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Abstract—The integration of communication and radar sys-
tems could enhance the robustness of future communication
systems to support advanced application demands, e.g., target
sensing, data exchange, and parallel computation. In this paper,
we investigate the beamforming design for Integrated Sensing,
Computing, and Communication (ISCC) in the Internet of
Robotic Things (IoRT) scenario. Specifically, we assume that
each robot uploads its pre-processed sensing information to the
Access Point (AP). Meanwhile, leveraging the additive features
of the spatial wireless channels between robots and AP, Over-
the-air Computation (AirComp) through multi-robot cooperation
could bolster system performance, particularly in tasks like target
localization through sensing. To get a full picture of the effects of
antenna array structures and beampatterns on the ISCC system,
we evaluate the performance by considering the shared and
separated antenna structures, as well as the omnidirectional and
directional beampatterns. Based on these setups, the non-convex
optimization problems for the performance tradeoff between
sensing and AirComp are formulated to minimize the Mean
Squared Error (MSE) of AirComp and sensing. To efficiently
solve these optimization problems, we designed the Gradient De-
scent Augmented Lagrangian (GDAL) algorithm, which involves
dynamically adjusting the step sizes while updating the variables.
Simulation results show that the separated antenna structure
achieves a lower AirComp MSE than the shared antenna setup
because it has more beam steering degrees of freedom. Moreover,
the beampattern types have almost no effect on the AirComp
MSE for the given antenna structure setup. This comprehensive
investigation provides useful guidelines for ISCC framework
implementation in IoRT applications.

Index Terms—Beamforming, Over-the-air Computation, Inte-
grated Sensing, Computation, and Communication, Internet of
Robotic Things.

I. INTRODUCTION

THE evolving wireless technology has been regarded as
a pivotal facilitator for the future Internet of Robotic
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Things (IoRT), a specific use case of the Internet of Things
(IoT) ecosystem, owing to its enhanced functionalities in
connectivity, communication, and interaction [1]. Smart IoRT
systems focus on integrating robotic systems into connected
networks to meet a variety of service needs. For example,
they collect real-time data from the environment using sensors
(like radar sensors), process the data locally or remotely at the
edge server, and send the data to other devices or centralized
systems [2]. This poses new challenges for integrated frame-
work design for IoRT systems, especially for mobile robots.
The emerging integrated sensing and communication (ISAC)
techniques provide a solution for simultaneous data collection
via sensing sensors and data exchange via communication [3],
[4]. Moreover, the enormous amount of sensing data generated
in such systems forces us to design more efficient computation
schemes, such as the computation function realized locally at
the robot, at the nearby edge server, or over the air utilizing
the analog-wave summation in the physical layer [5]. These
considerations motivated us to develop a hybrid ISCC frame-
work tailored to meet the demanding service requirements of
IoRT.

The ISCC is crucial for IoRT systems to achieve real-time
decision-making, efficient resource utilization, and robust fault
tolerance. (i)Real-time decision making: The IoRT system
operates in dynamic and uncertain environments where quick
decision-making is of paramount importance. In the ISCC
system framework, the robots can collect real-time data from
their surroundings via sensing (e.g., radar), process it locally
or collaboratively, and make autonomous decisions without
relying solely on a centralized controller or human intervention
[6]. (ii)Enhanced resource utilization efficiency: Integrated
IoRT systems can enhance resource utilization efficiency by
leveraging distributed sensing and computation. Specifically,
instead of transmitting raw sensor data to a central processing
unit (e.g., an edge server), robots can pre-process and analyze
data locally to reduce data transmission and further minimize
latency. Moreover, both radar sensing and data transmission
using the same spectrum and signals can improve bandwidth
and energy efficiencies, making IoRT systems more efficient
and scalable for simultaneously serving multiple robots [7].
(iii)Robust error-fault tolerance: The IoRT system enables
robots to collaborate with each other to achieve common
goals or tasks. For example, when multiple robots send their
collected sensing information about one common target to the
edge server via multi-access wireless channels, the localization
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parameter estimation leveraging the information from multiple
robots could achieve an enhanced robustness for errors (faults)
compared to a single robot [8].

The dual-functional waveform design becomes of
paramount importance to meet various service quality
requirements. The optimal waveform design with constraint
of a fixed transmit power, for achieving the sensing and
downlink communication performance tradeoff has been
investigated in [9] where an ISAC system was mounted
at the Base Station (BS). By fully using the waiting
time in conventional pulsed radar to transmit dedicated
communication signals, the waveform has been designed
to improve the communication spectrum efficiency and
probability of target detection in a full-duplex ISAC scheme
[10]. From the perspective of information theory (Mutual
Information (MI)), another waveform has been designed
to maximize the sensing and communication MI [11]. To
detect the target behind the obstacle, the Reconfigurable
Intelligent Surface (RIS) has also been utilized to assist the
downlink simultaneous target sensing and communication
via beamforming design [12]. In [13], Unmanned Aerial
Vehicles (UAVs) has been designed to provide ISAC services
for multiple IoT nodes to maximize the minimum data rate.
Although the aforementioned works focus on the ISAC
waveform design to enhance the Quality of service (QoS),
the antenna configuration types (shared or separated antenna
array structures) and the beampattern types (omnidirectional
or directional) are not explored for the ISAC system design,
which is crucial from the perspective of ISCC framework
design for meeting various QoS requirements [14].

In mobile IoRT systems, the robots need to continuously
perform sensing for environment perception, object detection
(e.g., obstacles and landmarks), and localization [2]. There
will be enormous amounts of raw data collected at the
sensors. Therefore, related data processing (computation) is
necessary. However, the limited battery at the mobile robot
forces us to design energy-efficient computation schemes, e.g.,
the hybrid local data pre-processing at the IoT device plus the
post-processing at the edge server [15]–[18]. Thus, the pre-
processed sensing data is offloaded to the edge server for
data post-processing via the multi-access wireless channels
between robots and BS, or AP, for computation efficiency
enhancement and energy conservation. Furthermore, AirComp
fully utilizing the additive properties of analog signals via
multi-access wireless channels through multi-IoT device co-
operation has been proposed as a promising method for fast
data aggregation at the centralized receiver (e.g., BS or AP)
in the physical layer [19]–[22]. Therefore, the integration of
AirComp with ISAC technology, i.e., the ISCC framework, has
many advantages, such as improved spectrum efficiency using
the same spectrum resources and enhanced QoS performance
through multi-device cooperation (e.g., target localization),
etc. [7], [20], [23]–[25]. In [7], the radar and communica-
tion signals transmitted through shared or separated antenna
arrays have been considered for wireless sensor networks.
The beamforming design has been optimized to minimize
AirComp errors. The beampattern has been designed in [26] to
achieve a performance tradeoff between sensing and AirComp
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Fig. 1: ISCC framework implemented in an IoRT scenario.

constrained by the power budget at each device. In particular,
omnidirectional and directional beampatterns were considered.
Similarly, the performance tradeoff among communication,
sensing, and computation under power constraints has been
investigated in [24]. The authors of [20] designed beamform-
ing for sending a superposition-coded signal to the BS over
the uplink channel for computation and communication. The
minimum communication data rate and power constraints have
been considered when determining the optimal beamforming
matrix. However, the aforementioned literature does not have
a comprehensive analysis of the antenna array structures
(shared or separated) and the beampatterns (omnidirectional
or directional). Furthermore, these works evaluate the system
performance using a random Gaussian channel realization
rather than considering practical path loss in high-frequency
bands or link conditions such as blockage. Those realistic
setups will be considered in this paper in the IoRT scenario,
as depicted in Fig. 1.

The specific contributions of this paper are as below:

• In addition to the shared and separated antenna array
structures at each robot for both communication and
sensing, we also take into account the omnidirectional
and directional beampatterns to conduct a comprehensive
comparison between these near-realistic setups in an IoRT
scenario.

• To achieve a performance tradeoff between sensing and
AirComp, several non-convex MSE minimization-based
optimization problems are formulated under the con-
straints of maximum transmit power and sensing QoS
requirements for different antenna array setups and beam-
patterns.

• To solve these non-convex optimization problems effi-
ciently, we designed a GDAL algorithm with adaptive
adjustment of the step size when updating the variable
using gradient descent method.

• The propagation of electromagnetic wave signals between
the robot and AP is prone to being blocked in the high-
frequency bands. Here, we also explore the AirComp
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MSE affected by the robot-AP link blockage that hap-
pened with a certain probability.

The rest of this paper is organized as follows: Section-
II introduces the system models for two different antenna
structures at robots. The optimal beampattern design for radar
sensing is described in Section III. Section IV introduces
the optimization problem and gives corresponding algorithm
for the performance tradeoff optimization between sensing
and AirComp. Numerical simulation results and conclusion
remarks are presented in Sections V and VI, respectively.

Notations: In this paper, we use bold lowercase letters (e.g.,
a) and bold uppercase letters (e.g., A) to represent vectors and
matrices, respectively. By normal fonts (e.g., a), we denote the
scalars. Moreover, Tr(·) stands for the trace operation, (·)H
denotes the Hermitian transpose operation, ∥·∥F represents the
Frobenius norm of a matrix, | · | is the absolute value, and I
is the identity matrix.

II. SYSTEM MODEL

Consider a scenario with K robots randomly distributed
at the sector coverage area of an AP with a radius of R0,
as illustrated in Fig. 1. There is a common point-like static
target located at [x0, y0]. Accurate parameter estimation (e.g.,
coordinates and angle) of the target becomes of paramount
importance for safety operation at the robot itself, or for end-
to-end wireless link quality guarantees for the robot through
proper propagation path scheduling. In this IoRT scenario with
an ISCC framework, each robot simultaneously transmits the
signals for target sensing and data transmission to the AP for
AirComp. Assuming that the data symbols sent from each
robot to the AP convey the estimated position information
about the target in the last time slot, the AirComp using multi-
robot cooperation could improve the target localization accu-
racy [7]. This is crucial for centralized resource management
on the whole IoRT scenario.

The robots and AP are assumed to be equipped with
Uniform Linear Arrays (ULAs) of NR and NA antenna
elements, respectively. In particular, the Nt antenna elements
out of the NR ones at each robot are used for signal
transmission, and the other Nr = NR − Nt ones are used
for signal reception. The channel between the AP and each
robot k ∈ K = {1, 2, · · · ,K} is assumed to be block-
fading and the channel state information (CSI) is assumed to
be accurately known at the AP. In mobile robotic networks
operating in high-frequency bands, the electromagnetic wave
signal propagation between AP and robots is prone to being
blocked by the surrounding environment.1 Here, we assume
that the propagation link between AP and each robot is in a
Line-of-sight (LoS) condition with probability 1 − pb where
pb ∈ [0, 1] denotes the blockage probability, and the pathloss is
calculated according to Third Generation Partnership Project
(3GPP) [29].

The received signal model at the AP depends on the antenna
configurations of the robots, i.e., the sensing signals and the

1The blockage effect can be mitigated by emerging relaying technologies
such as smart repeaters and reconfigurable metasurfaces, refer to [27], [28]
for more details.

communication symbols can be either jointly transmitted using
one shared transmitting antenna array via a dual-functional
waveform or separately sent via two isolated ULAs. Both
options will be presented in the following subsections.

A. Shared Antenna Configuration

In the shared antenna configuration, all the Nt transmitting
antenna elements at each robot are used for both target sensing
and data transmission to the AP, and the other Nr antennas
are used for signal reception. The data symbols transmitted
by the k-th robot for AirComp are expressed as sk[t] =
{gk,1(·), gk,2(·), · · · , gk,M (·)} ∈ CM×1 where M is the num-
ber of functions to be computed [20], and gk,m(·) represents
the pre-processing function at the k-th robot. We assume the
transmitted data symbols to be independent and identically
distributed (i.i.d.), with zero mean and unit variance, i.e.,
E[sk[t]sk[t]H ] = IM and E[sk[t]sϱ[t]H ] = 0,∀ k ̸= ϱ. Then
the transmitted signal can be written as

xk[t] = Fksk[t] (1)

where Fk ∈ CNt×M denotes the beamforming precoder
implemented at the k-th robot. Generally, the signals reflected
by the target are vanished at the AP due to the long distance
between the robot and AP. Thus, the received signal vector
with the beamforming combiner W ∈ CNA×M at the AP can
be formulated as

y[t] =

K∑
k=1

WHHkFksk[t] +WHn (2)

where Hk ∈ CNA×Nt denotes the Multiple Input Multiple
Output (MIMO) channel between the k-th robot and AP,
and n ∈ CNA×1 is the AWGN noise vector such that
n ∼ CN (0, σ2

nI). Limited by the power budget Pmax for the
precoder design at each robot, we should meet the following
constraint:

∥Fk∥2F ≤ Pmax . (3)

Assuming that the channel matrix Hk between AP and each
robot is known at the AP,2 the ideal received signal ỹ[t] (i.e.,
no link blockage and with optimal beamforming design) is
given by

ỹ[t] =

√
Pt

M

K∑
k=1

UHHkVksk[t] (4)

where Pt ≤ Pmax denotes the transmit power at the robot
for both sensing and AirComp signal transmission via the
dual-functional waveform, Vk ∈ CNt×M contains the first
M right singular vectors in the Singular Value Decomposition
(SVD) of Hk, i.e., the optimal beamforming precoders for
implementation, U ∈ CNA×M collects the first M left singular
vectors of the SVD of

∑K
k=1 Hk, i.e., the designed aggregation

beamforming combiner at AP for receiving the signals from
all the K robots. Note that the beamforming design steered to
the dominant signal reception directions based on SVD of the
MIMO channel by exploiting channel sparsity has been widely

2For related channel estimation methods refer to [30], [31].
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utilized for maximizing the received signal power [32], [33].
Thereby, we derive the aforementioned optimal precoders at
each robot based on the channel between the robot and AP,
and the optimal aggregation combiners at AP according to the
summation of all the channels between robots and AP. Then
we can get the ideal received signal in (9) and regard it as
a benchmark for MSE computation of the received signal (2)
as:

MSEAirComp = Et

[
|y[t]− ỹ[t]|2

]
=

K∑
k=1

∥WHHkFk −A∥2F + σ2
n∥W∥2F (5)

where A ≜
√

Pt

MUHHkVk.

B. Separated Antenna Configuration
Unlike the shared antenna configuration for both sensing

and communication via the dual-functional waveform at each
robot, the transmitting antennas are split into two sub-ULA
arrays (Nt = Ns + Nc) in the separated antenna structure.
Here, Ns antenna elements are used for radar sensing and
Nc antenna elements are used for data transmission to the
AP. The sensing symbols at the k-th robot can be denoted
as dk[t] ∈ CM̄×1 where M̄ represents the number of beams
for radar sensing (M̄ ≥ 1), and E[dk[t]dk[t]

H ] = IM̄
and E[dk[t]dt[t]

H ] = 0,∀ k ̸= ϱ. Similar to the shared
antenna configuration, the data symbols uploaded to the AP
for AirComp are expressed as sk[t] ∈ CM×1 where M is
the number of functions to be computed. Then the transmitted
signals from each robot can be written as

xk[t] =

[
F̄kdk[t]
Fksk[t]

]
(6)

where Fk ∈ CNc×M and F̄k ∈ CNs×M̄ are the beamformers
for data transmission and radar sensing, respectively. Ignoring
the signals reflected from the target to the AP, due to the large
distance, the received aggregated symbol vector y[t] at the AP
can be expressed as

y[t] =

K∑
k=1

(
WHHkFksk[t] +WHH̄kF̄kdk[t]

)
+WHn

(7)
where H̄k ∈ CNA×Ns and Hk ∈ CNA×Nc represent the
MIMO channels between AP and the k-th robot for sensing
signals and data transmission, respectively, and n ∈ CNA×1

is the i.i.d. noise vector such that n ∼ CN (0, σ2
nI).

Similar to the shared antenna configuration, both designed
transmitting precoders F̄k and Fk should meet the maximal
transmit power constraint that takes the following form:

∥F̄k∥2F + ∥Fk∥2F ≤ Pmax . (8)

Similar to the signal model of the shared antenna structure,
the ideal received signal ỹ[t] (given the knowledge about
channel Hk between AP and each robot) can be expressed
as

ỹ[t] =

√
Pt

M

K∑
k=1

UHHkVksk[t] (9)

where Pt ≤ Pmax is the transmit power for AirComp, Vk ∈
CNs×M and U ∈ CNA×M have the same expressions as in
(9).

The corresponding MSE between the received signal (7) and
the ideal one ỹ[t] in (9) is given by

MSEAirComp =Et

[
|y[t]− ỹ[t]|2

]
=

K∑
k=1

∥WHHkFk −A∥2F

+

K∑
k=1

∥WHH̄kF̄k∥2F + σ2
n∥W∥2F . (10)

III. BEAMPATTERN DESIGN

According to the knowledge level about the target, the
beampattern design can be divided into two types: omnidi-
rectional and directional beampatterns. The former design is
suitable for the blinding sensing stage, where there is a lack of
knowledge about the target direction. It is the case for example
during the initial target sensing stage. On the other hand, the
second design is specifically targeted for situations where the
sensing directions are known and the target is being tracked.
Corresponding beampattern designs are introduced next.

A. Omnidirectional Beampattern Design

For the omnidirectional beampattern, the beamforming ma-
trix Fk should be orthogonal with an identity covariance
matrix [9]. To minimize the AirComp errors defined in (5) and
(10), the following optimization problems are formulated for
two different antenna configurations that are stated in Section-
II. For shared antenna configuration:

P1.1 min
F,W

F1.1 (Fk,W)

=

K∑
k=1

∥WHHkFk −A∥2F + σ2
n∥W∥2F (11a)

s.t. ∥Fk∥2F = Pmax, ∀k (11b)

and for separated antenna configuration:

P2.1 min
F,W,F̄

F2.1

(
Fk,W, F̄k

)
=

K∑
k=1

∥WHHkFk −A∥2F

+

K∑
k=1

∥WHH̄kF̄k∥2F + σ2
n∥W∥2F (12a)

s.t. ∥Fk∥2F + ∥F̄k∥2F = Pmax, ∀k . (12b)

Note that those two problems are non-convex due to the
quadratic power constraints in (11b) and (12b). Although
an Alternating Optimization (AO) approach can be utilized
to solve problem P1.1 as described in [26], the joint
optimization of F = {F1, · · · ,Fk, · · · ,FK} and F̄ =
{F̄1, · · · , F̄k, · · · , F̄K} makes it an inefficient approach for
solving problem P2.1. Here, we design a Gradient Descent
Augmented Lagrangian (GDAL) algorithm. In particular, the
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LP1.2(Fk,W, F̄k, λk, ρ) = F1.2

(
Fk,W, F̄k

)
+

K∑
k=1

λk

(
∥Fk∥2F + ∥F̄k∥2F − Pmax

)
+

ρ

2

K∑
k=1

(
∥Fk∥2F + ∥F̄k∥2F − Pmax

)2
.

(13)

gradient descent approach is utilized to update the desired
variables Fk, F̄k and W based on the augmented Lagrangian
function. In the following, the detailed procedures using the
proposed GDAL approach for solving problem P2.1 are
presented.3

First, the augmented Lagrangian function for problem P2.1
is defined in (13) at the top of this page, where λk denotes the
Lagrange multiplier and the ρ represents the penalty parameter.
After initializing the required parameters, we calculate the
gradients with respect to Fk,W, and F̄k at each iteration as
follows:

∇WLP2.1 = 2
K∑

k=1

HkFk

(
WHHkFk −A

)
2

K∑
k=1

H̄H
k F̄kW

HH̄kF̄k + 2σ2
nW (14)

∇Fk
LP2.1 = 2HH

k W
(
WHHkFk −A

)
+ 2λkFk

+ 2ρ
(
∥Fk∥2F + ∥F̄k∥2F − Pmax

)
(15)

∇F̄k
LP2.1 = 2H̄H

k W
(
WHH̄kF̄k −A

)
+ 2λkF̄k

+ 2ρ
(
∥Fk∥2F + ∥F̄k∥2F − Pmax

)
. (16)

Then the optimization variables at the l-th iteration can be
updated as

Wl+1 = Wl −Φl
W∇WLP2.1 (17)

Fl+1
k = Fl

k −Φl
Fk
∇Fk
LP2.1 (18)

F̄l+1
k = F̄l

k −Φl
F̄k
∇F̄k
LP2.1 . (19)

The step sizes ΦW, ΦFk
, and ΦF̄k

can also be adaptively
updated using the Adaptive Gradient Algorithm (AdaGrad)
[34]–[36] based on the historical gradients to accelerate the
convergence process compared to fixed step size method. This
allows for larger step sizes in directions where the gradient is
steep, facilitating faster progress towards the optimum, while
smaller step sizes are employed in directions with less steep
gradients. Here, we use a general expression to update each
element (i-th row and j-th column) inside the step size Φ for
ΦW, ΦFk

, and ΦF̄k

[Φl+1]i,j =
[Φl]i,j√
[Gl]i,j + ζ

(20)

where ζ is a small positive scalar added to avoid division
by zero, and the [Gl]i,j records the sum of squared partial
derivative for each element (i-th row and j-th column) of
the corresponding variables accumulated over iterations. By
implementation of (20), we can dynamically adjusting the step

3The procedure for solving problem P1.1 follows similar steps, and thus,
it is not presented here for the sake of brevity.

size for individual dimensions within the search space of each
variable.

In the next step, the Lagrange multiplier λk and penalty
parameter ρ are updated as

λl+1
k = λl

k + ρ
(
∥Fl

k∥2F + ∥F̄l
k∥2F − Pmax

)
(21)

ρl+1 =


min(ξρl, ρmax), δl ≥ δth

max(ρ
l

ξ , ρmin), δl < δ′th
ρl, otherwise

(22)

where δl indicates the constraint violation between ∥Fl
k∥2F +

∥F̄l
k∥2F and Pmax, ξ is a scaling factor (e.g., 2) and ρmax is

a maximum value for ρl+1 to prevent it from growing too
large. In particular, ρl+1 will be increased if the violation is
significant, i.e., δl ≥ δth; otherwise, ρl+1 will be decreased if
the violation δl is minor, i.e., δl < δ′th. A minimum constraint
ρmin is considered to prevent ρl+1 from becoming too small.

The GDAL algorithm is stopped once the bias of the value
of the Lagrangian function is not greater than the tolerance ϵ or
the maximum number of iterations L is reached. The detailed
procedures of GDAL algorithm are summarized in Algorithm
1. Thus, the optimal sensing precoder matrix F∗

k for each robot
is derived, which will be used for the precoder and combiner
design to achieve a performance tradeoff optimization in the
next section.

B. Directional Beampattern Design

For the directional radar beampattern design, the directions
of interest are specified in advance to design the covariance
matrix Rk = FkF

H
k ∈ CNt×Nt (Hermitian positive definite

matrix). Given the angle directions of interest, the covariance
matrix Rk design can refer to the procedures stated in [37],
[38]

min
Fk

∣∣g(θ)− a(θ)HFkF
H
k a(θ)

∣∣ (23a)

s.t. ∥Fk∥2F = Pt, ∀k (23b)

where a(θ) ∈ CNt×1 represents the steering vector in the
direction of θ ∈ [−π/2, π/2] at the ULA of Nt transmitting
antenna elements [27], g(θ) denotes the desired beampattern
[37], and Pt ≤ Pmax is the transmit power for radar sensing.4

4This problem can be easily solved using the cvx toolbox [39], [40], more
detailed discussion is out of the scope of this paper.
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Algorithm 1: GDAL algorithm for Problem P2.1

Input: Initialize W0, F0, F̄0, λ0, ρ0, tolerance ϵ, step
sizes Φ0

Fk
,Φ0

W and Φ0
F̄k

, maximum number of
iterations L.

Output: Optimal F, W and F̄
1 l← 0 ;
2 while l < L do
3 Sequentially update the parameters:
4 Compute the value of the Lagrangian function in

(13) ;
5 Compute gradients of augmented Lagrangian

function with respect to F̄k, Fk and W defined
in (14) - (16) ;

6 Update F̄k, Fk and W using gradient descent
approach according to (17) - (19) ;

7 Adaptively update the step sizes according to (20) ;
8 Update λl+1

k according to (21) ;
9 Update ρl+1 defined in (22) ;

10 Check convergence criteria:
11 if convergence criteria met then
12 Output F, W and F̄;
13 break ;

14 l← l + 1 ;

Similar to the omnidirectional beampattern design, the MSE
minimization problems about AirComp can be formulated as

P3.1 min
F,W

F3.1 (Fk,W)

=

K∑
k=1

∥WHHkFk −A∥2F + σ2
n∥W∥2F

(24a)

s.t. FkF
H
k = Rk, ∀k (24b)

and

P4.1 min
F,W,F̄

F4.1

(
Fk,W, F̄k

)
=

K∑
k=1

∥WHHkFk −A∥2F

+

K∑
k=1

∥WHH̄kF̄k∥2F + σ2
n∥W∥2F (25a)

s.t. F̄kF̄
H
k = Rk (25b)

∥Fk∥2F + ∥F̄k∥2F = Pmax, ∀k . (25c)

for shared antenna configuration setup and separated antenna
setup, respectively.

Similar to problems P1.1 and P2.1, both P3.1 and P4.1
are non-convex, and they can also be solved by the proposed
GDAL algorithm presented in Algorithm 1. First, we define
the augmented Lagrangian functions for P3.1 and P4.1 in
(26) and (27) shown at the top of this page, respectively. Then

the problems can be solved by following the similar procedures
described in Algorithm 1.5

IV. BEAMFORMING DESIGN FOR PERFORMANCE
TRADEOFF OPTIMIZATION

In addition to the shared and separated antenna configura-
tions presented in Section II, two beampatterns (omnidirec-
tional and directional) for sensing are also considered here.
Therefore, there are four different combinations of beampattrn
schemes, as suggested by the optimal beampattern design
problems of P1.1 - P4.1, which are formulated in Section-
III. In this section, we consider the performance tradeoff
optimization problems between AirComp and sensing given
a weighting factor α ∈ [0, 1] and the optimal beampatterns
F∗ = {F∗

1, · · · ,F∗
K} that obtained from P1.1 - P4.1.

A. Problem Formulation with Performance tradeoff Optimiza-
tion

After deriving the optimal beamformer F∗
k for each robot

∀k, the performance tradeoff optimization problems for all
robots, by considering the total power constraint and sensing
QoS requirement, can be reformulated as

P1.2 min
F,W

αF1.1 (Fk,W) + (1− α)

K∑
k=1

∥Fk − F∗
k∥2F

(28a)

s.t. ∥Fk∥2F ≤ Pmax, ∀k (28b)

∥Fk∥−2
F ≤ β

Nrσ2
n

, ∀k (28c)

where the second term is weighted by (1 − α) in (28a), and
it represents the sensing performance loss. The constraint in
(28c) indicates the sensing QoS requirement with a threshold
β [26]. This tradeoff optimization problem corresponds to the
one formulated in P1.1 with the shared antenna structure
and omnidirectional beampattern (denoted as the "shared-
omni" scheme). For the other combinations of schemes, in
terms of separated antenna structure with omnidirectional
beampattern (denoted as "separated-omni" scheme), shared
antenna structure with directional beampattern (denoted as
"shared-direction" scheme), and separated antenna struc-
ture with directional beampattern (denoted as "separated-
direction" scheme), the tradeoff optimization problems can
be represented, respectively, as

P2.2 min
F,W,F̄

αF2.1

(
Fk,W, F̄k

)
+ (1− α)

K∑
k=1

∥F̄k − F̄∗
k∥2F

(29a)

s.t. ∥Fk∥2F + ∥F̄k∥2F ≤ Pmax, ∀k (29b)

∥F̄k∥−2
F ≤ β

Nrσ2
n

, ∀k (29c)

5The detailed procedures are not presented again for the sake of brevity, as
they follow the same steps.
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LP2.1(Fk,W, λk, ρ) = F2.1 (Fk,W) +

K∑
k=1

λkTr
(
FkF

H
k −Rk

)
+

ρ

2

K∑
k=1

∥FkF
H
k −Rk∥2F . (26)

LP2.2(Fk,W, F̄k, λ
1
k, λ

2
k, ρ1, ρ2) = F2.2

(
Fk,W, F̄k

)
+

K∑
k=1

λ1
kTr

(
F̄kF̄

H
k −Rk

)
+

ρ1
2

K∑
k=1

∥F̄kF̄
H
k −Rk∥2F

+

K∑
k=1

λ2
k

(
∥Fk∥2F + ∥F̄k∥2F − Pmax

)
+

ρ2
2

K∑
k=1

(
∥Fk∥2F + ∥F̄k∥2F − Pmax

)2
. (27)

LP4.2(Fk,W, F̄k, λ
1
k, λ

2
k, ρ1, ρ2) = αF4.1

(
Fk,W, F̄k

)
+ (1− α)

K∑
k=1

∥F̄k − F̄∗
k∥2F +

K∑
k=1

λ1

(
∥Fk∥2F + ∥F̄k∥2F − Pmax

)
+

ρ1
2

K∑
k=1

(
∥Fk∥2F + ∥F̄k∥2F − Pmax

)2
+

K∑
k=1

λ2
k

(
∥Fk∥−2

F −
β

Nrσ2
n

)

+
ρ2
2

K∑
k=1

(
∥Fk∥−2

F −
β

Nrσ2
n

)2

. (32)

and

P3.2 min
F,W

αF3.1 (Fk,W) + (1− α)

K∑
k=1

∥Fk − F∗
k∥2F

(30a)
s.t. (28b) and (28c) (30b)

and

P4.2 min
F,W,F̄

αF4.1

(
Fk,W, F̄k

)
+ (1− α)

K∑
k=1

∥F̄k − F̄∗
k∥2F

(31a)
s.t. (29b) and (29c) . (31b)

which are corresponding to the beampattern design schemes
in problem P2.1, P3.1, and P4.1, respectively.

B. Gradient Descent Augmented Lagrangian Method

Similar to the optimization problems P1.1 to P1.4, we use
the proposed GDAL algorithm to derive the desired F,W,
and F̄. To demonstrate the procedures, we only select a
more complex problem, i.e., problem P4.2 for the scheme
of "separated-direction", and show the detailed derivation
only for this problem. The corresponding derivations for
P1.2−P3.2 follow similar procedures, which are not covered
here for the sake of brevity.

First, the augmented Lagrangian function is defined in (32)
at the top of this page, taking into account the maximum
transmit power Pmax and their sensing QoS requirement β.
Before updating the variables Fl

k,W
l and F̄l

k at the l-th

iteration using the gradient descent method, the corresponding
gradients are computed as

∇WLP4.2 = 2α

K∑
k=1

HkFk

(
WHHkFk −A

)
+ 2α

[
K∑

k=1

H̄H
k F̄kW

HH̄kF̄k + 2σ2
nW

]
(33)

∇Fk
LP4.2 = 2αHH

k W
(
WHHkFk −A

)
+ 2λ1

kFk

+ 2ρ1
(
∥Fk∥2F + ∥F̄k∥2F − Pmax

)
(34)

∇F̄k
LP4.2 = 2αH̄H

k WWHH̄kF̄k + 2(1− α)
(
F̄k − F̄∗

k

)
+ 2ρ1

(
∥Fk∥2F + ∥F̄k∥2F − Pmax

)
F̄k

− 2ρ2

(
∥Fk∥−2

F −
β

Nrσ2
n

)
F̄k

∥F̄k∥4F

+ 2λ1
kF̄k − 2λ2

k

F̄k

∥F̄k∥4F
. (35)

Then these variables are updated according to the updating
rules defined in (17) - (19). Note that we also implement the
AdaGrad method to adaptively updating the step sizes ΦW,
ΦFk

, and ΦF̄k
for fast convergence. The Lagrange multipliers

λ1
k and λ2

k are sequentially updated as

(λ1
k)

l+1 = (λ1
k)

l + ρl1
(
∥Fl+1

k ∥
2
F + ∥F̄l+1

k ∥
2
F − Pmax

)
(36)

(λ2
k)

l+1 = (λ2
k)

l + ρl2

(
∥F̄l+1

k ∥
−2
F −

β

Nrσ2
n

)
. (37)

Corresponding updates of ρ1 and ρ2 follow the rule specified
in (22). The overall algorithm stops once the bias of the value
of Lagrangian function is not greater than the tolerance ϵ or
the maximum number of iterations L is reached. Finally, we
obtain Fk,W and F̄k for sensing and AirComp under the
constraints. The detailed derivation procedures are summarized
in Algorithm 2.
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Algorithm 2: GDAL Algorithm for Problem P4.2

Input: Initialize F0
k,W

0, F̄0
k, λ0

1, λ0
2, ρ01, ρ02,

Φ0
Fk

,Φ0
W, Φ0

F̄k
, tolerance ϵ, and maximum

number of iterations L.
Output: Optimal F, W and F̄

1 l← 0 ;
2 while l < L do
3 Sequentially update the parameters:
4 Compute the Lagrangian function value in (32);
5 Compute gradients of ∇WLP4.2, ∇Fk

LP4.2 and
∇F̄k
LP4.2 according to (33) - (35);

6 Update Fl+1
k ,Wl+1 and F̄l+1

k according to (17) -
(19) ;

7 Update Lagrange multipliers (λ1
k)

l+1 and (λ2
k)

l+1

in (36) - (37) ;
8 Update penalty parameter: ρl+1

1 and ρl+1
2 according

to the rule defined in (22) ;
9 Check convergence criteria:

10 if convergence criteria met then
11 Output F, W and F̄ ;
12 break ;

13 l← l + 1 ;

V. NUMERICAL SIMULATION

For comprehensive comparisons among the different com-
binations of antenna structures and beampattern types, the
performance evaluation using our proposed algorithms is pre-
sented in this section. We assume that the AP has NA = 32 an-
tenna elements, and each robot has a total of NR = 24 antenna
elements. In the shared antenna structure setup, Nt = Nr = 12
for signal transmission and reception. For a fair comparison,
we use the same number of antenna elements at each robot in
the separated antenna structure setup, e.g., Ns = Nc = 8 for
sensing and communication, and Nr = 8 for signal reception
at the robot. For the IoRT scenario depicted in Fig. 1, the link
condition between each robot and AP is modeled as follows:
the link is assumed to be blocked with a probability pb, and
pathloss is calculated following the 3GPP [29]. We assume
that the robot-AP link condition is either in LoS or Non-LoS
(NLoS) with a dominant single path propagation, i.e., M = 1.
However, we can extend it to any integer M according to the
practical channel conditions to support the case of M > 1
AirComp functions. Furthermore, we use the abbreviation
terms "shared-omni", "shared-direction", "separated-omni",
and "separated-direction" to distinguish between different
antenna and beampattern setups. The performance tradeoff
between AirComp and sensing is weighted by a factor α = 0.5
if no other specifications are given.

Fig. 2 illustrates the AirComp MSE under different max-
imum transmit power budgets. The AirComp MSE increases
with the maximum power Pmax. Moreover, the MSE is in the
range of approximately 10−7 to 10−5. Those phenomena are
due to the pathloss, which results in a low received power
level. It is meaningful for practical deployment, which is
different from the case of simple Gaussian channel modeling

-10 -5 0 5 10
10-7

10-6

10-5

Shared-Omni

Shared-Direction

Separated-Omni

Separated-Direction

Fig. 2: AirComp MSE under different levels of power con-
straint: K = 10, pb = 0.

with zero mean and unit variance, as considered in [7],
[26]. It is also interesting to observe that beampattern types
(omnidirectional and directional) almost have no effect on
the AirComp MSE for the given antenna structure (shared or
separated). This is because the AP itself can realize a variable
beamwidth to cover all the robots within its sector area for
uplink aggregated signal reception [27]. In such a case, the
optimal beamforming combiner at the AP can be guaranteed.
Moreover, one of our objectives is to minimize the AirComp
MSE so that the expected beamforming precoder at each robot
can also be ensured compared to the optimal one using our
algorithm. It is observed that a lower AirComp MSE was
achieved in Fig. 2 for the separated antenna structure compared
to the shared one. This verifies that the separated antenna array
for communication and sensing achieves a higher degree of
freedom for beam steering compared to the dual-functional
beamforming in a shared antenna structure.

If the number of robots increases, it is challenging to design
an aggregation beamforming combiner at the AP to receive the
uplink AirComp signals within its coverage. This is because
the larger the number of robots randomly distributed within
the AP’s coverage area, the larger the beamwidth is needed
for the AP to cover all the robots, which results in a lower
beamforming gain such that a larger MSE is obtained, as
shown in Fig. 3(a) in the top of the next page. In addition, the
separated antenna structure has a lower AirComp MSE than
the shared antenna structure, which is similar to the results
shown in Fig. 2. This is because it has a higher degree of
freedom for spatial beam steering. Moreover, the beampattern
has almost no effect on the MSE for a given antenna structure.
Fig. 3(b) shows that the sensing MSE maintains a relatively
stable level for given setups though a slightly decrease for the
separated antenna configurations. This is because the sensing
precoder is derived for each robot separately so that the sensing
performance can always be guaranteed, and it is almost not
affected by the number of robots. The increased number of
robots only has significant effects on aggregation beamforming
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10-6

10-5

Shared-Omni

Shared-Direction

Separated-Omni

Separated-Direction

(a)

5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Shared-Omni

Shared-Direction

Separated-Omni

Separated-Direction

(b)

Fig. 3: MSE performance affected by the number of robots (Pmax = 0 dBm, pb = 0): (a) AirComp MSE, (b) Sensing MSE.

0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Shared-Omni

Shared-Direction

Separated-Omni

Separated-Direction

Fig. 4: Tradeoff factor effects on the value of the Lagrangian
function: K = 10, Pmax = 10 dBm, pb = 0.

design at the AP, which reflects in the AirComp performance,
as illustrated in Fig. 3(a). Furthermore, it is observed that
the directional beampattern achieves a lower sensing MSE
for a given antenna structure setup. The separated antenna
structure configuration yields a higher sensing MSE than
the shared antenna setup because the two separate antenna
arrays shared the total transmit power budget for sensing and
communication, as detailed in (3) and (8).

In Fig. 4, we assess the impact of the tradeoff factor α on the
value of the Lagrangian function. It is evident that the value
of the Lagrangian function exhibits a notable decrease with
increasing α. This is attributed to the augmented weight on the
AirComp MSE as α increases, which leads to a diminished
Lagrangian function value. This is especially true when the
robot-AP link pathloss is taken into account.

We also evaluate the blockage probability effects on the
AirComp MSE in Fig. 5. The blockage probability has remark-

0 0.2 0.4 0.6 0.8 1

4.5

5

5.5

6

6.5

7

7.5

8
10-7

Shared-Omni

Shared-Direction

Separated-Omni

Separated-Direction

Fig. 5: Blockage effects on the AirComp MSE: K =
5, Pmax = 0 dBm.

able effects on the scheme of the separated antenna structure
compared to the shared antenna setup. This is due to the fact
that the separated antenna configuration has a power division
into two antenna arrays for sensing and AirComp, respectively.
This causes uplink AirComp to have low transmit power.
Furthermore, the AirComp link between each robot and the
AP is not fully blocked even if a blockage event occurs [29],
[41]. As a consequence, the AirComp MSE for the shared
antenna setup does not show a remarkably sharp increase with
the blockage probability.

VI. CONCLUSION

In this paper, a comprehensive investigation of the an-
tenna structures and beampatterns for the ISCC system in
an IoRT scenario has been presented. There are four MSE
minimization optimization problems formulated among dif-
ferent setups in terms of "shared-omni", "shared-direction",
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"separated-omni", and "separated-direction" that involve a
weighted factor to tradeoff the performance between AirComp
and sensing. To efficiently solve the formulated non-convex
optimization problems, we have designed the GDAL algorithm
with an adaptive adjustment of the step sizes in the vari-
able updates. The simulations have shown that the separated
antenna structure achieves a lower AirComp MSE than the
shared antenna setups because it has higher degrees of freedom
for beam steering. Moreover, the beampattern has almost no
effect on the AirComp MSE for a given antenna structure
setup at the robots. The relatively stable sensing performance
can be guaranteed for a given setup even if the number
of robots increases, however, choosing an increased number
of robots for localization accuracy improvement increases
the complexity of the ISCC system, especially for resource
scheduling. In practical IoRT scenarios, we must strike a
balance between complexity and target localization accuracy.
Moreover, it is more sensitive to the blockage for the separated
antenna setups due to the power split for sensing and commu-
nication, which results in a remarkable increase in AirComp
MSE as the blockage probability increases. These findings
have meaningful guidelines for practical IoRT networks. For
example, we can implement more efficient resource allocation
schemes for wireless link scheduling by using the ISCC frame-
work for target localization and blockage detection. This will
improve the end-to-end link quality in deterministic wireless
networking.

REFERENCES

[1] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, D. Niyato,
O. Dobre, and H. V. Poor, “6G Internet of Things: A comprehensive
survey,” IEEE Internet of Things Journal, vol. 9, no. 1, pp. 359–383,
2021.

[2] Y. Liu, X. Liu, X. Gao, X. Mu, X. Zhou, O. A. Dobre, and H. V. Poor,
“Robotic communications for 5G and beyond: Challenges and research
opportunities,” IEEE Communications Magazine, vol. 59, no. 10, pp.
92–98, 2021.

[3] F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi,
“Integrated sensing and communications: Toward dual-functional wire-
less networks for 6G and beyond,” IEEE Journal on Selected Areas in
Communications, vol. 40, no. 6, pp. 1728–1767, 2022.

[4] Y. Cui, F. Liu, X. Jing, and J. Mu, “Integrating sensing and communi-
cations for ubiquitous IoT: Applications, trends, and challenges,” IEEE
Network, vol. 35, no. 5, pp. 158–167, 2021.

[5] C. Wang, B. Jia, H. Yu, X. Li, X. Wang, and T. Taleb, “Deep reinforce-
ment learning for dependency-aware microservice deployment in edge
computing,” in GLOBECOM 2022-2022 IEEE Global Communications
Conference. IEEE, 2022, pp. 5141–5146.

[6] S. H. Alsamhi, O. Ma, and M. S. Ansari, “Survey on artificial
intelligence based techniques for emerging robotic communication,”
Telecommunication Systems, vol. 72, pp. 483–503, 2019.

[7] X. Li, F. Liu, Z. Zhou, G. Zhu, S. Wang, K. Huang, and Y. Gong, “In-
tegrated sensing, communication, and computation over-the-air: MIMO
beamforming design,” IEEE Transactions on Wireless Communications,
vol. 22, no. 8, pp. 5383–5398, 2023.

[8] A. Liu, Z. Huang, M. Li, Y. Wan, W. Li, T. X. Han, C. Liu, R. Du,
D. K. P. Tan, J. Lu et al., “A survey on fundamental limits of
integrated sensing and communication,” IEEE Communications Surveys
& Tutorials, vol. 24, no. 2, pp. 994–1034, 2022.

[9] F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, “To-
ward dual-functional radar-communication systems: Optimal waveform
design,” IEEE Transactions on Signal Processing, vol. 66, no. 16, pp.
4264–4279, 2018.

[10] Z. Xiao and Y. Zeng, “Full-duplex integrated sensing and communica-
tion: Waveform design and performance analysis,” in Proceeding IEEE
13th International Conference on Wireless Communications and Signal
Processing (WCSP), Changsha, China, October 2021, pp. 1–5.

[11] Z. Wei, J. Piao, X. Yuan, H. Wu, J. A. Zhang, Z. Feng, L. Wang,
and P. Zhang, “Waveform design for MIMO-OFDM integrated sensing
and communication system: An information theoretical approach,” IEEE
Transactions on Communications, vol. 72, no. 1, pp. 496–509, 2023.

[12] Z. Xing, R. Wang, and X. Yuan, “Joint active and passive beamforming
design for reconfigurable intelligent surface enabled integrated sensing
and communication,” IEEE Transactions on Communications, vol. 71,
no. 4, pp. 2457–2474, 2023.

[13] X. Liu, Y. Liu, Z. Liu, and T. S. Durrani, “Fair integrated sensing
and communication for multi-UAV enabled internet of things: Joint 3D
trajectory and resource optimization,” IEEE Internet of Things Journal,
2023.

[14] X. Li, Y. Gong, K. Huang, and Z. Niu, “Over-the-air integrated sensing,
communication, and computation in IoT networks,” IEEE Wireless
Communications, vol. 30, no. 1, pp. 32–38, 2023.

[15] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb,
“Survey on multi-access edge computing for internet of things realiza-
tion,” IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp.
2961–2991, 2018.

[16] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5G net-
work edge cloud architecture and orchestration,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 3, pp. 1657–1681, 2017.

[17] Y. Chen, N. Zhang, Y. Zhang, and X. Chen, “Dynamic computation
offloading in edge computing for internet of things,” IEEE Internet of
Things Journal, vol. 6, no. 3, pp. 4242–4251, 2018.

[18] Q. Wang, R. Q. Hu, Y. Qian et al., “Hierarchical energy-efficient mobile-
edge computing in IoT networks,” IEEE Internet of Things Journal,
vol. 7, no. 12, pp. 11 626–11 639, 2020.

[19] Z. Zhuang, D. Wen, Y. Shi, G. Zhu, S. Wu, and D. Niyato, “Integrated
sensing-communication-computation for over-the-air edge AI inference,”
IEEE Transactions on Wireless Communications, vol. 23, no. 4, pp.
3205–3220, 2023.

[20] Q. Qi, X. Chen, C. Zhong, and Z. Zhang, “Integrated sensing, com-
putation and communication in B5G cellular internet of things,” IEEE
Transactions on Wireless Communications, vol. 20, no. 1, pp. 332–344,
2020.

[21] G. Zhu, J. Xu, K. Huang, and S. Cui, “Over-the-air computing for wire-
less data aggregation in massive IoT,” IEEE Wireless Communications,
vol. 28, no. 4, pp. 57–65, 2021.

[22] W. Fang, Y. Jiang, Y. Shi, Y. Zhou, W. Chen, and K. B. Letaief,
“Over-the-air computation via reconfigurable intelligent surface,” IEEE
Transactions on Communications, vol. 69, no. 12, pp. 8612–8626, 2021.
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