the functional architecture of their
applications regardless of the underlying infrastructure. This
description provides opportunities for an intelligent scheduler
to optimise networking and resources while respecting the
initial user intent. Based on an extended version of the industry
standard OASIS TOSCA (Topology and Orchestration Specifi-
cation for Cloud Applications) [29], a blueprint specification is
defined for the application deployment model. The user intent

blueprint includes a high-level view of the application repre-
sented as a composition of modular services (packaged into
containers, Virtual Machines, etc.), defining user application
services images and the connection points and virtual links
between them. In addition, users can specify requirements in
terms of resource needs (e.g., number of cores, RAM, GPU,
storage), number of replicas, and expected Quality of Service
(e.g., bandwidth, latency and jitter). Resource definitions drive
the choices of the decision layer on the most suitable targets
for infrastructure provisioning. On the other hand, QoS re-
quirements define SLAs that the selected infrastructure must
satisfy at runtime. Hence they are drivers for the monitoring
and service lifecycle loops. For the Blueprint definition phase,
users describe their application from the AMF graphical front-
end, which guides them in defining the building blocks, their
interconnections, the requirements and the input parameters
or environment variables that may be required at deployment
time. The AMF then generates the related TOSCA represen-
tation for the application model. For the deployment phase,
the AMF front-end provides two modes: human and machine-
to-machine interaction. Human interaction leverages the GUI
front-end to select an application blueprint and deploy from
it an application instance, with forms for manually entering
input parameters. Machine-to-machine interaction leverages a
REST API to be invoked by a device or a system to trigger
the deployment of a specific blueprint.

2) Orchestration Blueprint: The TOSCA user intent
blueprint defines the application at a higher level. It doesn’t
specify how the infrastructure and the services are created and
which resources are used. The intelligent scheduler harnesses
the TOSCA definition and the live monitoring data during
application runtime to create and update the orchestration
blueprint containing the detailed infrastructure and services
provisioning. The orchestration blueprint structure is specified
using a Kubernetes CRD (Custom Resource Definition) [30]
and submitted to a management cluster. CRDs provide a
way to extend Kubernetes with new kinds of resources. As
detailed further, a CRD leverages an accompanying operator
for the lifecycle management of the new type of resource. The
orchestration blueprint uses a similar structure to the TOSCA
User Intent blueprint but enriches it with the required details
for the Kubernetes cluster provisioning. It specifies the in-
frastructure providers used for Kubernetes cluster provisioning
with additional parameters such as the number of control plane
and worker machines, deployment region to be used, machine
images, etc.

Moreover, the TOSCA user intent blueprint only provides
high-level hints of edge needs for guiding their provisioning.
It does not specify how the edges will be created, how
many will be required and where they need to be provi-
sioned. Contrary, the orchestration blueprint specifies all the
Kubernetes-based edge clusters that will be provisioned with
the required infrastructure parameters as any other Kubernetes
cluster in the orchestration blueprint. It is important to note
that the intelligent scheduler updates the edge definitions in the
blueprint during application runtime using the live monitoring



data and the performance hints specified in the TOSCA user
intent blueprint. The decision blueprint is divided into three
sections as follows:

• Clusters: defines the Kubernetes clusters to be created. It
specifies the cluster provider parameters and details (i.e.,
number of machines, deployment region, etc.).

• Services: defines the containerized services to be de-
ployed. It specifies in which cluster the service will be
deployed, the container image used, ports exposed, the
number of replicas and other parameters required for
correct execution (e.g. environment variables).

• Links: defines which services expositions across two
clusters using secured virtual links. This allows strong
multi-domain communication security without publicly
exposing services over the internet.

While the blueprint parameters are currently fixed for the
different sections, an extensible blueprint specification should
be considered in the long term to make the orchestration of
different use cases viable.

3) Infrastructure Blueprints: Based on the orchestration
blueprint, the initial application deployment and subsequently
updated deployments are handled by a Kubernetes Operator.
This later is a software extension to execute the orchestration
blueprint corresponding to a Kubernetes Custom Resource
instance. We should note that the Operator pattern and CRDs
(Custom Resource Definitions) are the de facto pillars for
extending Kubernetes functionalities.

Based on clusters section details in the orchestration
blueprint, the operator set up the required third-party clusters
bootstrapping blueprints required for their provisioning on the
specified cloud/infrastructure provider. Currently, ClusterAPI
was chosen as the provider for cluster setup. ClusterAPI
provides manifold benefits, including the ability to instantiate
and manage the lifecycle of Kubernetes on widely used cloud
providers. Services section in the orchestration blueprint is
used by the operator to set up the necessary Kubernetes
deployments resources to the specified cluster. From the links
section in the orchestration blueprint, the operator set up the
VPN links through inter-cluster peering. Liqo, detailed later,
is used as the third-party tool for this operation.

C. Service Deployment Planning

As explained earlier, the operator sets up the required
clusters unto which the application services are planned to
be deployed. Regarding deployment planning, at least two
approaches can be considered: different services and appli-
cations isolated in their own clusters or having them deployed
unto the same cluster for consolidation purposes. In the first
approach, every new service deployment requires tearing up
a new cluster for the application beforehand. This process
requires a certain amount of time which adds to the application
setup time. In the latter approach, the consolidation reduces the
setup time. Nevertheless, it adds a significant amount of logic
complexity and an elaborated security system which must
be in place to guarantee complete isolation between services
from different applications. For the sake of simplicity, the

Fig. 2. Offloading and redundancy in decentralized multi-domain management
clusters.

first approach was chosen, although improvements are planned
to support additional deployment schemes which, although
more complex, can bring manifold benefits, including a more
sustainable infrastructure utilization.

D. Cluster Management Approaches: Decentralized vs Cen-
tralized

It is important to note that an operator needs to run in a
Kubernetes cluster like any other application. The operator is
strategically placed in a dedicated management cluster for the
envisioned multi-domain orchestration solution. Likewise, the
blueprints are deployed inside that cluster as CRDs, allowing
the operator to keep track of changes in the application
blueprints and synchronise their states with the actual infras-
tructures states. Two approaches are possible for deploying
the management cluster, the operator and the application’s
blueprints. These approaches can be centralised or decen-
tralised. In the centralised approach, a single management
cluster hosts the operator and all the application blueprints. A
significant increase in submitting new or updated application
blueprints in this centralised approach can lead to scalability
and resilience issues. In this case, the management cluster
itself can be seen as a Single Point of Failure (SPOF),
and any strategy for having redundancy should occur at the
cluster level (e.g., Kubernetes High-Availability multi-node
cluster setup). Such a centralised approach allows simplified
management of the deployed applications and the orchestration
components. In the decentralised option, on the other hand,
multiple management clusters are deployed, with each having
its own operator and sharing the application blueprints (See
Figure 2. In such a decentralised approach, both application
blueprints offloading and redundancy between clusters are
possible with the declarative nature of the blueprints.

E. AI-driven provisioning and lifecycle management

Highly distributed immersive applications in edge comput-
ing face several latency, bandwidth, reliability, and scalability
challenges. These challenges can impact user experience and
the overall performance of the application. AI solutions can
be used for the lifecycle management of highly distributed im-
mersive applications in edge computing. These solutions can
significantly contribute towards optimizing the performance
and reliability of these services throughout their lifecycle
and ensure efficient resource allocation and management. In



the context of the proposed architectural paradigm, many AI
solutions may be leveraged to accommodate the complexity
associated with Multi-Domain Edge Orchestration for Highly
Distributed Immersive Services. To achieve this goal, the
authors of this work have identified two types of AI solutions.
This taxonomy is inspired by ENI’s modus operandi, was
briefly explored in the Related Works section, and is based on
the role of the AI in the context of the orchestration process.

The first type is indicative of AI solutions that use the
available information to produce valuable insights that can be
leveraged in the context of the orchestration process in the
form of predictive analytics. This type describes a plethora
of Deep Learning time-series forecasting [31] methodologies
that are capable of performing accurate predictions regarding
numerous critical factors such as network conditions, computa-
tional resources, and user demand. The orchestrator leverages
these predictions. The second type is indicative of AI solutions
designed to operate as orchestrators. To produce the various or-
chestration strategies, they examine a plethora of information,
which includes the aforementioned critical factors. This type
describes various Reinforcement Learning [32] methodologies
that perform that are in charge of functionalities such as task
offloading, load balancing, and resource allocation.

Both types of AI solutions are implemented as parts of
closed-control loops, similar to those described within ZSM
and ENI. As such, they play an integral role in the decision-
making process and can contribute towards tackling the afore-
mentioned challenges in the following ways:

• Latency: In immersive applications, even small delays
can affect the user experience significantly. Edge com-
puting can help reduce latency by processing data closer
to the source. However, the distribution of the applica-
tion across multiple edge nodes can introduce additional
latency. AI can help mitigate this by predicting the
behaviour of the users [33] and the application to antic-
ipate the processing requirements and allocate resources
accordingly [34].

• Bandwidth: Immersive applications require high band-
width for streaming multimedia content. However, the
limited bandwidth in edge networks can cause delays or
interruptions in streaming. AI can optimize the use of
available bandwidth by predicting the content users are
likely to access. That content is then preloaded in the
edge devices to reduce the amount of data that needs to
be transferred [35].

• Reliability: Highly distributed immersive applications in
edge computing can be vulnerable to network and node
failures. AI can help ensure reliability by monitoring the
performance and behaviour of the application in real-
time and detecting any anomalies or failures [36]. AI can
also help to predict when a node is likely to fail [37]
and migrate the application to a different node to ensure
continuity of service [38].

• Scalability: Immersive applications can be resource-
intensive, and as the number of users increases, the
demand for resources also increases. AI can help man-

age the demand for resources by predicting the number
of users, their behaviour, and the subsequent resource
demand [39] to allocate resources more efficiently. AI
can also help optimize the allocation of resources across
multiple edge nodes [40] to ensure that the application
can scale up or down as needed.

Thus, within the frame of the proposed architectural
paradigm, the two types of AI solutions do not operate
independently but are instead envisioned to conduct their
functionalities collaboratively. More specifically, the predic-
tions/ insights produced by the first type of AI solutions can
be leveraged by the orchestrating entities that belong to the
second type. This enables the latter to devise more refined or-
chestration strategies that consider the future state of the multi-
domain edge environment. Furthermore, the incorporation of
the federated learning paradigm into the aforementioned AI-
driven functionalities is intertwined with a plethora of benefits
in terms of privacy-preservation, distribution of AI knowledge
sharing, and enhanced learning efficiency in the context dis-
tributed edge computing.

Federated learning [41] is a ML approach that enables
training models across multiple decentralized / edge devices
while keeping the data on those devices. Instead of sending
data to a central server for training, the models are trained
locally on the edge devices, and only the model updates or
gradients are shared with a central server for aggregation. This
approach preserves data privacy and security, as sensitive data
remains on the devices where it is generated. Edge devices
contribute locally trained models, which are aggregated to
create a global model. This process establishes cross-domain
learning, where knowledge is shared without compromising
privacy. The distributed nature of federated learning facilitates
knowledge transfer from resource-rich to resource-limited de-
vices, benefiting all devices. On top of that, training models
on edge devices reduces latency and allows real-time decision-
making. Federated learning only exchanges model updates
instead of raw data, thus minimizing communication overhead
and conserving bandwidth. Finally, distributing the learning
among edge devices allows for horizontal scalability. As more
edge devices join the federated learning process, the system
can handle larger volumes of data and train more complex
models without relying solely on centralized infrastructure.

F. Infrastructure and Application Monitoring

For the correct operation of the AI-driven provisioning and
lifecycle management component, it must have access to both
historical and live monitoring data. Historical monitoring data
are essential for correct network performance or workload
predictions, particularly inter-cluster latency and bandwidth
and edge devices network latency and application usage in
our immersive experiences use-case. Live monitoring data
act as real-time feedback to the smart scheduling decisions
and determine whether the expected performances have been
achieved or the infrastructure resources can still cope with the
submitted workload.



Based on the defacto Kubernetes clusters monitoring tool
Prometheus [42], the monitoring component creates a set of
agents that aggregates all the historical and live monitoring
data for the given application. Depending on a specific deploy-
ment layer performance we are interested in, different metrics
agents can be deployed, namely: infrastructure metrics agents,
cluster metrics agents, and application metrics agents.

1) Infrastructure Metrics Agents: All the applications
clusters are deployed unto the existing virtualized regional
cloud infrastructures. The AI-driven provisioning and lifecycle
manager harnesses historical data for the existing cloud re-
gional infrastructures metrics to guide the cluster placement.
Agents are deployed to the regional cloud infrastructures to
gather the required metrics. These agents provide the resource
data, latency, and historical bandwidth data between the cloud
infrastructure regions. The provisioning and lifecycle manager
can then make the required predictions for the placement and
migrations of application services. Note that these agents can
either be based on software deployed by the cloud provider or
as part of a dedicated monitoring cluster independent of any
application deployment.

2) Cluster Metrics Agents: Every cluster in the given
application should be able to handle the required deployed
services workload while achieving the target performances. A
set of cluster metrics agents are deployed unto each cluster
to continuously monitor the hardware resources (e.g., CPU,
Memory) consumed by each node and deployed container, as
well as network performance between clusters (e.g., latency
and bandwidth). The provisioning and service lifecycle man-
agement component will then use these metrics to scale up
or down the cluster nodes depending on the workload or for
migrating services from one cluster to another to achieve better
network latency or bandwidth.

3) Application Metrics Agents: Custom hints can be spec-
ified in the User Intent Blueprint as part of specific network
or application workload performances. These hints are first
aggregated from well-defined sources using a dedicated mon-
itoring system and, later, harnessed by AI-driven provisioning
and lifecycle manager to optimise the intended hint criteria. A
plugin system is put in place to achieve maximum flexibility in
integrating the various application-specific metrics. Amongst
others, this allows the case of communicating edge devices
network performances and geolocalisation hints metrics. Met-
rics agents can also measure a particular application’s Quality
Of Service (QoS), such as a specific job of application queuing
time, helping the user plan for service replication. Better,
automated as part of our potential improvements to our system.

G. Inter-Cluster Peering

Nowadays, an immersive application consists of multiple
micro-service components, which can benefit from being
distributed across different clusters. Immersive application
components highly depend on the capability to communicate
with each other, regardless of whether they sit in the same
or different locations (and clusters). As such, a transversal
connectivity solution capable of enabling connectivity between

clusters is increasingly required. Such a solution facilitates the
deployment of cross-domain applications, enabling dynamic
location-aware scheduling decisions (whether based on de-
veloper requirements or an AI-driven decision) independently
from labour and time-consuming developer configurations.
Several technologies, such as Liqo or Submariner, promise to
address such automated peering cluster connectivity and ser-
vice discovery across Kubernetes clusters [43] [44]. Liqo, both
free and open-source, is the solution adopted in our proposed
architecture. Liqo is designed to enable seamless connectivity
among geographically distributed clusters (e.g., on-premises,
edge or cloud). Liqo relies on peer-to-peer secure (encrypted)
connections between clusters to validate the identity clusters.
Remote clusters are seamlessly abstracted through the concept
of virtual nodes on the local cluster, allowing transparent com-
munication between the peered clusters, regardless of the CNI
plugin installed. Indeed, for bidirectional peerings, a virtual
node is created in each cluster representing the resources the
remote one provides. Moreover, Liqo also brings the notion
of offloading to reflect and execute workloads on top of
those virtual nodes (e.g., namespaces, services and pods). This
allows exposing services or even the execution of workloads in
remote clusters. For instance, when a namespace is offloaded,
Liqo extends that namespace by creating a twin namespace in
the remote cluster, enabling the pods and services to run on
that cross-cluster shared namespace. Figure 3 compares pod
offloading versus service offloading. Both modes start with the
peering of clusters (i.e., creating a dynamic VPN tunnel) and
the creation of a shared namespace.

Fig. 3. Pod and Service Offloading comparison.

Nevertheless, the pod offloading strategy includes moving
the actual execution of pods and the services to a peered
cluster(e.g., in Figure 3, the application components are first
deployed on the original Green Cluster and later executed in
the Rose cluster). For instance, high-demanding computing
tasks, such as video processing or handling requests during
peak traffic periods, can be easily moved to a (more suitable)
cloud cluster. By offloading some of the application workloads
to a cloud cluster, one can optimize the use of resources across
the edge-cloud continuum, reducing costs and improving over-



all efficiency. Contrary, service offloading consists of exposing
only the Kubernetes services on a remote cluster. In that case,
the pod execution remains in the original cluster, and the pod
deployment should be performed from the beginning in the
targeted cluster. The remaining components should also be
aware of the names of the services on the remote cluster.

IV. IMMERSIVE SERVICE USE CASE

A. Immersive Virtual Touring

One use case that can benefit from this architectural
paradigm is Cyango Cloud Studio, a VR SaaS (Software
as a service) that allows anyone to create Virtual Reality
experiences. Cyango empowers businesses with a solution
to allow them to explain, show, teach and sell directly in
real-time with interactive 360º video experiences. Cyango
Cloud Studio targets content creators and marketing agencies
requiring a seamless workflow for creating enhanced Virtual
Reality experiences. Cyango Cloud Studio focus on delivering
high-quality VR editing capabilities to content creators and
high-quality 360 VR content to end-users. This content can
be video, image, audio or 3D models.

Besides many features, Cyango allows four distinct use
cases:

• Real-time video streaming: where the users can stream
video and audio to many viewers using any recording
device (e.g., a 360º camera).

• Asset converting: where users upload different kinds of
assets and convert it to multiple quality levels that can be
later adaptively loaded.

• Video editing: allows users to perform remote video
editing without requiring a powerful ad-hoc machine.

• Static video consuming: where users can load and vi-
sualize the immersive experience with 360º videos using
HLS protocol that adapts to different network speeds and
devices.

The Cyango Cloud Studio provides a graphical interface
for users to upload and edit their assets and build the virtual
experience as seen in Figure 4.

Fig. 4. Screenshot of Cyango Cloud Studio Web Interface.

The user can access such an interface in the browser where
all the actions like video converting and editing are made.
This makes it necessary to have a very low latency response
in video editing. For instance, user edits on the browser must
be reflected in (near) real-time in a way it feels like a fast
response to the edit action. Moreover, Cyango Cloud Studio
deployments should consider the ability to scale and adapt
the content delivery accordingly to the number of concurrent
users and guarantee the best QoS and QoE. From a developer
perspective, there is also a need for quickly pushing new code
to a versioned source code repository and seamless integra-
tion with CI/CD pipelines. Cyango Cloud Studio is based
on WebXR, WebGL technologies and uses a micro-service
architecture comprising several containerised components (cf.,
Figure 5).

Fig. 5. Cyango Cloud Studio Components Architecture.

The users (i.e., content creators and VR experience con-
sumers) interact with cyango-story and cyango-cloud-editor
components which should be strategically placed in edge loca-
tions to minimize the latency of video editing and consuming.
The cyango-media-server component also requires a strategic
location for serving and performing real-time video/audio
transcoding and livestreaming. The service placement of the
three should maximize the QoE of different users at different
locations. Components cyango-story and cyango-cloud-editor
use Three.js, a WebGL library abstraction for Javascript. This
library allows video and image as textures in a 3D environ-
ment while allowing interactivity. It provides an immersive
3D experience that can be loaded on smartphones, desktops
and VR headsets. An orchestration platform should support
choosing the most suitable locations of these components
considering the specific hardware capabilities to improve the
overall processing performance (e.g., GPU-enabled nodes).
The cyango-backend component works as an API component
that communicates and delegates processing tasks to cyango-
workers. The cyango-worker(s) can be considered the most
resource-expensive components as they handle all the heavy
tasks like converting the video and audio from any file
extension to a standard HLS protocol playlist that can be
consumed using an adaptive bitrate method. This component



uses ffmpeg native libraries to convert audio, video, and
other kinds of assets (e.g., images using the sharp library to
manipulate the image and convert it to standard extensions
that are readable as WebGL textures). Replicas of cyango-
worker(s) must be replicated using a Horizontal Auto Scaling
strategy. The cyango-messaging component acts as a messag-
ing bus between cyango-backend and cyango-worker(s) for
an asynchronous task-based processing schema. Finally, the
cyango-database component stores all the stories, assets and
details. The storage component stores the processed files which
users will later consume. These two storage components can
also greatly benefit from an intelligent scheduling placement
approach minimizing the network latencies when accessing
and persisting the assets.

B. Application Management Framework

Application Management Framework (AMF) offers immer-
sive application developers an environment for defining and
deploying highly interactive and collaborative next-generation
services. AMF can be considered an entry point for immersive
application developers, from which they define the modules
of their applications and visually shape and compose them
by specifying properties, parameters and relationships. The
modules are software artefacts packaged into container or vir-
tual machine images. The AMF provides a dedicated registry
where immersive application developers upload their artefacts.
Then, as the first step of application provisioning, AMF
triggers a DevSecOps chain to check the uploaded images
against security threats. A detailed report is generated, and
pointers to descriptions about each security issue and possible
resolutions are shown to the users. Once the needed images
are loaded into the AMF registry, the developers can define the
application blueprints for their services visually in the AMF.
The user interface guides the developers in the steps required
to define the application components. Figure 6 shows how the
AMF Blueprint Editor is used to model the Cyango application
described in the previous section. Developers start by defining
the application name, description, version number and privacy
level. Also, in this phase, it is possible to define global input
parameters required at deployment time when launching an
application from a blueprint.

The second step is the definition of external devices or
systems that are indeed not directly managed by the orches-
tration platform but are required by the application. Therefore,
they must be represented in the model to understand how
to communicate with them. An example of this category is
an end-user mobile device which connects to the deployed
application or a cloud service (e.g., Amazon S3) used by the
application to gather some data. The next step is the definition
of the set of modules (called Virtual Network Functions in
the AMF) constituting the application, together with details
on resource requirements in terms of cores, RAM, GPU,
storage, the support for replicas, the input and environment
parameters, and the connection points to communicate with
other components. Connection points specify the port numbers
and protocols for outgoing or incoming communication flow.

Fig. 6. AMF Blueprint Editor: sample of the definition of the Cyango Cloud
Studio application module (VNF).

The orchestrator later uses them to create the corresponding
services and required connections between clusters. This is
done for every module composing the application.

The final step is the definition of the virtual links (Figure 7),
the communication channels allowing modules to interact via
their connection points. A dedicated form allows the user to
select the available connection points defined on the VNFs in
the previous steps and to select from a checkbox the ones that
must be connected, hence defining the communication path
between the modules. For every virtual link defined, users can
set requirements for QoS related to bandwidth, latency and
jitter. This can be done by filling values in a form or interacting
with a slider.

Fig. 7. AMF Blueprint Editor: sample of the definition of communication
links and QoS properties.

Every time the users define a new item, a graphical rep-
resentation is updated on the top side of the GUI so that
the developers can have visual feedback on what they are
modelling. The final representation of the Cyango Cloud
Studio model is shown in Figure 8.

Upon completion of the blueprint, the AMF generates a



Fig. 8. AMF Blueprint Editor: model of Cyango Cloud Studio application.

TOSCA representation that can be used at deployment time,
together with input parameters, for a deployment request to
the lower orchestration layers.

Fig. 9. AMF Blueprint Editor: excerpt of the TOSCA model generated for
the Cyango use case.

C. Architectural Evaluation

Existing standards and solutions like ETSI MANO and ZSM
provide outstanding network-centric reference architectures
to structure multi-domain Edge Orchestration. Nevertheless,
such specifications remain highly complex to implement and
lack high-level components to provide pervasive, scalable
orchestration as a service to end users. In the same way, Plat-
forms as a Service provide a scalable simpler programmable
interface to an underlying complex infrastructure compared to
Infrastructure as a Service.

Our architecture proposes the concept of user intent
blueprints as an application-centric programmable interface

towards a full-featured multi-domain intelligent orchestration
as a Service. The blueprint provides a declarative design at
a very high level of the multi-domain infrastructure. Further
care has been put into providing the visual specification
tool AMF on top of the blueprint. The TOSCA user intent
blueprint and AMF have been validated with use-case owners
for completeness and usability. The AI alleviates a lot of
the complexity of multi-domain orchestration through a smart
fine-tuning of the application infrastructure details. Existing
reviewed solutions don’t define a detailed set of infrastructure
decisions and the corresponding required monitoring data. Our
orchestration blueprint provides another level of declarative
infrastructure design but with the more fine-grained tuning of
the infrastructure details by an AI component. It is important
to note that an AI can be plugged in without any prior API
adaptation compared to existing solutions, guaranteed that the
specification models are compatible (Graph-based, for exam-
ple). Furthermore, we have identified monitoring data required
for the intelligent conversion between the user intent and
orchestration blueprints. Existing multi-domain orchestration
architectures and tools specify a set of API endpoints and
layered communication channels to set up and update the
application infrastructure. Nevertheless, by not being based
on an actual application infrastructure state specification, the
execution plan is manually defined and ensured by the end
user or a third-party automation tool. Any observed failure
requires another level of management not covered in the ref-
erence architecture. Our Orchestration and Resource Manager
provides a decoupling between the intelligent infrastructure
orchestration decision and the infrastructure execution plan
required during the application’s initial setup and its update
during its lifetime. The operator nature of this component
ensures that the proper application infrastructure state is en-
sured by following an execution plan that respects the agreed-
upon Orchestration Blueprint. Moreover, any notable failure
that deviates the infrastructure from the target state triggers a
remediation plan by the component.

V. CONCLUSION

This article presented a new design approach that can enable
efficient management of immersive services across multiple
domains at the edge, using a range of AI solutions and tech-
nology enables to support multi-domain edge deployments.
Our new architecture proposes a new paradigm based around a
set of multi-level specification blueprints which decouples the
simple high-level user-intent infrastructure definition from the
AI-driven orchestration and the final execution plan. The inno-
vative ClusterAPI and Liqo have been harnessed as the main
pillars for the execution plan operations. The AMF provides a
visual language and tool alternative to the formal approach for
the intent blueprint. This later has been validated by the Im-
mersive virtual touring use case owner. Our Orchestration and
Resource Manager component follows the operator pattern,
which allows the decoupling of the application infrastructure
state from the corresponding execution plan for the initial
setup and remediation plan during a failure.



ACKNOWLEDGMENT

This research work has been supported by the CHARITY
project that received funding from the EU’s Horizon 2020
program under Grant agreement No 101016509. This paper
reflects only the authors’ view and the Commission is not
responsible for any use that may be made of the information
it contains.

REFERENCES

[1] A. Makris, A. Boudi, M. Coppola, L. Cordeiro, M. Corsini, P. Dazzi,
F. D. Andilla, Y. G. Rozas, M. Kamarianakis, M. Pateraki, et al., “Cloud
for holography and augmented reality,” in 2021 IEEE 10th International
Conference on Cloud Networking (CloudNet), pp. 118–126, IEEE, 2021.

[2] T. Taleb, Z. Nadir, H. Flinck, and J. Song, “Extremely interactive
and low-latency services in 5g and beyond mobile systems,” IEEE
Communications Standards Magazine, vol. 5, no. 2, pp. 114–119, 2021.

[3] Z. Nadir, T. Taleb, H. Flinck, O. Bouachir, and M. Bagaa, “Immersive
services over 5g and beyond mobile systems,” IEEE Network, vol. 35,
no. 6, pp. 299–306, 2021.

[4] H. Yu, T. Taleb, K. Samdanis, and J. Song, “Towards supporting
holographic services over deterministic 6g integrated terrestrial & non-
terrestrial networks,” IEEE Network, 2023.

[5] K. Boos, D. Chu, and E. Cuervo, “Demo: Flashback: Immersive virtual
reality on mobile devices via rendering memoization,” in Proceedings of
the 14th Annual International Conference on Mobile Systems, Applica-
tions, and Services Companion, MobiSys ’16 Companion, (New York,
NY, USA), p. 94, Association for Computing Machinery, 2016.

[6] O. El Marai, T. Taleb, and J. Song, “Ar-based remote command and
control service: Self-driving vehicles use case,” IEEE Network, 2022.

[7] T. Taleb, N. Sehad, Z. Nadir, and J. Song, “Vr-based immersive service
management in b5g mobile systems: A uav command and control use
case,” IEEE Internet of Things Journal, 2022.

[8] T. Theodoropoulos, A. Makris, A. Boudi, T. Taleb, U. Herzog, L. Rosa,
L. Cordeiro, K. Tserpes, E. Spatafora, A. Romussi, et al., “Cloud-based
xr services: A survey on relevant challenges and enabling technologies,”
Journal of Networking and Network Applications, vol. 2, no. 1, pp. 1–22,
2022.

[9] T. Taleb, A. Boudi, L. Rosa, L. Cordeiro, T. Theodoropoulos, K. Tserpes,
P. Dazzi, A. I. Protopsaltis, and R. Li, “Toward supporting xr services:
Architecture and enablers,” IEEE Internet of Things Journal, vol. 10,
no. 4, pp. 3567–3586, 2022.

[10] F. Faticanti, M. Savi, F. De Pellegrini, and D. Siracusa, “Locality-
aware deployment of application microservices for multi-domain fog
computing,” Computer Communications, vol. 203, pp. 180–191, 2023.

[11] TS 23.558, “Architecture for enabling edge applications,” Mar. 2023.
[12] ETSI GS ZSM 011, “Zero-touch network and service management

(zsm); intent-driven autonomous networks; generic aspects,” Feb. 2023.
[13] M. Liyanage, Q.-V. Pham, K. Dev, S. Bhattacharya, P. K. R. Maddikunta,

T. R. Gadekallu, and G. Yenduri, “A survey on zero touch network and
service (zsm) management for 5g and beyond networks,” Journal of
Network and Computer Applications, p. 103362, 2022.

[14] J. Gallego-Madrid, R. Sanchez-Iborra, P. M. Ruiz, and A. F. Skarmeta,
“Machine learning-based zero-touch network and service management:
A survey,” Digital Communications and Networks, vol. 8, no. 2, pp. 105–
123, 2022.

[15] C. Benzaid and T. Taleb, “Ai-driven zero touch network and service
management in 5g and beyond: Challenges and research directions,”
IEEE Network, vol. 34, no. 2, pp. 186–194, 2020.

[16] ETSI GS ZSM 012, “Zero-touch network and service management
(zsm); enablers for artificial intelligence-based network and service
automation,” Dec. 2022.

[17] ETSI GS ZSM 008, “Zero-touch network and service management
(zsm); cross-domain e2e service lifecycle management,” July 2022.

[18] I. Korontanis, K. Tserpes, M. Pateraki, L. Blasi, J. Violos, F. Diego,
E. Marin, N. Kourtellis, M. Coppola, E. Carlini, et al., “Inter-operability
and orchestration in heterogeneous cloud/edge resources: The accordion
vision,” in Proceedings of the 1st Workshop on Flexible Resource and
Application Management on the Edge, pp. 9–14, 2020.

[19] TR 28.312, “Management and orchestration; intent driven management
services for mobile networks,” Apr. 2023.

[20] TR 28.912, “Study on enhanced intent driven management services for
mobile networks,” Mar. 2023.

[21] TR 28.812, “Telecommunication management; study on scenarios for
intent driven management services for mobile networks,” Mar. 2020.

[22] D. M. Gutierrez-Estevez, M. Gramaglia, A. D. Domenico, G. Dandachi,
S. Khatibi, D. Tsolkas, I. Balan, A. Garcia-Saavedra, U. Elzur, and
Y. Wang, “Artificial intelligence for elastic management and orches-
tration of 5g networks,” IEEE Wireless Communications, vol. 26, no. 5,
pp. 134–141, 2019.

[23] Linux Foundation, “Onap - open network automation platform.”
https://www.onap.org/. (accessed: 02.05.2023).

[24] Linux Foundation, “Akraino.” https://www.lfedge.org/projects/akraino/.
(accessed: 02.05.2023).

[25] Cluster API, “Kubernetes cluster api.” https://cluster-api.sigs.k8s.io/.
(accessed: 02.05.2023).

[26] ETSI, “Osm - open source mano.” https://osm.etsi.org/. (accessed:
02.05.2023).

[27] Cloudify, “Bridging the gap between applications and cloud environ-
ments.” https://cloudify.co/. (accessed: 02.05.2023).

[28] Redhat, “Redhat - openshift.” https://www.redhat.com/en/technologies/cloud-
computing/openshift. (accessed: 02.05.2023).

[29] D. A. Tamburri, W.-J. Van den Heuvel, C. Lauwers, P. Lipton, D. Palma,
and M. Rutkowski, “Tosca-based intent modelling: goal-modelling for
infrastructure-as-code,” Sics software-Intensive cyber-Physical systems,
vol. 34, pp. 163–172, 2019.

[30] O. Yilmaz, “Extending the kubernetes api,” in Extending Kubernetes:
Elevate Kubernetes with Extension Patterns, Operators, and Plugins,
pp. 99–141, Springer, 2021.

[31] B. Lim and S. Zohren, “Time-series forecasting with deep learning: a
survey,” Philosophical Transactions of the Royal Society A, vol. 379,
no. 2194, p. 20200209, 2021.

[32] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[33] T. Theodoropoulos, A.-C. Maroudis, J. Violos, and K. Tserpes, “An
encoder-decoder deep learning approach for multistep service traffic
prediction,” in 2021 IEEE Seventh International Conference on Big
Data Computing Service and Applications (BigDataService), pp. 33–40,
IEEE, 2021.

[34] J. Violos, S. Tsanakas, T. Theodoropoulos, A. Leivadeas, K. Tserpes,
and T. Varvarigou, “Intelligent horizontal autoscaling in edge computing
using a double tower neural network,” Computer Networks, vol. 217,
p. 109339, 2022.

[35] Y. Zhang, Y. Li, R. Wang, J. Lu, X. Ma, and M. Qiu, “Psac: Proactive
sequence-aware content caching via deep learning at the network edge,”
IEEE Transactions on Network Science and Engineering, vol. 7, no. 4,
pp. 2145–2154, 2020.

[36] T. Theodoropoulos, A. Makris, J. Violos, and K. Tserpes, “An automated
pipeline for advanced fault tolerance in edge computing infrastructures,”
in Proceedings of the 2nd Workshop on Flexible Resource and Applica-
tion Management on the Edge, pp. 19–24, 2022.

[37] T. Theodoropoulos, J. Violos, S. Tsanakas, A. Leivadeas, K. Tserpes, and
T. Varvarigou, “Intelligent proactive fault tolerance at the edge through
resource usage prediction,” arXiv preprint arXiv:2302.05336, 2023.

[38] W. Chen, Y. Chen, J. Wu, and Z. Tang, “A multi-user service migration
scheme based on deep reinforcement learning and sdn in mobile edge
computing,” Physical Communication, vol. 47, p. 101397, 2021.

[39] T. Theodoropoulos, A. Makris, I. Kontopoulos, J. Violos, P. Tarkowski,
Z. Ledwoń, P. Dazzi, and K. Tserpes, “Graph neural networks for
representing multivariate resource usage: A multiplayer mobile gaming
case-study,” International Journal of Information Management Data
Insights, vol. 3, no. 1, p. 100158, 2023.

[40] C. Fang, T. Zhang, J. Huang, H. Xu, Z. Hu, Y. Yang, Z. Wang,
Z. Zhou, and X. Luo, “A drl-driven intelligent optimization strategy
for resource allocation in cloud-edge-end cooperation environments,”
Symmetry, vol. 14, no. 10, p. 2120, 2022.

[41] L. Li, Y. Fan, M. Tse, and K.-Y. Lin, “A review of applications in
federated learning,” Computers & Industrial Engineering, vol. 149,
p. 106854, 2020.

[42] Cloud Native Computing Foundation, “Prometheus.”
https://prometheus.io. (accessed: 02.05.2023).

[43] M. Iorio, F. Risso, A. Palesandro, L. Camiciotti, and A. Manzalini,
“Computing without borders: The way towards liquid computing,” pp. 1–
17, 2022.



[44] L. Osmani, T. Kauppinen, M. Komu, and S. Tarkoma, “Multi-cloud
connectivity for kubernetes in 5g networks,” IEEE Communications
Magazine, vol. 59, no. 10, pp. 42–47, 2021.


