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Abstract—Industrial Internet of Things (IIoT) is highly sen-

sitive to data privacy and cybersecurity threats. Federated
Learning (FL) has emerged as a solution for preserving privacy,
enabling private data to remain on local IIoT clients while coop-
eratively training models to detect network anomalies. However,
both synchronous and asynchronous FL architectures exhibit
limitations, particularly when dealing with clients with varying
speeds due to data heterogeneity and resource constraints.
Synchronous architecture suffers from straggler effects, while
asynchronous methods encounter communication bottlenecks.
Additionally, FL models are prone to adversarial inference
attacks aimed at disclosing private training data. To address
these challenges, we propose a Buffered FL (BFL) framework
empowered by homomorphic encryption for anomaly detection in
heterogeneous IIoT environments. BFL utilizes a novel weighted
average time approach to mitigate both straggler effects and
communication bottlenecks, ensuring fairness between clients
with varying processing speeds through collaboration with a
buffer-based server. The performance results, derived from two
datasets, show the superiority of BFL compared to state-of-
the-art FL methods, demonstrating improved accuracy and
convergence speed while enhancing privacy preservation.

Index Terms—Federated Learning, Privacy-preserving, Indus-
trial Internet of Things, and Anomaly Detection.

I. INTRODUCTION

Industrial Internet of Things (IIoT) is a form of Internet
of Things (IoT) implemented in manufacturing and industry
to automate processes and produce more effective and ap-
propriate products [1]. IIoT offers a multitude of advantages
over traditional Supervisory Control and Data Acquisition
(SCASA) systems, including productivity, scalability, and data
analysis [1]. Neverthless, the increase in connected devices
and the lack of security design in older control systems
make factories vulnerable to cyber-attacks such as denial of
service (DoS) [1]. In addition to security challenges, data
privacy is another critical concern in IIoT environments. This
is attributed to the massive amount of data generated by IIoT
smart devices, which may encompass sensitive information
that service providers are reluctant to disclose to third parties
[1]. As a result, an imperative arises for a solution to detect
cyber-attacks while maintaining data privacy in IIoT domains.

Many IIoT contexts have employed centralized machine
learning-based anomaly detection schemes as a solution [2].
In most cases, centralized schemes lack the flexibility to
adapt to different scenarios, particularly with regard to privacy
concerns [3]. This limitation arises from the inherent need
of centralized methods to send all IIoT data to a single
location for processing. This makes centralized approaches
time-consuming (causing inefficiency in communication) and

compromises the privacy of sensitive industrial processes [4].
To preserve privacy and improve communication efficiency,
federated learning (FL) emerges as an appropriate distributed
machine learning technique for IIoT environments [3]. FL
allows clients to train a global model collaboratively by
transmitting parameters and local models to a server instead
of sharing raw data [4], [5]. This reduces training time and ad-
dresses privacy concerns. FL frameworks support synchronous
and asynchronous modes of communication.

Synchronous FL (SFL) [6] requires all clients to submit
their local models to the server for aggregation. However,
problems may arise when clients train at different speeds due
to resource differences, such as differences in memory capacity
or heterogeneous data. In this situation, the aggregation server
must wait for the slowest client to transmit its local model,
resulting in slow convergence speeds and delays. This delay,
known as the straggler effect, occurs due to resource differ-
ences, causing certain clients to lag behind. Therefore, SFL
is not suitable for real-time applications. To avoid Straggler
effects, asynchronous FL (AFL) [7] was introduced, where
aggregation occurs immediately after a client trains its model,
without waiting for the slowest client. Nevertheless, most
asynchronous approaches experience communication bottle-
necks because clients can communicate independently with the
aggregation server.

To trade off SFL and AFL, buffered base solutions have
been proposed. As an example, the buffered FL approach (Fed-
Buff) [8] employs a K-size buffer at the server, processing
client updates only after receiving K updates. A notable limi-
tation of Fed-Buff is its inability to adapt to speed differences
among heterogeneous clients. As a result, the buffer is over-
whelmed by faster clients, introducing training bias. Moreover,
without considering the differences in data and computational
speed among clients, the accuracy of the global model could
suffer as the local models of faster clients might be less
accurate. Consequently, when leveraging different methods of
FL within an IIoT heterogeneous environment, it is necessary
to take into account the tradeoffs between model convergence
speed, model accuracy, and balance between clients with
varying speeds.

Furthermore, although FL method provides privacy preser-
vation compared to traditional centralized methods, it is still
vulnerable to privacy attacks involving model poisoning and
model inference [9]. Attackers may eavesdrop on the com-
munication channel or compromise the server to access model
updates, resulting in data leakage [9], [10]. Thus, it is essential
to enhance the privacy of FL in addition to focusing on privacy



concerns in IIoT through FL. Homomorphic encryption (HE)
can be used to enhance FL privacy by aggregating encrypted
model updates [9]. In contrast to some secure FL schemes,
such as differential privacy (DP)-based FL, which introduce
inevitable accuracy losses due to added noise, FL with HE
preserves model accuracy while protecting data privacy [11].

The challenges previously highlighted motivate us to de-
velop a Buffered FL (BFL)-based anomaly detection model
for IIoT. This model effectively addresses three critical chal-
lenges from a new perspective: stragglers, communication
bottlenecks, and privacy-preservation. BFL achieves this by
combining synchronous and buffered FL concepts in a novel
manner, despite heterogeneous client speeds. A global model
in BFL is synchronously transmitted only to clients who have
submitted their local parameters to the server’s buffer within
a specified time. Based on the training times of each client,
the specific time is calculated using a novel weighted average
time method. The proposed weighted average time method
is designed to ensure fairness between fast and slow clients,
minimizing the straggler effects, communication bottlenecks,
and training bias. Moreover, HE-based secure communication
is implemented to enhance model parameter privacy. The main
contributions of this work are as follows:

1) Proposing a new anomaly detection framework that
leverages a deep learning (DL)-based FL approach and
HE to empower privacy-enhanced detection of cyber
threats in industrial cyber-physical systems (CPS).

2) Developing BFL, a novel FL framework that combines
the potential of synchronous and buffered FL approaches
to address straggler and communication issues.

3) Designing a novel weighted average time method to
balance a trade-off between fast and slow clients.

4) Utilizing two distinct datasets to demonstrate the gener-
alization capabilities of BFL.

This article is organized as follows. Section II categorizes
some related articles. Section III introduces the proposed
method, system model, and attack model. Section IV presents
implementation details and discusses the evaluation results.
The article concludes in Section V.

II. RELATED WORK

This section provides a categorized review of FL-based
intrusion/anomaly detection schemes for IIoT environments.

A. FL-based Intrusion/Anomaly Detection

1) SFL approaches: The authors of [2] proposed a com-
munication efficient-FL framework based on Convolutional
Neural Network (CNN)-Long Short-Term Memory (LSTM)
to reduce communication costs by using gradient compression
and local computations. In order to identify the best gradients,
the Top-k algorithm is used. In [3], a FL approach based
on LSTM is proposed for detecting anomalies in energy
consumption in smart buildings. Authors in [4] proposed an
anomaly detection system based on federated self-learning
to detect malicious devices in IoT. The system uses Gated
Recurrent Units (GRUs) to classify data based on thresholds.

Additionally, the self-learning mechanism improves the detec-
tion performance of the global model as the IoT environment
changes.

The study in [12] aims at detecting anomalies in industrial
control systems (ICS), leveraging a Variational Autoencoder-
LSTM model to capture temporal dependencies and complex
patterns. The work in [13] presents IIoT cyber-threat hunt-
ing model that uses a One-Class Support Vector Machine
(OCSVM), Isolation Forests (IF), and Stacked Autoencoders
(SAE). A combination of OCSVM and IF is used to detect
potentially malicious data points. The SAE helps identify
patterns and relationships in data by extracting features.

In addition to the lack of privacy-preserving methods, the
discussed synchronous methods are particularly susceptible to
straggler effects when more clients are involved. The straggler
effect results in delays and slow convergence in real-time
industrial domains.

2) AFL approaches: In [14], an AFL is proposed for
Software Defined Networking systems with distributed control
to improve efficiency. Models are trained by local controllers
and are uploaded to root controllers asynchronously. Local
models are aggregated by root controllers. In [15], a spectral
clustering method based on the latency and direction of model
updates is proposed to address the issue of model staleness
caused by asynchronous updates. The scheme also improved
test accuracy and convergence speed in non-independent and
identically distributed (non-IID) datasets. In [16], the authors
proposed an AFL-based digital twin architecture for IIoT
applications to minimize straggler effects. Results showed
faster convergence and higher learning rates with the suggested
model. In [17], the authors propose a Semi-Asynchronous
Federated Averaging (SAFA) to solve low round efficiency
and poor convergence by using a novel aggregation algorithm
with a cache structure.

Investigated asynchronous methods require more frequent
communication between clients and server, resulting in higher
communication costs. Convergence is also slowed by frequent
aggregation on the server.

B. Privacy-enhancing FL

Although FL methodology offers privacy-preserving bene-
fits, there are still privacy concerns associated with it. Various
privacy-enhancing technologies can be used to enhance the
effectiveness of FL.

In [18], FL-CNN is used to minimize sensitive information
sharing, and HE is leveraged to enhance privacy. In [19],
authors introduced a novel distributed FL scheme in an IIoT
scenario based on K-means, distributed random forest, and
AdaBoost algorithms with the incorporation of DP and HE
techniques to enhance data privacy and provide safe data
sharing among IIoT devices. The work in [20] proposes
an approach to enhance privacy preservation of FL using
HE. It addresses common issues such as privacy breaches,
communication overheads, and lack of accountability. In [21],
a FL based on CNN and GRU was employed to improve
ICS intrusion detection accuracy by learning both spatial and



temporal features of network traffic data. HE is utilized in this
method to enhance privacy.

Various privacy-enhancing techniques, such as DP and
HE, have been successfully integrated into FL approaches
to enhance data privacy in industrial scenarios. While DP is
effective in protecting client privacy during aggregation, HE
is preferred in certain cases to enhance the privacy of model
updates and ensure data/parameter confidentiality. In this work,
our objective is to improve the privacy of model updates using
HE, as DP can introduce noise affecting model performance,
such as utility.

III. METHODOLOGY

This section introduces the system and attack models as well
as the proposed methodology for empowering privacy-driven
FL-based anomaly detection in IIoT.

A. System Model

Fig. 1 illustrates a high-level system overview of the pro-
posed privacy-preserving FL training method. It consists of
industrial agents and an aggregation server. Industrial agents
represent owners of CPSs. A third authority generates public
and private keys first. Industrial agents construct a local
DL model using their own industrial CPS data, encrypt the
parameters of the model using the public key, and send them
to the aggregation server. The aggregation server aggregates
the encrypted model parameters from each industrial agent.
The aggregated encrypted parameters are then sent back to the
industrial agents. The industrial agents update their DL models
by decrypting the aggregated parameters with the private key.
This process is repeated until the model is converged.

Fig. 1. High-level architecture for privacy-preserving BFL.

B. Attack model

The threat model includes cyber threats to industrial CPSs
and the BFL framework. To provide a comprehensive under-
standing of the risks faced by industrial CPSs and the BFL
framework, this work examines the following cyber threats:

1) Cyber Threats Against Industrial CPSs: We examine
various cyber threats to industrial CPS remote processes,

including response injection attacks, command injec-
tion attacks, reconnaissance attacks, and DoS attacks.
Response injection attacks involve falsified response
messages to querying entities, while command injection
attacks introduce false commands into the industrial
control systems. Reconnaissance attacks aim to gather
information about industrial CPSs, and DoS attacks
overload a target system, causing disruptions in indus-
trial CPSs.

2) Cyber Threats Against BFL Framework: External attack-
ers or malicious eavesdroppers may also intercept com-
munication links. This study considers eavesdropping on
the model parameters. Data resources can be analyzed
through the parameters of the anomaly detection model
in this attack.

C. Proposed Methodology

A novel FL framework and a HE-based secure communi-
cation protocol are used to network multiple industrial CPS
owners to develop a DL anomaly detection model. We use a
partial HE; a type of HE that permits both the addition and
multiplication of ciphertexts. The rationale behind this choice
is rooted in the superior speed of partial HE compared to fully
HE. It is also motivated by the fact that partial HE is, in most
cases, sufficient for homomorphic calculations, especially for
FLs that only require addition and multiplication.

The BFL framework employs the SFL strategy to avoid
communication bottlenecks. In this manner, the updated model
will not be sent individually to each industrial agent, such as
AFL. A buffer-based server is also used to prevent stragglers.
Thus, BFL server does not wait for all agents to send their
local models before aggregating. Rather, BFL server waits
until a specific time for agents to send their local models.
To calculate the specific time, avoid overloading the buffer-
based server, and avoid training bias, the weighted average
time method is used during the first iteration of BFL. The
weighted average time method determines the specific time
based on the training time spent by each agent. Algorithms 1
and 2 summarize the detailed training procedure.

The trust authority first generates a public key and a private
key. The aggregator server selects initial parameters. In the first
iteration of BFL, agents receive initial parameter values from
the aggregator server, they train DL-based anomaly detection
models locally with their own data (line 7 of Algorithm 1).
As each agent trains a local model, the model parameters
are encrypted using the public key (line 8 of Algorithm 1).
Afterward, the encrypted parameters and training time for
each agent are uploaded to the aggregator. After the aggre-
gator server receives the training times and local encrypted
parameters of the agents, encrypted global parameters and
weighted average time are calculated (lines 13 and 15 of
Algorithm 1). As a first step in calculating weighted average
time, the aggregator server sorts the received training times
in descending order (line 1 of Algorithm 2). Each agent’s
initial weight is derived by inverting training time (line 3 of
Algorithm 2). However, to assign higher weights to slower



agents and lower weights to faster agents, the Initial weights
must be reversed to achieve the final weights (line 4 of
Algorithm 2).

Algorithm 1: Detection Algorithm
Input:
T : Number of Iterations; N : Number of Clients (Agents);
Pkey : Public key, Skey : Private key;
⊕: HE-based addition; ⊗: HE-based multiplication,
Sm: A list of selected clients

Output: Desired performance (e.g., accuracy)
1 m = Initial parameters()
2 Magg = 0 # Encrypted global parameters
3 for t = 1 to T do
4 if t = 1 then
5 for each client k = 1 to N do
6 ts = Start Time()
7 [Local m]k = m.train()
8 [menc]k = Encrypt([Local m]k, Pkey)
9 te = End Time()

10 [Tclient]
k = te − ts

11 # Encrypted aggregation on Server
12 for j ∈ [menc] do
13 [Magg] = (j ⊕Magg)⊗ [N−1]
14 # Calculating weighted average time
15 TW Avg = Weighted Average Time([Tclient])
16 for i ∈ [Tclient] do
17 if i ≤ TW Avg then
18 [Sm] = i
19 else
20 for each client k ∈ [Sm] do
21 [mdec]

k = Decrypt([Magg ], Skey)
22 [Local m]k = mdec.train()
23 [menc]k = Encrypt([Local m]k, Pkey)
24 # Encrypted aggregation on Server
25 for j ∈ [menc] do
26 [Magg] = (j ⊕Magg)⊗ [N−1]

Algorithm 2: Weighted Average Time
Input: Trainig T ime of each client (Agent) =

T 1
client, T

2
client, ..., T

N
client

Output: Weighted Average Time
1 Sort Tclient

1, Tclient
2, ..., Tclient

N in descending order for
each i = 1 to n do

2 # Initial Weight = [W1,W2, ...,WN ]
3 [Initial Weight]i = 1

Tclient
i

4 # Reverse Initial weight [Final weight] = [WN ,WN−1, ...,W1]

5 Wf =
∑N

j=1 Final weightj

6 Tfw =
∑N

j=1 Time trainingj · Final weightj

7 TW Avg =
Tfw

Wf

Finally, the average weighted time can be obtained by
multiplying each agent’s training time by its corresponding
final weight over the sum of all final weights (line 7 of
Algorithm 2). The encrypted global parameters are then sent
back to the agents. Agents obtain updated model parameters
by decrypting the encrypted parameters model with a private
key. After that, the DL model parameters are updated. For
the second iteration of BFL to convergence, only agents with
training times less than the calculated weighted average time
will be selected (lines 19 to 26 of Algorithm 1).

IV. EXPERIMENT SETTING AND EVALUATION

A. Experimental Settings
We evaluated BFL using two different datasets: (i) Gas

pipeline dataset [22], which consists of 18 features re-

lated to Modbus protocol in 8 classes including normal,
DoS, Naive/Complex Malicious Response Injection, Malicious
State/Parameter Command Injection, Malicious Function Code
Injection, and Reconnaissance; and (ii) the WUSTL-IIoT
Dataset [23], which consists of 41 features of real cyber-
attacks related to network flow in 5 classes: DoS, Reconnais-
sance, Backdoor, Command injection, and Normal.

BFL is compared to the three FL methods: FedBuff [8],
SFL [6], and AFL [7]. We have implemented BFL in PyTorch
and utilized the Paillier Framework for HE.

Both a CNN and a Multilayer Perceptron (MLP) were
trained on two specified datasets. The CNN architecture con-
sists of two 1D convolutional layers, two fully connected
layers, one MaxPooling layer, and one AveragePooling layer.
For both datasets, the first convolutional layer has 8 filters of
size 3, and the second convolutional layer has 16 filters of size
3. The MaxPooling layer and AveragePooling layer, each has
a kernel size of 2. The Rectified Linear Unit (ReLU) activation
function is applied in the convolutional layers, and Softmax
is used for multi-class classification. The MLP architecture
applied to both datasets comprises three fully connected layers.
For the Gas Pipeline dataset, the first layer maps the 18-
dimensional input to a 54-dimensional space, the second layer
reduces this to a 20-dimensional space, and the final layer
maps it to 8 classes. For the WUSTL-IIoT dataset, the first
layer maps the 41-dimensional input to a 9-dimensional space,
the second layer also maps this to a 9-dimensional space,
and the final layer maps it to 5 classes. Stochastic Gradient
Descent (SGD) was selected as the optimization function. For
the Gas pipeline dataset, a batch size of 64 was used, while
a batch size of 1000 was used for the WUSTL-IIoT dataset.
The learning rate and momentum were set at 0.01 and 0.8,
respectively. These hyperparameters were determined through
trial and error, with the combination of a 0.01 learning rate
and 0.8 momentum yielding the best results. Due to space
constraints, we present only the results of the model trained
with SGD using these optimal hyperparameters. Datasets are
divided into three parts: 80% for training, 10% for validation,
and 10% for testing. The data is then normalized using the
MinMaxScaler, which scales the values between 0 and 1.

After defining the model with the aforementioned values and
executing it, the model is evaluated using the accuracy metric,
overall training time (millisecond (ms)), and convergence
speed (i.e., the number of iterations required to achieve a target
accuracy).

B. Comparison of two DL algorithms on BFL

As a first step, we compared the efficiency of BFL based on
CNN and MLP algorithms in terms of accuracy, and overall
training time to determine the best algorithm to use for the next
steps. In order to compare them in terms of overall training
time, we take into account 5 clients (industrial agents), and
the target accuracy of 94.7% for the Gas pipeline dataset
and 99.8% for WUSTL-IIoT dataset. Both accuracy targets
are achieved when all data is available. The accuracy of both
models is also compared based on 5 clients, two iterations,



TABLE I
BFL OVERALL TRAINING TIME(MS) WITH 5 CLIENTS.

Modes GAS Pipeline
Target accuracy: 94.7%

WUSTL-IIoT
Target accuracy: 99.8%

MLP 1655.78 5965.07
CNN 1995.05 8465.18

TABLE II
BFL ACCURACY EVALUATION WITH 5 CLIENTS AND 2 ITERATIONS.

Modes GAS Pipeline WUSTL-IIoT
MLP 94.59% 99.70%
CNN 93.60% 98.49%

TABLE III
MLP-BASED BFL - OVERALL TRAINING TIME(MS) BY INCREASING

CLIENTS.

Clients GAS Pipeline
Target accuracy: 94.7%

WUSTL-IIoT
Target accuracy: 99.8%

2 551.12 1562.53
5 1655.78 5965.07
10 2483.67 10737.15

10 local epochs, 0.01 learning rate, and stochastic gradient
descent (SGD) optimization for both datasets. As shown in
Table I and Table II, MLP outperforms CNN in both datasets.
The simplicity of the MLP architecture, with fewer parameters
to learn, compared to CNN with more layers, such as pooling
layers, allows it to converge faster to the target accuracy.
Therefore, MLP is a more appropriate approach for real-time
environments with tabular data. Consequently, we select MLP
as the baseline algorithm for further comparisons in the next
sections (IV-C and IV-D).

C. Overall training time evaluation based on client numbers

It is evident from Table III that the overall training time
for BFL increases as the number of clients increases. This is
a result of two factors. Firstly, when datasets contain specific
samples, dividing the data among a greater number of clients
results in each client getting a smaller portion of the overall
dataset. As a result, each client must train on a smaller dataset,
resulting in slower convergence. Secondly, the increase in the
number of clients requires the server to communicate with
more clients to produce the aggregated model, which results in
the algorithm taking longer to converge to the target accuracy.

D. Efficacy of communication and the Straggler effect of BFL

Accuracy and convergence speed allow to evaluate FL
methods’ robustness against stragglers and communication
efficiency. We consider the same target accuracies that are
mentioned earlier when evaluating the convergence speed of
each FL method. Moreover, we compare model accuracy based
on 5 clients, 10 iterations for the Gas pipeline dataset, and 4
iterations for the WUSTL-IIoT dataset. SFL and AFL have
foundational implementations detailed in [6] and [7], respec-
tively. Although FedBuff’s accuracy and convergence speed
increase with increasing buffer size, choosing the appropriate
buffer size is its weakness. Therefore, we assume that the
buffer size in FedBuff is set to half the number of clients

participating in the heterogeneous environment. Accordingly,
for a scenario with five clients, we consider a buffer size of
two.

To simulate speed heterogeneity, we assigned 5 random
integer values to 5 clients (1∼ 3s to three of them and 5∼10s
to two of them). A higher random value indicates a slower
client, whereas a lower random value indicates a faster client.
Additionally, to better demonstrate the effectiveness of the
proposed model in scenarios involving heterogeneous datasets,
we assume varying data sizes for each client. This means that
clients with more data will have longer training times, while
those with less data will train more quickly.

To simulate such a scenario, each of the three fast clients is
allocated 5% random samples from the training dataset, while
the two slow clients are randomly assigned 80% and 90%
samples of the training data, respectively.

The results depicted in Fig. 2 demonstrate the superiority of
BFL in achieving higher attack detection accuracy, compared
to baseline FL methods. We observe that BFL outperforms
SFL, AFL and FedBuff in terms of accuracy by, respectively,
0.18%, 3.53%, and 1.63% on Gas pipeline dataset and 0.13%,
6.9%, and 1.1% on WUSTL-IIoT dataset. This is attributed to
BFL’s novel weighted average time, which can more effec-
tively engage straggling clients, resulting in better prediction
results (3 clients are selected by BFL). As SFL and BFL follow
the same synchronous updating strategy, they have the closest
prediction performance. AFL achieved the lowest accuracy,
which can be explained by the fact that AFL aggregates
weights from one client at a time and does not provide an
effective way to deal with stragglers. In addition, FedBuff is
unable to converge faster because its buffer is rapidly filled
with clients that have less data and less accuracy.

Fig. 2. Accuracy comparison of MLP-based algorithm: 5 clients, 10 iterations
for Gas pipeline and 4 iterations for WUSTL-IIoT.

A comparison of the convergence speed results shown in
Fig. 3 also reveals a clear difference in performance. On both
datasets, BFL converges faster towards the target accuracy
than all three other methods. On Gas pipeline dataset, BFL
convergences 1.33, 16.66, and 11.11 times faster than SFL,
AFL and FedBuff, respectively. Similarly, BFL surpasses SFL,
AFL and FedBuff by, respectively, 2, 10, and 8.4 times
on WUSTL-IIoT dataset. The faster convergence of BFL is
the result of the balance that BFL creates between fast and
slow clients, avoiding to wait for the slowest client like in



Fig. 3. Convergence speed comparison of MLP-based algorithms.

SFL or favor faster clients as in FedBuff. Additionally, the
convergence speed result for AFL indicates that AFL methods,
where the server simply communicates with all clients, suffer
from a severe communication bottleneck.

Hence, considering both attack detection performances and
convergence speed, BFL provides the best performance-cost
balance.

V. CONCLUSION

In this paper, we proposed a novel FL framework, named
BFL, to detect cyber threats against industrial CPSs. BFL
employs a HE-based secure communication protocol that
preserves the privacy of model parameters during training.
In BFL, the following modules are synthesized cohesively:
(1) a buffering strategy to handle stragglers; (2) synchronous
updating of the global model to prevent communication bot-
tlenecks; (3) a novel, weighted average time method that the
FL server uses to balance between fast and slow clients in
a heterogeneous environment. In extensive experiments using
two real industrial CPS datasets, BFL achieved the highest
prediction accuracy, converged the fastest, and had superiority
over state-of-the-art FL schemes. In future work, we intend
to improve the weighted average time method to dynamically
adapt the selection of clients at each training iteration based
on the changing computation capability of clients and the
fluctuating network conditions. The methodology will also be
incorporated into an Encryption as a Service (EaaS) platform,
which could provide scalability benefits [24].
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