
1

AoI-minimal Clustering, Transmission and
Trajectory Co-design for UAV-assisted WPCNs

Xiaoying Liu, Senior Member, IEEE, Huihui Liu, Kechen Zheng, Senior Member, IEEE,
Jia Liu, Senior Member, IEEE, Tarik Taleb, Senior Member, IEEE, Norio Shiratori, Life Fellow, IEEE

Abstract—This paper investigates the long-term average age
of information (AoI)-minimal problem in an unmanned aerial
vehicle (UAV)-assisted wireless-powered communication network
(WPCN), which consists of a static hybrid access point (HAP),
a mobile UAV, and many static sensor nodes (SNs) randomly
distributed on multiple islands. The UAV first is fully charged by
the HAP, and then flies to each island to charge SNs and receive
data from them. Before running out the energy in battery, the
UAV flies back to the HAP to offload the received data and be
fully charged again. Due to the finite battery capacity of the UAV,
it is impossible for the UAV to traverse all the islands to collect all
the data from SNs for once flight. We are thus inspired to divide
islands into multiple clusters so that the UAV could traverse all
the islands in each cluster. The key factors affecting the long-term
average AoI contain the hovering duration, the flying duration,
and the amount of data from each island reflected by the number
of SNs on each island. Therefore, we formulate the long-term
average AoI-minimal problem by jointly optimizing the transmit
power of SNs, clustering of islands, and UAV’s flight trajectory,
subject to the battery capacity of the UAV. Since the optimization
problem is NP-hard, there are no standard methods to solve it
optimally in general. To tackle this problem, we decouple it into
two subproblems: the power allocation subproblem for SNs, and
the joint clustering of islands and UAV’s flight trajectory design
subproblem, which is much more perplexed and complicated
owing to the tight coupling between them. To solve the first
subproblem, we propose a hybrid TDMA and NOMA (HTN)
protocol that takes advantage of the two protocols. To solve
the second subproblem, we propose a clustering-based dynamic
adjustment of the shortest path (C-DASP) algorithm, which is
composed of three sub-algorithms, i.e, a proposed merging-aided
K-means clustering (MaKMC) algorithm, the particle swarm
optimization (PSO) algorithm employed to find the shortest
path in each cluster, and a proposed dynamic adjustment (DA)
algorithm taking into account the number of SNs on each
island. Simulations verify the effectiveness and superiority of the
proposed HTN protocol and C-DASP algorithm.
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I. INTRODUCTION

A. Background
By unifying the technologies of wireless power transfer

(WPT) and wireless information transfer (WIT), wireless
powered communication network (WPCN) has emerged as a
promising technique to provide ubiquitous wireless energy and
data transmission for a massive number of low-power wireless
nodes (WNs) in the upcoming Internet of Things (IoT) era [1].
A typical WPCN consists of a hybrid access point (HAP) and
multiple WNs with energy harvesting capability. The HAP first
broadcasts the radio frequency (RF) signal to charge WNs via
WPT in the downlink, and then WNs utilize the harvested
energy to send their data back to the HAP via WIT in the
uplink [2]. In general, once the HAP is deployed, it is fixed and
cannot be moved. As a result, there are several issues that the
WPCN with the fixed HAP has to be confronted with. First,
due to the severe RF signal propagation loss over distance,
the energy transfer efficiency degrades seriously when the
distance between the HAP and WNs becomes large. Second,
when multiple WNs are distributed at different locations in a
WPCN, the WNs far away from the HAP harvest less energy,
but conversely need to consume more energy to achieve the
same quality of service (QoS) as the WNs located near the
HAP, thus leading to a critical near-far fairness issue [3].

To deal with the above issues, the unmanned aerial vehicle
(UAV) has been incorporated as a mobile access point to
transmit the RF signal and collect the data in WPCNs, due
to its advantages in flexible deployment and controllable
mobility [4], [5]. To be specific, as the UAV flies near some
WNs, the qualities of links between the UAV and these WNs
become better, and accordingly it is more efficient for the UAV
to charge these WNs and collect data from them. Therefore,
the UAV-assisted WPCN architecture with UAVs playing the
role of mobile access points is supported as an extraordinary
approach to address the two issues [6]. The available works
on the UAV-assisted WPCNs mainly focused on the energy-
related optimization [7], [8] aiming to extend the network
lifetime and the throughput-related optimization [9], [10] by
separately or jointly optimizing the flight trajectory, resources
allocation, etc.

Thanks to the aforementioned UAV’s advantages, the UAV
has been applied in the emerging time-sensitive application-
s, such as environmental monitoring [11] and remote con-
trol [12]. In such applications, the generated data needs to be
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TABLE I: Differences between this paper and the related works

Reference Minimization objective Number
(UAV) Clustering Energy harvesting

(WN)
Battery recharging

(UAV)
Energy constraint

(UAV)
[16] Weighted average AoI one × × ×

√

[17] Average peak AoI one × × ×
√

[18] Total AoI one
√

× × ×
[19], [20] Average AoI one ×

√
× ×

[21], [22] Expected AoI multiple ×
√

×
√

[23] Average AoI cost one × ×
√ √

[24] Joint weighted average AoI
and WDs’ transmission power multiple

√
×

√ √

This paper Long-term average AoI one
√ √ √ √

1 √ denotes the existence of the feature; × denotes the absence of the feature.

delivered to the destination as soon as possible for further data
analyzing and decision making, since outdated information can
result in incorrect control and even disasters [13]. Therefore, it
is essential to maintain the freshness of information received at
the destination. To quantitatively characterize the freshness of
information, a new performance metric, i.e., age of information
(AoI) defined as the time elapsed since the generation of the
most recently received data observed at the destination, has
been proposed in [14]. Different from the traditional perfor-
mance metrics such as throughput and delay, AoI has powerful
capability on capturing the timeliness of information [15].
As such, AoI-oriented data collection has recently attracted
increasing attention in UAV-assisted wireless networks.

B. Related works

Due to the finite battery capacity of the UAV, the critical
issues in AoI-oriented UAV-assisted wireless networks are how
to reasonably schedule the UAV and adjust the trajectory to
save the total time of task achievement so as to minimize
the AoI of the received data. Consequently, many works have
been done to tackle the issues [16]–[18]. Yi et al. [16] used
a deep Q-network (DQN) algorithm to find the optimal flight
trajectory of the UAV and transmission scheduling of WNs
that minimizes the sum AoI while considering the energy
consumption of the UAV. Elmagid et al. [17] jointly optimized
UAV’s flight trajectory, energy allocations and service time
for both WNs and UAV to minimize the overall peak AoI
of the system. It should be noticed that the UAV in [16],
[17] was dispatched to visit every WN, and the energy
consumption of the UAV increases due to the increased flight
trajectory. To reduce the energy consumption of the UAV,
Zhu et al. [18] investigated a cluster-based IoT network, where
all WNs are divided into multiple clusters and send data to
their corresponding cluster heads (CHs). Thus the UAV only
needs to interact with the CHs to receive the aggregated data,
and accordingly the UAV’s hovering points and trajectory are
jointly optimized to minimize the total AoI.

However, the UAV in [16]–[18] just acted as the mobile
data collector without the energy transmitter, causing that the
energy supply of WNs has not been captured. Therefore, a
few recent works have been carried out to study the AoI
minimization problem in UAV-assisted WPCNs, where the
UAV acts as not only the data collector but also the energy
transmitter [19]–[22]. To be specific, considering a scenario
where the UAV flies to every WN to transfer energy and
receive data, Hu et al. [19] minimized the average AoI by

jointly optimizing the UAV’s flight trajectory and the time
of energy harvesting for each WN. They decomposed the
optimization problem into a hovering time allocation problem
and a UAV’s trajectory design problem, and solved them by the
dynamic programming approach. For the similar optimization
problem, Liu et al. [20] employed the deep reinforcement
learning (DRL) approach to find a near-optimal solution. We
notice that works [19], [20] did not take the energy constraint
of the UAV into account, which is an essential factor in
practice. Different from the above works, Oubbati et. al [21]
deployed two UAVs in a WPCN, where one behaves as the
energy transmitter to charge WNs and the other behaves as
the data collector to collect the data from WNs, and aimed
to minimize the expected AoI of all WNs by proposing a
multi-agent DRL based UAVs’ trajectories strategy. In [22], the
authors extended the work in [21] to the scenario where UAVs
are divided into two teams to behave as energy transmitters and
data collectors, respectively. Differences between this paper
and the related works are summarized in TABLE I.

C. Motivations and contributions

Nevertheless, the aforementioned works [16]–[22] focused
on only one flight of UAV for data collection, i.e, the UAV
flies from a station to visit a subset of WNs and then flies
back to the station for data analysis. The UAV with battery
recharging, enabling the UAV to perform multiple flights, has
seldom been investigated in the literature. As far as we know,
only works [23], [24] considered the battery recharging of the
UAV. Nonetheless, the energy supply of WNs, i.e, the UAV
acting as the energy transmitter, was not considered in the
design of the UAV’s trajectory, and the objectives of [23],
[24] were not the average AoI minimization. As a result, little
attention has been devoted to the AoI-minimal design in UAV-
assisted WPCNs with the battery recharging of the UAV.

To fill this gap, we investigate the long-term average AoI
minimization problem in a UAV-assisted WPCN where N
wireless-powered sensor nodes (SNs) are randomly distributed
on M islands to sense the environment and generate data,
a static HAP is responsible for charging UAV and receiving
data from UAV, and a battery-limited UAV acts as a mobile
relay between SNs and the HAP. There are many application
scenarios consisting of HAP/access point (AP), SNs and UAV,
such as the building structural health monitoring [10] and the
environmental monitoring [11]. To be specific, the UAV first
is fully charged by the HAP, and then flies to a set of islands
to charge SNs and receive data from them. Before running
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out the energy in battery, the UAV flies back to the HAP to
offload the received data and be fully charged again. In term
of these, there are three challenges as follows. First, due to the
finite battery capacity of the UAV, it is impossible for the UAV
to traverse all the islands to collect all the data from SNs for
once flight. Even if multiple UAVs are used for data collection
at a high cost, it is difficult to ensure that all data is collected
by once flight for every UAV. Thus, the first challenge is how
to divide the islands into multiple clusters to ensure that the
fully-charged UAV could traverse all the islands in one cluster.
Second, since the UAV needs to hover over islands to transmit
the RF signal to SNs and receive data from SNs, the hovering
duration over one island is comprised of the energy transfer
duration and the data transmission duration. Concerning the
data transmission from multiple SNs on one island to the
UAV, it is well known that nonorthogonal multiple access
(NOMA) protocol has the potential to achieve lower trans-
mission duration compared with time-division multiple access
(TDMA) protocol, but may have higher energy requirements
for some SNs [25]. Consequently, the second challenge is how
to design the transmission protocol of SNs on each island
by taking advantage of the two protocols, to minimize the
hovering duration and thereby minimize the long-term average
AoI. Third, another key factor affecting the long-term average
AoI is the flight trajectory of the UAV. It is intuitively believed
that when other factors are given and fixed, once the UAV flies
according to the shortest path, the minimal average AoI could
be achieved owing to the minimal flying duration. However,
in our WPCN, the amount of data from each island, which is
reflected by the number of SNs on each island, has a great
effect on the long-term average AoI. Since the data from one
island is received together, the long-term average AoI for the
UAV traversing the islands with more SNs early would be
larger than that for the UAV traversing the islands with more
SNs later. Therefore, the third challenge is how to design the
flight trajectory of the UAV to minimize the long-term average
AoI by taking both the flying duration and the number of SNs
on each island into account. Regarding the above challenges,
we summary main contributions as follows.

• To our best knowledge, this is the first attempt to study
the long-term average AoI-minimal problem in a UAV-
assisted WPCN where the battery recharging of the UAV
is taken into account, through jointly optimizing the
transmit power of SNs, the clustering of islands, and the
flight trajectory of the UAV.

• To address the NP-hard optimization problem, we de-
compose it into two subproblems: the power allocation
subproblem for SNs, and the joint clustering of islands
and UAV’s flight trajectory design subproblem. To solve
the first subproblem, we propose a hybrid TDMA and
NOMA (HTN) protocol that takes advantage of the two
protocols. Every time the UAV hovers over an island,
the HTN protocol decides whether TDMA or NOMA
should be adopted and the transmit power of SNs based
on the residual energy of SNs. This solution could tackle
the second challenge. To solve the second subproblem,
we propose a clustering-based dynamic adjustment of the

shortest path (C-DASP) algorithm, which is composed of
three sub-algorithms, i.e, a proposed merging-aided K-
means clustering (MaKMC) algorithm, the particle swarm
optimization (PSO) algorithm for finding the shortest path
in one cluster, and a proposed dynamic adjustment (DA)
algorithm taking into account the number of SNs on
each island. This solution could tackle the first and third
challenges.

• Simulation results show that the proposed HTN protocol
outperforms both the TDMA protocol and NOMA proto-
col in terms of the long-term average AoI, and meanwhile
verify the superiority of the proposed C-DASP algorithm.
Moreover, simulations demonstrate there is a tradeoff
between the number of clusters and the total flying and
hovering duration in one cluster resulted from the battery
capacity of the UAV.

The rest of this paper is organized as follows. In Section II,
we introduce the system model. In Section III, we formulate
the AoI-minimal problem. In Section IV, we provide the solu-
tions to the formulated problem. Then simulation results and
discussions are presented in Section V. Finally, a conclusion
is drawn in Section VI.

II. SYSTEM MODEL

We introduce the UAV-assisted WPCN from four aspects:
network model, energy transfer model, proposed HTN pro-
tocol, and AoI model. Wherein, the network model is first
employed to study the average AoI-minimal problem, and the
HTN protocol is proposed by this paper.

A. Network Model

We consider a novel scenario of the UAV-assisted WPCN.
The UAV-assisted WPCN consists of a static HAP, N static
SNs, and a mobile UAV, as shown in Fig. 1. The HAP, with
location (xh, yh, 0), is responsible for charging the UAV and
receiving data from the UAV. N SNs are distributed on M
non-overlapping islands in the area of WPCN. Nm represents
the positive number of the SNs on island m, and satisfies

M∑
m=1

Nm = N. (1)

Let Si,m denote the ith (i ∈ {1, 2, . . . , Nm}) SN on island
m (m ∈ {1, 2, . . . ,M}), and si,m = (xi,m, yi,m, 0) denote
the location of Si,m. Without loss of generality, the SNs on
one island are sorted in a descending order of the gain of the
channel between the SN and the UAV. Taking island m as an
example, the gain of the channel between S1,m and the UAV
is the highest, and the gain of the channel between SNm,m
and the UAV is the lowest. The SNs, equipped with energy
harvesting components, first harvest energy from the RF signal
of the UAV when the UAV flies to the hovering point of this
island. Then the SNs sense the surroundings, generate data,
and transmit the generated data to the UAV by consuming the
harvested energy. Here we consider that the data generation is
completed instantaneously. The process of data transmission
from the SNs to the UAV will be specified in Section II-C.

Equipped with a battery of finite capacity Cmax, the fully-
charged UAV flies to hovering points at a fixed height h
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Fig. 1: The UAV-assisted WPCN.

by consuming the energy in the battery. There is only one
hovering point on each island, denoted by Um with location
(xm, ym, h). When the UAV flies to hovering point Um, it
first transmits the RF signal to charge the SNs on island m
during the energy transfer stage, and then receives data from
SNs during the data transmission stage. After traversing the
islands according to the predetermined flight trajectory, the
UAV returns to the HAP to offload the received data, and
is fully charged by the HAP for the next flight. The flight
trajectory of the UAV will be introduced in Section IV-C.

Due to the finite battery capacity, the UAV could hardly
traverse every island to receive data from all the SNs before
being charged by the HAP. Thus we are motivated to divide
M islands into K clusters as

K∑
k=1

Mk = M, (2)

where Mk > 0 denotes the number of islands in cluster k.
It is worth noting that different from existing works [13],
[18], [26], where SNs are clustered, a cluster head (CH)
or data collection point (CP) is selected from each cluster,
and the UAV visits each CH to collect the aggregated data
or visits each CP to collect the data from SNs sequential-
ly, we divide the islands, where several SNs are randomly
distributed, into clusters due to the consideration of UAV’s
battery recharging. After the UAV is fully charged, it has
enough energy to fly to every island in a cluster, charge SNs,
receive data from SNs, and fly back to the HAP. Due to the
advantages of simplicity, efficiency and stable performance of
the K-means clustering (KMC) algorithm [27], we propose
a merging-aided K-means clustering (MaKMC) algorithm to
divide islands, and the clustering process will be introduced
in Section IV-C. As depicted in Fig. 1, the fully-charged
UAV, hovering over the HAP, selects cluster k according to
the indexes given by the proposed MaKMC algorithm. Then
the UAV traverses every island in cluster k to complete the
tasks of energy transfer to SNs and data reception from SNs
according to the predetermined flight trajectory, i.e., HAP
→ V1k → . . . → V(Mk)k → HAP, where Vik represents the
ikth traversed hovering point in the UAV’s flight trajectory of
cluster k, and {V1k , V2k , . . . , V(Mk)k} is an element of the set
of the permutations of {U1, U2, . . . , UM}.

For the UAV above the hovering point Um, let tem denote the
duration of the energy transfer stage, ttm denote the duration of
the data transmission stage, and thovm denote the total hovering
duration of the UAV on island m, i.e., thovm = tem + ttm. After
the UAV completes the data reception tasks from every SN
in cluster k and flies back to the HAP, the UAV offloads the

received data to the HAP with duration tdk, and is charged by
the HAP with duration thk . To facilitate the time analysis, we
consider tdk = td and thk = th for every cluster.

As pointed out in [28], channel qualities are mainly de-
termined by the large-scale fading, so we consider that the
channels in the UAV-assisted WPCN are dominated by the
large-scale fading. The distance between Um and Si,m, denot-
ed by di,m, is formulated as

di,m =
√

(xm − xi,m)2 + (ym − yi,m)2 + h2. (3)

Let |g|2 denote the gain of the channel between the HAP and
the UAV as |g|2 = κ

hα , where κ denotes the reference signal
gain at the distance of 1 meter, and α ∈ [2, 4] denotes the
path-loss factor [19]. Let |gi,m|2 denote the gain of the channel
between Si,m and Um as |gi,m|2 = κ

dαi,m
.

B. Energy Transfer Model

During the energy transfer stage with duration tem on island
m, the UAV charges SNs on island m with power pem, and the
amount of the energy harvested by Si,m, denoted by Ehi,m, is

Ehi,m = ηpem |gi,m|
2
tem, (4)

where η ∈ (0, 1) is the energy conversion efficiency [30]. Each
SN stores the harvested energy in the battery with capacity
Emax. When the UAV flies to island m for the ζth traversal,
the energy of Si,m is updated as

Ei,m(ζ) = Ei,m(ζ−1) + Ehi,m − Eti,m(ζ − 1), (5)
where Eti,m(ζ−1) denotes the energy consumed by Si,m for
data transmission during UAV’s (ζ−1)th traversal to island m.

Without loss of generality, the energy consumption of the
UAV for traversing the islands in cluster k includes three parts:
the energy consumption of flying Efk , the energy consumption
of hovering Ehovk , and the energy consumption of charging
SNs Echk . Based on the energy constraint, the energy con-
sumption of traversing the islands in cluster k is no larger
than the battery capacity of the UAV as

Efk + Ehovk + Echk 6 Cmax. (6)
In the following, we analyze Efk at first. With respect to
the propulsion power consumption model in [29], the power
consumption of UAV flying at speed V , denoted by P (V ), is

P (V)=P0

(
1+

3V 2

U2
tip

)
+Pi

(√
1+
V 4

4v40
− V

2

2v20

)1/2

+
d0ρsAV

3

2
, (7)

where P0 and Pi are two constants based on the physical
properties of UAV and the flight environment, such as weight,
rotor radius, and air density. Utip denotes the tip speed of the
rotor blade. v0 is known as the mean rotor induced velocity
when hovering. d0 and s denote the fuselage drag ratio and
rotor solidity, respectively. ρ and A denote the air density and
rotor disc area, respectively. Then the energy consumption of
flying Efk is given by

Efk =
Lk
V
P (V ), (8)

where Lk represents the distance of the flight trajectory in
cluster k. When V =0, P (V )|V=0 in (7) represents the power
consumption of the UAV for hovering as

Phov = P (V )|V=0 = P0 + Pi, (9)
where Phov is a constant. Then the total energy consumption
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of hovering in cluster k is expressed as

Ehovk =

Mk∑
m=1

Phovt
hov
m =

Mk∑
m=1

(P0 + Pi)(t
e
m + ttm), (10)

where tem + ttm represents the hovering duration of the UAV
on island m. During the energy transfer stage with duration
tem, the UAV charges the SNs on island m with power pem.
Then the energy consumption of charging the SNs in cluster
k, denoted by Echk , is given by

Echk =

Mk∑
m=1

pemt
e
m. (11)

After the UAV receives the data from the SNs in cluster
k and returns to the HAP, the HAP charges the UAV with
power pkpower for duration th, which depends on the total energy
consumption of the UAV in (8)-(11), and pkpower satisfies

ηpkpower |g|
2
th > Cmax − Ck(ζ), (12)

where Ck(ζ) denotes the residual energy of the UAV after the
UAV’s ζth traversal of the islands in cluster k. (12) indicates
that, for the UAV, the amount of the charged energy should
be no smaller than the energy consumption of the UAV for
traversing the islands in cluster k.

C. Proposed HTN Protocol

During the data transmission stage, the SNs on island m
transmit the generated data to the UAV. In order to maintain
the freshness of data, if the residual energy of every SN on
island m satisfies the corresponding energy constraint so that
the UAV could successfully and simultaneously decode all the
data from the SNs, SNs use the NOMA protocol for data
transmission. Otherwise, SNs adopt the TDMA protocol for
data transmission. We name it as the HTN protocol, which
unifies the advantages of the TDMA and NOMA protocols. To
be specific, at the beginning of the data transmission stage, the
SNs on island m transmit the information about their residual
energy to the UAV. Then the UAV compares the residual
energy of Si,m with the corresponding energy threshold Ethi,m
for i ∈ {1, 2, . . . , Nm}. If every SN on island m satisfies
the energy constraint, i.e., the residual energy of Si,m is no
smaller than Ethi,m, the UAV broadcasts the information about
the transmit power pNi,m of Si,m for the SNs on island m
so that SNs adopt the NOMA protocol for data transmission.
Otherwise, the UAV broadcasts the information about the
transmit power pTi,m of Si,m for the SNs on island m so
that SNs adopt the TDMA protocol for data transmission. In
practice, for the UAV, the energy consumption of circuitry and
signal processing is much smaller than the energy consumption
of flying, hovering, and charging SNs [31]. Accordingly, for
TDMA or NOMA, the energy consumption of circuitry and
signal processing is usually negligible. Hence it is reasonable
to neglect the energy consumption of the UAV resulting from
the protocol switching between TDMA and NOMA.

1) TDMA Protocol: If at least one SN on island m does
not satisfy the energy constraint, the SNs on island m adopt
the TDMA protocol for data transmission. Under the TDMA
protocol, every SN on island m transmits data to the UAV
with duration tTm. Si,m transmits data to the UAV with power

pTi,m, and the data rate RTi,m is expressed as

RTi,m = W log2

(
1 +

pTi,m |gi,m|
2

σ2

)
, (13)

where W denotes the bandwidth, and σ2 denotes the noise
power at the UAV. Without loss of generality, we use D
to represent the minimum amount of data required to be
successfully transmitted by every SN. Then the data rate RTi,m
of Si,m needs to satisfy

tTmR
T
i,m ≥ D. (14)

Under the TDMA protocol, the energy consumption of Si,m
can be expressed as

ETi,m = pTi,mt
T
m. (15)

2) NOMA Protocol: If every SN on island m satisfies the
energy constraint, the SNs on island m adopt the NOMA
protocol for data transmission with duration tNm. Under the
NOMA protocol, SNs transmit data to the UAV simulta-
neously, and the UAV eliminates multiuser interference by
using successive interference cancellation (SIC) technique
[32]. Without loss of generality, we consider channel gains
|g1,m|2 > |g2,m|2 > . . . > |gNm,m|

2 hold. As the SN with
the worst channel quality harvests the least amount of energy,
the descending order of the signal strength received by the
UAV from the SNs is the same as that of the channel gains
between the UAV and SNs. The UAV with the SIC decoder
first decodes the signal from S1,m by treating the other
signals as interference. After the signal from S1,m is decoded
successfully, it is subtracted from the overlapping signals.
Then the signals from S2,m, S3,m, . . . , SNm,m are decoded
in order by the UAV similarly [33]. Accordingly, when Si,m
transmits data with transmit power pNi,m, the data rate RNi,m is

RNi,m = W log2

(
1 +

pNi,m |gi,m|
2∑Nm

j=i+1 p
N
j,m |gj,m|

2
+ σ2

)
. (16)

To ensure that the minimum amount of data D is successfully
transmitted by each SN, the data rate RNi,m of Si,m satisfies

tNmR
N
i,m ≥ D. (17)

Under the NOMA protocol, the energy consumption of Si,m
can be expressed as

ENi,m = pNi,mt
N
m. (18)

Besides, ENi,m could be adopted as the corresponding energy
threshold Ethi,m by the UAV for the comparison between the
residual energy of Si,m and the energy threshold Ethi,m.

To integrate the two protocols, we use a binary variable
qm(ζ) ∈ {0, 1} to represent the adopted transmission protocol
by the SNs on island m for the UAV’s ζth traversal to Vm.
qm(ζ) = 1 represents that the NOMA protocol is adopted, and
qm(ζ) = 0 represents that the TDMA protocol is adopted. We
have qm(ζ) as

qm(ζ) =

Nm∏
i=1

λi,m(ζ). (19)

According to the energy threshold Ethi,m and the residual
energy of Si,m, the binary variable λi,m(ζ) in (19) is

λi,m(ζ) =

{
1, Ethi,m ≤ Ei,m(ζ−1) + Ehi,m,

0, otherwise.
(20)
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Let ttm(ζ) represent the total transmission duration of Nm SNs
on island m for the UAV’s ζth traversal to Vm. Then we have

ttm(ζ) = qm(ζ)tNm + (1− qm(ζ))Nmt
T
m. (21)

Remark: There are many works on HTN protocols [34]–
[36]. The main idea of the existing HTN protocols is that
the SNs are divided into several groups such that different
groups of SNs transmit data at different times using TDMA,
while the SNs in the same group transmit data simultaneously
using NOMA. The existing HTN protocols are not suitable
for this paper from two perspectives. First, NOMA protocol
imposes an energy constraint on each SN on the island, which
requires long duration of the energy transfer stage, thus the
average AoI would be large. Second, adopting the existing
HTN protocols means that SNs on each island first need to
transmit data simultaneously to a designated SN using NOMA,
and then the designated SNs on different islands transmit data
to the UAV at different times using TDMA. Due to the two-
hop transmission from SNs to the UAV, the average AoI would
also be large.

D. AoI Model

The AoI of the data received from the SN can be seen as
the amount of time elapsed from the instant when the data is
generated to the instant when the UAV offloads the received
data to the HAP [19]. To model AoI at time t, we use ui,m(t)
to denote the generation time of the most recently received
data at the HAP from Si,m. The AoI of the data received
from Si,m by the HAP at time t, denoted by ai,m(t), is

ai,m(t) = t− ui,m(t). (22)
Fig. 2 illustrates the AoI of the data received from Si,m at the
HAP. In Fig. 2, the time average of age process in the time
interval (0, τ) at the HAP can be calculated as

Ai,m =

∫ τ
0
ai,m(t) dt

τ
. (23)

Then we have the long-term average AoI of the data from
Si,m, denoted by ∆i,m, as

∆i,m = lim
τ→∞

Ai,m. (24)

It is worth noting that there are Nm SNs on island m,
Mk islands in cluster k, and K clusters in the UAV-assisted
WPCN. Then the long-term average AoI of the data received
from all the SNs is

∆̄ =
1

N

M∑
m=1

Nm∑
i=1

∆i,m

=
1

N

K∑
k=1

Mk∑
m=1

Nm

(
lim
ξ→∞

∑ξ
ζ=1Q

ζ
mk∑ξ

ζ=1Xmk(ζ)

)
,

(25)

where Qζmk is a trapezoidal area for analyzing the AoI of the
received data from Si,mk on the mth island in cluster k (also
abbreviated as the mkth island) for the UAV’s ζth traversal
to Vmk in the graphical method. Xmk(ζ) denotes the duration
between the timestamp of the finished energy transfer stage on
the mkth island for the UAV’s (ζ−1)th traversal to Vmk and
that of the finished energy transfer stage on the mkth island
for the UAV’s ζth traversal to Vmk .

To facilitate the reading, we summarize the key notations
adopted throughout the paper in TABLE II.

TABLE II: Key Notations

Symbol Definition

N The number of SNs in the WPCN.
M The number of islands in the WPCN.
K The number of clusters in the WPCN.
Nm The number of SNs on island m.
Mk The number of islands in cluster k.
Cmax Battery capacity of the UAV.
tem Duration of the UAV charging the SNs on island m.
ttm Duration of the UAV receiving data from SNs on island m.
Si,m The ith SN on island m.
pTi,m Transmit power of Si,m under the TDMA protocol.
pNi,m Transmit power of Si,m under the NOMA protocol.

tTm
Transmission duration of each SN on island m under
the TDMA protocol.

tNm
Transmission duration of the SNs on island m under
the NOMA protocol.

III. PROBLEM FORMULATION

In this section, we first obtain the expressions of Qζmk and
Xmk(ζ) in (25), and then formulate the long-term average
AoI-minimal problem.

As shown in Fig. 2, we take the data from Si,mk as an
example to analyze the AoI. The trapezoidal area Qζmk de-
pends on Xmk(ζ) and Tmk(ζ), which represents the duration
between the timestamp of the finished energy transfer stage on
the mkth island and that of the data reception by the HAP for
the UAV’s ζth traversal to Vmk . To obtain the expressions of
Xmk(ζ) and Tmk(ζ), we divide the duration of Xmk(ζ) into
five phases. Due to the page limit, the analysis of five phases is
presented on page 6 of Technical Report [37]. Here we provide
the expressions directly, which can be followed intuitively.
Regardless of the flight cycle ζ, we note that Xmk represents
the duration between two consecutive finished energy transfer
stage of the UAV on the mkth island. Then we have

Xmk = K (td + th) +

K∑
k=1

(
tf0,k +

Mk∑
j=1

(
thovj + tfj

))
, (26)

where tf0,k denotes the duration of the UAV to fly from the
HAP to V1k in cluster k, tfj (1≤j<Mk−1) denotes the dura-
tion for the UAV to fly from Vj to Vj+1 in the same cluster,
and tfMk

denotes the duration for the UAV to fly from V(Mk)k

in cluster k to the HAP. In (26),
∑K
k=1

(
tf0,k +

∑Mk

j=1 t
f
j

)
represents the total flying duration of the UAV for one flight
cycle, and K (td + th)+

∑K
k=1

∑Mk

j=1 t
hov
j represents the total

hovering duration of the UAV for one flight cycle. Based on
the definition of Tmk(ζ), Tmk(ζ) is given by

Tmk =

Mk∑
i=mk

(
thovi + tfi

)
− temk + td. (27)

According to the definition of average AoI in (25), Qζmk is
the area of an isosceles trapezoid in the jagged area in Fig. 2.
Then we rewrite the average AoI as

∆̄=
1

2N

K∑
k=1

Mk∑
m=1

Nm

(
lim
ξ→∞

∑ξ
ζ=1X

2
mk

(ζ)+2Xmk(ζ)Tmk(ζ)∑ξ
ζ=1Xmk(ζ)

)
, (28)

where Xmk(ζ) and Tmk(ζ) are given in (26) and (27),
respectively.

In the following, we analyze the factors impacting the aver-
age AoI of the WPCN. As shown in Fig. 2, for a given SN, the
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Time    t 

Age

Fig. 2: Age process of the data from Si,mk on mkth island.

average AoI of the data from Si,mk is determined by the total
hovering and flying duration of the UAV traversing the islands.
Once the UAV finishes receiving the data from all the SNs in
one cluster, it offloads the data to HAP immediately and is
fully charged again. Hence for different clusters, the hovering
and flying duration of the UAV is independent. In other words,
once clustering is completed, the ways of the UAV receiving
data from SNs in different clusters are independent. Then,
the total hovering and flying duration of the UAV traversing
islands in the WPCN is jointly determined by the clustering
result such as the number of clusters, and the hovering and
flying duration of the UAV traversing every cluster. As the
hovering duration on each island is independent and depends
on the adopted transmission protocol, i.e., the TDMA protocol
or the NOMA protocol, minimizing the hovering duration on
every island is equivalent to minimizing the hovering duration
in every cluster. The total flying duration depends on the
clustering result and the flight trajectory in every cluster. It
is worth noting that, different from the case of Fig. 2 focusing
on the data received from one SN, the average AoI of data
received from all the SNs depends on not only the total
hovering and flying duration of the UAV traversing the islands,
but also the amount of data received from each island, which
is reflected by the number of SNs on each island, i.e., Nm in
(28). The reason is that the data from one island is received
together, and for the same hovering and flying duration in
one cluster, it is straightforward to know that the average AoI
for UAV traversing the islands with more SNs early is larger
than that for UAV traversing the islands with more SNs later.
Fortunately, the flying trajectory design for clusters can take
the number of SNs on each island into account.

Therefore, to minimize ∆ in (28), we focus on the opti-
mization of the hovering duration of the UAV on island m,
determined by the TDMA protocol with power pTi,m and the
NOMA protocol with power pNi,m, the clustering of islands,
reflected by K here, and the flight trajectory in every cluster,
represented by the traversal sequence of the hovering points in
every cluster. Let Qk = {V1k , V2k , ..., V(Mk)k} denote a flight
trajectory composed of the hovering points in cluster k. The
AoI-minimal problem is formulated as

P1 : min
(pTi,m,p

N
i,m,Qk)

∆̄ (29)

s.t. pTi,m ≥ 0, pNi,m ≥ 0, (29a)

tfmk =
Lmk,mk+1

V
,mk = 0, 1, . . . ,Mk, (29b)

K∑
k=1

ρm,k = 1, ρm,k ∈ {0, 1}, k = 1, 2, . . . ,K, (29c)

(6), (12), (14), (17), (19), (20), (21). (29d)

HTT + TDMA HTT + TDMA HTT + NOMA

 !
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!% (&)

Period of data transmission

Hybrid TDMA and 

NOMA protocol ! ,"#
(t)

%& ,'(

) Fig. 3: HTN protocol adopted by the SNs on island m for
multiple cycles of the UAV.

Constraint (29b) implies that the flying duration of the UAV is
determined by the distance between the consecutive traversed
islands, and Lmk,mk+1 represents the distance between the
mkth island and the (mk + 1)th island in cluster k. L0,1

represents the distance between the HAP and the 1kth island in
cluster k, and LMk,Mk+1 represents the distance between the
(Mk)kth island and the HAP. ρm,k = 1 indicates that island m
belongs to cluster k. Constraint (29c) implies that every island
belongs to only one cluster.

IV. PROBLEM SOLUTION

In this section, we first introduce the solution framework,
where the average AoI-minimal problem is decomposed into a
power allocation subproblem for SNs and a joint clustering of
islands and flight trajectory of UAV design subproblem. Then
we solve the two subproblems in Section IV-B and Section
IV-C, respectively.

A. Solution Framework

Due to the discrete and continuous optimization variables,
the average AoI-minimal problem in (29) is non-convex and
there are no standard methods to solve it optimally in general.
To solve it, we decompose problem P1 into two subproblems:
the power allocation subproblem for SNs, called the first sub-
problem, and the joint clustering of islands and UAV’s flight
trajectory design subproblem, called the second subproblem.
The reasonability of the problem decomposition lies in that the
clustering of islands and the UAV’s flight trajectory in every
cluster are tightly coupled and difficult to be solved separately
due to the energy of the UAV, while the two subproblems could
be tackled separately by making an approximation. Specifical-
ly, the first subproblem aims to minimize the hovering duration
of the UAV by optimizing the transmit power of SNs that
adopt the proposed HTN protocol in Fig. 3. Apparently, for
SNs on each island, the duration of the data transmission stage
for SNs using the NOMA protocol is smaller than that using
the TDMA protocol. Accordingly, the energy consumption of
UAV for hovering under the TDMA protocol is larger. As the
unique relation between the two subproblems is the energy
of the UAV, we tackle the two subproblems separately by
considering the second subproblem is solved under the premise
that SNs adopt the TDMA protocol to transmit data. With
this approximation, the energy constraint of the UAV could
be guaranteed.

1) The First Subproblem Formulation: Under the HTN
protocol, the duration of the energy transfer stage and that
of the data transmission stage depends on the SN with the
worst channel quality on the island, and this duration on
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different islands is independent of each other. Then, the power
allocation subproblem is formulated as SP1.

SP1 : min
(pTi,m,p

N
i,m)

lim
ξ→∞

1

ξ

ξ∑
ζ=1

(
tem(ζ) + ttm(ζ)

)
(30)

s.t. pTi,m ≥ 0, pNi,m ≥ 0, i = 1, 2, . . . , Nm, (30a)

tNmW log2

(
1+

pNi,m |gi,m|
2

σ2+
∑Nm
j=i+1 p

N
j,m|gj,m|

2

)
≥D, (30b)

tTmW log2

(
1 +

pTi,m |gi,m|
2

σ2

)
≥ D, (30c)

ttm(ζ) = qm(ζ)tNm + (1− qm(ζ))Nmt
T
m, (30d)

λi,m(ζ) =

{
1, Ethi,m ≤ Ei,m(ζ−1)+Ehi,m,

0, otherwise,
(30e)

qm(ζ) =

Nm∏
i=1

λi,m(ζ),m = 1, 2, . . . ,Mk. (30f)

Constraint (30d) represents the duration of the data trans-
mission stage ttm(ζ) for the UAV’s ζth traversal to Um.
Constraint (30e) implies that SNs select the TDMA protocol
or the NOMA protocol for data transmission based on the
corresponding energy threshold.

2) The Second Subproblem Formulation: As aforemen-
tioned, the unique relation between the two subproblems is the
energy of the UAV. As long as the energy of the UAV could
support traversing the cluster, the flight trajectory design in one
cluster can be considered as independent of subproblem SP1,
while the clustering of islands is tightly coupled with the flight
trajectory. To deal with subproblem SP1 and subproblem SP2
independently, we add constraint (31e), where Ehovk is set to
be maximum, i.e., the SNs always adopt the TDMA protocol
to transmit data. The reason is that compared with the NOMA
protocol, the hovering duration with the TDMA protocol is
larger, resulting in higher energy consumption of hovering.
The joint clustering of islands and UAV’s flight trajectory
design subproblem is formulated as

SP2 : min
Qk

∆̄ (31)

s.t. tfmk =
Lmk,mk+1

V
,m = 0, 1, . . . ,Mk, (31a)

K∑
k=1

Mk = M, (31b)

K∑
k=1

ρm,k=1, ρm,k ∈ {0, 1}, k = 1, 2, . . . ,K, (31c)

ηpkpower |g|
2
th > Cmax − Ck(ζ), (31d)

Ehovk + Efk + Echk 6 Cmax. (31e)
Constraint (31d) implies that the UAV is fully charged by the
HAP. Constraint (31e) implies that the UAV has enough energy
to traverse every island in the cluster.

B. Solution to SP1: Hovering Duration Optimization

According to the proposed HTN protocol in Section II-C,
the UAV needs to ensure that the SN with the worst channel
quality has harvested enough energy to transmit data D to the

UAV, which has a great impact on the hovering duration of
the UAV. Thus, inequalities (30b) and (30c) can be rewritten
as equations. The UAV transmits the RF signal to the SNs on
island m with duration tem as

tem =
pNm,mtNm

ηpem |gNm,m|
2 . (32)

The data transmission duration of the SN with the worst
channel quality SNm,m is

tNm =
D

W log2

(
1 +

pNm,m|gNm,m|
2

σ2

) . (33)

The parameter pNm,m in (32) and (33) is replaced by pTNm,m
for TDMA protocol and pNNm,m for NOMA protocol.

1) TDMA Protocol: If the TDMA protocol is adopted by
SNs on island m, subproblem SP1 is simplified to minimize

tem +NmtNm =
pTNm,mtNm

ηpem |gNm,m|
2 +NmtNm

=
D

W log2

(
1 +

pTNm,m|gNm,m|
2

σ2

) ( pTNm,m

ηpem |gNm,m|
2 +Nm

)

=
D(pTNm,m + ηNmp

e
m |gNm,m|

2
)

ηpem |gNm,m|
2
W log2

(
1 +

pTNm,m|gNm,m|
2

σ2

) . (34)

For convenience of expression, we define
h(pTNm,m) =

A(pTNm,m+B)

log2(1+CpTNm,m)
, where A = D

ηpem|gNm,m|
2W

,

B = ηNmp
e
m |gNm,m|

2, and C =
|gNm,m|

2

σ2 . The first-order
derivative of h(pTNm,m) with respect to pTNm,m is

dh(pTNm,m)

dpTNm,m
=
Alog2(1 + CpTNm,m)− AC(pTNm,m+B)

ln2(1+CpTNm,m)

log2(1 + CpTNm,m)
. (35)

We then define

f(pTNm,m) = Alog2(1+CpTNm,m)−
AC(pTNm,m +B)

ln2(1 + CpTNm,m)
. (36)

The first-order derivative of f(pTNm,m) with pTNm,m is

df(pTNm,m)

dpTNm,m
=
AC2(B + pTNm,m)

ln2(1 + CpTNm,m)2
. (37)

Since A > 0, B > 0, and C > 0,
df(pTNm,m)

dpTNm,m
in (37) is

positive. Then f(pTNm,m) in (36) increases monotonically with
pTNm,m. We notice that f(pTNm,m)|pTNm,m→0 → −ABCln2 < 0

and f(pTNm,m)|pTNm,m→+∞ → +∞ > 0. Thus, there exists a

unique pT∗Nm,m satisfying f(pTNm,m) = 0, i.e.,
dh(pT∗Nm,m)

dpT∗Nm,m
= 0.

Since log2(1 +CpTNm,m) > 0,
dh(pTNm,m)

dpTNm,m
< 0 for (0, pT∗Nm,m)

and
dh(pTNm,m)

dpTNm,m
> 0 for (pT∗Nm,m,+∞). That is to say,

h(pTNm,m) decreases with pTNm,m for pTNm,m ∈ (0, pT∗Nm,m),
and increases with pTNm,m for pTNm,m ∈ (pT∗Nm,m,+∞). There-
fore, the minimum h(pTNm,m) is achieved at pT∗Nm,m. Then,
the optimal duration of the energy transfer stage on island m,
denoted by te∗m , can be expressed as

te∗m =
pT∗Nm,mt

∗
Nm

ηpem |gNm,m|
2 , (38)
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and the optimal duration of the UAV for receiving data from
SNm,m, denoted by t∗Nm , can be expressed as

t∗Nm =
D

W log2

(
1 +

pT∗Nm,m|gNm,m|
2

σ2

) . (39)

2) NOMA Protocol: If the NOMA protocol is adopted by
SNs, subproblem SP1 in (30) could be simplified to minimize
tem+tNm by optimizing the transmit power of the SNs on island
m. As every SN needs to meet the minimum amount of data
D, i.e., tNmR

N
i−1,m = tNmR

N
i,m = D, the Si,m and Si−1,m

with adjacent received power levels at the UAV satisfies

pNi,m |gi,m|
2∑Nm

j=i+1 p
N
j,m

∣∣gmj,m∣∣2+σ2
=

pNi−1,m
∣∣gmi−1,m∣∣2∑Nm

j=i p
N
j,m

∣∣gmj,m∣∣2+σ2
. (40)

Based on (40), we have

Zi−1,m =
Z2
i,m∑Nm

j=i+1 Zj,m + σ2
+ Zi,m, (41)

where Zi,m = pNi,m |gi,m|
2. Since the transmit power of

SNm,m is determined, we obtain the transmit power of SNs
on island m according to (41).

C. Solution to SP2: Joint Clustering of Islands and UAV’s
Flight Trajectory Optimization

The tight coupling between the clustering of islands and
UAV’s flight trajectory makes subproblem SP2 much more
complicated and complex. To tackle it, we propose the
clustering-based dynamic adjustment of the shortest path (C-
DASP) algorithm composed of three sub-algorithms, i.e.,
merging-aided K-means clustering (MaKMC) algorithm, par-
ticle swarm optimization (PSO) algorithm, and dynamic ad-
justment (DA) algorithm. The reason why we use three sub-
algorithms to tackle subproblem SP2 is that, as we discussed
in Section III, two factors, i.e., the flying duration and the
amount of data from each island which is reflected by the
number of SNs on each island, should be taken into account
in the design of AoI-oriented UAV’s flight trajectory. Hence
two sub-algorithms are needed to address the issue of the
UAV’s flight trajectory. Specifically, the proposed MaKMC
algorithm, which combines the classic K-means clustering
(KMC) algorithm and the added merging operation of clusters,
tackles the issue of the clustering of islands. The key difference
between the MaKMC and KMC algorithms lies in the merging
operation of clusters. Actually, the KMC algorithm is used
to provide an initial clustering of islands. The reason why
we use the KMC algorithm is that the KMC algorithm is
always implemented as a standard clustering method in lot of
researches [38] due to its advantages of simplicity, efficiency,
and stable performance [27]. To fully utilize the energy in the
UAV’s battery, i.e., reduce the number of times that the UAV
is charged by the HAP, the merging operation is performed
to merge several small clusters into a new cluster, which is
in accordance with the real demand. The PSO and proposed
DA algorithms are jointly used to tackle the issue of the
UAV’s flight trajectory, i.e., the traversal sequence of the
hovering points by the UAV. Thereinto, the PSO algorithm
is to find the shortest path in every cluster so as to minimize
the UAV’s flying duration. Based on the traversal sequence of

Algorithm 1 C-DASP algorithm.
Input: The geographical locations of the hovering points on M

islands, i.e., {x1, x2, . . . , xM}, the number of SNs on M islands,
i.e., {N1, N2, . . . , NM}, the battery capacity of the UAV Cmax;

Output: The traversal sequence of the hovering points, denoted by
Q;

1: Adopt Algorithm 2 to divide islands into K clusters;
2: for k = 1 to K do
3: Select cluster k, adopt Algorithm 3 and Algorithm 4 to obtain

the traversal sequence of the hovering points in cluster k;
4: Calculate the total energy consumption of the UAV for travers-

ing the hovering points in cluster k;
5: while The total energy consumption of the UAV in cluster k

or any cluster that is divided from cluster k is larger than Cmax
do

6: Adopt Algorithm 2 to further divide the islands in the
cluster;

7: for Each cluster that is divided from cluster k do
8: Select the cluster according to the index of the new

clustering results of the islands in order;
9: Adopt Algorithm 3 and Algorithm 4 to obtain the

traversal sequence of the hovering points in the selected
cluster;

10: Calculate the total energy consumption of the UAV in
the cluster;

11: end for
12: end while
13: end for
14: for each cluster do
15: Select the corresponding adjacent cluster to merge into a new

cluster;
16: Adopt Algorithm 3 and Algorithm 4 to obtain the traversal

sequence of the hovering points in new cluster;
17: Calculate the total energy consumption of the UAV for travers-

ing the hovering points in new cluster;
18: if The total energy consumption of the UAV in the merged

cluster is larger than Cmax then
19: The merging operation of clusters is invalidated.
20: end if
21: end for
22: return Q.

the hovering points obtained by the PSO algorithm, the DA
algorithm is utilized to obtain UAV’s final flight trajectory by
taking into account the number of SNs on each island. The
reason why we employ PSO algorithm to find the shortest
path in every cluster is that compared with other heuristic
algorithms, such as differential evolution, genetic algorithm,
and fireworks algorithm, PSO algorithm has fewer parameters
and enjoys faster convergence [39].

To clearly state the proposed C-DASP algorithm, we present
it in Algorithm 1. In line 1, we adopt Algorithm 2, i.e.,
the KMC algorithm, to divide the islands according to the
locations of the hovering points on islands. After that, we need
to ensure that for each cluster, the UAV has enough energy to
hover over the islands to complete the tasks of energy transfer
and data reception, and fly according to the traversal sequence
of the hovering points determined by the PSO and DA algo-
rithms. Hence, in lines 3 and 4, we adopt Algorithm 3, i.e.,
the PSO algorithm, and Algorithm 4, i.e., the DA algorithm, to
obtain the traversal sequence of the hovering points in cluster
k, and derive the energy consumption of the UAV traversing
cluster k. In lines 5-12, when the energy consumption of the
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Algorithm 2 KMC algorithm.
Input: The geographical locations of the hovering points on M

islands, i.e., {x1, x2, . . . , xM};
Output: The clusters {Ci|i = 1, . . . ,K}, the geographical locations

of cluster centroids Y ;
1: Initialize K;
2: Randomly initialize the geographical locations of K cluster

centroids Y = {y1, y2, . . . , yK};
3: repeat
4: for i = 1 to M do
5: for j = 1 to K do
6: Calculate the distance between island xi and cluster

centroid yj ;
7: end for
8: Update the clusters according to the nearest cluster centroid

of the island;
9: end for

10: for i = 1 to K do
11: Calculate the location of the new cluster centroid yi accord-

ing to (42);
12: end for
13: until Y remains unchanged;
14: return Ci and Y .

UAV traversing cluster k exceeds battery capacity Cmax, we
further divide the islands in the current cluster k according to
the geographical locations of the hovering points on islands.
This process continues until all the islands are divided and the
UAV has enough energy to fly and hover in every cluster.

In lines 14-21, the merging operation is performed to merge
two geographically close clusters into a new cluster, as long
as the UAV has enough energy to traverse the new cluster.
Specifically, as we adopt the KMC algorithm to divide the
islands into K clusters in lines 1-12, the UAV may have
residual energy after traversing all the hovering points for
some clusters. In order to fully utilize the energy in the UAV’s
battery, two adjacent clusters are merged into a new cluster
according to the geographical locations of the cluster centroids.
The merging operation also decreases the unnecessary distance
of the flight trajectory, especially the distance between the
HAP and the first visited island and the distance between
the last visited island and the HAP for each cluster. If two
clusters are merged, we adopt the PSO and DA algorithms
to obtain the traversal sequence of the hovering points in
new cluster, and calculate the total energy consumption of
the UAV for traversing the new cluster. Only if the calculated
energy consumption of the UAV is no more than its battery
capacity Cmax, the merging operation is valid; Otherwise, it
is invalidated. The process of merging operation continues
until all clusters can no longer be merged, and we obtain the
traversal sequence of the hovering points by the UAV in each
cluster. It is worth noting that the proposed MaKMC combines
the KMC algorithm and merging operation, while the PSO and
DA algorithms are invoked between the KMC algorithm and
merging operation. This means that the MaKMC is permeated
into the C-DASP algorithm and cannot be presented separately.

In the following, we respectively provide the KMC, PSO
and DA algorithms that are incorporated by the proposed C-
DASP algorithm in Algorithm 1.

1) KMC Algorithm: As shown in Algorithm 2, we divide

M islands into K clusters, i.e., {Ci|i = 1, . . . ,K}, and
the set of the hovering points in cluster i is represented by
Ci = {x1, . . . , xMi

}. In line 1, we initialize the number of
clusters K. In line 2, the geographical locations of K cluster
centroids are randomly initialized. In lines 4-9, update the
clusters according to the nearest cluster centroid of the islands
from the hovering points. In lines 10-12, the geographical
locations of cluster centroids are updated as

yi =

∑
xεCi

x

|Ci|
, (42)

where |Ci| represents the number of the hovering points in
cluster i, and yi represents the average geographical location
of the hovering points in cluster i. The loop in Algorithm 2
stops until the hovering points of the islands in the clusters do
not change.

Lemma 1. In the UAV-assisted WPCN with the same number
of SNs on each island, we divide islands into K clusters
according to the geographical locations of the hovering points
on islands. When the UAV traverses the hovering points in
each cluster by the shortest path algorithm, the optimal average
AoI is achieved.

Proof: As aforementioned in Section III, the average AoI
of data received from all the SNs is determined by the hovering
duration, the clustering of islands, and the flight trajectory. The
hovering duration has been minimized by the proposed HTN
protocol in Section IV-B, and the clustering of islands has
been given by the KMC algorithm. Then the unique factor
impacting the average AoI is the flight trajectory of the UAV.
As we discussed in Section III, in the flight trajectory design,
we should take both the flying duration of the UAV and the
number of SNs on each island into account. Here, the number
of SNs on each island is the same, i.e., Nm is the same for all
m in (28). In other words, the number of SNs does not affect
the flight trajectory, and the optimal flight trajectory design
is equivalent to achieve the minimum flying duration in each
cluster. Therefore, the optimal average AoI would be achieved
when the UAV traverses the hovering points according to the
shortest path in each cluster.

As is well known, traveling salesman problem (TSP) is an
NP-hard problem [40] that aims to find the shortest path to
visit each city and return to the departure city. Inspired by TSP,
we map each island in one cluster into a city. Similarly, the
flight trajectory design problem for the clustering of islands
in subproblem SP2 can be proved as the NP-hard problem.
According to Lemma 1, we next adopt the PSO algorithm to
find the shortest path among a given set of islands with the
same number of SNs.

2) PSO Algorithm: The PSO algorithm, consisting of
particles for searching the flight trajectory of the UAV, is
a heuristic searching approach to find the global optimal
traversal sequence by moving the virtually deployed particles
[41]. The optimal traversal sequence, obtained from the last
iteration iter that particle i believes, is viewed as the indi-
vidual optimal traversal sequence piteri . The optimal traversal
sequence, obtained from the last iteration iter that the particles
believe, is viewed as the global optimal traversal sequence
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Algorithm 3 PSO algorithm.
Input: The number of islands Mk in cluster k, the number of

particles Np, the number of iterations Niter , the parameters of
PSO algorithm {ωmax, ωmin, c1, c2};

Output: The optimal traversal sequence of the hovering points in
cluster k, denoted by Q0

k = {V1k , V2k , . . . , V(Mk)k};
1: Initialize the traversal sequence of the hovering points by particle

i, denoted by x0
i = {V i

1k , V
i
2k , . . . , V

i
(Mk)k

};
2: Calculate the distance of the flight trajectory of particle i, denoted

by p̂(i);
3: for iter = 1 to Niter do
4: Update inertia coefficient ω according to (43);
5: Update Piter and Giter according to (46) and (47);
6: for i = 1 to Np do
7: for j = 1 to Mk do
8: Update ϑiter

i according to (45);
9: end for

10: end for
11: for i = 1 to Np do
12: Update giter

i , and piter
i ;

13: end for
14: end for
15: Take the global optimal traversal sequence as the optimal traver-

sal sequence Q0
k.

16: return Q0
k.

giteri . In iteration iter + 1, particle i traverses the hovering
points according to piteri or giteri in (44)-(47). The iteration
process stops until the number of iterations Niter is reached.
As in Algorithm 3, the PSO algorithm is specified as follows.

Step 1: Initializing the traversal sequence of the hover-
ing points by particle i in cluster k, denoted by x0

i =
{V i1k , V

i
2k
, . . . , V i(Mk)k

}.
Step 2: According to x0

i , we calculate the distance of the
flight trajectory of particle i as fitness, denoted by p̂(i), and
the global optimal fitness is also initialized as ĝ(0).

Step 3: Updating inertia coefficient ω as

ω = ωmax −
(ωmax − ωmin) ∗ iter

Niter
, (43)

where ωmax represents the maximum inertia coefficient, and
ωmin represents the minimum inertia coefficient.

Step 4: According to piteri and giteri , we update the flying
velocity of particle i, denoted by ϑiter+1

i , during the iteration
iter + 1. The rule of updating ϑiter+1

i is
ϑiter+1
i = ωϑiteri +c1

(
piteri −xiteri

)
+c2

(
giteri −xiteri

)
= ωϑiteri +c1d

iter
i +c2D

iter
i , (44)

where c1 represents the cognition coefficient, and c2 represents
the social coefficient [41]. The flying velocity of particle i
satisfies

ϑiteri (j) =


diteri (j), diteri (j) 6= 0,

Diter
i (j), Diter

i (j) 6= 0,

0, w < R0,

(45)

where R0 is a random number in [0, 1]. Piter is a Np ×Mk

matrix consisting of diteri , and diteri (j) in (45) satisfies

diteri (j) =

{
piteri (j)− xiteri (j), c1 > R1,

0, c1 < R1,
(46)

where R1 is a random number in [0, 1]. Giter is a Np ×Mk

Algorithm 4 DA algorithm.
Input: The traversal sequence determined by the PSO algorithm

in cluster k, denoted by Q0
k = {V1k , V2k , . . . , V(Mk)k}, the

number of SNs on islands in cluster k, denoted by Ns =
{N1,k, N2,k, . . . , NMk,k};

Output: The traversal sequence of the hovering points in cluster k,
denoted by Qk = {V

′
1k , V

′
2k , . . . , V

′
(Mk)k

};
1: for i = 1 to Mk − 1 do
2: for j = i+ 1 to Mk do
3: if Ni,k > Nj,k then
4: Swap Vik and Vjk in the traversal sequence.
5: end if
6: Calculate the AoI under the updated traversal sequence.
7: If the obtained AoI is less than that obtained under the

previous traversal sequence, update the traversal sequence
as Qk.

8: end for
9: end for

10: return Qk.

matrix consisting of Diter
i , and Diter

i (j) in (45) satisfies

Diter
i (j) =

{
giteri (j)− xiteri (j), c2 > R2,

0, c2 < R2,
(47)

where R2 is a random number in [0, 1].
Step 5: Updating the individual optimal traversal sequence

piteri by particle i according to ϑiteri in (44);
Step 6: During iteration iter, we select the traversal se-

quence with the minimum fitness as the global optimal traver-
sal sequence, denoted by giteri for particle i, and the minimum
fitness is denoted by ĝ(iter).

Step 7: If the number of iterations is reached, i.e., iter =
Niter, the loop stops. Then we take the global optimal traversal
sequence as the optimal traversal sequence Q0

k. Otherwise, we
update iter = iter + 1, and go to Step 3.

In the UAV-assisted WPCN where the number of SNs on
each island is different, the optimal traversal sequence of the
hovering points is not the shortest path in the cluster. In order
to find the optimal traversal sequence of the hovering points
by the UAV in one cluster, we further propose a DA algorithm
to dynamically adjust the traversal sequence of the hovering
points obtained by PSO algorithm to reduce the average AoI.

3) DA Algorithm: According to the PSO algorithm, we have
obtained the traversal sequence of the hovering points with
the shortest distance by the UAV in every cluster. However,
the amount of data received from SNs on each island also
has an important impact on the average AoI. To obtain better
AoI performance, the UAV is willing to fly later to the island
that has more amount of data. The amount of data depends
on the number of SNs on each island. To capture the effect
of the number of SNs on each island on the average AoI,
we propose the DA algorithm for dynamic adjustment of
the traversed hovering points in Algorithm 4. The traversal
sequence obtained by the PSO algorithm is adopted as the
initial traversal sequence. The rules for dynamic adjustment of
the traversed hovering points are specified as follows. If the
number of SNs on the island that currently needs to be adjusted
is larger than the number of SNs on the island that is traversed
by the UAV after this adjusted island in the traversal sequence,
we swap the sequence of the two hovering points and recal-
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culate the average AoI obtained by the UAV according to the
current swaped traversal sequence. If the obtained average AoI
is smaller, the adjusted traversal sequence is updated as the
traversal sequence for comparison. When the average AoI does
not change, the dynamic adjustment rules stop.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we evaluate the average AoI performance
of the UAV-assisted WPCN under the proposed HTN protocol
and the C-DASP algorithm. The UAV-assisted WPCN consists
of one HAP, one UAV, 40 islands. The number of SNs on each
island is randomly generated, and the total number of SNs is
593. The flight height h and the speed of the UAV V are
set as 10 m and 20 m/s, respectively. The battery capacity
Cmax of the UAV is 28 kJ. The parameters about the rotary-
wing UAV’s flight power are listed as follows [29]. The tip
speed of the rotor blade Utip is set as 120 m/s. The mean
rotor induced velocity when hovering v0 is set as 4.03. The
fuselage drag ratio d0 and rotor solidity s are set as 0.6 and
0.05, respectively. The air density ρ and rotor disc area A
are set as 1.225 kg/m3 and 0.503 m2, respectively. The UAV
transmits the RF signal to the SNs on island m with transmit
power P em = 1 W. The islands are randomly distributed in a
square area with side length of 1000 m. The HAP is located
at the center of this square area, i.e., (500, 500, 0). Nm SNs
are randomly distributed on island m with the radius of 50
m, where Nm ≥ 1 is a random number. The topology is not
limited to the scenario of island environmental monitoring,
and is generally suitable for the scenarios where nodes are
clustered around certain fixed hotpots, like Fig. 5 in [42], or
monitoring areas are scattered, like Fig. 8 in [9] and Fig. 7
in [42]. The system bandwidth is set as W = 4 MHz [20],
the energy conversion efficiency is set as η = 0.8, and the
path-loss factor is set as α=2. The gain of the channel at the
reference distance 1 m is set as κ = −50 dB, and the noise
power σ2 =−100 dBm [20]. The data size is set as D = 1
Mb [19]. Besides, the parameters of the PSO algorithm are set
as ωmax = 0.85, ωmin = 0.5, Np = 500, and Niter = 1000.
All the parameters are set as described above unless otherwise
specified.

A. Verification of the proposed HTN Protocol

Fig. 4 displays the average AoI versus the number of SNs
on one island for HTN, TDMA, and NOMA protocols when
the number of UAV’s flight cycle equals 100. It is easy to
observe that the average AoI under three protocols increases
with the number of SNs on one island. The reason is that
the increasing number of SNs on one island would lead to
the increasing duration of data transmission stage for TDMA
protocol and that of energy transfer stage for NOMA protocol.
Besides, we observe that when the number of SNs on one
island is small, the average AoI under the NOMA protocol is
smaller than that under the TDMA protocol, and vice versa.
This is due to the reason that for the small number of SNs, i.e.,
2, 3 in Fig. 4, the energy thresholds of supporting the NOMA
protocol are relatively low and could be satisfied quickly by
SNs. However, with the continuously increasing number of
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Fig. 4: The average AoI versus the number of SNs on one
island for HTN, TDMA and NOMA protocols.

SNs on one island, i.e., 4, 5, . . ., 8 in Fig. 4, the SNs need
to harvest more energy to reach the corresponding energy
thresholds of supporting the NOMA protocol according to
(41), and then the duration of energy transfer stage would
become longer. This observation gives us a different direction
to design another HTN protocol, i.e., the NOMA protocol is
applied on the islands with small number of SNs, while the
TDMA protocol is applied on the islands with large number
of SNs. Another important observation is that, the average
AoI under the HTN protocol is always the smallest among the
three transmission protocols. The reason is that, compared with
the TDMA protocol, the HTN protocol shortens the duration
of data transmission stage for the UAV. Compared with the
NOMA protocol, the HTN protocol shortens the duration of
energy transfer stage for SNs.

B. AoI Performance Analysis and Verification of the Proposed
C-DASP Algorithm

Fig. 5 plots the clusterings and flight trajectories of the UAV
under KMC and MaKMC algorithms for different network
topologies, i.e., topology 1 in Figs. 5(a)-(b) and topology 2
in Figs. 5(c)-(d). For topology 1 with 218 SNs distributed in
the area of 1000∗1000, compared with the clustering results
in Fig. 5(a), we observe that clusters 4 and 5 are merged in a
new cluster in Fig. 5(b). As a result, the average AoI decreases
from 690s to 664s. The reason is that the energy of the fully-
charged UAV should have supported the UAV traversing two
clusters in Fig. 5(a), which causes the UAV frequently returns
to the HAP and increases the total flying duration. We provide
a different network topology, i.e., topology 2 with 241 SNs
distributed in the area of 1200∗1200, to show the generality
of the MaKMC algorithm. By comparing Fig. 5(c) with Fig.
5(d), we also observe that clusters 1 and 5 in Fig. 5(c) are
merged into a new cluster in Fig. 5(d), and accordingly, the
average AoI decreases from 779s to 749s. It is worth noting
that the merging operation aims to make full use of the energy
in the UAV’s battery, i.e., reduce the number of times that the
UAV is charged by the HAP, which is in accordance with the
real demand. Meanwhile, it is also an attempt to reduce the
average AoI, and as shown in Fig. 5, the merging operation
is beneficial for the average AoI in some cases of the UAV-
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(a) Topology 1 under KMC
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(b) Topology 1 under MaKMC
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(d) Topology 2 under MaKMC

Fig. 5: Clusterings and flight trajectories under KMC and
MaKMC algorithms for different network topologies.

assisted WPCN. In other words, the merging operation fully
utilizes the energy in the UAV’s battery but may not always
be beneficial for the average AoI.

Fig. 6 shows the clusterings and flight trajectories of the
UAV under the proposed C-DASP and other three algorithm-
s. The algorithms for comparison, i.e., the clustering-based
shortest path (C-SP) algorithm, the clustering-based weighted
scheduling (C-WS) algorithm, the clustering-based weighted
path scheduling (C-WPS) algorithm, are specified as follows.
• C-SP algorithm: In every cluster, the traversal sequence

of the hovering points is obtained by the shortest path
algorithm [9], [43], such as the PSO algorithm.

• C-WS algorithm: In every cluster, the traversal sequence
of the hovering points is determined by the ascending
order of the number of SNs on islands.

• C-WPS algorithm: This algorithm, proposed by us for
comparison, also takes both flight distance/duration and
the number of SNs on one island into account. It aims
to find the traversal sequence of the hovering points that
minimizes the sum of the products for each island, and
the product is calculated by the number of SNs on the
island and the distance from the current hovering point
to the HAP along the traversal sequence.

As shown in Fig. 6, the number of clusters under the C-
SP algorithm in Fig. 6(a) is the least with 5, and that under
the C-WS algorithm in Fig. 6(b) is the largest with 6. While
the number of clusters under the C-WPS algorithm in Fig.
6(c) and the proposed C-DASP algorithm in Fig. 6(d) are
in the range [5, 6]. The reason is that the flight trajectory
determined by the C-SP algorithm is the shortest without
considering the impact of the number of SNs on each island
on the average AoI. Hence the energy of the fully-charged
UAV could support the UAV traversing more islands for once
flight, and then the number of clusters in the UAV-assisted
WPCN is the least. On the contrary, the flight trajectory
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(b) C-WS
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(d) C-DASP

Fig. 6: Clusterings and flight trajectories under the proposed
C-DASP and other comparison algorithms.

determined by the C-WS algorithm is entirely based on the
number of SNs on each island without considering the flight
distance. Thus, compared with that of the C-SP algorithm,
the number of islands traversed by the fully-charged UAV for
once flight is less, and then there are more clusters in the
UAV-assisted WPCN. While the C-WPS and the proposed C-
DASP algorithms jointly consider the impacts of flight distance
and the number of SNs on each island on the average AoI,
hence the number of islands traversed by the fully-charged
UAV for once flight would be not more than that under the
C-SP algorithm, and meanwhile not less than that under the
C-WS algorithm. As shown in Fig. 6(a), Fig. 6(c), and Fig.
6(d), even the number of clusters under the C-WPS and the
proposed C-DASP algorithms are equal to that under the C-SP
algorithm, we can also clearly observe that the flight distance
in cluster 3 determined by the C-WPS and the proposed C-
DASP algorithms is greater than that determined by the C-
SP algorithm. Moreover, we observe that although the flight
distance in clusters 1 and 2 is the same for Fig. 6(a) and
Fig. 6(d), the traversal sequence of the hovering points is
completely reciprocal. The same observation could be obtained
in cluster 1 for Fig. 6(a) and Fig. 6(c). This is due to the reason
that both the C-WPS and the proposed C-DASP algorithms not
only consider the flight distance but also the number of SNs
on each island. Fig. 6 also shows that for the given topology,
the average AoI under the proposed C-DASP algorithm is the
smallest among the four algorithms, and a general discussion
about the AoI performance will be presented in Fig. 7.

Fig. 7(a) shows the average AoI versus the total number of
SNs in the WPCN under four algorithms. When the horizontal
coordinate is [1, 10], the number of SNs on each island belongs
to [1, 10]. When the horizontal coordinate is [11, 20], the
number of SNs on each island belongs to [11, 20]. The rest
can be deduced by analogy. Fig. 7(b) shows the average AoI
versus the heterogeneity of the number of SNs on islands under
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Fig. 7: (a) The average AoI versus the total number of SNs on
in the WPCN. (b) The average AoI versus the heterogeneity
of the number of SNs on islands.

four algorithms. The relationship between the average AoI and
the total number of SNs in the WPCN can be observed by
Fig. 7(a). Thus, for the horizontal coordinate in Fig. 7(b), we
not only ensure the increase of the heterogeneity of the number
of SNs on islands, but also the increase of the total number
of SNs in the WPCN (i.e., control variables). Specifically,
when the horizontal coordinate is [1, 100], for 40 islands in
the WPCN, the number of SNs on each island belongs to
[1, 100]. When the horizontal coordinate is [1, 120], for 35
islands, the number of SNs on each island belongs to [1, 100],
and for 5 islands, the number of SNs on each island belongs
to (100, 120]. When the horizontal coordinate is [1, 140], for
30 islands, the number of SNs on each island belongs to
[1, 100]; for 5 islands, the number of SNs on each island
belongs to (100, 120]; and for 5 islands, the number of SNs
on each island belongs to (120, 140]. The rest can be deduced
by analogy. By comparing Fig. 7(b) with Fig. 7(a), the impact
of the heterogeneity of the number of SNs on islands could
be observed.

Then, we present the observations from Fig. 7. (I) We
observe from both Fig. 7(a) and Fig. 7(b) that, the proposed
C-DASP algorithm always achieves the minimal average AoI,
which verifies the superiority of the proposed algorithm. The
reason is that compared with the C-SP algorithm, the C-
DASP algorithm takes the impact of the number of SNs on
each island, i.e., Nm, into account. Compared with the C-WS
algorithm, the C-DASP algorithm takes the impact of the flight
distance into account. Although the C-WSP algorithm also
takes the two impacts into account, Fig. 7 shows that the C-
DASP algorithm is more superior than it. (II) We observe from
Fig. 7(a) that, with the increase of the number of SNs on each
island, the average AoI increases, since the UAV hovers over
each island with longer duration for transmitting the RF signal
to SNs and receiving data from SNs. Besides, we observe that
the average AoI under the C-SP algorithm is always smaller
than that under the C-WS algorithm, since the heterogeneity
of the number of SNs on islands keeps almost unchanged,
and the flight distance has a dominant impact on the flight
trajectory design. (III) We observe from Fig. 7(b) that, the
average AoI under the C-SP algorithm sometimes is larger
than that under the C-WS algorithm, which demonstrates that
the heterogeneity of the number of SNs on islands sometimes
has a dominant impact on the flight trajectory design.
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Fig. 8: The flight trajectories versus the battery capacity of
UAV with (a) 12kJ, (b) 24kJ, and (c) 36kJ. (d) The average
AoI versus the battery capacity of UAV.

C. Impacts of Battery Capacity and Flight Height of the UAV

Fig. 8 depicts the impact of the battery capacity of UAV
Cmax on the flight trajectories and the average AoI. From
Figs. 8(a)-(c), we observe that with the increase of Cmax, the
number of clusters in the WPCN decreases. This observation
can be attributed to the clustering of islands which is based on
the full utilization of the energy in the UAV’s battery. From
Fig. 8(d), we observe that the average AoI first decreases
with Cmax and then increases with Cmax. The reason is that
there is a tradeoff between the duration from the timestamp
of data generation in a given cluster to that of data offloading
and the duration from the timestamp of starting to traverse
other clusters to that of the next data generation in the given
cluster. This tradeoff can be represented in a more intuitive
manner, i.e., the tradeoff between the number of clusters and
the total flying and hovering duration in one cluster. It is
worth noting that the tradeoff exists since we try to reduce
the number of times that the UAV is charged when clustering.
We then present the reason in a specific way by combining
with Figs. 8(a)-(c). When Cmax is small with 12kJ as in Fig.
8(a), the number of clusters in the WPCN is relatively large,
the UAV needs to frequently return to the HAP to offload
the received data and be fully charged. In this case, although
the received data from one cluster is offloaded timely, the
time for the UAV frequently returning to the HAP results
in the long duration for traversing other clusters, which is
the dominant factor impacting the average AoI for the small
Cmax and decreases with Cmax. Therefore, with the increase
of Cmax for Cmax ∈ (6kJ, 24kJ), the average AoI becomes
smaller. When Cmax is large with 36kJ as in Fig. 8(c), the
number of clusters in the WPCN is relatively small, and then
the frequency for the UAV returning to the HAP decreases.
In this case, although the duration for traversing other clusters
is reduced, the long total flying and hovering duration of the
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Fig. 9: (a) The average AoI versus the flight height of the
UAV. (b) Hovering duration for one flight cycle of the UAV
versus the flight height of the UAV.

UAV in one cluster results in the untimely data offloading,
which is the dominant factor impacting the average AoI for
the large Cmax and becomes more serious with the increase of
Cmax. Therefore, with the increase of Cmax for Cmax ∈ (24kJ,
42kJ), the average AoI becomes larger. These observations
provide directions on how to select the battery capacity of the
UAV to minimize the average AoI, as well as make full use
of the battery energy of the UAV.

Fig. 9 depicts the impact of the flight height of the UAV on
the average AoI. We observe from Fig. 9(a) that the average
AoI increases with the flight height of the UAV. The reason
is that, with the increase of the flight height of the UAV, the
channel qualities between the UAV and SNs become worse.
As a result, the UAV requires longer time to charge SNs and
receive data from SNs. That is to say, the hovering duration
of the UAV on each island increases with the flight height of
the UAV, as shown in Fig. 9(b).

VI. CONCLUSION

In a UAV-assisted WPCN for the island environmental
monitoring, we analyzed the key factors affecting the long-
term average AoI with consideration of the battery recharging
of the UAV. Based on the key factors, we formulated the long-
term average AoI-minimal problem by jointly optimizing the
transmit power of SNs, the clustering of islands, and UAV’s
flight trajectory. To address the NP-hard problem, we decou-
pled it into two subproblems: the power allocation subproblem,
which was solved by proposing a HTN protocol for SNs,
and the joint clustering of islands and UAV’s flight trajectory
design subproblem, which was solved by proposing a C-
DASP algorithm. Simulation results showed that: (1) the HTN
protocol achieves smaller AoI than the TDMA protocol and
the NOMA protocol; (2) The merging operation for clustering
is beneficial for reducing the number of times that the UAV
is charged, and the dynamic adjustment operation based on
the number of SNs on each island in the C-DASP algorithm
contributes to achieve better AoI performance; (3) There is a
tradeoff between the number of clusters and the total flying
and hovering duration of the UAV in one cluster caused by
the battery capacity of the UAV under the C-DASP algorithm.
Future works include more practical network models, such as
the deployment of multiple UAVs, and more comprehensive
approaches, such as the reinforcement learning approach.
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