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Abstract—The envisioned key role of Unmanned Aerial Ve-
hicles (UAVs) in assisting the upcoming mobile networks calls
for addressing the challenge of their secure and safe integration
in the airspace. The GPS spoofing is a prominent security
threat of UAVs. In this paper, we propose a 5G-assisted UAV
position monitoring and anti-GPS spoofing system that allows
live detection of GPS spoofing by leveraging Uplink received
signal strength (RSS) measurements to cross-check the position
validity. We introduce the Adaptive Trustable Residence Area
(ATRA); a novel strategy to determine the trust area within
which the UAV’s GPS position should be located in order to be
considered as non-spoofed. The performance evaluation shows
that the proposed solution can successfully detect spoofed GPS
positions with a rate of above 95%.

Index Terms—UAV, GPS spoofing, RSS, Adaptive Trustable
Residence Area (ATRA)

I. INTRODUCTION

5G and beyond wireless networks are envisioned to fos-

ter the proliferation of massive Internet of Things (IoT).

Improved coverage, connectivity and energy efficiency are

essential requirements to make this vision a reality. Unmanned

Aerial Vehicles (UAVs), or commonly known as drones, are

recognized as a promising technology to assist upcoming

wireless networks in meeting the massive IoT requirements,

thanks to their deployment and movement flexibility and their

capability of establishing line-of-sight (LOS) communication

links. Indeed, UAVs have become an integral part of several

critical applications, such as rescue management, first aid and

even time-critical systems [1]. However, the anticipated growth

in UAV usage calls for addressing the challenge of their secure

and safe integration in the airspace.

As a response to this challenge, the development of Un-

manned Aircraft Systems (UAS) Traffic Management (UTM)

systems are considered mandatory to manage both visual and

beyond-visual LOS drone operations in low-altitude airspace

[2]. The services delivered by a UTM system encompass drone

registration and identification, flight planning and authoriza-

tion, real-time tracking, and geo-fencing. It is worth noting that

UAV positioning information is instrumental for UTM systems

to fulfill their mission. Such information can be provided by

different positioning technologies and periodically reported to

UTM leveraging the communication capabilities of 5G and

beyond networks [3]. The global navigation satellite system

(GNSS), specifically GPS, is the primary location technology

used by UAVs due to its global coverage and accuracy.

Nevertheless, the unencrypted civil GPS signals are inherently

vulnerable to spoofing attacks. Indeed, an attacker can use

low-cost software defined radio (SDR) tools, such as USRP,

to generate fake signals with false navigational information

in order to fool the UAV’s GPS receiver into calculating

false positions [4]. In another attack scenario, a malicious

UAV may deliberately report false GPS data to UTM, leading

to violation of no-fly zone regulation and/or collision risks.

Thus, it is imperative to incorporate appropriate measures

into UTM systems to validate the positioning information and

consequently counteract GPS spoofing attacks.

Several solutions have been proposed for detection and

mitigation of GPS spoofing attacks, which can be broadly

classified into two categories, namely, GPS signal analysis

methods (e.g., [5]–[8]) and GPS information analysis methods

(e.g. [9]–[13]). For instance, the authors in [5] devised a multi-

antenna anti-spoofing technique for mitigating the spoofing

signals. Similarly, in [6] presented a spatial signal processing

approach for GPS spoofing detection and mitigation. The spa-

tial signal processing takes advantage of multi-antenna recep-

tion for spatially filtering out fake GPS signals beamforming or

null steering. In fact, multiple received signals having the same

or very similar direction of arrival (DoA) is an indicator of

GPS spoofing. In [7] and [8], the cross-correlation between the

military and civil GPS signals is used for detecting the spoof-

ing of unencrypted GPS signals. The cross-correlation strategy

requires a communication link between a secure receiver

and the defended receiver to perform the spoofing detection.

The authors in [9] proposed Crowd-GPS-Sec, a solution that

leverages the position messages periodically broadcast by the

aircraft/UAV and their time of arrival to detect and localize

GPS spoofing attacks. To safeguard civil GPS receivers against

spoofing attacks, Wesson et al. [10] proposed to authenticate

GPS signals by combining signature-based authentication of

GPS navigation messages with a statistical hypothesis test.

Similarly, Wu et al. [11] used SM cryptographic algorithms,

particularly SM2, SM3 and SM4, to authenticate the BeiDou-

II navigation messages. In [12], a trusted hardware is leveraged

to generate cryptographically-signed GPS messages in order

to resist spoofing attacks. The UAV’s camera view is used

in [13] to cross-check if the UAV’s GPS position is spoofed

or not.

Although the proposed GPS spoofing detection methods are

effective, their adoption imposes more antennas and compu-

tational load on the receiver. In fact, the estimation of phase

delay and direction of arrival requires an inertial measurement
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Fig. 1. High-level architecture of the remote 5G UVA’s position and GPS spoofing detector.

unit (IMU) or multiple reception antennas, while the cross-

correlation induces computation overhead. Those methods can

hardly implement into drone due to limited battery capacity

and the extra weight load on the drone. Furthermore, most

existing solutions consider UAV as a victim receiving spoofed

GPS signals. Nevertheless, the UAV may be malicious and

deliberately reports fake GPS information to the UTM.

In this paper, we propose a novel cost-effective method to

detect the spoofed GPS positions reported to UTM by an

UAV. The proposed method leverages the Received Signal

Strength (RSS) collected from multiple 5G base stations to

infer the UAV’s residence area, enabling UTM to cross-check

the validity of positioning information provided by the UAV.

Unlike the aforementioned solutions, the proposed approach

requires no additional hardware or computation load at the

UAV. Furthermore, it can be easily supported by 5G networks,

thanks to the recent 3GPP’s standardization work to expose

network capabilities and information to UTM [14]. Followings

are the major contributions of this paper:

• First, we propose a 5G-assisted UAV position monitoring

and anti-GPS spoofing system (see Fig. 1) that allows live

detection of GPS spoofing by leveraging Up-link received

signal strength (RSS) measurements to cross-check the

position validity. It is worth mentioning that the proposed

system is compliant with the 3GPP specification for en-

abling UAV tracking services over mobile networks [15];

• To improve the positioning accuracy, we propose to

subdivide the residence area calculated from the RSSI

measurements into weighted trust areas, where the highest

weight is assigned to the trust area with the highest

likelihood of containing the UAV;

• To achieve higher GPS spoofing detection accuracy, we

propose the Adaptive Trustable Residence Area (ATRA)

algorithm which determines the trust areas within which

the reported GPS position should be located in order to be

considered as non-spoofed. The determination of ATRA

depends on trust levels and the tolerable GPS margin

error;

• Finally, the performance of the proposed ATRA-based

GPS spoofing detector is evaluated in both free-space and

urban area environments. The obtained results show the

high effectiveness of the proposed solution in detecting

spoofed GPS positions.

The remainder of this paper is organized as follows. Sec-

tion II presents the proposed RSSI-assisted UAV position

monitoring and anti-GPS spoofed system, providing details

on the system high-level architecture and the devised ATRA-

based GPS spoofing detector. The performance evaluation re-

sults of the ATRA-based GPS spoofing detector are discussed

in Section III. Conclusion and future work are presented in

Section IV.

II. 5G-ASSISTED UAV POSITION MONITORING AND

ANTI-GPS SPOOFING SYSTEM

A. System High-Level Architecture

According to Federal Aviation Administration (FAA) reg-

ulation, UAVs need to report their location to UTM for

safety and security purposes [16]. In the view of supporting

this regulation, 3GPP defined the interfaces enabling UAV

identification and tracking services over a mobile network

[15]. Following the 3GPP specification [15], we propose a

5G-assisted UAV position monitoring and anti-GPS spoofing

system that allows live detection of spoofed GPS position

by leveraging Uplink RSS measurements to cross-check the

position validity.

As depicted in Fig. 1, the proposed system proceeds in

five (05) stages to continuously monitor the UAV location

while detecting the spoofed GPS positions. The UAV operator,

remotely controlling a UAV, first sends a flight mission request

to the UTM, specifying the mission type and its starting and

ending geolactions. Upon receiving the request, the UTM

checks the request’s compliance with regulatory requirements,

in which case UTM issues the flight route and clearance to the

UAV. In case of regulation violation, the UAV operator will

be notified in order to change the flight mission plan. Once

authorized to start its mission, the UAV needs to periodically

broadcast its telemetry data, including GPS position, over the

air for collision avoidance and airspace enforcement [14].

Collected by the nearby base stations, the position information

is augmented with the uplink RSS measurements and reported

to the UTM. The collected RSS measurements are used by the



UTM to infer the UAV’s residence area, enabling to cross-

check that the GPS position provided by the UAV is not

spoofed. When a GPS spoofing is detected, a warning is sent

by UTM to the UAV operator.

As shown in Fig.1, the UTM maintains for each UAV

authorized to fly a list containing the live GPS positions

reported by the UAV, the associated uplink RSSI information,

and their collection timestamps. The decision on whether the

reported GPS position is spoofed or not is stored in the “Info”

field.

The details on the residence area estimation and the GPS

spoofing detection are provided in the subsequent sections.

B. RSSI-based Positioning Approach

The 5G new radio (NR) technologies is envisaged to play

an essential role in enhancing positioning accuracy, owing to

the high frequency bands and dense deployments [17]. Indeed,

the characteristics of the uplink or downlink radio signals are

utilized to infer the location of a user equipment (e.g.,UAV).

Potential radio signal-based localization approaches that will

be supported by 5G NR include Time of Arrival(ToA), An-

gle of Arrival(AoA), and Received Signal Strength Indicator

(RSSI) [18]. In the aforementioned approaches, the node(e.g.,

UAV) position is estimated based on the distances or angles to

the anchors (e.g., 5G base station), calculated using ToA, RSSI

and AoA signal measurements [19]. Compared to other signal-

based localization techniques, RSSI measurements can easily

be obtained from base stations without any extra hardware.

Moreover, Mechanisms such as (Extended) Kalman Filter

and Particle Filter can be used to reduce distance estimation

error. For these reasons, an RSSI-based positioning scheme is

adopted in this work to assist UTM in detecting GPS spoofing

attacks. In what follows, the principle of RSSI-based technique

is explained.

In RSSI-based localization techniques, the distance between

the transmitter (e.g., UAV) and the receiver (e.g., gNB base

station) is computed using an appropriate path loss model. A

common path loss model is the log-normal shadowing model,

which is able to model both LOS and NLOS communication

links [20]. It can be expressed in dBm as:





Pr(d) = P r(d) + χσ

P r(d) = P r(d0) + 10nlog(
d

d0
)

P r(d0) =
PtGtGrλ

2

(4π)2d20L

(1)

where Pr(d) is the received power (in dBm) as a function of

the distance d (in meter) separating the transmitter (e.g., UAV)

from the receiver (e.g., gNB). P r(d) is the corresponding

average power (in dBm). χσ is a zero-mean Gaussian random

distribution with standard deviation σ (in dBm); i.e., χσ ∼
N (0, σ). P r(d0) is the reference power (in dBm) received

at close-in reference distance d0. P r(d0) can be estimated

by the Friis free-space equation. Pt is the transmitted power

(in dBm), while Gt and Gr are, respectively, the transmitter

and receiver antenna gains expressed in mW. λ represents the

wavelength, and L ≥ 1 is the total losses of the antenna’s

circuitry. n is the path loss exponent (PLE), which indicates

the rate at which the path loss increases with distance.

The path loss model in (1) can be used for computing the

RSSI-based distance, d̂ (in meters), between the transmitter

and the receiver as follows:

d̂ = d010
Pr(d0)−Pr(d)

10n (2)

From (2), the difference between the sent and received

signal and the value of the PLE parameter have a significant

impact on the accuracy of the estimated distance.

C. GPS Spoofing Detector

1) RSSI Estimation and Selection: We assume that the

RSSI signal propagation follows the log-normal shadowing

model presented in Eq. (1). It is worth mentioning that

the distance separating the transmitter (i.e., UAV) from the

receiver (i.e., gNB) has a significant impact on the signal

power accuracy [21]. Indeed, the RSSI accuracy decreases

greatly as the distance increases, which may lead to huge effect

on the RSSI-based distance estimation error.

In this paper, a trilateration method is adopted for de-

termining the UAV’s position based on the distances calcu-

lated from the RSSI measurements of three base stations.

To provide higher localization accuracy, the UTM performs

the trilateration by selecting the three highest RSSI readings

RSSI1, RSSI2, and RSSI3, reported by base stations gNB1,

gNB2, and gNB3, respectively. In fact, a high RSSI value

indicates that the UAV is closer to the base station, which

results in reduced RSSI-based distance estimation error, and

consequently improved localization accuracy.

2) Trust Level Computation: Let (X1, Y1), (X2, Y2) and

(X3, Y3) denote the positions of the three selected base

stations gNB1, gNB2, and gNB3, respectively. Let R1, R2

and R3 denote the estimated distances between the UAV and

the base stations gNB1, gNB2, and gNB3, respectively. If

the distances are precisely measured, the trilateration approach

determines the UAV’s position by the intersection point be-

tween the circles centered at the base stations’ positions with

radii R1, R2 and R3 as depicted in Fig. 2.(a). However,

due to distance estimation error, the trilateration results in a

residence area within which the UAV can be located as shown

in Fig. 2.(b).

UAV position

UAV residence area

Fig. 2. Trust area and related trust level divisions.



To improve the positioning accuracy, we propose to subdi-

vide the residence area into three trust areas with different trust

levels L1, L2, and L3. The L1 trust area is mathematically

defined by Eq. (3):





d21 = R2
A − [(x−XA)

2 + (y − YA)
2] > 0

d22 = R2
B − [(x−XB)

2 + (y − YB)
2] > 0

d23 = R2
C − [(x−XC)

2 + (y − YC)
2] > 0

d1 6 d2 ∧ d1 < d3

(3)

where (x, y) is a possible point inside the area. d1, d2 and

d3 are the distances between the point (x, y) and the borders

included in the different trust level areas L1, L2 and L3,

respectively. To obtain the L2 trust area, the fourth line in

Eq. (3) should be replaced by:

d2 6 d3 ∧ d2 < d1 (4)

Similarly, the L3 trust area is obtained by replacing the

fourth line in Eq. (3) by the following inequality:

d3 6 d1 ∧ d3 < d2 (5)

L1

L2

L3

d
1

d
2

d
3

Resident

Area

divide

Fig. 3. The residence area divided into trust level areas.

Fig. 3 illustrates the obtained trust level areas. Each trust

area of level Li is assigned a weight ωi, representing the

likelihood that the UAV is located in this area. The assigned

weight is function of the distances estimated from the RSSI

measurements; i.e., R1, R2 and R3. The trust area close to

the border of the circle with the smallest radius is assigned

the highest weight. This is, for instance, the case of the trust

area with level L1 in Fig. 3, which is close to the border of

the circle with radius R1. In fact, more the UAV is close to the

base station, lower the distance estimation error will be. Thus,

the UAV’s real position is more likely to be near the border

of the circle centered at the closest base station. Similarly,

the area close to the border of the circle with the largest

radius (e.g., trust area with level L3 in Fig. 3) is assigned the

lowest weight, indicating that the UAV is most improbable to

be located in this area. The weight ωi assigned to trust level

Li is computed as:

ωi =
Rk1Rk2∑2

l=1

∑3

k=l+1
RlRk

, k1 6= k2 6= i (k1, k2 = [1, 2, 3])

(6)

The weights are normalized so that
∑3

i=1
ωi = 1. Let us

assume that the estimated distances R1, R2, and R3 are 88m,

136m, and 170m, respectively. Thus, the weights ω1, ω2, and

ω3 will be 0.46, 0.30, and 0.24, respectively.

The area outside the residence area is assigned a trust level

L0. In what follows, we explain how the trust level is used by

the UTM to detect the spoofed GPS positions reported by an

UAV.

3) Adaptive Trustable Residence Area Determination:

The adaptive trustable residence area (ATRA) is a sub-region

of the residence area composed of the trust areas within

which the reported GPS position should be located in order

to be considered as non-spoofed. The determination of ATRA

depends on trust levels and the tolerable GPS margin error. If

no GPS spoofing happens, we assume that the UAV should be

located within a circle of radius dE centered at the planned

position Pgps on the planned path, where dE is the tolerable

margin error in the GPS localization.

Let T denote the set of trust areas belonging to the ATRA,

represented by their trust levels. The inclusion of a trust area of

level Li in the ATRA depends on the intersection area between

the trust area and the GPS error tolerance area. A trust area

is added to ATRA if one of the following conditions holds:

1) The whole trust area is inside the GPS error tolerance

area (see Algorithm 1, lines 6–7). This is the case, for

instance, of the trust area of level L1 in Fig. 4. Thus,

L1 is added to T ;

2) The ratio of the non-overlapping trust area to the entire

trust area is smaller than a threshold set to the weight

of the trust area ωi (see Algorithm 1, lines 8–12). Thus,

the low weighted trust areas are tolerated to have less

space outside the GPS error tolerance area in order to

be considered part of the ATRA. In the example of

Fig. 4, let us assume that the weights of L2 and L3
are, respectively, 0.30 and 0.24. Let us also assume that

the ratio of the non-overlapping areas (AL2
−AL2

) and

(AL3
−AL3

) to their respective trust areas L2 and L3 are

0.28 and 0.30. Thus, the L2 trust area will be included

in ATRA (L2 added to T ) but not the L3 trust area.

GPS error tolerance area

L1

L3

L2

pgps

= 0

Fig. 4. Adaptive Trustable Residence Area.

4) ATRA-based GPS Spoofing Detection: To detect the

GPS spoofing, the UTM compares the GPS location provided

by the UAV with the ATRA while accounting for the GPS

position measurement error. If the GPS position reported



Algorithm 1 ATRA Determination.

Input:

SLi
: The Li trust region, i = 1, 3

ωi: The weight of the trust level Li
Pgps = (Platitude, Plongitude): The GPS position planned

by the UTM
dE : The tolerated GPS margin error
Rj : The RSSI-based estimated distance between the UAV

and the base station j
Output:

T : The adaptive trustable residence area

1: (xgps, ygps)← Get Cartisian(Pgps)
2: T ← {}
3: for each Li do
4: dminPi ←Min Distance(SLi

, (xgps, ygps))
5: dmaxPi ←Max Distance(SLi

, (xgps, ygps))
6: if dmaxPi ≤ dE then

7: T ← T ∪ {Li}
8: else if dminPi < dE and dmaxPi > dE then
9: ALi

← Area(SLi
)

10: ALi
← Area(SLi

∩ Circle(xgps, ygps, dE))

11: if
ALi

−ALi

ALi

< ωi then

12: T ← T ∪ {Li}
13: end if

14: end if
15: end for
16: Return T

by the UAV is outside the residence area, a trust level L0
is assigned to this position. However, if the reported GPS

position is inside the residence area, it will be assigned one

of the trust levels L1, L2 and L3, depending on which trust

area the GPS position is located in. The UTM considers a

reported GPS position as authentic (i.e., not spoofed) if one

of the following conditions is met:

1) The trust level of the reported position is included in the

ATRA T (see Algorithm 2, line 1);

2) Both the reported position and the whole residence area

are inside the GPS error tolerance area. This case allows

to reduce the number of false positives (i.e., a normal

position considered as spoofed) due to uncertainty in

GPS measurements (see Algorithm 2, line 3);

3) The GPS error tolerance area is inside the residence area

and both the planned and reported GPS positions are

located within the same trust area (see Algorithm 2, line

5).

Otherwise, the reported GPS position is considered spoofed.

III. PERFORMANCE EVALUATION

In this section, the performance of the proposed ATRA-

based GPS spoofing detector is evaluated in both free-space

and urban area environments.

A. Simulation Setup

We consider three base stations fixed at positions (800, 800),
(750, 600), and (600, 700) in a 2D space, respectively. The

UAV’s planned position is fixed at (700, 700), while its

real position is randomly generated within the range of the

three base stations. The UAV’s reported position is randomly

selected within the GPS error tolerance area of the planned

Algorithm 2 ATRA-based GPS Spoofing Detection.

Input:
T : The adaptive trustable residence area
TLRgps

: The trust level of the reported GPS tposition

TLPgps
: The trust level of the planned GPS position

dE : The tolerated GPS margin error
Output:

Decision: The reported GPS position
is spoofed (= 1) or not (= 0)

1: if (TLRgps
∈ T ) then

2: Decision← 0
3: else if (card(T ) == 3) and (distance(Rgps, Pgps) < dE) then
4: Decision← 0
5: else if (TLRgps

== TLPgps
) and (TLRgps

6= L0) then
6: Decision← 0
7: else
8: Decision← 1
9: end if

10: return Decision

position. The uplink communication links between the UAV

and the base stations are modeled using the log-normal shad-

owing model given in equation (1). The PLE n is randomly

varied in [1.9, 2.1] and [2.7, 3.5] to model free space and

urban area environments, respectively. The variance σ of the

random shadowing effects χσ is set to 6dBm for free space

and 10dBm for urban space. The UAV’s GPS is considered

spoofed when the distance between the real position and the

planned position is bigger than the tolerated GPS margin error

dE . All simulations are implemented using Python.

B. Performance Results

To evaluate the proposed ATRA-based GPS spoofing detec-

tor, the precision, recall and F1-score, defined in Eq (7), are

measured. The precision is the percentage of detected spoofed

positions that are truly spoofed positions. The recall refers to

the percentage of actual spoofed positions that are correctly

detected as spoofed. The F1-score is the harmonic mean of

precision and recall.





Precision = TP/(TP + FP )

Recall = TP/(TP + FN)

F1 =
2 ∗Recall ∗ Precision

Recall + Precision

(7)

Where TP (True Positive) is the correctly detected spoofed

positions, FN (False Negative) is the spoofed positions de-

tected as normal positions, FP (False Positive) is the normal

positions considered as spoofed, and TN (True Negative) is

the normal positions that are correctly detected as normal.

The evaluation of ATRA-based GPS spoofing detector is

performed by varying the tolerated GPS margin error dE .

The performance measures depicted in Fig. 5 are obtained

over 10000 positions for each dE . The obtained results show

that the proposed approach performs well in both free-space

and urban area environments, which demonstrates that the

shadowing effects have no impact on the detection accuracy.

It is observed that the detection precision increases as the

tolerated deviation from the planned position increases, to

reach 80% for a tolerated deviation of 50m. A recall rate



of above 95% is achieved, showing the high effectiveness

of the proposed solution in detecting spoofed positions. It is

worth noting that the recall metric is preferred in assessing

the solution efficacy, as the unsuccessful detection of spoofed

positions may lead to high risks of collisions and/or violation

of no-fly zone regulation. The F1-score values indicate an

overall performance that can reach 88%, which expresses a

good balance between precision and recall.
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Fig. 5. ATRA performance in free and urban space.

IV. CONCLUSION

This paper presented a novel method for detecting the

GPS spoofing in an UAV environment. The proposed method

leverages the uplink RSS measurements collected from the

base stations to identify the adaptive trustable residence area

(ATRA), which represents the region where the reported GPS

positions need to be located in order to be considered as non-

spoofed. The performances of the proposed method in terms

of precision, recall and F1-score were evaluated through sim-

ulation. The obtained results showed the high effectiveness of

the ATRA-based GPS spoofing detector in detecting spoofed

positions in both free-space and urban area with a rate above

95%.

In the future, we will adopt the 3D LOS/NLOS path loss

models for aerial vehicles, recently defined by 3GPP [22]. Fur-

thermore, the proposed ATRA-based GPS spoofing approach

will be extended to deal with situations where less than three

base stations are in the vicinity of the UAV. Finally, Machine

Learning (ML) will be leveraged for GPS spoofing detection

based on channel quality metric.

V. ACKNOWLEDGEMENT

This work was partially supported by the European Union’s

Horizon 2020 Research and Innovation Program through the

5G!Drones Project under Grant No. 857031, the Academy of

Finland 6Genesis project under Grant No. 318927, It was also

supported in the National Outstanding Youth Science Fund

Project of China with grant No. 61825104 and the National

Natural Science Foundation of China under grant agreement

No. 61941105.

REFERENCES

[1] H. Hellaloui, A. Chelli, M. Bagaa, and T. Taleb, “Towards Mitigating
the Impact of UAVs on Cellular Communications,” in Proc. of the IEEE

Global Communications Conf. (GLOBECOM), 2018, pp. 1 – 7.

[2] O. Bekkouche, T. Taleb, and M. Bagaa, “UAVs Traffic Control based
on Multi-Access Edge Computing,” in Proc. of the IEEE Global

Communications Conf. (GLOBECOM), 2018, pp. 1 – 6.
[3] 3GPP TS 22.125, “Unmanned Aerial System (UAS) support in 3GPP,”

Dec. 2018.
[4] K. Pärlin, M. M. Alam, and Y. L. Moullec, “Jamming of UAV Remote

Control Systems using Software Defined Radio,” in Proc. of the Inter-

national Conf. on Military Communications and Information Systems

(ICMCIS), May 2018, pp. 1 – 6.
[5] S. Daneshmand, A. Jafarnia-Jahromi, A. Broumandan, and

G. Lachapelle, “A Low-Complexity GPS Anti-Spoofing Method
using a Multi-Antenna Array,” in Proc. of the 25th ION GNSS, Sept.
2012, pp. 1233 – 1243.

[6] J. Magiera and R. Katulski, “Detection and Mitigation of GPS Spoofing
based on Antenna Array Processing,” Journal of Applied Research and

Technology, vol. 13, no. 1, pp. 45–57, 2015.
[7] M. L. Psiaki, B. W. O’Hanlon, J. A. Bhatti, D. P. Shepard, and T. E.

Humphreys, “GPS Spoofing Detection via Dual-receiver Correlation
of Military Signals,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 49, no. 4, pp. 2250–2267, 2013.
[8] B. W. O’Hanlon, M. L. Psiaki, J. A. Bhatti, D. P. Shepard, and T. E.

Humphreys, “Real-Time GPS Spoofing Detection via Correlation of
Encrypted Signals,” Navigation, vol. 60, no. 4, pp. 267–278, 2013.

[9] K. Jansen, M. Schäfer, D. Moser, V. Lenders, C. Pöpper, and J. Schmitt,
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