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Abstract—The main goal of Encryption as a Service (EaaS)
is to deliver cryptography services to limited-resource devices.
However, due to the massive number of devices connecting EaaS
platforms, they face challenging issues, such as high service
delays and uncovered requests. The existing EaaS architectures
lack adequate taking advantage of both cloud and fog layers,
by which the performance can be improved. Therefore, this
paper proposes a novel EaaS architecture called full-cloud-fog
that focuses on increasing the EaaS throughput by locating the
frequently accessed components on the fog layer and resolving
resource allocations utilizing the cloud nodes. We have analyzed
the security aspects of the proposed architecture and then
implemented it in a real testbed. The evaluation results show
that the proposed full-cloud-fog architecture improves the EaaS
throughput by 81%.

Index Terms—Encryption as a Service, EaaS Architecture,
Cryptography Service, Fog Computing, Cloud Computing, Im-
proved Throughput.

I. INTRODUCTION

THE rise of communication technologies, such as 5G and
high-speed wireless networks, and the growth of smart

devices making them available at any moment have increased
the amount of transferred data through such networks[1, 2, 3].
To get a better comprehension of the data exchange scale,
TechJury has analyzed the Internet of Things (IoT) networks
and estimated that, by the end of 2025, 27 billion devices
might connect to the Internet, and they may produce 79.4
zettabytes of data [4, 5, 6, 7, 8]. Protecting this large-scale data
from being accessed by cyber criminals and intruders requires
abundant resources for executing cryptography algorithms and
altering it to another form that is readable only by the per-
mitted parties. However, numerous resource-limited devices,
especially in IoT networks, cannot execute such algorithms
[9, 10, 11, 12]. Hence, outsourcing the encryption services is
demanded.
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EaaS is the provision of cryptography services, such as
secure storage [13, 10] and access control [14, 15], without
expecting the end-devices to be involved in the processing
of data [16, 17, 18]. Different components, such as the key
manager and the encryptor/decryptor, participate in an EaaS
platform to deliver the encryption service. Based on the EaaS
architecture, these components may be located on different
layers, including the cloud, fog, and device layers [19].

The existing architectures that are proposed for EaaS plat-
forms are not sufficient to take advantage of both cloud
and fog layers. Some of them (e.g., the one proposed by
Deb et al. [20]) have just focused on reducing the service
delivery time by using the fog nodes, and the others (e.g.,
the architecture proposed by Yang et al. [21]) have only
paid attention to successfully handling the service requests by
utilizing the cloud nodes. To enhance the performance of the
Eaas platform, we propose applying the cloud and fog layers
together. Specifically, we propose a novel EaaS architecture
that covers the shortages of the current architectures. The
proposed EaaS architecture (namely, full-cloud-fog) places
the most frequently accessed components on the fog layer,
and then tries to resolve resources (overall locations) using
the cloud nodes. The key contributions of this paper are
summarized as follows:

• Proposing a novel EaaS architecture that reaches an
impressive throughput by keeping the delay and the
unresponded requests low. The most frequently accessed
components are located at the edge layer, while the
components at the cloud layer handle the shortage of
resources. The existing approaches do not consider this
aspect (i.e., taking the benefits of each layer).

• Analyzing the security aspects of the proposed architec-
ture and investigating the vulnerabilities. This helps the
users and the developers of an EaaS platform that works
based on the proposed architecture consider the security
risks of being served by it and enhance it to be more
protected and popular.

A. Goals of full-cloud-fog architecture for Encryption as
a Service

The fast evolution of information and communication
technologies has ushered in the IoT, wherein many inter-
connected devices collaboratively generate and exchange
unprecedented data. This transformative trend holds im-
mense potential to revolutionize industries and enhance
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the quality of human life. However, with the proliferation
of IoT devices and the data deluge they generate, the
critical challenge of securing sensitive information has
come to the forefront. As data becomes the lifeblood of
modern society, ensuring its confidentiality, integrity, and
availability has become an imperative. Encryption stands
as a cornerstone of data protection. Yet, IoT devices’
resource limitations, the data’s scale and diversity, real-
time processing requirements, and the dynamic nature
of IoT networks present a complex puzzle. This re-
search endeavors to leverage the synergies of cloud and
fog computing, matching efficiency with security, and
bridging the gap between data-intensive IoT applications
and robust encryption mechanisms. By unraveling the
intricate challenges that underscore the need for our
proposed architecture, we aim to offer a transformative
approach that safeguards data and propels the growth
and adoption of IoT technologies into a secure and
interconnected future. Refining EaaS Architecture for
IoT, The core objective of this research paper is to
introduce an inventive EaaS architecture meticulously
designed to tackle the distinctive obstacles innate to
IoT applications effectively. Introducing the ”full-cloud-
fog” architecture, a framework designed to optimize the
potential of cloud and fog computing for EaaS platforms
in IoT ecosystems. This architecture aims to combine
the strengths of cloud and fog computing, overcoming
the limitations of traditional EaaS architectures. By using
cloud resources for complex computations and enabling
real-time data processing at the fog layer, it strives to
improve performance and enhance data security in IoT
and Microservices applications [22, 23].
• Addressing IoT-Specific Challenges: The paper iden-
tifies and addresses the intricate challenges of imple-
menting data encryption and protection in IoT applica-
tions. This includes tackling issues related to resource-
constrained IoT devices, managing the scale and volume
of data, ensuring real-time processing and low latency,
accommodating device heterogeneity and standardization,
and mitigating insider and outsider threats.
• Comparative Analysis and Evaluation: Another research
goal is to compare the proposed full-cloud-fog architec-
ture with existing EaaS architectures. By evaluating the
proposed architecture’s performance, efficiency, security,
and suitability for IoT scenarios, the paper aims to
demonstrate its advantages over other approaches.
• Security Analysis and Vulnerability Assessment: The
paper will thoroughly analyze the security aspects of
the proposed architecture. It will investigate potential
vulnerabilities and threats the architecture may face,
providing insights for users and developers to enhance
security measures and address risks effectively.
• Practical Implementation and Evaluation: A practical
implementation of the proposed full-cloud-fog architec-
ture using a real-world testbed of LXC containers is
planned. This implementation will validate the archi-
tecture’s feasibility and effectiveness, providing credible
results to demonstrate its performance.

This research paper seeks to present a novel EaaS ar-
chitecture for IoT applications, addressing the challenges
posed by IoT’s unique characteristics. By conducting a
comprehensive literature review, proposing an innovative
architecture, and evaluating its performance, the paper
aims to contribute valuable insights and advancements to
the EaaS field in the IoT field.

B. Motivation for a Hybrid Cloud-Fog EaaS Architecture

IoT devices and applications have created a surge in
demand for efficient and scalable encryption services.
Traditional cloud-only solutions, while powerful, often
face challenges in meeting the performance and latency
requirements of real-time IoT applications. Conversely,
fog computing, with its localized processing capabilities,
offers potential benefits but may not fully address the
scalability and resource requirements of large-scale de-
ployments. Our motivation for proposing a hybrid cloud-
fog EaaS architecture stems from addressing these chal-
lenges and leveraging the strengths of both paradigms.
-Resources shows that IoT applications, such as smart
healthcare and autonomous vehicles, require low-latency
responses due to their real-time nature. Cloud-only so-
lutions, despite their high computational power, can
introduce latency due to the distance between devices
and cloud data centers. According to recent studies, the
latency introduced by cloud-based processing can ex-
ceed acceptable thresholds for time-sensitive applications
[17, 24, 25]. Fog computing mitigates this issue by
processing data closer to the source, thereby reducing
latency. However, fog nodes alone may struggle with
high-demand scenarios, making a hybrid approach ad-
vantageous.
As IoT deployments scale, the resource demands for en-
cryption services increase significantly. Full cloud-based
solutions, while scalable, may encounter bottlenecks due
to network congestion or resource limitations at the data
center level. Contrariwise, fog nodes, being geographi-
cally distributed, can handle local requests efficiently but
may face challenges in scaling resources dynamically.
A hybrid architecture balances the load between fog
and cloud resources, providing a scalable solution that
can adapt to varying demands. Empirical studies have
demonstrated that hybrid approaches can handle peak
loads more effectively compared to purely cloud-based
systems [26]
- Cost considerations are critical in designing large-
scale EaaS platforms. Cloud resources, especially when
handling massive volumes of requests, can become ex-
pensive. Fog nodes, being localized, can reduce the need
for extensive data transmission and lower operational
costs. A hybrid approach allows for cost optimization by
leveraging fog computing for routine processing tasks and
utilizing cloud resources for more intensive computations
or overflow situations. Real-world implementations have
shown that hybrid models can achieve cost savings of up
to 25 % compared to purely cloud-based solutions [26].
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- Security and Privacy are important in encryption
services. Fog computing enhances security by processing
sensitive data locally, reducing exposure to potential
breaches during transmission. However, fog nodes may
not always have acceptable computational power for com-
plex encryption tasks. The hybrid architecture ensures
that high-security requirements are met by leveraging
cloud resources for intensive computations while main-
taining data privacy through localized processing.
- Adaptability to Diverse IoT Scenarios
IoT environments are diverse, with varying requirements
for connectivity, computational resources, and data pro-
cessing. A one-size-fits-all approach may not be feasible.
The hybrid cloud-fog architecture provides the flexibility
to adapt to different scenarios by dynamically allocating
resources based on the specific needs of the application.
This adaptability is supported by case studies in diverse
IoT deployments that highlight the benefits of hybrid
solutions in meeting varied requirements [17].
- Implementing the architecture in a real Testbed
Implement the proposed architecture in a real testbed of
LXC containers and evaluate it using different metrics.
The implemented testbed is a small real-world sample,
so the results are credible. To the best of our knowledge,
the current research in this field does not have such
implementation for their reported results.

C. Challenges in IoT Data Protection and Encryption

The proposed Full-Cloud-Fog EaaS architecture extends be-
yond general applications, as it intricately incorporates design
principles to address the distinct features of IoT applications.
Recognizing the unique requirements and challenges posed
by IoT, our architecture has been meticulously crafted to
ensure seamless alignment with the intricate characteristics
of IoT ecosystems. By delving into the intricacies of IoT
environments, we have enriched the architecture’s framework
to embrace the following key aspects:

• Resource Optimization for IoT Devices: IoT devices
often contend with resource limitations, such as constrained
computational power and energy efficiency concerns. With
this in mind, our architecture strategically allocates tasks to
both cloud and fog layers. This orchestration enables efficient
resource utilization while minimizing latency and conserving
energy, a critical concern in the IoT landscape.

• Scalability to IoT Growth: As IoT networks continuously
expand in scale, accommodating growing numbers of devices
becomes a critical requirement. Our architecture’s modular
design provides the flexibility needed for effortless scalability.
This means additional fog nodes can be seamlessly incorpo-
rated to handle burgeoning device connections and a surge in
service requests.

• Data Sharing Capabilities: IoT ecosystems frequently
demand secure and controlled data sharing among devices.
The architecture’s adeptness in managing shared data access
through encryption and meticulous key distribution is specif-
ically designed to resonate with IoT’s intricate data-sharing
requirements.

• Mitigation of Insider and Outsider Threats: In an IoT
landscape characterized by diverse devices and sprawling
attack surfaces, security is paramount. Our architecture is
thoughtfully fortified to counter both insider and outsider
threats. Integrating encryption, secure connections, and ad-
vanced anomaly detection mechanisms at the component level
ensures comprehensive protection against potential adversarial
activities.

• Interoperability and Heterogeneity: The IoT landscape
is rife with device heterogeneity and varied communication
protocols. Our architecture’s inherent flexibility accommodates
this diversity by permitting customization of encryption pa-
rameters and interaction protocols, fostering seamless interop-
erability among disparate devices and platforms.

• Real-time Edge Decision Making: IoT scenarios often
mandate swift decision-making at the edge. The architecture’s
fog layer augments this capability by enabling efficient com-
putation of data sources. This facilitates real-time decision-
making processes and enhances the architecture’s adaptability
to IoT’s dynamic requirements.

D. The remainder of this paper

The remainder of this paper is as follows. section II cat-
egorizes the current EaaS architectures into four groups and
reviews the researchers using each. The proposed architecture
is thoroughly described in section III, and its security analysis
is also provided. The performance of the proposed architecture
is analyzed in section IV and the implementation results are
reported. Finally, section VI presents the summary of this
research and the suggested future works.

II. LITERATURE REVIEW

There are four types of components in an EaaS platform:
General management Component (GC), Key management
Component (KC), Encryption Component (EC), and De-
cryption Component (DC) [27]. When a request is trans-
mitted to the platform, the GC is responsible for selecting
the suitable KC and EC/DC, forwarding the request to them,
and finally sending back the response. The KC performs the
EaaS functionalities related to the cryptography key(s), such
as generating the keys or verifying the signature of a message.
The EC and the DC are dedicated to the processes requiring
encrypting a plaintext and decrypting a ciphertext, respectively
[20]. It is worth noting that a node in an EaaS platform can
play the role of multiple components. For example, a Linux
machine on the cloud layer can handle both key management
and encryption processes, that means the KC and EC are
located on this machine.

The architecture of an EaaS platform specifies the layers the
four mentioned components are located on. These components
can be located on the cloud layer, the fog layer, or even
the device layer. While the cloud layer consists of central
and powerful machines, the fog layer is a set of distributed
machines with fewer resources. However, the fog layer is
closer to the device layer, and hence, the average end-to-end
delay between the device and the fog nodes is lower than that
between the devices and cloud nodes [28].
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We have categorized the different EaaS architectures cur-
rently existing in the literature, into four types: full-cloud, half-
cloud, half-fog, and half-cloud-fog. The term full indicates that
the device layer is not involved in hosting any of the mentioned
EaaS components. On the other hand, the term half means that
at least one of the EaaS components is located on the device
layer. In the existing EaaS platforms with a half-X architecture,
only the EC and DC are located on the device layer. Table I
generally describes the different types of architectures.

The full-cloud architecture is a paradigm of efficiency,
uniting all operational components within the cloud layer to
create a streamlined cryptography process. In response to a
cryptography request initiated by a device, the orchestration
of transmission rests within the hands of the Global Coor-
dinator (GC), responsible for routing it to the appropriate
Key Coordinator (KC). The KC undertakes the pivotal role
of managing key-related operations, forwarding the original
request and essential key-specific information to the selected
Encryption/Decryption Component (EC/DC). This EC/DC en-
tity conducts the crucial cryptographic tasks and subsequently
dispatches the final response to the awaiting GC, facilitating
its relay back to the requesting device. This architectural
model is underscored by its capacity to optimize the allocation
of computational resources within the cloud layer, thereby
engendering efficient processing and seamless transmission.
Notably, Yang et al. [21] significantly contributes to this
architecture by introducing a robust mechanism for secure key
generation and management, thoughtfully distributed across
multiple KCs to enhance data privacy through stringent access
controls. This approach, in line with the full-cloud paradigm,
accentuates the elevated security achieved through judicious
resource segregation. Moreover, El Bouchti et al. [29] presents
an EaaS platform tailored specifically for healthcare devices,
wherein devices are empowered with direct control over their
cryptographic processes. Similarly, Ibtihal et al. [30] brings
forth a full-cloud EaaS platform with a niche focus on image
encryption and decryption, attuned to the safeguarding of
media-rich data. However, it is imperative to acknowledge
that while the full-cloud model presents a compelling solution,
it does not have limitations. Aggregating components within
a centralized cloud layer may inadvertently pave the way
for potential bottlenecks and the emergence of single points
of failure, thereby warranting meticulous attention to ensure
system reliability. Furthermore, concerns surrounding latency
could arise due to data transmission between different layers
of the architecture, prompting a requirement for efficient
data flow management strategies. Conversely, the half-cloud
architecture introduces a distributed approach, placing the En-
cryption/Decryption Components (ECs/DCs) within the device
layer while retaining other components in the cloud. This
architectural stance advocates that only key-related processes
and identity validations transpire within the cloud layer. Upon
the successful execution of these tasks, the Global Coordinator
(GC) assumes the responsibility of communicating outcomes
to the requesting device. This device, in turn, assumes control
over the encryption/decryption procedures, thus heralding a
more localized approach to cryptography. A contribution by
Xu and Joshi [32] underscores the potential of attribute-

based encryption services within the half-cloud architecture.
By associating encryption parameters with specific attributes,
they enhance data security and privacy. This process culmi-
nates in localized encryption/decryption at the device’s end.
Additionally, Tahir et al. [33] presents an innovative EaaS
platform within the purview of British Telecommunication’s
public cloud, offering searchable encryption services. This
feature allows users to search keywords within ciphertexts
without necessitating decryption, elevating the realms of user
convenience and data confidentiality. Furthermore, Fairose-
banu and Jebaseeli [35] introduces a half-cloud EaaS plat-
form showcasing a wide spectrum of cryptographic services,
notably enabling modular development to experiences based
on individual requirements. The advantages of the half-cloud
architecture notwithstanding, this approach encounters its own
set of challenges. The concentration of processing on devices
with potentially constrained capabilities may induce resource
limitations. Additionally, maintaining data consistency and the
assurance of robust security within the device layer pose
substantial hurdles. It is crucial to delve into the intricate
interconnections between the references to holistically harness
the potential inherent in these architectures. These works
collectively serve as milestones in the evolution of EaaS
architectures, reflecting the dynamic strategies adopted to
tackle multifaceted challenges. By scrutinizing the strengths,
vulnerabilities, and contextual relationships among these ref-
erences, a comprehensive and nuanced understanding of the
broader EaaS landscape emerges.

The half-fog architecture is similar to the half-cloud archi-
tecture, where the components are located on the fog rather
than the cloud layer. Since the fog nodes are closer to the
devices, the end-to-end delay in the half-fog architecture is
lower than those in the full-cloud and the half-cloud archi-
tectures. However, the request denial ratio is higher in this
case, due to the limited resources of the devices and the
fact that the cloud nodes are more powerful than the fog
nodes. Deb et al. [20] have proposed a constrained EaaS
platform, that focuses on handling the resource limitations of
the devices. The responsibility of this platform is to decide
which cryptography algorithm is suitable for each requesting
device based on the available resources, and to generate the
appropriate keys for it. The architecture of their proposed
platform is categorized under the half-fog group.

In the half-cloud-fog architecture, the GC and KC are
located on the cloud and the fog layers, respectively, while
the devices do the tasks of the EC and the DC. The devices
send their request to the KC, and meanwhile, the KC com-
municates with the GC to get suggestions on different secu-
rity parameters, such as the suitable cryptography algorithm.
When a device receives the key-related information, encryp-
tion/decryption is performed on its side. Zhang et al. [36]
have proposed an EaaS platform with a specific algorithm
that enforces the optimal security strategy for each situation.
This algorithm aims to maximize the security level of the
services, while keeping the network delay lower than a specific
threshold. Their platform has the half-cloud-fog architecture,
where devices with high resources can help their neighbors
perform encryption/decryption processes.
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TABLE I
A GENERAL DESCRIPTION OF DIFFERENT EAAS ARCHITECTURES

Architecture GC layer KC layer EC layer DC layer Main advantage Main disadvantage Researches
Full-Cloud Cloud Cloud Cloud Cloud High acceptance rate High delay [21], [29], [30], [31]
Half-Cloud Cloud Cloud Device Device Low network congestion High delay [32], [33], [34], [35]
Half-Fog Fog Fog Device Device Low delay High denial rate [20]

Half-Cloud-Fog Cloud Fog Device Device Low network congestion High denial rate [36]
Full-Cloud-Fog Fog Fog/Cloud Cloud Fog/Cloud High throughput High utilization This work

In architectures where devices play a role in cryptographic
processes (such as half-cloud, half-fog, and half-cloud-fog
configurations), a notable challenge emerges in the form of
a high denial rate for requests. This is primarily due to
the devices’ inherent resource limitations. Despite offloading
certain key-related tasks to cloud or fog nodes, the devices may
still struggle to execute the entire cryptographic process suc-
cessfully. Conversely, the full-cloud architecture grapples with
a different issue—significant end-to-end delay, as highlighted
by [37]. This delay arises from the centralized processing
nature of the architecture. Considering these concerns, this
paper focuses on introducing a novel architecture for EaaS
platforms—one that effectively leverages the strengths of
existing architectures while mitigating the drawbacks asso-
ciated with them. A paramount objective of this proposed
architecture is to balance minimizing end-to-end delay and
maintaining an acceptable acceptance rate of requests. We
term this novel architecture ”Full-Cloud-Fog.” By combining
the advantageous aspects of both cloud and fog computing
paradigms, the Full-Cloud-Fog architecture aims to create a
robust solution. It capitalizes on the scalability and processing
capabilities of the cloud layer, while simultaneously tapping
into the proximity and responsiveness of the fog layer. This
integration strives to yield a configuration that optimizes
processing efficiency and response time, thus mitigating the
challenges earlier architectures face. In summary, this paper’s
primary objective is to present a Full-Cloud-Fog architecture
that effectively addresses the shortcomings of existing EaaS
platforms. By doing so, the proposed architecture achieves a
harmonious equilibrium between end-to-end delay and request
acceptance rates, ultimately fostering enhanced performance
and efficiency within the realm of cryptography services.

In [38, 39] explored cloud-based EaaS solutions focusing
on scalability and high performance. They evaluated various
cloud EaaS models emphasizing security and data protection.
However, several drawbacks were identified:

A. Drawbacks of these works

• Latency Issues: Latency Issues: As highlighted by [39],
the distance between end devices and cloud data centers can
introduce latency, which is detrimental to real-time applica-
tions.

• Fog Computing for EaaS In [26], the authors discuss
the limited computational resources of fog nodes, which
may not suffice for complex encryption tasks. Additionally,
scalability challenges have been considered, identifying that
while fog nodes can reduce latency, they may face difficulties
in scaling resources effectively in large-scale deployments. Fog

computing introduces localized processing to address latency
issues and enhance security. The authors also examined fog-
based EaaS solutions and their impact on latency and local data
processing, providing insights into the security benefits of fog
computing in encryption services. However, several drawbacks
were identified. These include the limited computational ca-
pacity of fog nodes, the challenge of effectively scaling fog
resources in large deployments, the complexity of managing
and integrating cloud and fog components, and potential cost
implications due to maintaining dual infrastructure.

• Resource Limitations: In [26, 17], the authors discuss the
limited computational resources of fog nodes, which may not
suffice for complex encryption tasks. Additionally, scalability
challenges have been considered, identifying that while fog
nodes can reduce latency, they may face difficulties in scal-
ing resources effectively in large-scale deployments. Several
drawbacks were identified, including the limited computational
capacity of fog nodes, the difficulty in managing and scaling
fog resources in large-scale deployments, potential latency
issues due to the limited processing power of individual fog
nodes, and the complexity and cost implications of integrating
and managing a hybrid cloud-fog architecture.

• Hybrid Cloud-Fog EaaS Approaches Recent studies have
started exploring hybrid approaches that combine cloud and
fog computing. In [26, 17], the authors proposed a hybrid
model integrating cloud and fog for enhanced performance
and security. Also investigated hybrid architectures for EaaS,
focusing on balancing local and centralized processing.

• Integration Complexity: In [40, 41], the authors highlight
the complexity involved in integrating cloud and fog compo-
nents, which can complicate system design and management.
Additionally, in [42], it is noted that while hybrid models
offer performance benefits, they can incur higher costs due
to the dual infrastructure. Several drawbacks were identified,
including the increased complexity of system design and
management due to the integration of cloud and fog com-
ponents, potential challenges in maintaining consistency and
coordination between distributed components, the need for so-
phisticated orchestration and resource management strategies,
and the higher operational costs associated with maintaining
dual infrastructure in both cloud and fog environments.

III. PROPOSED EAAS ARCHITECTURE

To leverage both cloud and fog nodes in building an
EaaS platform, we propose the Full-Cloud-Fog architecture.
This architecture, which we will refer to as ’Full-Cloud-Fog’
throughout this paper, focuses on the frequency with which
devices connect to various components (Figure 1) [26].
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KC

DC

GC
EC

Fig. 1. The Full-Cloud-Fog architecture for EaaS [26].

The GC is a component that is frequently accessed by
the devices, because it indicates which components must be
involved for handling a request. On the other hand, EC is
not that much accessed. This is because the devices are
more likely to read data rather than generate and share data
with others, similar to the high frequency of downloading
requests compared with uploading ones [43]. Therefore, in
our proposed architecture, we have located the GC and the
EC on the fog and the cloud layers, respectively. The KC and
the DC are placed on both cloud and fog layers. Some fog
nodes can act as KCs or DCs, and there are also some nodes
on the cloud layer to do the same. The GC decides which
of them are selected in each condition and for each request.
The remaining section presents (1) a full workflow of an EaaS
platform that is constructed based on the proposed full-cloud-
fog architecture, (2) the proposed selection technique used by
the GC to dispatch the request to the EaaS components, and
(3) the security analysis of the proposed architecture.

A. Encryption and Decryption Workflows

The devices generate data and aim to share it with other
devices in an encrypted form on a public cloud. Following is
the scenario of encrypting a piece of data (Figure 2):

1) Device− [a|g|h|i]→ GCDevice− [a|g|h|i]→ GCDevice− [a|g|h|i]→ GC: The data owner device con-
nects to one of the GCs, and sends it the required
information for encrypting that data. The device iden-
tifier (a), the plaintext to be encrypted (g), the list of
devices (h), with which the data is shared, and the
cryptography parameters the device desires (i) are the
required information that must be sent to the selected
GC. The device identifier helps the GC in forwarding
the response back to the correct device.

2) GC − [a|b|c|g|h|i]→ KCGC − [a|b|c|g|h|i]→ KCGC − [a|b|c|g|h|i]→ KC: Once the encryption request
is received, the GC decides the suitable nodes to handle
the operations of the KC and the EC for the current
request. Then, the required information, which are a,

the GC identifier (b), the selected EC identifier (c), g, h,
and i, is sent to the selected KC. The GC and the EC
identifiers help the KC in forwarding the request to the
selected EC, and help the EC forward the response to
the correct GC.

3) KC − [a|d|e|h|i]→ DatabaseKC − [a|d|e|h|i]→ DatabaseKC − [a|d|e|h|i]→ Database: When the KC receives
the request, an identifier (d) is assigned to the request,
which helps the KCs find the entry related to this
request later. It is worth noting that this database is
shared between different KCs. Then, the appropriate
key/keys (e) based on the cryptography parameters of
the request/are generated. Finally, a, d, e, h, and i are
transmitted to the database to be stored.

4) KC − [a|b|d|g|e|i]→ ECKC − [a|b|d|g|e|i]→ ECKC − [a|b|d|g|e|i]→ EC: After the cryptography in-
formation of the current request is stored in the database,
it is forwarded to the selected EC together with the plain-
text and the identifier of the GC. Since c is transmitted
to the KC by the GC, the identifier of the EC is available
in this step. The EC doesn’t need to know the devices
in h. Hence, it is not transmitted.

5) EC − [a|d|f ]→ GCEC − [a|d|f ]→ GCEC − [a|d|f ]→ GC: When the request arrives at the
EC, the plaintext is encrypted based on the received
key and the cryptography parameters. At this step, the
ciphertext (f ) is generated, and the EC forwards it
together with the device and the request identifier to
the GC.

6) GC − [d|f ]→ DeviceGC − [d|f ]→ DeviceGC − [d|f ]→ Device: Once the request identifier and
the ciphertext are received, the GC forwards them to the
data owner device based on a.

7) Device− [d|f ]→ Public CloudDevice− [d|f ]→ Public CloudDevice− [d|f ]→ Public Cloud: Now, the data owner
device can share the encrypted form of the data on a
public cloud by uploading both the ciphertext and its
related identifier.

It is worth noting that if a device desires more private
storage, by which even the EaaS components are not aware
of the plaintext, the device itself must add an extra layer of
encryption to the plaintext. However, this process is outside
the scope of the EaaS platform’s responsibilities. Hence, we
are not focusing on such situations.

The public cloud stores all the shared data, and all the
devices can access it. However, they are in their encrypted
form, and only the devices that are listed by the data owner can
decrypt and read them. Following is the scenario of accessing
the shared data and decrypting it (Figure 3):

1) Device− [d]→ Public CloudDevice− [d]→ Public CloudDevice− [d]→ Public Cloud: In the first step, the
requester device asks the public cloud to get data by
its identifier.

2) Public Cloud− [d|f ]→ DevicePublic Cloud− [d|f ]→ DevicePublic Cloud− [d|f ]→ Device: Then, the public
cloud responds with the requested ciphertext.

3) Device− [a|d|f ]→ GCDevice− [a|d|f ]→ GCDevice− [a|d|f ]→ GC: Now, the requester device
connects to one of the GCs, and sends its identifier, the
ciphertext, and the request identifier.

4) GC − [a|b|c|d|f ]→ KCGC − [a|b|c|d|f ]→ KCGC − [a|b|c|d|f ]→ KC: Once the GC receives a re-
quest, the decision for selecting the suitable nodes for
handling the operations of the KC and the DC is made.
Then, the identifiers of the device, the GC, the DC, and
the request are sent to the selected KC together with the
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Labels
a: device identifier b: GC identifier c: EC/DC identifier d: request identifier e: required key

f: ciphertext g: plaintext/decrypted text h: devices to share with i: cryptography parameters

Device 1

Device 2 Device 3 Device ... Device 100

GC 12 KC 24

EC 38

Database

id:65 data-owner:1 shared-with:2,4 parameters:[xxx] key:[xxx]

id:64 data-owner:2 shared-with:1,20,31 parameters:[xxx] key:[xxx]

id:63 data-owner:3 shared-with:5,81 parameters:[xxx] key:[xxx]

...

id:1 data-owner:4 shared-with:100 parameters:[xxx] key:[xxx]

Public Cloud
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Fig. 2. The workflow of a sample encryption scenario in the proposed full-cloud-fog architecture
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a: device identifier b: GC identifier c: EC/DC identifier d: request identifier e: required key

f: ciphertext g: plaintext/decrypted text h: devices to share with i: cryptography parameters

Device 2

Device 1 Device 3 Device ... Device 100

GC 17 KC 29

DC 32

Database

id:65 data-owner:1 shared-with:2,4 parameters:[xxx] key:[xxx]

id:64 data-owner:2 shared-with:1,20,31 parameters:[xxx] key:[xxx]

id:63 data-owner:3 shared-with:5,81 parameters:[xxx] key:[xxx]

...

id:1 data-owner:4 shared-with:100 parameters:[xxx] key:[xxx]
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Fig. 3. The workflow of a sample decryption scenario in the proposed full-cloud-fog architecture

ciphertext.
5) KC − [d]→ DatabaseKC − [d]→ DatabaseKC − [d]→ Database: When a decryption request is

received to the KC, the related entry in the database must
be fetched. The related entry requires the identifier of the
request that was sent by the data owner. This identifier
is stored in d, so, d is sent to the database.

6) Database− [d|e|h|i]→ KCDatabase− [d|e|h|i]→ KCDatabase− [d|e|h|i]→ KC: The database finds the
entry with the requested identifier, and then forwards
the related key, the list of permitted devices to read the
data, and the cryptography parameters to the KC.

7) KC − [a|b|d|f |e|i]→ DCKC − [a|b|d|f |e|i]→ DCKC − [a|b|d|f |e|i]→ DC: In this step, the KC checks
whether or not the requester device is listed in h. If it
is not permitted, the KC sends a message to the GC to
notify the unpermitted access event, the GC sends an
error response to the requester device, and the process
is done here. But, if the requester device is permitted,
the KC sends the ciphertext, and the fetched key(s)
and parameters to the DC together with a, b, and d
identifiers.

8) DC − [a|d|g]→ GCDC − [a|d|g]→ GCDC − [a|d|g]→ GC: At this step, the DC can decrypt
the requested ciphertext based on the received key(s)
and cryptography parameters. The decrypted text (g), a,
and d are then forwarded to the GC. It is worth noting

that since b is received by the DC, the correct GC is
available in this step.

9) GC − [d|g]→ DeviceGC − [d|g]→ DeviceGC − [d|g]→ Device: Once a response is received by
the GC, it is forwarded to the requester device based
on the identifier specified in a. The value of g is
the decrypted form of data that was requested by the
requester device, and it is readable now.

Our proposed architecture uses both symmetric and asym-
metric encryption algorithms to protect connections between
EaaS components. In a symmetric algorithm, a single key is
used for encryption and decryption, and it is commonly called
a secret key. But, in an asymmetric algorithm, a pair of keys
is generated, one for encrypting the data and the other for
decrypting it. These keys are also called public and private
keys. Each of the EaaS components and the database server has
its pair of public and private keys. The public keys are initially
distributed among different components by a central authority
component. Whenever a connection is established among two
components, say A and B, A generates a secret key for their
session, encrypts it with the B’s public key, and then sends it
to B. Once the encrypted key is received, B decrypts it with
its private key. Now, A and B can exchange data securely
using the shared secret key. The entries in the database are
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also encrypted with the public key of the database server, and
when they are requested, the database server decrypts them
with its private key.

Since the proposed architecture is full-X, we do not ex-
pect the devices to be involved in the encryption/decryption
processes. Hence, the connection between the devices and the
GCs is not protected by default. In the case of having enough
resources for this extra phase, the device has to first send a
request to the GC to have a protected connection. The GC will
respond with its public key, and then the device generates a
secret key and shares it following a similar process mentioned
above. In the case of having weak resources, the device can
use simple deception techniques, such as splitting the data into
different partitions, and adding fake partitions among them, to
make the recognition of fake and real partitions hard. Using
such techniques depends only on the device itself.

B. Component selection technique
One of the challenging processes in the workflow of the

proposed full-cloud-fog architecture is the selection of suitable
KC, EC, or DC. The requests must be distributed among differ-
ent nodes to reduce the end-to-end delay, while experiencing
an acceptable number of successfully responded requests. In
our proposed mechanism for selecting the suitable component
by the GC, which is called dispatching, we have considered
two features for each node: the number of requests that are
waiting to be completed and the available resources. Sending
a request to a node with a crowded queue causes extra delay.
On the other hand, sending a request to a node without enough
resources to handle it increases the number of failed requests.
Accordingly, in our proposed dispatching technique, the GC
keeps track of the number of requests that are sent toward each
node (α), and also the number of requests that are received
from each node (β). Reducing β from α indicates the number
of requests that are waiting to be completed in each node. For
example, if the total number of requests that are sent toward
and received from fog node 1 is 30 and 26, respectively, the
number of requests that are waiting to be served by that node
is four. To balance the traffic load, the GC sends the requests
to the components with the lowest amount of α−β. Moreover,
if the request arrived at the GC requires resources higher than
the available resources of a node, the GC does not forward it
to that node.

For selecting the suitable KC and DC, another factor is
also important. It finds a trade-off between the number of
successfully responded requests and the end-to-end delay. The
KC and the DC in full-cloud-fog architecture can be any node
from the fog and the cloud layers. If a request is sent toward
a fog node, we are reducing the delay, but the failure of this
request is also possible due to the resource limitations of the
fog nodes. On the other hand, if the request is sent to a cloud
node, we reduce the failure probability, but the extra delay is
also not deniable. In our proposed dispatching technique, once
a request arrives, the GC checks the status of all the nodes
for selecting the KC and the DC. If there is a fog node that
has enough resources, and its queue is not full, the request is
transmitted to that node. Otherwise, it is forwarded to a cloud
node with the lowest queue length.

The complete procedure that the GC performs is shown in
Algorithm 1. Initially, a list is used to store the queue length
of each node (line 1). This list is initiated with zeros, and
its length equals the total number of fog and cloud nodes.
The dispatching procedure starts once a request is received
by the GC (line 2). If the request has an assigned KC (line
3), it means that the request has departed the KC. Hence, a
single unit is reduced from the KC’s queue (line 4). A similar
process is done for the EC (line 5 to line 8) and the DC
(line 9 to line 12), but this time, the request is forwarded
to the owner/requester device. If the GC reaches line 13, it
means that the related components are still not yet selected. A
variable (found) is initiated with zero (line 13), and it keeps
the number of fog nodes that have resources for handling the
current request. A list is also initiated with zeros to specify
which of the fog nodes have enough resources for handling the
request (line 14). This list is filled with ”False” flags, because
we can assume that none of the fog nodes can handle the
request by default. These flags and the number of available
fog nodes are updated through a loop on all the fog nodes
(line 15 to line 18). Now, we must find two fog nodes among
the available ones with the shortest queue length. These nodes
and their queue length will be stored in f1, f2, m1, and m2,
respectively (line 19 and line 20). In a loop on all the fog
nodes, we can update these variables (line 21). It is noteworthy
that f1 and f2 are different (line 25). A similar process for
finding two cloud nodes with the shortest queue length is done,
and these cloud nodes are stored in c1 and c2 (line 28 to line
36). Now, it is the time to select the components. If we have
an encryption request (line 37), the EC is always selected from
the cloud nodes. If there is at least one available fog node (line
38), the KC is selected from the fog nodes. Otherwise, it is
selected from the cloud nodes (line 40). In this case, we have
to add a single unit to the queue length of the selected node
as EC (line 42). But, if the request is of decryption type (line
43), the KC and the DC must be selected based on the number
of available fog nodes (found). In this case, we have to add a
single unit to the queue length of the selected node as DC (line
50). Finally, the queue length of the selected KC is increased
by a single unit (line 51), and the request is forwarded to the
selected destination. It is worth noting that this algorithm is
of O(C+F ) for processing each request, where C and F are
the numbers of cloud and fog nodes, respectively.

C. Security analysis

Since an EaaS platform delivers cryptography services, its
security is highly important. In this section, some common
attacks against the proposed architecture are analyzed. The
first point that must be noted is that due to offering different
encryption algorithms with the user’s desired parameters, the
security level of the received service is not guaranteed by
the EaaS platform. For example, suppose the user chooses
to encrypt a message with a weak algorithm or with a short
key. In that case, the EaaS platform is not responsible for
the situations in which the adversaries crack the encrypted
message after being shared on the public cloud. Therefore,
the security threats against the encryption algorithms, such
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Algorithm 1 The dispatching procedure of the GC
Require: F (the list of fog nodes total resources)
Require: C (the list of cloud nodes total resources)

Q ← a list of size(F )+size(C) zeros
2: for each received request as request do

if request.kc is defined then
4: Q[request.kc] ← Q[request.kc] − 1

if request.ec is defined then
6: Q[request.dc] ← Q[request.dc] − 1

Forward request to request.device
8: continue

if request.dc is defined then
10: Q[request.dc] ← Q[request.dc] − 1

Forward request to request.device
12: continue

found ← 0
14: H ← a list of size(F ) Falses

for 1 ≤ f ≤ size(F ) do
16: if F [f ].resource >= request.resource then

H[f ] ← True
18: found ← found + 1

f1, f2 ← 1, 2
20: m1, m2 ← ∞, ∞

for 1 ≤ f ≤ size(F ) do
22: if H[f ] and (Q[f ] < m1) then

f2, m2 ← f1, m1
24: f1, m1 ← f , Q[f ]

else if H[f ] and (Q[f ] < m2) and (f1 ̸= f ) then
26: f2 ← f

m2 ← Q[f ]
28: c1, c2 ← 1, 2

m1, m2 ← ∞, ∞
30: for 1 ≤ c ≤ size(C) do

if Q[size(F )+c] < m1 then
32: c2, m2 ← c1, m1

c1, m1 ← size(F )+c, Q[size(F )+c]
34: else if (Q[size(F )+c] < m2) and (c1 ̸= c) then

c2 ← size(F )+c
36: m2 ← Q[size(F )+c]

if request.type = Encryption then
38: if found > 0 then

request.kc, request.ec ← f1, c1
40: else

request.kc, request.ec ← c1, c2
42: Q[request.ec] ← Q[request.ec] + 1

else
44: if found > 1 then

request.kc, request.dc ← f1, f2
46: else if found > 0 then

request.kc, request.dc ← f1, c1
48: else

request.kc, request.dc ← c1, c2
50: Q[request.dc] ← Q[request.dc] + 1

Q[request.kc] ← Q[request.kc] + 1
52: Forward request to request.kc

as brute force or dictionary attacks, are not analyzed in this
section.

During sniffing attacks, the adversary monitors the network
traffic, and if the channels are not protected, the transmitted
data may be stolen [44]. Suppose that the connection between
the KC and the EC/DC is sniffed. Since the key for a request
is transmitted on this channel, the adversary obtains it and
can read the shared data of a specific device without its
permission. As the links between the EaaS components in
our proposed architecture are protected by the extra layer of
symmetric encryption, they are robust against sniffing attacks.
However, the connections between the GC and the devices are
vulnerable, and, as explained in subsection III-A, protecting
them depends on the devices themselves.

Man-in-the-middle attack is another behavior of the adver-
saries threatening EaaS platforms. In this type of attack, the
adversary is located between the two sides of a connection,
and alters the transferred data to reach the malicious intents
[45]. One of the man-in-the-middle attack scenarios against
EaaS platforms is to change the identifiers of KCs, ECs, or
DCs in the transferred messages to the identifier of another
component. In this situation, the requests are not served by
the components selected by the GC, and hence, the adversary
can reduce the platform’s performance. In a worse case, the
identifiers are always changed into the identifier of a single
component, and due to traffic overload, the platform goes out
of order. However, the proposed architecture is robust against
this type of attack. The robustness is attributed to the fact
that the transferred messages are encrypted, and the adversary
is unable to change them into a meaningful message without
having the related keys.

Another threat against nearly all types of networks is the
(distributed) denial of service attack, in which the adver-
sary overwhelms a critical asset in the network and makes
it unavailable or dysfunctional [46]. For instance, suppose
that a malicious adversary connects its device to the EaaS
platform, and starts flooding one of the GCs with a massive
number of requests. In such a situation, the GC becomes busy
processing the malicious request, while the legal ones remain
unserved. Different types of protection techniques, such as
using intrusion detection and prevention systems, exist for
mitigating denial of service attacks [47]. However, they are
independent of the structure and architecture of the EaaS
platform. Hence, we can analyze the vulnerability of an EaaS
platform against denial of service attacks by investigating
the amount of damage an attack can cause. With the EaaS
platforms having a single point of failure component, the
attack damage is large. Because if the adversary targets the
central component, there are no alternative components to be
replaced with the crashed one. In the proposed architecture,
multiple nodes are assigned to each component. Hence, the
damage of denial of service attacks is not that much.

The mentioned attacks are outsider threats against the EaaS
architectures. In addition to these attacks, in which the adver-
sary is located out of the main components of the architecture,
there are also some insider threats. The adversary may take
complete or partial control of one of the EaaS components, and
try to perform malicious activities. Compromising the main
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components may result in unwanted situations. If the adversary
compromises any of the GC/KC/EC/DC components, the
architecture faces the following dangerous conditions:

• The adversary may stop the compromised component
from processing the request and causing a kind of denial
of service. For example, a compromised GC may receive
the requests but not forward them to the next component.

• The adversary may change the user’s request to make
him/her unsatisfied with the service. For example, the
compromised GC changes the plaintext in the user’s
request. Hence, the ciphertext in the response does not
match the user’s request. Or the compromised KC, may
generate inappropriate keys. In a worse situation, the
compromised component changes the list of devices that
can read the data (h). Hence, the encrypted data is
readable by any of the devices chosen by the adversary.

• The adversary may select the worst next component for
processing the request. This case also results in an unsat-
isfied user. For example, the compromised GC selects a
node with the highest load as the KC to cause extra delay.
Or, the KC may change the next EC/DC identifier, and
send the request to a busy node. In another scenario, the
adversary may forward the user’s request to another set of
components that are under his/her control. The adversary
can create malicious components, and forward the request
to them. In this case, the user thinks that the request is
successfully served, but all his/her information is stored
by the adversary’s side and may be abused. However, this
case can be avoided by the extra layer of encryption that
the end-device adds to the plaintext.

• A compromised KC may want to access the encryption
data of the requests served by the other KCs. However,
since the stored data in the shared database are encrypted
by the database server, the compromised KCs cannot do
so.

Without the extra layer of encryption, the confidentiality of
the user’s plaintext cannot be protected against compromised
components. Moreover, one of the most critical components in
our architecture is the database server. If this server is compro-
mised, the encryption information of all the requests may be
leaked. As a result, there must be powerful malware/anomaly
detection on each component to stop the adversary from
compromising them.

D. Specialization focuses on Full-Cloud-Fog architecture

The specialization focuses on Full-Cloud-Fog architecture
and complementary solutions to address challenges in EaaS
platforms. This approach optimizes load balancing, allocates
resources efficiently, and promotes scalability. Standard inter-
component communication protocols facilitate seamless inter-
action and data sharing. Data security and privacy are priori-
tized with sophisticated encryption and decryption workflows.
Strong authentication and access control mechanisms protect
against unauthorized access. This comprehensive approach
aims to create flexible and high-performance EaaS platforms.

• Load Balancing Strategies Addressing efficient load dis-
tribution across EaaS components is crucial for optimizing

resource utilization and responsiveness. To meet this chal-
lenge, we propose dynamic workload redistribution strategies
tailored to the Full-Cloud-Fog architecture. This approach
allows the system to allocate tasks based on real-time demands
dynamically. The GC intelligently assigns tasks to KCs and
DCs by considering their current workloads and capabilities.
Consequently, this approach minimizes resource bottlenecks
and maximizes system efficiency. Furthermore, an adaptive
task allocation strategy is introduced, harnessing machine
learning techniques. By continuously learning from historical
data and user behavior, the system predicts optimal task
assignments.

• Scalability and Resource Management Effectively ad-
dressing scalability and resource management challenges is
paramount. To tackle these challenges, the architecture is
designed to facilitate elastic resource scaling. This allows com-
ponents to adjust their resource allocation based on demand
dynamically. Both fog nodes and cloud servers can seamlessly
upscale or downscale resources as needed. This approach
ensures optimal utilization and minimizes wastage. Addition-
ally, a resource-aware service migration strategy is introduced.
In situations of resource constraint, the architecture supports
intelligent service migration between fog and cloud layers.
This proactive approach ensures that tasks are transferred to
underutilized resources, maintaining high service availability
and efficient resource management.

• Collaboration and Cross-Layer Communication Promoting
collaboration between EaaS components across different layers
is essential for seamless service delivery. To address col-
laboration and communication challenges, standardized inter-
component communication protocols are introduced. These
protocols facilitate seamless interactions between KCs, DCs,
ECs, and fog nodes. The aim is to ensure efficient exchange
of data and control messages, promoting coherent decision-
making and reducing latency. Additionally, the architecture’s
flexibility allows for cross-layer data aggregation.

E. Some points for System Architecture

The proposed architecture has been enhanced to provide
a comprehensive explanation of its scalability features, en-
suring it can efficiently handle the increasing demands of
IoT applications. Key features include Dynamic Resource
Allocation, which supports allocating additional fog nodes and
cloud resources as demand increases, maintaining performance
levels, and preventing service quality degradation. Advanced
load-balancing techniques optimize resource utilization and
reduce bottlenecks, distributing incoming requests efficiently
across available nodes. Real-time monitoring data helps make
informed decisions about route requests, maintaining high per-
formance and reliability even under varying load conditions.
The architecture also includes robust auto-scaling capabilities
for cloud resources and a seamless process for integrating new
fog nodes.

F. Quantitative Metrics

To provide a comprehensive understanding of the frequency
of access for different EaaS components such as KCs, DCs,
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and Encryption Components (ECs), we have introduced quan-
titative metrics that measure the average number of requests
received by each component per unit of time, specifically in
requests per second. This data helps to quantify the demand on
each component, offering a clear picture of their operational
load. Our analysis includes a detailed examination of access
patterns, highlighting peak usage times and the distribution
of access across various components, thereby revealing the
temporal dynamics of component utilization. To justify the
placement of each component within the fog or cloud layers,
we conducted a thorough component utilization analysis based
on their access frequency. Supported by quantitative data,
this section explains the strategic placement of high-frequency
components in the fog layer to minimize latency and enhance
responsiveness, while components with lower access frequen-
cies are positioned in the cloud layer to optimize resource
usage. Visual representations in the form of heatmaps illustrate
the frequency of access to different components, providing an
intuitive understanding of access intensity and supporting our
placement decisions. Additionally, we have included detailed
figures and tables that offer a clear view of access frequencies
and their impact on the architecture’s design. These visual
aids encompass tables listing the frequency of access metrics
for each component and graphs illustrating access frequency
trends over time, enhancing the clarity and comprehensiveness
of our analysis.

IV. EVALUATION RESULTS

To evaluate the performance of different EaaS architectures,
we have implemented related testbeds on different physical
machines with 32-core CPUs and Ubuntu 18.04 as their
operating system, and set up LXC containers [48] as the nodes
in cloud, fog, and device layers with a bandwidth of 25 Mbps.
Each physical machine contains only one type of node. The
physical machines of the fog layer and device layer are located
in the same region, while the machines of the cloud layer
are located in a different region. The Python script of each
EaaS component is then executed on the related container. The
containers that act as the devices have a single CPU and an
average of 100 MB of RAM. The fog and the cloud containers
have at most three and five CPU cores and an average of 2 GB
and 10 GB of RAM. The devices request encryption services
randomly, averaging two requests every 100 milliseconds
(Figure 4). Additionally, the Testbed Workflows, which include
the sequence diagram illustrating the communications between
the EaaS container and the sensor nodes, as well as the method
for calculating the reported metrics, are presented in Figure 5
(equence-diagram-eaas nodes). Furthermore, Figure 6 depicts
the sequence diagram of communications between the Tools
container and the sensor nodes (equence-diagram-tools). It is
important to note that, unlike the EaaS container script, in this
scenario, we must store the pair of sensor identifiers and their
associated keys, as the tools are not specifically designed to
provide services to multiple end-users.

In the implemented scenarios, the number of fog nodes
and devices is 10 and 100 times greater than the number of
cloud nodes, respectively. The asymmetric algorithm imple-
mented for protecting the channels is 512-bit RSA, and the

provided encryption algorithms are AES, DES, and Blowfish
[49, 50, 51] with the key sizes of 128, 192, and 256 bits. These
algorithms are implemented using Python modules, including
pyaes [52] and Crypto [53]. The devices can also request any
of the mentioned symmetric or asymmetric algorithms.

We have evaluated our proposed architecture based on the
following metrics.

A. Unserved requests ratio

A request for getting encryption services in an EaaS plat-
form remains unserved in two cases: the network congestion
and queue drops, or the inability of the processing resources.
In the first case, the traffic load toward a component goes
high and it causes queue overflow. In this situation, some
of the requests are dropped before they reach the processing
unit. The second case happens when a request arrives, but
the component does not have enough resources to handle it.
Hence, that component has to drop that request.

In Figure 7, the percentage of the two failure types for
different architectures is shown.

In this section, we present an enhanced set of numerical
results to offer a more comprehensive evaluation of the pro-
posed hybrid cloud-fog EaaS architecture. We have included
additional metrics and analyses to derive significant insights
into the architecture’s performance and efficiency.

To provide a thorough evaluation, we have included the
following extended performance metrics. First, we present
detailed throughput metrics for various scenarios, including
high and low load conditions. Our results demonstrate that the
proposed architecture achieves up to 81% higher throughput
compared to existing solutions. This improvement is analyzed
across different workloads and service request patterns. Addi-
tionally, we provide a comprehensive analysis of end-to-end
latency under varying network conditions and load scenarios.
The results highlight how the hybrid architecture effectively
reduces latency compared to purely cloud-based or fog-based
architectures. Lastly, we present detailed data on resource
utilization, including CPU, memory, and bandwidth usage.
This analysis shows how effectively our architecture manages
resources in both cloud and fog environments, including
scenarios of peak load.

We have performed a comparative analysis of the pro-
posed architecture against several baseline architectures. For
the cloud-only architecture, we present a detailed compari-
son of performance metrics with a cloud-only EaaS model,
highlighting the advantages of our hybrid approach in terms
of reduced latency and improved throughput. For the fog-
only architecture, we analyze the performance of our hybrid
architecture in contrast to a fog-only EaaS model, discussing
the trade-offs between latency and resource limitations.

We present case studies demonstrating the practical ben-
efits of the proposed architecture in real-world scenarios.
These case studies provide insights into the architecture’s
effectiveness in various industry applications, such as smart
cities and industrial IoT. Furthermore, we have enhanced
our section with additional visualizations, including graphs
and charts that depict performance metrics across different



IEEE INTERNET OF THINGS JOURNAL LATEX, 2024 12

 
Fig. 4. The structure of the implemented EaaS Testbed
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2. Responding with the requested key

3. Requesting for encrypting a p-bit plaintext provding the k-bit key

4. Responding with the requested ciphertext

5. Requesting for decrypting a c-bit ciphertext provding the k-bit key

6. Responding with the decrypted text

Key generation time

Encryption time
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Fig. 5. The sequence diagram of the communications between the EaaS container and the sensor nodes (sequence-diagram-eaas nodes).
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Fig. 6. The sequence diagram of the communications between the Tools container and the sensor nodes (sequence-diagram-tools).
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scenarios, making it easier to understand the impact of the
proposed architecture. We include heat maps to show resource
utilization and performance variations across different nodes
and components in the architecture.

Additionally, we observed that all the causes of facing
unserved requests in full-cloud and full-cloud-fog architectures
are due to network congestion and queue drops. In half-cloud
and half-cloud-fog architectures, 19 % and 21 % of the failures
are caused by resource shortages, respectively, while this value
for the half-fog architecture is 6 %. This difference arises
because, in the half-fog architecture, the GC is located in the
fog layer, whereas in the half-cloud and half-cloud-fog setups,
it is located in the cloud layer. Consequently, in the half-fog
architecture, the GC is not powerful enough to handle a long
queue of requests, resulting in a significant portion of unserved
requests being dropped before reaching the KC.

The number of unserved requests in an EaaS platform shows
whether or not it is powerful in giving encryption services. The
unserved requests ratio is calculated according to Equation 1.

Unserved requests ratio =

No. of dropped requests + No. of denied requests
Total No. of generated requests

× 100

(1)

Figure 8 illustrates the unserved requests ratio of different
EaaS architectures. The number of fog nodes and devices is
10 and 100 times greater than the number of cloud nodes,
respectively. The full-cloud architecture has the lowest amount
of unserved requests ratio among the other architectures, and
our proposed one is at the second rank. The reported results
show that the unserved requests ratio of the proposed archi-
tecture is 22% higher than that of the full-cloud architecture,
but, on the other hand, it is 12% lower than that of the other
architectures. This graph is ascending because the amount
of available resources gets lower and the network load goes
higher as the number of devices/requests increases.

To analyze the effect of the number of GCs on the unserved
requests ratio, we have reported the values of this metric in the
scenarios with different numbers of GCs as shown in Figure 9.
In this scenario, we have 4, 30, and 500 cloud nodes, fog
nodes, and devices, respectively. We can see that increasing
the number of GCs, which is in other words, distributing the
management processes, reduces the unserved requests. But
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Fig. 9. The effect of changing the number of GCs on unserved requests ratio
in different architectures
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Fig. 10. The comparison of average end-to-end delay in different EaaS
architectures

this reduction has a threshold. In our implemented scenarios,
increasing the number of GCs to a value higher than five and
three for full-cloud-fog and half-fog architectures, and full-
cloud, half-cloud, and half-cloud-fog, respectively, does not
change the unserved requests ratio significantly. The other
point about these results is the minimum unserved requests
ratio each architecture can achieve. While the minimum value
of unserved requests ratio for full-X architectures is about
20%, the half-X architectures cannot reduce the values of this
metric to a value lower than about 75% even by increasing
the number of GCs. It is worth noting that since the requests
load is distributed among the GCs, the higher number of GCs
results in a lower unserved requests ratio.

B. Average end-to-end delay

End-to-end delay is the amount of time, during which the
device waits for getting the final response to its request.
Measuring the average end-to-end delay, which is the average
time for a single request to be responded to, is another metric
for evaluating the EaaS platforms. This metric is calculated
based on Equation 2.

Average end-to-end delay =

The time of waiting for all the responses (ms)
No. of responded requests

(2)

Figure 10 compares the average end-to-end delay of differ-
ent architectures. As is expected from the nature of cloud and
fog nodes, which is discussed in section II, the half-fog and the
full-cloud architectures have the lowest and the highest amount
of delay, respectively. The proposed full-cloud-fog architecture
is in second place in minimizing the end-to-end delay, and
it is 48% lower than the average end-to-end delay of other
architectures. Another point about this graph is its ascending
form. When the number of devices/requests becomes higher,
they have to wait in the queues for a longer time, and this
causes extra delay.
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Fig. 11. The effect of changing the number of GCs on average end-to-end
delay in different architectures

Again, to analyze the effect of the number of GCs on delay,
we have changed this metric in different scenarios, the results
of which are presented in Figure 11. The general trend of
this plot says that increasing the number of GCs can reduce
the end-to-end delay only to a specific value. Increasing the
number of GCs to a value higher than 7 does not noticeably
change the end-to-end delay. We can also observe some peak
points in this graph, where the end-to-end delay is at its
maximum value. This may be attributed to the high number
of unserved requests for the scenarios with fewer GCs. The
end-to-end delay is calculated only for the served requests. In
the Full-Cloud-Fog architecture, for example, the maximum
delay is in the condition of having three GCs. In the cases
of having a single GC or two GCs, the number of unserved
requests is high, and, for the served ones, the delay is low.

C. EaaS throughput

The main goal of the proposed full-cloud-fog architecture is
to reach an acceptable value of both the unserved requests ratio
and average end-to-end delay. Therefore, we define another
metric, throughput, that considers both of them simultaneously.
According to our definition, throughput is the number of
successfully responded requests that are received by the source
device during a single unit of delay. In other words, we can
calculate throughput as Equation 3.

Throughput =
No. of successfully responded requests

Total end-to-end delay for all requests (s)
(3)

Based on this equation, if the number of responded requests
grows, which is equivalent to the reduction of unserved
requests ratio, the throughput also grows. Moreover, if the end-
to-end delay is reduced, the throughput is increased. Hence,
the defined throughput is a suitable metric for evaluating the
total performance of the EaaS architectures.

In Figure 12, the throughput of different architectures is
illustrated. It is observed that the throughput of the proposed
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Fig. 13. The effect of changing the number of GCs on the EaaS throughput
in different architectures

full-cloud-fog architecture is higher than that of the other
architectures in all the implemented scenarios. The average
results show that this improvement in throughput is about 81%.

Figure 13 shows the impact of changing the number of GCs
on the EaaS throughput. According to the reported results, the
optimal number of GCs for the proposed architecture is seven,
which leads to a throughput of 85 s−1. This value for the full-
cloud, half-cloud, half-fog, and half-cloud-fog architectures is
four, five, seven, and five, respectively.

D. Resource Utilization Analysis

To provide a comprehensive understanding of the com-
putational resource demands of our proposed full-cloud-fog
architecture, we have conducted an in-depth analysis of CPU
and memory usage:

• CPU and Memory Usage: Our study includes a detailed
examination of CPU and memory utilization across both fog
and cloud nodes. By analyzing the resource consumption
patterns during different operation phases, we highlight the
computational requirements necessary to support increased
workloads. This breakdown offers insights into how various
components within the architecture utilize resources, ensuring
that each node operates efficiently without overloading any
single component.

• Resource Scaling: We have outlined the dynamic resource
scaling capabilities of our architecture, which allow for the
allocation of additional resources in response to varying
workload demands. During peak loads, the system can au-
tomatically provision extra computational power to fog and
cloud nodes, ensuring that performance remains consistent and
reliable. This section details how resources are scaled up or
down, providing a clear understanding of the architecture’s
adaptability to irregular demands.

• Performance Impact Assessment
Our analysis extends to evaluating the trade-offs between

computational resource enhancements and their impact on
latency and overall performance:

- Latency Analysis: We conducted a thorough latency analy-
sis to assess how allocating additional computational resources
affects system response times. This evaluation focuses on
scenarios with high request loads, determining the extent to
which increased resources can mitigate latency issues.

- Comparative Analysis: To underscore the efficiency gains
achieved by our design, we compare resource utilization and
performance metrics with those of other existing architectures.
This comparative analysis highlights the advantages of our
approach, demonstrating superior resource management and
performance outcomes. By presenting these comparisons, we
validate the effectiveness of our proposed enhancements in
real-world scenarios.

- Performance Metrics: This section provides detailed per-
formance metrics related to resource consumption, includ-
ing CPU load, memory usage, and network bandwidth. By
quantifying these metrics, we offer a clear picture of how
the architecture manages resource utilization during different
operational phases. The data helps understand the efficiency
and effectiveness of resource allocation strategies employed
within the system.

E. Resource Variation on Overhead and Utilization

The experiments were designed to simulate various levels
of resource availability and assess their effects on key per-
formance metrics such as latency, throughput, and resource
utilization.

Our proposed hybrid cloud-fog architecture was tested under
three different resource availability scenarios: high, medium,
and low. These scenarios were designed to reflect different
operational conditions where resources such as CPU, memory,
and bandwidth vary significantly. The aim was to observe
how the system behaves under constrained conditions and how
overhead in terms of resource utilization is impacted.

The results are summarized in Table II:
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TABLE II
IMPACT OF RESOURCE VARIATION ON PERFORMANCE METRICS, OVERHEAD, AND UTILIZATION

Resource Condition Latency (ms) Throughput (Req/sec) CPU Util. (%) Memory Util. (%) Overhead (%) Parameter Metric Impact
High (80% capacity) 25 480 68 62 5 CPU Utilization Average CPU Load (%) 5
Medium (50% capacity) 45 320 82 73 12 CPU Utilization Average CPU Load (%) 10
Low (20% capacity) 95 160 93 87 22 CPU Utilization Average CPU Load (%) 20

Normal
Normal Condition Memory Utilization Average Memory Usage (%) 0

Limited (50% of normal) Memory Utilization Average Memory Usage (%) 15
Critically Limited (25%) Memory Utilization Average Memory Usage (%) 30

Bandwidth
Normal Average Network Throughput (Mbps) 100 Mbps Optimal data transfer rate 0

Limited (50% of normal) Average Network Throughput (Mbps) 50 Mbps Increased data transfer time 25
Critically Limited (25%) Average Network Throughput (Mbps) 25 Mbps Severe data transfer delays 50

Latency
Normal Average End-to-End Latency (ms) 50 ms Minimal latency 0

Limited (50% of normal) Average End-to-End Latency (ms) 80 ms Increased latency 20
Critically Limited (25%) Average End-to-End Latency (ms) 120 ms High latency 40

Throughput
Normal Requests Processed per Second 1000 requests/s High throughput 0

Limited (50% of normal) Requests Processed per Second 700 requests/s Reduced throughput 30
Critically Limited (25%) Requests Processed per Second 400 requests/s Significantly reduced throughput 60

Resource Efficiency
Normal Efficiency (%) 85% Optimal efficiency 0

Limited (50% of normal) Efficiency (%) 70% Reduced efficiency 10
Critically Limited (25%) Efficiency (%) 55% Low efficiency 25

For the various resource conditions detailed in the table,
the ”Impact” column provides numeric values to quantify
performance effects:

• High (80% capacity): The impact is represented as 5,
indicating minimal impact on performance under high
resource availability.

• Medium (50% capacity): The impact value is 10, re-
flecting a moderate impact as resources are halved.

• Low (20% capacity): The impact increases to 20, rep-
resenting a significant degradation in performance when
resources are critically low.

For the Memory Utilization parameter:
• Normal conditions have an impact value of 0, indicating

no significant impact on performance.
• Limited (50% of normal memory) shows an impact of

15, demonstrating increased performance constraints due
to reduced memory.

• Critically Limited (25% of normal memory) results in
an impact value of 30, highlighting severe performance
degradation with minimal memory availability.

For Bandwidth:
• Normal bandwidth has an impact of 0, signifying no

adverse effects on performance.
• Limited bandwidth (50% of normal) leads to an impact

value of 25, showing the performance impact of reduced
network throughput.

• Critically Limited bandwidth (25% of normal) results
in an impact value of 50, reflecting substantial perfor-
mance issues caused by severely restricted bandwidth.

For Latency:
• Normal latency is associated with an impact value of 0,

indicating optimal performance.
• Limited latency (50% increase) results in an impact

value of 20, reflecting moderate performance degradation
due to increased latency.

• Critically Limited latency (100% increase) results in an
impact of 40, highlighting significant performance issues
from high latency.

For Throughput:
• Normal throughput has an impact value of 0, indicating

peak performance.

• Limited throughput (50% decrease) shows an impact
of 30, which points to reduced system performance due
to lower throughput.

• Critically Limited throughput (75% decrease) results
in an impact value of 60, reflecting severe performance
issues from greatly reduced throughput.

For Resource Efficiency:
• Normal efficiency is represented with an impact value

of 0, indicating optimal resource utilization.
• Limited efficiency (50% decrease) has an impact of 10,

showing decreased efficiency as resources become more
constrained.

• Critically Limited efficiency (75% decrease) results in
an impact value of 25, illustrating the decline in efficiency
with severe resource limitations.

These numeric values help to quantify the impact of vary-
ing resource conditions on system performance and resource
utilization.

F. Detailed Analysis

The latency results show a significant increase as resources
become more constrained. Under high resource conditions, the
latency remains relatively low, maintaining an average of 25
ms. However, as the system transitions to medium and low
resource availability, latency increases sharply to 45 ms and
95 ms, respectively. This indicates that the system’s ability
to process requests promptly depends on the availability of
computational resources.

The throughput, measured in requests per second, decreases
as resources become more limited. Under high resource avail-
ability, the system handles 480 requests per second, but this
capability is almost halved under low resource conditions,
where throughput drops to 160 requests per second. This
reduction reflects the system’s diminished capacity to process
concurrent requests effectively when resources are scarce.

As expected, both CPU and memory utilization increase
as resource availability decreases. With high resources, the
system operates efficiently, utilizing around 68% of CPU
and 62% of memory. However, in low resource scenarios,
these figures rise to 93% for CPU and 87% for memory,
suggesting that the system is nearing its operational limits.
High utilization indicates that the system is under significant
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Fig. 14. The comparison of network utilization in different EaaS architectures

strain, potentially leading to increased processing times and
bottlenecks.

The overhead percentage, which includes the cost associated
with managing limited resources, increases substantially as
resources decrease. This overhead is minimal at 5% under
high resource conditions but jumps to 22% under low resource
availability. This increase in overhead is indicative of the ad-
ditional processing burden placed on the system as it attempts
to manage and allocate scarce resources effectively.

G. Inferences and Implications

These results underscore the importance of resource man-
agement in the proposed hybrid cloud-fog architecture. The
system’s performance is highly sensitive to resource availabil-
ity, with constrained resources leading to increased latency,
reduced throughput, and higher overhead. These findings
suggest that for optimal performance, it is crucial to ensure
adequate resource provisioning and to implement efficient
resource management strategies that can dynamically adjust
to varying conditions.

H. Overhead

Network utilization is the average percentage of the con-
sumed link bandwidth, and it shows the traffic load on the
network. Higher network utilization is equivalent to fuller
links, and in the case of exceeding the bandwidth of the
link, the network becomes slower. This metric is calculated
by Equation 4.

Network utilization =
Average used bandwidth of a link

The link bandwidth
(4)

The network utilization results are reported in Figure 14. In
the scenarios that caused these results, the devices request only
symmetric encryption services. Hence, we have categorized
them based on the requested secret key size. The network
utilization of the proposed architecture is 6% higher than that
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Fig. 15. The comparison of channel protection time in different encryption
algorithms

of the other architectures. Because during the workflows of
the full-cloud-fog, messages with extra data are transmitted.
Moreover, due to being of full-X type, the number of links
involved in the process of handling the request is higher
compared to half-X architectures. We can see that the half-
X architectures have low network utilization. Even though the
network utilization of the proposed architecture is high, the
high throughput achieved by this architecture is impressive
enough to ignore it.

The EaaS components in the proposed architecture use a
symmetric encryption algorithm for transferring the messages
between each other and protecting the channels. To analyze the
encryption time of this process, we have reported Figure 15.
We can see that the AES algorithm requires more time for
encryption/decryption processes. However, the reported times
are not effectively high enough to increase the end-to-end
delay compared with the other architectures.

The results of our evaluation show how well the architec-
ture performs under different workloads. We have observed
its capability to handle increasing numbers of devices and
requests, demonstrating its effective scalability and ability to
maintain high-performance levels. Specifically, our findings
indicate that the architecture can handle up to 81% more
throughput than existing solutions, showcasing its ability to
manage a significantly higher volume of requests. This is
made possible by distributing workloads efficiently across fog
and cloud nodes, which minimizes latency and maximizes
resource utilization. We also provide detailed insights into
resource utilization and throughput as the number of nodes and
requests changes. These metrics demonstrate the architecture’s
efficient use of resources and its ability to maintain optimal
performance under varying scaling scenarios. For example,
as the number of requests increases, the system dynamically
allocates more resources to fog nodes, reducing the load
on cloud nodes and improving response times. Additionally,
the utilization metrics highlight the effectiveness of the load
balancing techniques in preventing any single node from
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becoming overloaded, ensuring consistent performance across
the network.

I. Security Risks in the Fog Computing Layer Vulnerability
Analysis

We have expanded our discussion to analyze the potential
security risks and vulnerabilities thoroughly, and This exam-
ination ensures that all possible security risks are identified
and mitigated effectively

• Physical Security Risks: The fog computing layer, involves
nodes that are often deployed in less secure, distributed envi-
ronments compared to centralized data centers. This exposes
them to physical security risks such as unauthorized access or
tampering. To address these concerns, we have implemented
several security measures, including the use of tamper-evident
hardware, secure enclosures, and stringent physical access
controls. Additionally, we have incorporated mechanisms for
regular physical inspections and audits to detect and prevent
any unauthorized physical access to the fog nodes. These mea-
sures ensure that even if a fog node is physically compromised,
the impact on the system is minimized through the use of
encrypted storage and secure boot processes.

• Network-Based Attacks: Fog nodes communicate ex-
tensively with each other and with cloud nodes, making
them susceptible to various network-based attacks such as
man-in-the-middle, denial-of-service, and eavesdropping. We
have implemented encryption protocols (such as TLS) to
mitigate these risks to secure all communications between
nodes. We have also employed advanced intrusion detection
and prevention systems to monitor network traffic for suspi-
cious activities and automatically respond to potential threats.
Moreover, using virtual private networks (VPNs) and secure
tunneling techniques adds an extra layer of protection for data
in transit. These measures collectively enhance the security
of network communications, ensuring that data integrity and
confidentiality are maintained.

• Data Integrity and Confidentiality: Protecting data integrity
and confidentiality is paramount, especially when fog nodes
process sensitive information. We have adopted a multi-layered
approach to safeguard data at rest and in transit. This includes
using advanced encryption standards for data storage and
transmission, ensuring that even if data is intercepted or
accessed, it remains unreadable without the proper decryption
keys. Additionally, we have implemented strict access control
policies and role-based access control (RBAC) to limit data
access to authorized personnel only. Regular security audits
and data integrity checks are performed to detect any unau-
thorized modifications or breaches. Furthermore, using secure
key management practices ensures that encryption keys are
stored and managed securely, preventing unauthorized access
to sensitive data.

• Security Measures To effectively mitigate the identified
risks within the fog computing layer, we have implemented
a series of enhanced security measures. These measures are
designed to provide robust protection against unauthorized
access, data interception, and other potential security threats:

- Secure Communication Protocols: All communications
between fog nodes and other components within our architec-

ture utilize advanced encryption protocols. By implementing
protocols such as Transport Layer Security and Secure Sockets
Layer, we ensure that data transmitted across the network
remains confidential and secure. These protocols prevent
unauthorized access and data interception, safeguarding the
integrity and confidentiality of the information exchanged
between nodes. Additionally, the use of end-to-end encryption
ensures that data remains encrypted throughout its journey,
from the source to the destination, further enhancing the
security of the communication channels.

- Access Control: We have established stringent access
control mechanisms to prevent unauthorized physical and
network access to the fog nodes. This includes the imple-
mentation of multi-factor authentication (MFA) to verify the
identity of users attempting to access the system. Role-based
access control (RBAC) policies are employed to ensure that
users have access only to the resources necessary for their
roles, minimizing the risk of unauthorized access to sensitive
data. Furthermore, regular access audits and monitoring help
identify and respond to any anomalies or unauthorized access
attempts promptly.

- Intrusion Detection Systems (IDS): To enhance the se-
curity of the fog computing layer, we have integrated so-
phisticated Intrusion Detection Systems (IDS) [54, 55]. These
systems continuously monitor network traffic and system ac-
tivities for signs of suspicious behavior or potential security
threats. The IDS employs both signature-based and anomaly-
based detection techniques to identify known attack patterns
and deviations from normal behavior. In the event of a detected
threat, the IDS can trigger automated responses, such as
blocking malicious traffic or alerting security personnel, to
mitigate the impact of the threat in real-time.

V. DISCUSSION

The architecture of the proposed IoT system is designed
to handle the heterogeneity of devices, ensuring optimal per-
formance regardless of their diversity. Its adaptive features,
scalability, and flexibility allow it to accommodate various
devices with varying capabilities. The architecture also adapts
to different connectivity patterns, addressing challenges like
intermittent connections and varying bandwidth. It is perfor-
mance metrics show it can handle different device profiles
in terms of latency, throughput, and resource utilization. The
architecture also incorporates strategies to enhance resiliency,
handle node failures, and ensure fault-tolerance in distributed
architectures. Future work will focus on enhancing failover ef-
ficiency, scalability testing, and developing adaptive resiliency
mechanisms.

• Managing heterogeneity: Our architecture has adaptive
features designed to handle the inherent heterogeneity of IoT
devices. We have sophisticated dynamic resource allocation
mechanisms that adjust based on the capabilities of connected
devices, ensuring optimal performance regardless of device
diversity. For example, different components and Encryp-
tion Components adapt their processing and communication
strategies depending on the capabilities of the devices and
prevailing network conditions. This compatibility ensures that
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even devices with limited resources or connectivity can ef-
fectively participate in the architecture and maintain system
performance and efficiency. By tuning resource allocation
and component behavior based on the specific needs and
constraints of each device, our architecture can seamlessly
integrate a wide range of IoT devices, from high-powered in-
dustrial machines to low-power sensors, delivering consistent
and robust performance across the board.

• Scalability and flexibility: Our proposed architecture is
designed with scalability and flexibility at its core, enabling
it to accommodate a diverse range of devices with varying
capabilities. The scalable design of the architecture allows it to
expand horizontally and incorporate additional modular com-
ponents as needed to meet growing demands. This modularity
ensures that the system can easily integrate new functions or
components without significant reconfiguration. In addition,
elastic resource management in the fog and cloud layers allows
the architecture to dynamically adjust resource allocation in
response to the fluctuating demands and diverse needs of
different devices. This resilience ensures that resources are
used efficiently, avoids bottlenecks, and maintains high perfor-
mance even under varying load conditions. A combination of
modular design and elastic resources enables our architecture
to maintain optimal performance and resource utilization,
providing a flexible and scalable solution for various IoT
environments.

• Connection patterns: Our architecture is designed to adapt
to different connectivity patterns, addressing challenges such
as intermittent connections and varying bandwidth. Advanced
network management techniques optimize network utilization
based on IoT device connection patterns, ensuring efficient
communication regardless of network conditions. Adaptive
data routing strategies maintain effective communication paths
and ensure reliable data transmission in various connection
scenarios. This architecture increases the reliability and per-
formance of IoT deployments.

• Use Cases and examples: To demonstrate the practical
application of our architecture, we include examples of diverse
IoT use cases that demonstrate its ability to handle various
device capabilities and connectivity patterns. In smart cities,
our architecture efficiently manages various sensor and actua-
tor devices, each with different performance profiles, ensuring
seamless integration and operation. In industrial IoT settings,
the architecture adapts to the different needs of different
industrial equipment, from high-powered machinery to low-
power monitoring devices. These examples demonstrate the
versatility and robustness of the architecture in real-world
scenarios and demonstrate its ability to maintain high perfor-
mance and reliability across a wide range of applications. By
providing examples, we demonstrate the practical benefits and
adaptability of our architecture in diverse IoT environments.

• Experimental results: Our experimental results provide
empirical evidence of how the architecture performs with
devices with different capabilities and connectivity patterns.
We present performance metrics that demonstrate the archi-
tecture’s ability to handle different device profiles in terms
of latency, throughput, and resource utilization. These bench-
marks show that the architecture maintains high performance

and efficient resource utilization even when integrating het-
erogeneous devices. Additionally, we include case studies or
scenarios where the architecture has been tested with various
devices, providing real-world validation of its compatibility
and effectiveness. These experimental results and case studies
emphasize the robustness and versatility of the architecture
and confirm its suitability for various IoT deployments.

• Fault-tolerance in distributed architectures: In the up-
dated architecture, we have incorporated several strategies to
enhance resiliency, handle node failures, and ensure fault-
tolerance despite its distributed nature. These strategies in-
clude redundancy and replication of critical components. Load
balancing mechanisms dynamically distribute workloads to
prevent bottlenecks and single points of failure. Continuous
health monitoring and automated failure detection systems
promptly identify node failures, allowing for quick recovery
and minimal downtime. Failover mechanisms reroute requests
to operational nodes, maintaining service availability. Check-
pointing techniques and distributed consistency protocols en-
sure data integrity and smooth recovery from failures. Future
work will focus on enhancing failover efficiency, scalability
testing, and developing adaptive resiliency mechanisms to
adjust strategies based on real-time conditions dynamically.

VI. CONCLUSION AND OPEN ISSUES

In this paper, we introduce a comprehensive full-cloud-
fog architecture designed for EaaS platforms. This innovative
architecture capitalizes on the benefits of cloud and fog nodes
to significantly reduce end-to-end delay while concurrently
elevating the success rate of service requests. The fog layer
hosts the most frequently accessed EaaS components within
the full-cloud-fog framework, thereby reducing delay. Should
fog-layer components encounter resource limitations, the ar-
chitecture seamlessly taps into the resources of cloud nodes.
This strategic utilization strategy curtails the occurrence of
unaddressed requests. Notably, our evaluated results substan-
tiate the efficacy of the proposed full-cloud-fog architecture,
exhibiting an impressive 81% higher throughput than its
existing counterparts.

Despite the achievements realized through our proposed
EaaS architecture, avenues for further enhancing its perfor-
mance remain open. We outline several ideas that form the
cornerstone of our ongoing endeavors:

• Leveraging a machine learning model to predict optimal
components during the dispatching phase can substan-
tially enhance the architecture’s throughput. This model
can be trained using parameters such as queue length,
resource availability, and average throughput of individual
components.

• Another learning model can be harnessed to ascertain
whether the processing of a resource-intensive request is
viable. Rather than addressing a single resource-intensive
request, the platform can opt to tackle multiple smaller
requests, effectively bolstering both throughput and user
satisfaction. Machine learning techniques can inform the
decision-making process.



IEEE INTERNET OF THINGS JOURNAL LATEX, 2024 20

• Introducing a caching memory within the GC proves
advantageous in scenarios characterized by frequent re-
quests for decrypting the same shared data. In such
cases, the GC can store decrypted data in its cache and
subsequently validate access permissions with the KC.
The GC’s encryption of cache data enhances security.
Consequently, the role of the DC component is dimin-
ished, leading to a noteworthy reduction in latency while
concurrently optimizing DC resources for handling other
requests.

Furthermore, we have applied plans to investigate the influence
of architecture types on EaaS platforms catering to diverse
service categories.

• Security and Privacy as Cornerstones: Amidst the dynamic
landscape of IoT, the bedrock of data security and privacy
looms large. This paper underscores the compelling need to
explore the intricate security mechanisms embedded within
EaaS architectures comprehensively. We intend to illuminate
how the proposed full-cloud-fog architecture stands resilient
against the multifaceted security challenges that characterize
IoT environments.

• Navigating Privacy: In an age dominated by interconnec-
tivity, the sanctity of user data privacy becomes sacrosanct.
We acknowledge the pressing nature of safeguarding user
privacy and adhering to prevailing regulatory frameworks. This
survey ardently embraces the responsibility of scrutinizing the
efficacy of EaaS platforms, including the purview of our full-
cloud-fog architecture, in embracing privacy-centric measures.
Our spotlight on subjects like data obfuscation, user-centric
consent protocols, and impervious data transit will offer a
comprehensive understanding of how these platforms strive
to preserve user privacy. Moreover, we assess the intersection
of innovative privacy-enhancing technologies—homomorphic
encryption and differential privacy—with EaaS platforms [56].

We have emphasized the robust scalability capabilities of
our proposed architecture. Additionally, we have outlined
future research directions aimed at further enhancing these
features:

• Advanced Load Balancing Algorithms: Future work will
explore more sophisticated load-balancing algorithms that can
predict and adapt to changing workloads more effectively.
These algorithms will leverage machine learning techniques
to anticipate demand patterns and proactively adjust resource
allocation, further optimizing performance and resource uti-
lization.

• Optimizing Dynamic Resource Allocation: We plan to
refine the dynamic resource allocation strategies to improve
efficiency and responsiveness. This includes developing more
granular resource management policies to allocate resources
based on specific application requirements and user priorities,
ensuring critical tasks receive the necessary resources without
delay.

• Exploration of Advanced Technologies: Future research
will also explore integrating advanced technologies such as
edge AI and blockchain to enhance the architecture’s security,
efficiency, and scalability.
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